Advances in tetrahydropyrido[1,2-a] isoindolone (valmerins) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors.

Rajâa Boulahjar, Aziz Ouach, Stéphane Bourg, Pascal Bonnet, Olivier Lozach, Laurent Meijer, Christiane Guguen-Guillouzo, Rémy Le Guevel, Saïd Lazar, Mohamed Akssira, et al.

To cite this version:

Rajâa Boulahjar, Aziz Ouach, Stéphane Bourg, Pascal Bonnet, Olivier Lozach, et al.. Advances in tetrahydropyrido[1,2-a]isoindolone (valmerins) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors.. European Journal of Medicinal Chemistry, Elsevier, 2015, 101, pp.274-287. <10.1016/j.ejmech.2015.06.046>. <hal-01212495>

HAL Id: hal-01212495
https://hal.archives-ouvertes.fr/hal-01212495
Submitted on 19 Nov 2015
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Advances in Tetrahydropyrido[1,2-α]isoindolone (Valmerins) Series: Potent Glycogen Synthase Kinase 3 and Cyclin Dependent Kinase 5 Inhibitors.

Rajaa Boulahjar, 1 Aziz Ouach, 1 Stéphane Bourg, 1 Pascal Bonnet, 1 Olivier Lozach, 2 Laurent Meijer, 2 Christiane Guguen-Guillouzo, 3 Rémy Le Guevel, 3 Saïd Lazar, 4 Mohamed Akssira, 4 Yves Troin, 5 Gérald Guillaumet 1,* and Sylvain Routier 1,*

1 Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, , rue de Chartres, BP 6759, 45067 Orleans Cedex 2, France.
2 C.N.R.S., 'Protein Phosphorylation & Human Disease’ group, USR3151, Station Biologique, B.P. 74, 29682 Roscoff Cedex, France.
3 Plateforme ImPACcell-SFR BIOSIT UMS-CNRS3480 UMS-INSERM018 Université de Rennes1, 35043 Rennes Cedex, France.
4 Laboratoire de Chimie, Bioorganique et Analytique, URAC 22 pôle Répam, Université Hassan II Mohammedia-Casablanca, BP 146, 28800 Mohammedia, Morocco
5 Clermont Université, ENSCCF, Laboratoire de Chimie des Hétérocycles et des Glucides, BP 10448, 63000 Clermont-Ferrand, France.

Keywords ; pyridoisoindolone, Valmerin, GSK3, CDK5, kinase research, in vitro assays.

*Corresponding authors

Email address: sylvain.routier@univ-orleans.fr and gerald.guillaumet@univ-orleans.fr
Abstract

An efficient synthetic strategy was developed to modulate the structure of the tetrahydropyridine isoindolone (Valmerin) skeleton. A library of more than 30 novel final structures was generated. Biological activities on CDK5 and GSK3 as well as cellular effects on cancer cell lines were measured for each novel compound. Additionally docking studies were performed to support medicinal chemistry efforts. A strong GSK3/CDK5 dual inhibitor (38, IC_{50} GSK3/CDK5 32/84 nM) was obtained. A set of highly selective GSK3 inhibitors was synthesized by fine-tuning structural modifications (29 IC_{50} GSK3/CDK5 32/320 nM). Antiproliferative effects on cells were correlated with the in vitro kinase activities and the best effects were obtained with lung and colon cell lines.
1. Introduction

Cancer results mainly from cell cycle perturbations and leads to anarchic cellular proliferation. Gene mutations associated with cancer disease induce abnormality in cellular proliferation and differentiation and are often linked to resistance of several therapies [1-5]. The four phases (G1, S, G2, M) are critical for the regulation of the cell cycle and a number of biochemical pathways have been discovered as key mechanisms for the initiation of a particular cell cycle event. Many protein kinases are activated in these biochemical pathways and mediate biological information in downstream signaling pathways through controlled phosphorylation events. Among the 518 kinases identified to date, it has been established that the ubiquitously expressed glycogen synthase kinase-3 (GSK3), mainly present in the cytoplasm, and cyclin-depend kinase 5 (CDK5), a nuclear pivot for cell cycle progression, play important roles in several biological mechanisms. GSK3 and CDK5 are reported as key mediators in neuronal migration, embryonic development, protein synthesis, cell proliferation and differentiation, microtubule dynamics, cell motility, steroidogenesis and apoptosis [2]. Deregulation of these protein kinases has been found in many human diseases and small molecules kinase inhibitor, which efficiently target GSK3 and CDK5 enzymes, are considered as potential solutions to contain the evolution of cancer. Several drugs acting on these two biological targets have entered clinical trials such as roscovitine (Seliciclib) that has progressed to phase II (Figure 1) [6,7].

As part of our efforts in finding better therapeutic solutions, our team has been involved for several years in the synthesis of novel disease-relevant kinase inhibitors and in particular drugs acting on CDK5, GSK3 and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). We have developed synthetic strategies to optimize lamellarin-like or V-shaped indolylazines derivatives as well as oxo-arcyriaflavin or indolocarbazole analogues
(Figure 1), each series providing original skeletons as well as potent ATP competitive inhibitors able to inhibit the previously mentioned protein kinases [8].

Figure 1. Some examples of CDK5, GSK3 and DYRK1A inhibitors.

In addition, we have also performed virtual screening campaigns on CDK5, GSK3 and DYRK1A to rationalise the structure-activity relationships (SAR) and to accelerate optimization processes. During our investigations in the proposed tetrahydropyridoisoindolone series, we first identified valmerin 1 (Scheme 1) and evaluated its biological effects. This series exhibits strong kinase inhibition, induces apoptosis in cancer cells and shows *in vivo* tumour regression. We showed that the lead compound 1 acts on CDK1 or CDK5 and GSK3 in the nanomolar range without any effect on DYRK1A (up to 10 \(\mu\)M), the upstream regulator of CDK and GSK3.

The development of the valmerin series, acting on GSK3 and/or CDK5, required a thorough exploration of each scaffold substituent to identify the critical pharmacophore. In a previous report, we determined that the tetrahydropyridoisoindolone core linked to a (het)Ar urea can induce kinase inhibition [9] and no modification to the tetrahydropyridine ring was explored. We surmise that such modification would interfere at the ATP binding site in the recognition mechanism between the novel molecules and the enzyme and would globally enhance the binding affinities and block kinase catalytic function. Specifically, we hypothesize that the structural modulation will lead to valmerins having an activity on GSK3 and selective to CDK5 or active on both GSK3 and CDK5. Having in hand such molecules in a single chemical family will be useful to understand the implication of Valmerins in the CDK and GSK3 cell pathways. These tools will lead to a good understanding of the action mode and will offer to medicinal chemists solutions to prepare, as example, roscovitine successors. Finally, we aim to answer the following question: Is the valmerin heterocyclic scaffold a
promising pharmacophoric model able to modulate kinase activity with achievable cellular effects?

To access the valmerin core, we modified the synthetic pathway and optimized novel synthetic routes. The nature and size of the urea heterocyclic group as well as the substitution of the tetrahydropyridine ring were the two main objectives of the chemistry efforts. The novel library was used to assess novel structure activity relationships. Molecular modelling studies were performed to corroborate the in vitro kinase activities with structural modifications. Finally, cellular effects were measured on several tumour cell lines in this study.

Scheme 1. Retrosynthetic scheme for the design of novel CDK5, GSK3 and DYRK1A valmerin inhibitors.

2. Chemistry

The synthesis of valmerins was achieved from 2-nitrophthalimide 2 and led to the interesting nitro derivatives 3 and 4 having a protected, but not necessary, ketone on the tetrahydropyridine core [9]. The transformation of dioxolane to thioacetal using ethanedithiol in the presence of BF$_3$.Et$_2$O in CH$_2$Cl$_2$ was first performed from 3. [10] Compound 5 was isolated with a yield of 86%. Ketone 4 was then subjected to a reduction using sodium borohydride in a mixture of THF/MeOH in a 86 % yield. The separation of the two stereoisomers cis and trans of 4 appears as very critical. HPLC purification indicate the presence of a mixture of the two diastereoisomers in a 7 : 3 ratio in favor of the cis configuration. [11] The purification led to the an analytical amount of pure diastereoisomer 6 in the very low yield of 14%. The next methylation step was therefore carried out on the crude cis+trans mixture which was isolated directly after reduction of the ketone. Fortunately only the cis regioisomer 6 reacted under the special conditions involving methyl iodide in the presence of Ag$_2$O in THF at 50°C in a satisfying yield (other Williamson type conditions failed). [12] Derivative 7 was also purified satisfyingly as a single cis diastereoisomer.
(COSY, NOESY and HSQC NMR experiments) with a yield, calculated from 4, of 61%.

Reduction of the nitro groups of 5 and 3 were carried out using an excess of SnCl₂ and gave amino compounds 8 and 10 in a very good yield but, starting from 7, the reaction failed. When the reduction of derivative 7 was carried out under a hydrogen atmosphere, compound 9 was generated in a 95% yield.

Scheme 2.

Aryl amines 8-10 were engaged in order to generate a novel valmerin series II. As kinase activities are directly linked to the presence of the aryl urea function, we tried several synthetic routes. The most convenient method remained the use of amines 8-10 which react from in situ freshly prepared isocyanates. Noteworthy, the previously mentioned isocyanates were obtained starting from the chosen carboxylic acids via a Curtius type rearrangement. This route appears to be very advantageous since many heteroaromatic carboxylic acids are commercially available. The use of this new strategy allowed us to develop an interesting variety of ureas 11-31 with satisfying yields. The ureas carrying an acetal were engaged in a final deprotection step to access the corresponding ketones. This sequence is particularly interesting since the direct synthesis of final derivatives, starting from 4 or 6, failed.

Treatment of compounds 11, 14, 17, 20 and 23 with an aqueous solution of hydrochloric acid at 10% in refluxing acetone led to the desired ketones 32-36 with yields of up to 79%. The final compounds 37-41 were then directly isolated from ureas 32-36 by reduction with sodium borohydride in a THF/MeOH mixture. After stirring for 2 hours at a temperature range of 0-5 °C, the final products 37-41 were straightforwardly isolated as their single cis diastereoisomers, with satisfying yields. The other stereoisomer was never observed (TLC, ¹H NMR of the crude material).

Scheme 3.

Table 1. Synthesis of Valmerins 11-41.
3. Kinase assays

The library of valmerins 11-41 was first evaluated in a primary kinase screen using the targeted enzymes CDK5 and GSK3 and the off-target kinase DYRK1A (Table 2). In a previous study, we clearly showed that the urea moiety is necessary to induce a biological effect [9]. More specifically, close to the tetrahydropyridoisoindolone scaffold, a heteroaryl urea is necessary in position C-10. The heterocycles contain a nitrogen atom in position C-2'. Valmerin 1 acts on CDK5 and GSK3 in a quite similar manner.

In our novel valmerins (Table 2), whatever the group used in position C-2, a urea in C-10 with a small five-membered cycle such as pyrazole (entry 6) led to the loss of kinase inhibition whereas an increase in the (het)Ar size such as a quinoline moiety (entry 4) led to some active compounds. Derivatives 40 and 22 act mainly on GSK3 (35 and 180 nM respectively; entries 4e, 4c). Valmerin 40 which possesses a C-2 hydroxyl group is one of the most selective derivatives so far, as it interferes with CDK5 and DYRK1A in a micromolar range. The first discrimination of CDK5 and GSK3 is achieved in this example.

We found CDK5 inhibitors with remarkable IC₅₀ in the nanomolar range without effect on GSK3 but modifications of structures could modify the level of the second activity. When pyrazine was used instead of pyridine as the (het)Ar moiety, an excellent dual inhibitor was obtained. The inhibition values for compound 38 were 84 and 32 nM against CDK5 and GSK3 respectively (entry 2e). Globally each methoxylation in C-2 diminished activity and favored the effect on GSK3; the previously mentioned duality was lost (entries 1c-4c, 5b-7b, 8).

Compounds bearing a ketone in C-2 position remained inactive (entries 1d, 2d) whatever the tested kinase. It is possible that the presence of a planar and \(\pi \) electron rich dipole was detrimental for kinase binding. A cyclic acetal was better tolerated by the active site despite
the large size of this moiety. Valmerins which possess this electron rich cycle acted preferentially on GSK3 (entries 1a-5a). The best score was obtained with 14, which bears the dioxolane ring in C-2 and inhibited GSK3 with an IC$_{50}$ = 260 nM. The activity on CDK5 was 30 fold weaker.

Surprisingly, replacing dioxolane by dithiolane enhanced the enzymatic activities on GSK3 as well as on CDK5 (for derivatives 12, 15 and 27, entries 1b, 2b and 7a respectively). Adding a supplementary heavy lipophilic bromine atom on the pyridine urea increased selectivity to a very high level (entry 10). Valmerin 31 was active on GSK3 with an IC$_{50}$ of 68 nM: the selectivity toward CDK5 increased by 100 fold.

4. Molecular modelling studies

To rationalise the structure-activity relationships, the molecules were docked into the binding site of GSK3β and CDK5. We found two main modes of binding depending on the substituent attached to the urea moiety. In one binding mode the carboxyl group of the tetrahydropyridoisoindolone scaffold points towards the catalytic lysine Lys85, forming a hydrogen bond interaction and the urea is positioned parallel to the hinge region, creating a hydrogen bond interaction between the urea and the backbone of Val135 [9]. A second mode of binding was more frequently observed in GSK3β and is shown on Figure 2. The carboxyl group of the tetrahydropyridoisoindolone scaffold forms a hydrogen bond interaction with the NH backbone of Val35, and the urea interacts with the catalytic lysine Lys85. Interestingly, in this orientation the heterocyclic ring attached to the urea can form an additional hydrogen bond interaction with Lys85 if a nitrogen is present at the ortho position. As shown in Figure 2, the nitrogen of the pyridine moiety from compound 29 interacts with Lys85, and a bidentate hydrogen bond is now present with Lys85. This binding mode can explain the kinase activity obtained with most of the 6-membered rings compared to 5-membered rings.
such as pyrazole where there is a drop in kinase activity probably because of the lack of this hydrogen bond.

Table 2. Kinase inhibitions of derivatives 11-41.

The substituent attached to the saturated ring of the tetrahydropyridoisoindolone scaffold interacts with Thr138 through a hydrogen bond network or van der Waals interaction depending on the orientation of the residue side chain. Based on the binding mode analysis and sequence alignment of GSK3β, CDK5 and DYRK1A, we suggest that the low activity of the compounds for DYRK1A and CDK5 is due to the large gatekeeper residue Phe compared to Leu132 in GSK3β, creating a steric hindrance with the tetrahydropyridoisoindolone scaffold. Additionally, the lack of activity towards DYRK1A might be due to the larger residue Val306, compared to Ala143 and Cys199 in CDK5 and GSK3β respectively, located below the plane of the scaffold and at position N-1 in the DFG motif.

Figure 2. Binding mode representation of compound 29 in GSK3β (PDB entry 1J1B).

5. Cellular screening

The toxicity on synthesized molecules was assessed on six cancer cell lines; Huh7 (liver), Caco2 (colon), MDA-MB231 (breast), HCT-116 (colon), PC3 (prostate), NCI H727 (lung). The molecules were generally cytostatic, blocking cell cycle replication. These results are typical for most kinase inhibitors acting on the targeted kinases (CDK5 and GSK3β) such as roscovitine used in our test as a reference.

All the derivatives which were tested on the kinase assay were evaluated on the cell line panel. Surprisingly all the derivatives bearing an OH in C-2 position, *i.e.*, 38, 39 and 40, led to inactive derivatives as if the hydroxyl group was too sensitive and induced instability in the cell culture media. Among the C-2 OMe family which appears active against GSK3 (*i.e.*, 13 and 29), only 29 led to interesting cellular effects. The best inhibition of growth was obtained
with the colon cell line HCT-116 (IC\textsubscript{50} = 30 nM) and the liver cell line Huh7 (IC\textsubscript{50} = 100 nM). Other cell lines were affected with an IC\textsubscript{50} between 300 and 500 nM.

Concerning the derivatives carrying C-2 thio acetals (12, 15, 27 and 31), cellular effects were maintained in the nanomolar range only when the urea (het)Ar moiety was a pyrazine group which could be unsubstituted or methylated (15 and 27). For compound 15, the cellular activity on Huh7 was similar to the one observed with 29. The toxicity against HCT-116 remained high (IC\textsubscript{50} = 100 nM). A real improvement on the breast cell line was observed, with the IC\textsubscript{50} reaching 150 nM.

Table 3. Most potent Valmerins in cell line assays.

6. Conclusions

We have developed efficient synthetic routes able to modulate the structure of the tetrahydropyridine skeleton. A library of more than 30 novel final structures was generated and our valmerin library considerably enhanced biological activities on CDK5 and GSK3. Cellular effects on cancer cell lines were measured for each novel compound. The proposed structural modifications modulated the enzyme/drug recognition mechanism. Based on this novel scaffold, we were able to develop inhibitors exhibiting \textit{in vitro} nanomolar activities on either both CDK5 and GSK3 with similar potency or only GSK3 with a 100 fold activity factor against CDK5. Molecular modelling provided information on the interaction of the best candidate 29 in the GSK3 binding site. Strong interactions were developed by the creation of hydrogen bonds, the carbonyl having an interaction with the hinge region (NH backbone) whereas the 2-pyridine or pyrazine urea interacts with the catalytic lysine residue. Modulations of the structure led to the three best derivatives which were evaluated in cellular assays. Antiproliferative effects were found in the nanomolar range. The strong cytostatic effect induced apoptosis in several cancer cell lines and more predominantly in lung and colon cell lines. This novel study confirms that the valmerin heterocyclic scaffold is of
interest for the medicinal chemistry community and further investigations are currently in progress to envision a development of this series.

7. Acknowledgements.

The authors thank the CNRS valorization service (A.O. retribution), Cancéropôle Grand Ouest axis “Valorisation des produits de la mer”, Association pour la Recherche contre le Cancer, the Program Hubert Curien “Volubilis”, and the “Ligue Nationale contre le Cancer (Comité Grand-Ouest)” for financial support.

8. Experimental section.

8.1. Chemistry.

1H NMR and 13C NMR spectra were recorded on a Bruker DPX 250 MHz or 400 MHz instrument using CDCl$_3$ or DMSO-d_6. The chemical shifts are reported in parts per million (δ scale) and all coupling constant (J) values are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and dd (doublet doublet). Melting points are uncorrected. IR absorption spectra were obtained on a Perkin Elmer PARAGON 1000 PC and values are reported in cm$^{-1}$. HRMS were recorded on a Bruker maXis mass spectrometer. Monitoring of the reactions was performed using silica gel TLC plates (silica Merck 60 F254). Spots were visualized by UV light at 254 nm and 356 nm. Column chromatographies were performed using silica gel 60 (0.063-0.200 mm, Merck).

8.1.1. 10-Nitro-1,3,4,10b-tetrahydro-6H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-6-one 5.

To a stirred solution of 3 (1.0 g, 3.4 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (40 mL), were added dropwise, at room temperature, ethane dithiol (1.24 mL, 17.0 mmol, 5.0 eq.) and then BF$_3$Et$_2$O (2.15 mL, 17.0 mmol, 5.0 eq.). After 24 h of stirring at room temperature, CH$_2$Cl$_2$
(40 mL) and an aq. NaOH (1M) solution (40 mL) were added. After extraction with CH$_2$Cl$_2$ (40 mL) the combined organic layers were dried over MgSO$_4$, filtered and evaporated under reduced pressure. Purification by column chromatography (PE/EtOAc 40/60) led to 5 as beige solid in 86% yield. m.p. 185-187 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1689, 1524, 1416, 1345, 1079. 1H NMR (250 MHz, CDCl$_3$) δ 1.51 (dd, $J = 11.2$ Hz, $J = 12.9$ Hz, 1H), 1.97-2.19 (m, 1H), 2.21-2.35 (m, 1H), 2.97-3.10 (m, 1H), 3.19-3.36 (m, 1H), 3.37-3.56 (m, 4H), 4.57-4.58 (m, 1H), 5.25 (dd, $J = 3.1$ Hz, $J = 11.2$ Hz, 1H), 7.69 (t, $J = 7.8$ Hz, 1H), 8.18 (dd, $J = 0.8$ Hz, $J = 7.8$ Hz, 1H), 8.36 (dd, $J = 0.8$ Hz, $J = 8.2$ Hz, 1H). 13C NMR (63 MHz, CDCl$_3$) δ 38.7 (CH$_2$), 39.3 (CH$_2$), 39.4 (CH$_2$), 40.7 (CH$_2$), 45.5 (CH$_2$), 59.5 (CH), 65.5 (Cq), 127.2 (CH), 130.1 (CH), 130.3 (CH), 135.9 (Cq), 139.6 (Cq), 143.8 (Cq), 163.7 (Cq). HRMS (ESI) calcd. for C$_{14}$H$_{15}$N$_2$O$_3$S$_2$ [M+H]$^+$: 323.0524, found: 323.0509.

To a solution of compound 4 (500 mg, 2.1 mmol, 1.0 eq.) in a THF/MeOH (10 mL/20 mL) mixture, NaBH$_4$ (155 mg, 4.2 mmol, 2.0 eq.) was slowly added portion wise at -20 °C. The solution was stirred at this temperature for 1 h and then at room temperature for 4 h. Water (10 mL) was added, and the aqueous phase was extracted first with CH$_2$Cl$_2$ (2 x 10 mL) and then with EtOAc (10 mL). The combined organic layers were dried over MgSO$_4$, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (CH$_2$Cl$_2$/MeOH 95/5) to give cis-6 as a white solid in 14% yield. m.p. > 260 °C. IR (ATR-Diamond, cm$^{-1}$) ν 2973, 1683, 1566, 1329, 1288. 1H NMR (400 MHz, DMSO-d$_6$) δ 0.76 (q, $J = 12.5$ Hz, 1H), 1.11-1.22 (m, 1H), 1.94 (d, $J = 12.5$ Hz, 1H), 2.64 (d, $J = 13.2$ Hz, 1H), 3.08 (td, $J = 5.2$ Hz, $J = 12.5$ Hz, 1H), 3.91-3.98 (m, 1H), 4.24 (dd, $J = 5.2$ Hz, $J = 12.5$ Hz, 1H), 5.02-5.09 (m, 2H), 7.80 (t, $J = 8.0$ Hz, 1H), 8.11 (d, $J = 8.0$ Hz, 1H), 8.39 (d, $J = 8.0$ Hz, 1H). 13C NMR (100 MHz, DMSO-d$_6$) δ 34.0 (CH$_2$), 36.8 (CH$_2$), 38.4 (CH$_2$), 57.9 (CH), 66.4 (CH), 127.1 (CH), 129.7 (CH), 130.3 (CH), 135.1 (Cq), 139.7 (Cq),
143.3 (Cq), 162.6 (Cq). HRMS (ESI) calcd. for C_{12}H_{13}N_{2}O_{4} [M+H]^+ : 249.0870, found: 249.0871.

To the solution of 6 (mixture cis and trans, 100 mg, 0.4 mmol, 1.0 eq.) in dry THF (5 mL), were added MeI (0.25 mL, 4.0 mmol, 10.0 eq.) and freshly prepared Ag_{2}O (37.0 mg, 1.6 mmol, 4.0 eq.). The mixture was stirred at 50 °C for 24 h. After cooling to room temperature, the precipitate was filtered, washed with CH_{2}Cl_{2} (3 x 10 mL) and the combined organic layers were concentrated in vacuum. The residue was purified by column chromatography on silica gel (CH_{2}Cl_{2}/MeOH 99/1) to afford compound 7 as a white solid in 61% yield (calcd from 4). m.p. 132-134 °C. IR (ATR-Diamond, cm^{-1}) ν 1688, 1523, 1349, 1285, 1112, 941, 767. ^{1}H NMR (400 MHz, CDCl_{3}) δ 0.82 (q, J = 12.5 Hz, 1H), 1.22-1.39 (m, 1H), 2.18 (d, J = 13.2 Hz, 1H), 2.96-3.09 (m, 2H), 3.40 (s, 3H), 3.61-3.67 (m, 1H), 4.56 (dd, J = 5.0 Hz, J = 13.2 Hz, 1H), 4.96 (dd, J = 3.2 Hz, J = 11.6 Hz, 1H), 7.67 (dd, J = 7.5 Hz, J = 8.0 Hz, 1H), 8.15 (d, J = 7.5 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H). ^{13}C NMR (100 MHz, CDCl_{3}) δ 30.9 (CH_{2}), 35.0 (CH_{2}), 37.3 (CH_{2}), 56.1 (CH_{3}), 58.6 (CH), 76.8 (CH), 127.0 (CH), 129.9 (CH), 130.1 (CH), 135.7 (Cq), 139.6 (Cq), 143.6 (Cq), 163.5 (Cq). HRMS (ESI) calcd. for C_{13}H_{15}N_{2}O_{4} [M+H]^+ : 263.1026, found: 263.1030.

To a stirred solution of 5 (800 mg, 2.4 mmol) in EtOH (20 mL) was added SnCl_{2} (6.8 g, 36.0 mmol, 15.0 eq.). The mixture was stirred overnight then solvent was evaporated in vacuum keeping the temperature of the solution below 30 °C. The residue was cooled at 0 °C then neutralized successively by an aqueous NaOH (2M) solution. After extraction with CH_{2}Cl_{2} (40 mL), the combined organic layers were dried over MgSO_{4}, filtered and evaporated in vacuum. The crude residue was purified by silica gel chromatography (CH_{2}Cl_{2}/MeOH
99/1) to give compound 8 as yellow solid in 80% yield. m.p. 204-206 °C. IR (ATR-Diamond, cm⁻¹) ν 3236, 1675, 1487, 1287, 1003. ¹H NMR (250 MHz, CDCl₃) δ 1.63-1.77 (m, 1H), 2.02 (td, J = 5.1 Hz, J = 12.9 Hz, 1H), 2.13-2.24 (m, 1H), 2.78-2.92 (m, 1H), 3.23 (td, J = 3.2 Hz, J = 13.3 Hz, 1H), 3.31-3.50 (m, 4H), 3.81 (br s, 2H), 4.41-4.60 (m, 2H), 6.80 (dd, J = 1.3 Hz, J = 7.2 Hz, 1H), 7.17-7.37 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ 38.4 (CH₂), 38.7 (CH₂), 39.7 (CH₂), 41.6 (CH₂), 45.7 (CH₂), 57.1 (CH), 65.7 (Cq), 114.3 (CH), 118.4 (CH), 129.0 (Cq), 129.7 (CH), 133.3 (Cq), 141.4 (Cq), 166.7 (Cq). HRMS (ESI) calcd. for C₁₄H₁₇N₂O₂ [M+H]⁺: 293.0782, found: 293.0774.

To a stirred solution of compound 7 (1.0 g, 3.8 mmol) in absolute EtOH (30 mL) was added freshly prepared W Raney Nikel (ca 200 mg). The resulting suspension was hydrogenated (1 atm) at room temperature for 14 h. The mixture was filtered through a pad of celite and washed with CH₂Cl₂ (3 x 10 mL). The combined organic layers were concentrated under vacuum to give compound 9 as a yellow solid in 95% yield. m.p. 60-62 °C. IR (ATR-Diamond, cm⁻¹) ν 3236, 1683, 1566, 1288. ¹H NMR (250 MHz, CDCl₃) δ 1.05 (q, J = 12.2 Hz, 1H), 1.34-1.41 (m, 1H), 2.18 (d, J = 12.2 Hz, 1H), 2.80 (d, J = 12.2 Hz, 1H), 2.96 (td, J = 2.5 Hz, J = 12.0 Hz, 1H), 3.40 (s, 3H), 3.52-3.62 (m, 1H), 3.82 (br s, 2H), 4.30 (dd, J = 5.0 Hz, J = 5.0 Hz, J = 11.7 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 7.25 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ 30.9 (CH₂), 35.5 (CH₂), 37.0 (CH₂), 55.9 (CH₃), 56.2 (CH), 77.1 (CH), 114.2 (CH), 118.3 (CH), 129.0 (Cq), 129.4 (CH), 133.2 (Cq), 141.2 (Cq), 166.6 (Cq). HRMS (ESI) calcd. for C₁₃H₁₇N₂O₂ [M+H]⁺: 233.1285, found: 233.1289.

Derivative 10 was prepared from 3 as previously described for 8. The crude residue was purified by silica gel chromatography (CH₂Cl₂/MeOH 99/1) to give compound 10 as a white
solid in 82% yield. m.p. 76-78 °C. IR (ATR-Diamond, cm$^{-1}$) 1710, 1542, 1366, 1143, 1028.

1H NMR (250 MHz, CDCl$_3$) δ 1.38 (t, $J = 12.5$ Hz, 1H), 1.67 (td, $J = 5.7$ Hz, $J = 13.0$ Hz, 1H), 1.81-1.83 (m, 1H), 2.44-2.46 (m, 1H), 3.23 (td, $J = 3.9$ Hz, $J = 13.0$ Hz, 1H), 3.74 (br s, 2H), 3.99-4.14 (m, 4H), 4.41-4.61 (m, 2H), 6.81 (dd, $J = 1.8$ Hz, $J = 7.0$ Hz, 1H), 7.24-7.36 (m, 2H). 13C NMR (63 MHz, CDCl$_3$) δ 34.1 (CH$_2$), 36.6 (CH$_2$), 39.1 (CH$_2$), 55.8 (CH), 64.9 (CH$_2$), 65.1 (CH$_2$), 107.7 (Cq), 114.5 (CH), 118.4 (CH), 129.5 (Cq), 129.6 (CH), 133.5 (Cq), 141.2 (Cq), 166.8 (Cq). HRMS (ESI) calc. for C$_{14}$H$_{17}$N$_2$O$_3$ [M+H]$^+$: 261.1239, found: 261.1238.

8.1.7. General procedure A for the urea synthesis.

Under Argon, a stirred solution of carboxylic acid (0.37 mmol, 1.0 eq.) and Et$_3$N (0.48 mmol, 1.3 eq.) in dry THF (7 mL) was cooled to -10 °C. Ethyl chloroformate (0.55 mmol, 1.5 eq.) was dropwise added and the resulting mixture was stirred for 2 h. Afterwards, a solution of sodium azide (0.63 mmol, 1.7 eq.) in water (2 mL) was added in one portion. After 1 h at -10 °C, the reaction was found to be complete (TLC) and was quenched into iced water (5 mL). The mixture was extracted with EtOAc (3 x 10 mL) and the combined organic layers were successively dried over MgSO$_4$, filtered and evaporated. The crude acyl azide was placed in dry toluene (20 mL) and heated at reflux for 1 h to give the corresponding crude isocyanate. The latter was placed in dry dioxane (7 mL) prior to adding the appropriate amine 8, 9 or 10 (0.37 mmol, 1.0 eq.). The solution was heated at 100 °C for 24 h. The reaction mixture was cooled and the volatiles were removed to dryness in vacuum at 40 °C.

8.1.8. 1-(6-Oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dioxolan]-10-yl)-3-(pyridin-2-yl)urea 11.

Compound 11 was obtained following the general procedure A from the amine 10 and pyridin-2-carboxylic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a white solid in 78% yield. m.p. 178-180 °C. IR (ATR-Diamond, cm$^{-1}$) ν 3305-3224, 1651,
1529-1485-1427, 1288, 1200, 723. 1H NMR (400 MHz, DMSO-d_6) δ 1.27 (t, J = 12.3 Hz, 1H), 1.50 (td, J = 5.7 Hz, J = 13.1, 1H), 1.85 (d, J = 13.1 Hz, 1H), 2.62 (dd, J = 2.1 Hz, J = 9.3 Hz, 1H), 3.16 (td, J = 3.4 Hz, J = 13.1 Hz, 1H), 3.85 (dd, J = 6.3 Hz, J = 14.1 Hz, 1H), 3.96 (dt, J = 6.3 Hz, J = 13.1 Hz, 1H), 7.09 (dd, J = 5.5 Hz, J = 6.8 Hz, 1H), 7.26 (d, J = 8.3 Hz, 1H), 7.36-7.43 (m, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.74-7.86 (m, 1H), 8.21-8.35 (m, 2H), 9.95 (s, 1H), 11.42 (s, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 33.0 (CH$_2$), 36.1 (CH$_2$), 38.3 (CH$_2$), 55.5 (CH), 64.0 (CH$_2$), 64.3 (CH$_2$), 106.8 (Cq), 112.1 (CH), 117.5 (CH), 117.6 (CH), 122.5 (CH), 129.1 (CH), 132.7 (Cq), 133.9 (Cq), 134.2 (Cq), 139.1 (CH), 146.0 (CH), 152.1 (Cq), 152.9 (Cq), 164.8 (Cq). HRMS (ESI) calc. for C$_{20}$H$_{21}$N$_4$O$_4$ [M+H]$^+$: 381.1563, found: 381.1553.

8.1.9. 1-(6-Oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2’-[1,3]dithiolan]-10-yl)-3-(pyridin-2-yl)urea 12.

Compound 12 was obtained following the general procedure A from the amine 8 and pyridin-2-carboxylic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a white solid in a 96% yield. m.p. 242-244 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1703, 1677, 1553, 1510, 1483, 1418, 1310, 1153. 1H NMR (400 MHz, DMSO-d_6) δ 1.22-1.37 (m, 1H), 1.75 (t, J = 11.3 Hz, 1H), 1.92 (d, J = 13.3 Hz, 1H), 2.72 (dd, J = 2.6 Hz, J = 12.6 Hz, 1H), 2.97-3.14 (m, 1H), 3.23-3.52 (m, 4H), 4.27 (dd, J = 4.4 Hz, J = 13.0 Hz, 1H), 4.59 (dd, J = 3.3 Hz, J = 11.5 Hz, 1H), 7.03-7.12 (m, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.39 (dd, J = 0.8 Hz, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.75-7.86 (m, 1H), 8.23 (d, J = 7.9 Hz, 1H), 8.26-8.33 (m, 1H), 10.00 (s, 1H), 11.17 (s, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 37.7 (CH$_2$), 38.2 (CH$_2$), 38.9 (CH$_2$), 40.7 (CH$_2$), 44.1 (CH$_2$), 56.9 (CH), 65.6 (Cq), 112.1 (CH), 117.4 (CH), 117.8 (CH), 123.6 (CH), 129.1 (CH), 132.7 (Cq), 133.8 (Cq), 134.1 (Cq), 139.1 (CH), 146.4
(CH), 152.2 (Cq), 152.9 (Cq), 164.8 (Cq). HRMS (ESI) calc. for \(\text{C}_{20}\text{H}_{20}\text{N}_{4}\text{O}_{2}\text{S}_{2}\text{Na}^{[\text{M+Na}]} \): 435.0878, found: 435.0870.

8.1.10. cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyridin-2-yl)urea 13.

Compound 13 was prepared following the general procedure A from the amine 9 and pyridin-2-carboxylic acid after purification by flash chromatography (CH\(_2\)Cl\(_2\)/MeOH 99/1) as a yellow solid in 81% yield. m.p. 166-168 °C. IR (ATR-Diamond, cm\(^{-1}\)) \(\nu \) 1688, 1602, 1579, 1478, 1418, 1312, 1291, 751. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 1.04 (q, \(J = 12.5 \) Hz, 1H), 1.13-1.42 (m, 1H), 2.21 (d, \(J = 12.5 \) Hz, 1H), 3.01-3.09 (m, 2H), 3.37 (s, 3H), 3.59-3.65 (m, 1H), 4.60 (dd, \(J = 3.2 \) Hz, \(J = 12.5 \) Hz, 2H), 6.90 (d, \(J = 8.0 \) Hz, 1H), 7.01 (dd, \(J = 7.5 \) Hz, \(J = 8.0 \) Hz, 1H), 7.49 (dd, \(J = 7.5 \) Hz, \(J = 8.0 \) Hz, 1H), 7.64 (d, \(J = 7.5 \) Hz, 1H), 7.70 (td, \(J = 7.5 \) Hz, \(J = 8.0 \) Hz, 1H), 8.15 (d, \(J = 8.0 \) Hz, 1H), 8.26 (d, \(J = 4.0 \) Hz, 1H), 8.66 (s, 1H), 11.98 (s, 1H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 30.7 (CH\(_2\)), 35.6 (CH\(_2\)), 37.1 (CH\(_2\)), 55.9 (CH\(_3\)), 57.0 (CH), 77.4 (CH), 112.4 (CH), 117.7 (CH), 119.5 (CH), 124.5 (CH), 129.4 (CH), 132.2 (Cq), 133.3 (Cq), 135.0 (Cq), 139.2 (CH), 145.5 (CH), 152.7 (Cq), 153.3 (Cq), 166.0 (Cq). HRMS (ESI) calc. for \(\text{C}_{19}\text{H}_{21}\text{N}_{4}\text{O}_{3}^{[\text{M+H}]} \): 353.1614, found: 353.1603.

8.1.11. 1-(6-Oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dioxolan]-10-yl)-3-(pyrazin-2-yl)urea 14.

Compound 14 was obtained following the general procedure A from the amine 10 and pyrazin-2-carboxylic acid after purification by flash chromatography (CH\(_2\)Cl\(_2\)/MeOH 99/1) as a pale brown solid in 68% yield. m.p. > 260 °C. IR (ATR-Diamond, cm\(^{-1}\)) \(\nu \) 1698, 1570, 1549-1504-1478, 1298, 1244, 1073. \(^1\)H NMR (400 MHz, DMSO-\(d_6 \)) \(\delta \) 1.23 (t, \(J = 12.3 \) Hz, 1H), 1.51 (td, \(J = 5.7 \) Hz, \(J = 13.1 \) Hz, 1H), 1.83 (d, \(J = 13.1 \) Hz, 1H), 2.55 (d, \(J = 11.5 \) Hz, 1H), 3.15 (td, \(J = 4.0 \) Hz, \(J = 13.1 \) Hz, 1H), 3.83-4.00 (m, 2H), 4.01-4.14 (m, 2H), 4.28 (dd, \(J = 4.0 \) Hz, \(J = 3.6 \) Hz, \(J = 12.0 \) Hz, 1H), 7.43 (d, \(J = 6.9 \) Hz, 1H), 7.73 (dd, \(J = 8.0 \) Hz, 1H), 8.10 (dd, \(J = 7.5 \) Hz, \(J = 8.0 \) Hz, 1H), 8.21 (d, \(J = 8.0 \) Hz, 1H), 8.24 (d, \(J = 4.0 \) Hz, 1H), 8.65 (s, 1H), 11.98 (s, 1H). HRMS (ESI) calc. for \(\text{C}_{19}\text{H}_{21}\text{N}_{4}\text{O}_{3}^{[\text{M+H}]} \): 353.1614, found: 353.1603.
7.49 (t, J = 7.8 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 8.25-8.34 (m, 2H), 8.88 (s, 1H), 10.03 (s, 1H), 10.12 (s, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 33.1 (CH$_2$), 36.1 (CH$_2$), 38.1 (CH$_2$), 55.5 (CH), 64.0 (CH$_2$), 64.3 (CH$_2$), 106.8 (Cq), 118.0 (CH), 123.3 (CH), 129.1 (CH), 132.8 (Cq), 133.5 (Cq), 134.8 (Cq), 135.5 (CH), 137.8 (CH), 140.8 (CH), 149.2 (Cq), 151.7 (Cq), 164.7 (Cq). HRMS (ESI) calc. for C$_{19}$H$_{19}$N$_5$O$_4$Na [M+Na]$^+$: 404.1335, found: 404.1327.

8.1.12. 1-(6-Oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)-3-(pyrazin-2-yl)urea 15.

Compound 15 was obtained following the general procedure A from the amine 8 and pyrazin-2-carboxylic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a white solid in 90% yield. m.p. 236-238 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1676, 1551, 1505-1483-1421, 1298, 1138. 1H NMR (400 MHz, DMSO-d_6) δ 1.63 (t, J = 12.3 Hz, 1H), 1.96 (td, J = 5.0 Hz, J = 12.3 Hz, 1H), 2.14 (d, J = 13.2 Hz, 1H), 2.89 (d, J = 11.5 Hz, 1H), 3.16 (td, J = 3.1 Hz, J = 13.3 Hz, 1H), 3.28-3.48 (m, 4H), 4.33 (dd, J = 3.1 Hz, J = 13.3 Hz, 1H), 4.79 (dd, J = 3.1 Hz, J = 11.5 Hz, 1H), 7.42-7.54 (m, 2H), 8.08 (dd, J = 0.9 Hz, J = 7.8 Hz, 1H), 8.29 (d, J = 2.7 Hz, 1H), 8.40 (dd, J = 1.5 Hz, J = 2.6 Hz, 1H), 8.83 (d, J = 1.1 Hz, 1H), 10.13 (s, 1H), 10.19 (s, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 37.7 (CH$_2$), 38.2 (CH$_2$), 38.7 (CH$_2$), 40.5 (CH$_2$), 44.0 (CH$_2$), 56.9 (CH), 65.6 (Cq), 118.3 (CH), 124.1 (CH), 129.1 (CH), 132.8 (Cq), 133.4 (Cq), 134.7 (Cq), 135.6 (CH), 137.7 (CH), 140.8 (CH), 149.2 (Cq), 151.7 (Cq), 164.7 (Cq). HRMS (ESI) calc. for C$_{19}$H$_{19}$N$_5$O$_2$S$_2$Na [M+Na]$^+$: 436.0878, found: 436.0870.

8.1.13. cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyrazin-2-yl)urea 16.

Compound 16 was prepared following the general procedure A from the amine 9 and pyrazin-2-carboxylic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a yellow solid in 78% yield. m.p. 192-194 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1684, 1595, 1557,
1486, 1421, 1306, 1084, 753. 1H NMR (400 MHz, DMSO-d_6) δ 0.80 (q, $J = 12.5$ Hz, 1H), 1.14-1.24 (m, 1H), 2.19 (d, $J = 12.5$ Hz, 1H), 2.97 (d, $J = 13.5$ Hz, 1H), 3.14 (td, $J = 3.2$ Hz, $J = 12.5$ Hz, 1H), 3.28 (s, 3H), 3.69-3.77 (m, 1H), 4.34 (dd, $J = 4.0$ Hz, $J = 13.5$ Hz, 1H), 4.73 (dd, $J = 3.2$ Hz, $J = 13.5$ Hz, 1H), 7.47 (d, $J = 8.0$ Hz, 1H), 7.54 (dd, $J = 7.8$ Hz, $J = 8.0$ Hz, 1H), 8.20 (d, $J = 8.0$ Hz, 1H), 8.35 (d, $J = 3.2$ Hz, 1H), 8.40 (dd, $J = 1.6$ Hz, $J = 3.2$ Hz, 1H), 9.00 (d, $J = 1.6$ Hz, 1H), 9.85 (s, 1H), 10.14 (s, 1H).

13C NMR (100 MHz, DMSO-d_6) δ 30.7 (CH$_2$), 35.3 (CH$_2$), 36.4 (CH$_2$), 55.2 (CH$_3$), 55.8 (CH), 76.3 (CH), 118.0 (CH), 123.1 (CH), 129.1 (CH), 132.8 (Cq), 133.5 (Cq), 134.5 (Cq), 135.5 (CH), 137.9 (CH), 141.1 (CH), 149.2 (Cq), 151.7 (Cq), 164.6 (Cq). HRMS (ESI) calc. for C$_{18}$H$_{19}$N$_5$O$_3$Na [M+Na]$^+$: 376.1386, found: 376.1370.

Compound 17 was prepared following the general procedure A from the amine 10 and 6-methylpicolinic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a white solid in 75% yield. m.p. 240-242 °C. IR (ATR-Diamond, cm$^{-1}$) ν 3180, 1685, 1584, 1560, 1510, 1327, 1287, 751. 1H NMR (400 MHz, CDCl$_3$) δ 1.33 (t, $J = 12.5$ Hz, 1H), 1.69 (td, $J = 5.0$ Hz, $J = 12.5$ Hz, 1H), 1.80 (d, $J = 12.5$ Hz, 1H), 2.53 (d, $J = 13.5$ Hz, 1H), 2.60 (s, 3H), 3.27 (td, $J = 2.5$ Hz, $J = 13.5$ Hz, 1H), 3.74-4.05 (m, 4H), 4.53 (dd, $J = 5.0$ Hz, $J = 12.5$ Hz, 1H), 4.93 (dd, $J = 2.5$ Hz, $J = 12.5$ Hz, 1H), 6.73 (d, $J = 7.5$ Hz, 1H), 6.82 (d, $J = 7.5$ Hz, 1H), 7.47-7.59 (m, 2H), 7.67 (d, $J = 7.5$ Hz, 1H), 7.99 (d, $J = 7.5$ Hz, 1H), 9.16 (s, 1H), 12.14 (s, 1H).

13C NMR (100 MHz, CDCl$_3$) δ 22.8 (CH$_3$), 33.0 (CH$_2$), 35.5 (CH$_2$), 37.2 (CH$_2$), 55.5 (CH), 63.5 (CH$_2$), 63.6 (CH$_2$), 106.4 (Cq), 108.3 (CH), 115.7 (CH), 118.7 (CH), 124.9 (CH), 128.1 (CH), 131.8 (Cq), 132.3 (Cq), 135.1 (Cq), 138.2 (CH), 151.4 (Cq), 152.9 (Cq), 154.4 (Cq), 165.1 (Cq). HRMS (ESI) calc. for C$_{21}$H$_{23}$N$_4$O$_4$ [M+H]$^+$: 395.1719, found: 395.1733.
8.1.15. 1-(6-Methylpyridin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]
isoindole-2,2'-[1,3]dithiolan]-10-yl)urea 18.

Compound 18 was prepared following the general procedure A from the amine 8 and 6-
methylpicolinic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a
white solid in 78% yield. m.p. 154-156 °C. IR (ATR-Diamond, cm$^{-1}$) ν 2922, 1689, 1622,
1596, 1429, 1355, 1290, 741. 1H NMR (400 MHz, CDCl$_3$) δ 1.61 (t, $J = 12.5$ Hz, 1H), 2.03
(td, $J = 5.0$ Hz, $J = 12.5$ Hz, 1H), 2.18 (d, $J = 12.5$ Hz, 1H), 2.60 (s, 3H), 2.89 (d, $J = 13.5$
Hz, 1H), 3.14-3.29 (m, 5H), 4.53 (dd, $J = 2.5$ Hz, $J = 13.5$ Hz, 1H), 4.92 (dd, $J = 2.5$ Hz,
$J = 13.5$ Hz, 1H), 6.83 (d, $J = 8.0$ Hz, 2H), 7.47 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.58-7.65
(m, 1H), 7.68 (d, $J = 8.0$ Hz, 1H), 7.75 (d, $J = 8.0$ Hz, 1H), 9.48 (s, 1H), 12.05 (s, 1H). 13C
NMR (100 MHz, CDCl$_3$) δ 29.3 (CH$_3$), 38.3 (CH$_2$), 38.6 (CH$_2$), 38.8 (CH$_2$), 40.5 (CH$_2$),
45.1 (CH$_2$), 57.8 (CH), 65.5 (Cq), 109.8 (CH), 116.8 (CH), 120.4 (CH), 127.0 (CH), 129.1 (2
CH), 132.4 (Cq), 133.4 (Cq), 136.8 (2 Cq), 152.1 (Cq), 154.0 (Cq), 165.8 (Cq). HRMS (ESI) calc. for
C$_{21}$H$_{23}$N$_4$O$_2$S$_2$ [M+H]$^+$: 427.1262, found: 427.1278.

8.1.16. cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(6-
methyl-pyridin-2-yl)urea 19.

Compound 19 was prepared from following the general procedure A from the amine 9
and 6-methylpicolinic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1)
as a white solid in 75% yield. m.p. 167-169 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1689, 1589,
1556, 1436, 1283, 751. 1H NMR (400 MHz, CDCl$_3$) δ 1.03 (q, $J = 12.5$ Hz, 1H), 1.27-1.38
(m, 1H), 2.19 (d, $J = 12.5$ Hz, 1H), 2.56 (s, 3H), 2.93 (d, $J = 12.5$ Hz, 1H), 3.02 (td, $J = 3.2$
Hz, $J = 13.5$ Hz, 1H), 3.30 (s, 3H), 3.53-3.59 (m, 1H), 4.58 (dd, $J = 4.5$ Hz, $J = 13.5$ Hz, 1H),
4.69 (dd, $J = 3.2$ Hz, $J = 12.5$ Hz, 1H), 6.70 (d, $J = 8.0$ Hz, 1H), 6.83 (d, $J = 7.5$ Hz, 1H), 7.49
(dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.55 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.66 (d, $J = 8.0$ Hz,
1H), 7.99 (d, $J = 8.0$ Hz, 1H), 8.93 (s, 1H), 11.98 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 24.4
(CH₃), 30.6 (CH₂), 35.1 (CH₂), 37.1 (CH₂), 55.8 (CH₃), 57.2 (CH), 77.3 (CH), 109.4 (CH), 117.0 (CH), 120.0 (CH), 125.8 (CH), 129.2 (CH), 133.0 (Cq), 133.4 (Cq), 135.8 (Cq), 139.2 (CH), 152.3 (Cq), 153.7 (Cq), 155.0 (Cq), 166.0 (Cq). HRMS (ESI) calc. for C₂₀H₂₃N₄O₃ [M+H]⁺: 367.1770, found: 367.1776.

8.1.17. 1-(4-Methoxyquinolin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2′-[1,3]dioxolan]-10-yl)urea 20.

Compound 20 was prepared following the general procedure A from the amine 10 and 4-methoxyquinoline-2-carboxylic acid after purification by flash chromatography (CH₂Cl₂/MeOH 99/1) as a yellow solid in 72% yield. m.p. 258-260 °C. IR (ATR-Diamond, cm⁻¹) ν 2967, 1689, 1621, 1585, 1414, 1332, 1289, 751. ¹H NMR (400 MHz, CDCl₃) δ 1.38 (t, J = 12.5 Hz, 1H), 1.62-1.81 (m, 2H), 2.72 (d, J = 13.5 Hz, 1H), 3.27-3.39 (m, 2H), 3.59-3.77 (m, 3H), 4.56 (dd, J = 2.5 Hz, J = 13.5 Hz, 1H), 5.01 (dd, J = 2.5 Hz, J = 13.5 Hz, 1H), 6.47 (s, 1H), 7.38-7.49 (m, 2H), 7.67-7.73 (m, 2H), 7.95 (d, J = 7.5 Hz, 1H), 8.10 (d, J = 7.5 Hz, 1H), 8.23 (d, J = 7.5 Hz, 1H), 9.86 (s, 1H), 12.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 34.1 (CH₂), 36.6 (CH₂), 38.3 (CH₂), 55.8 (CH₃), 56.5 (CH), 64.5 (CH₂), 64.6 (CH₂), 91.5 (CH), 107.2 (Cq), 118.8 (Cq), 119.6 (CH), 121.9 (CH), 124.2 (CH), 125.3 (CH), 126.5 (CH), 128.8 (CH), 130.5 (CH), 133.0 (Cq), 133.3 (Cq), 135.7 (Cq), 145.9 (Cq), 153.4 (Cq), 154.4 (Cq), 163.9 (Cq), 166.1 (Cq). HRMS (ESI) calc. for C₂₅H₂₅N₄O₅ [M+H]⁺: 461.1825, found: 461.1844.

8.1.18. 1-(4-Methoxyquinolin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2′-[1,3]dithiolan]-10-yl)urea 21.

Compound 21 was prepared following the general procedure A from the amine 8 and 4-methoxyquinoline-2-carboxylic acid after purification by flash chromatography (CH₂Cl₂/MeOH 99/1) as a yellow solid in 80% yield. m.p. 250-252 °C. IR (ATR-Diamond, cm⁻¹) ν 2975, 1685, 1621, 1585, 1414, 1332, 1289, 751. ¹H NMR (400 MHz, CDCl₃) δ 1.68
(t, J = 12.5 Hz, 1H), 2.06 (td, J = 5.0 Hz, J = 12.5 Hz, 1H), 2.19 (d, J = 12.5 Hz, 1H), 2.47-2.57 (m, 1H), 2.78-3.13 (m, 4H), 3.19 (td, J = 5.0 Hz, J = 13.5 Hz, 1H), 4.00 (s, 3H), 4.58 (dd, J = 2.5 Hz, J = 13.5 Hz, 1H), 5.07 (dd, J = 2.5 Hz, J = 12.5 Hz, 1H), 6.48 (s, 1H), 7.39 (dd, J = 7.5 Hz, J = 8.0 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.64 (dd, J = 7.5 Hz, J = 8.0 Hz, 1H), 7.72 (d, J = 7.5 Hz, 1H), 8.00 (dd, J = 7.5 Hz, J = 8.0 Hz, 2H), 8.08 (d, J = 7.5 Hz, 1H), 10.01 (s, 1H), 12.56 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 38.2 (CH2), 38.3 (CH2), 39.0 (CH2), 40.2 (CH2), 45.4 (CH2), 55.8 (CH3), 57.7 (CH), 65.3 (Cq), 91.5 (CH), 118.7 (Cq), 120.2 (CH), 121.8 (CH), 124.2 (CH), 126.8 (CH), 127.0 (CH), 128.7 (CH), 130.4 (CH), 132.7 (Cq), 133.4 (Cq), 136.4 (Cq), 145.8 (Cq), 153.4 (Cq), 154.6 (Cq), 163.9 (Cq), 165.9 (Cq). HRMS (ESI) calc. for C25H25N4O3S2 [M+H]+: 493.1368, found: 493.1384.

8.1.19. cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-methoxyquinolin-2-yl)urea 22.

Compound 22 was prepared following the general procedure A from the amine 9 and 4-methoxyquinoline-2-carboxylic acid after purification by flash chromatography (CH2Cl2/MeOH 99/1) as a white solid in 80% yield. m.p. > 260 °C. IR (ATR-Diamond, cm⁻¹) ν 1694, 1610, 1556, 1479, 1416, 1338, 1295, 759. 1H NMR (400 MHz, DMSO-d6) δ 0.76 (q, J = 12.5 Hz, 1H), 1.05-1.15 (m, 1H), 2.09 (d, J = 12.5 Hz, 1H), 2.82 (s, 3H), 2.91 (d, J = 13.5 Hz, 1H), 3.15 (td, J = 3.2 Hz, J = 13.5 Hz, 1H), 3.59 (d, J = 12.0 Hz, 1H), 4.01 (s, 3H), 4.30 (dd, J = 4.0 Hz, J = 13.5 Hz, 1H), 4.92 (dd, J = 3.2 Hz, J = 12.0 Hz, 1H), 6.84 (s, 1H), 7.41-7.51 (m, 3H), 7.77 (dd, J = 7.5 Hz, J = 8.0 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 8.29 (d, J = 8.0 Hz, 1H), 10.15 (s, 1H), 11.99 (s, 1H). 13C NMR (100 MHz, DMSO-d6) δ 30.8 (CH2), 34.4 (CH2), 36.4 (CH2), 54.7 (CH3), 55.9 (CH), 56.0 (CH3), 76.4 (CH), 91.9 (CH), 117.8 (CH), 118.1 (Cq), 121.5 (CH), 123.6 (CH), 124.1 (CH), 126.3 (CH), 128.9 (CH), 130.7 (CH), 132.8 (Cq), 133.7 (Cq), 134.3 (Cq), 145.6 (Cq), 152.3 (Cq), 153.8 (Cq), 162.9 (Cq), 164.6 (Cq). HRMS (ESI) calc. for C24H23N4O4 [M+H]+: 433.1876, found: 433.1884.
8.1.20. 1-(3-Methylpyridin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]
isoindole-2,2′-[1,3]dioxolan]-10-yl)urea 23.

Compound 23 was prepared following the general procedure A from the amine 10 and 3-methylpicolinic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a white solid in 72% yield. m.p. > 260 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1679, 1566, 1480-1415, 1291, 1135. 1H NMR (400 MHz, DMSO-d_6) δ 1.35 (t, $J = 12.5$ Hz, 1H), 1.53 (td, $J = 5.0$ Hz, $J = 12.5$ Hz, 1H), 1.86 (d, $J = 12.5$ Hz, 1H), 2.32 (s, 3H), 2.62 (d, $J = 12.5$ Hz, 1H), 3.17 (td, $J = 3.2$ Hz, $J = 13.5$ Hz, 1H), 3.81-4.07 (m, 4H), 4.30 (dd, $J = 3.2$ Hz, $J = 13.5$ Hz, 1H), 4.84 (dd, $J = 3.3$ Hz, $J = 12.5$ Hz, 1H), 7.09 (dd, $J = 7.0$ Hz, $J = 8.0$ Hz, 1H), 7.39-7.50 (m, 2H), 7.69 (d, $J = 7.0$ Hz, 1H), 8.23 (d, $J = 7.5$ Hz, 1H), 8.33 (d, $J = 7.5$ Hz, 1H), 8.85 (s, 1H), 12.4 (s, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 17.5 (CH$_3$) 34.4 (CH$_2$), 36.4 (CH$_2$), 37.8 (CH$_2$), 55.7 (CH), 64.3 (CH$_2$), 64.6 (CH$_2$), 107.4 (Cq), 110.8 (CH), 112.7 (CH), 117.5 (CH), 129.2 (CH), 133.0 (Cq), 134.6 (Cq), 137.2 (CH), 143.3 (Cq), 143.9 (Cq), 145.5 (CH), 151.6 (Cq), 152.7 (Cq), 166.2 (Cq). HRMS (ESI) calc. for C$_{21}$H$_{23}$N$_4$O$_4$ [M+H]$^+$: 395.1719, found: 395.1731.

8.1.21. cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(3-
methylpyridin-2-yl)urea 24.

Compound 24 was prepared following the general procedure A from the amine 9 and 3-methylpicolinic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a yellow solid in 73% yield. m.p. 222-224 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1692, 1592, 1554, 1484, 1421, 1298, 1189, 751. 1H NMR (400 MHz, CDCl$_3$) δ 1.02 (q, $J = 12.5$ Hz, 1H), 1.30-1.40 (m, 1H), 2.20 (d, $J = 12.5$ Hz, 1H), 2.31 (s, 3H), 3.03 (td, $J = 3.2$ Hz, $J = 12.5$ Hz, 2H), 3.36 (s, 3H), 3.60-3.65 (m, 1H), 4.58 (dd, $J = 3.2$ Hz, $J = 12.0$ Hz, 2H), 6.95 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.11 (s, 1H), 7.46 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.53 (d, $J = 7.5$ Hz, 1H), 7.61 (d, $J = 7.5$ Hz, 1H), 8.13-8.16 (m, 2H), 12.24 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ
17.1 (CH$_3$), 30.9 (CH$_2$), 35.7 (CH$_2$), 37.2 (CH$_2$), 56.1 (CH$_3$), 57.1 (CH), 77.6 (CH), 117.9 (CH), 119.6 (CH), 119.7 (Cq), 124.6 (CH), 129.5 (CH), 133.2 (Cq), 133.3 (Cq), 135.0 (Cq), 139.9 (CH), 143.2 (CH), 151.2 (Cq), 152.7 (Cq), 152.7 (Cq), 166.2 (Cq). HRMS (ESI) calc. for C$_{20}$H$_{23}$N$_4$O$_3$ [M+H]$^+$: 367.1770, found: 367.1778.

8.1.22. 1-(1-methyl-1H-pyrazol-3-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido [2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)urea 25.

Compound 25 was obtained following the general procedure A from the amine 8 and 1-methyl-1H-pyrazole-3-carboxylic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a yellow solid in 68% yield. m.p. 134-136 °C. IR (ATR-Diamond, cm$^{-1}$) ν 3256, 2923, 1676, 1530, 1485, 1287. 1H NMR (400 MHz, CDCl$_3$) δ 1.62 (t, J = 12.5 Hz, 1H), 2.01 (td, J = 5.0 Hz, J = 12.5 Hz, 1H), 2.17 (d, J = 12.5 Hz, 1H), 2.95 (d, J = 13.5 Hz, 1H), 3.16-3.33 (m, 5H), 3.87 (s, 3H), 4.52 (dd, J = 3.8 Hz, J = 13.5 Hz, 1H), 4.81 (dd, J = 3.1 Hz, J = 11.5 Hz, 1H), 5.91 (s, 1H), 7.23 (d, J = 2.2 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 8.82 (s, 1H), 10.08 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 38.4 (CH$_2$), 38.8 (CH$_2$), 38.9 (CH$_2$), 39.2 (CH$_3$), 41.0 (CH$_2$), 45.0 (CH$_2$), 57.8 (CH), 65.8 (Cq), 94.6 (CH), 119.8 (CH), 126.3 (CH), 129.3 (CH), 131.4 (CH), 133.2 (Cq), 133.3 (Cq), 136.0 (Cq), 148.5 (Cq), 153.5 (Cq), 166.3 (Cq). HRMS (ESI) calc. for C$_{19}$H$_{21}$N$_5$O$_3$S$_2$Na [M+Na]$^+$: 438.1034, found: 438.1025.

8.1.23. cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(1-methyl-1H-pyrazol-3-yl)urea 26.

Compound 26 was prepared following the general procedure A from the amine 9 and 1-methyl-1H-pyrazole-3-carboxylic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a yellow solid in 81% yield. m.p. 196-198 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1686, 1625, 1538, 1482-1421, 1316, 1284, 751. 1H NMR (400 MHz, CDCl$_3$) δ 1.06 (q, J = 12.0 Hz, 1H), 1.27-1.39 (m, 1H), 2.21 (d, J = 12.0 Hz, 1H), 2.97-3.08 (m, 2H), 3.35 (s,
3H, 3.55-3.60 (m, 1H), 3.87 (s, 3H), 4.56-4.60 (m, 2H), 5.84 (s, 1H), 7.27 (d, \(J = 2.2\) Hz, 1H), 7.45 (dd, \(J = 7.5\) Hz, \(J = 8.0\) Hz, 1H), 7.62 (d, \(J = 7.5\) Hz, 1H), 7.98 (s, 1H), 8.04 (d, \(J = 8.0\) Hz, 1H), 10.06 (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 30.3 (CH\(_2\)), 35.7 (CH\(_2\)), 37.0 (CH\(_2\)), 38.8 (CH\(_3\)), 55.7 (CH\(_3\)), 56.9 (CH), 77.2 (CH), 94.1 (CH), 119.5 (CH), 125.0 (CH), 129.2 (CH), 131.5 (CH), 133.2 (Cq), 133.3 (Cq), 135.2 (Cq), 148.2 (Cq), 152.8 (Cq), 166.0 (Cq). HRMS (ESI) calc. for C\(_{18}\)H\(_{21}\)N\(_5\)O\(_3\)Na [M+Na]\(^+\): 378.1542, found: 378.1542.

8.1.24. 1-(5-Methylpyrazin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2\'-[1,3]dithiolan]-10-yl)urea 27.

Compound 27 was prepared following the general procedure A from the amine 8 and 5-methylpyrazine-2-carboxylic acid after purification by flash chromatography (CH\(_2\)Cl\(_2\)/MeOH 99/1) as a white solid in 85% yield. m.p. > 260 °C. IR (ATR-Diamond, cm\(^{-1}\)) \(\nu\) 2977, 1688, 1621, 1586, 1414, 1332, 1288, 753. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 1.61 (t, \(J = 12.2\) Hz, 1H), 1.93 (td, \(J = 5.0\) Hz, \(J = 12.2\) Hz, 1H), 2.12 (d, \(J = 12.5\) Hz, 1H), 2.43 (s, 3H), 2.87 (d, \(J = 12.5\) Hz, 1H), 3.14 (t, \(J = 12.2\) Hz, 1H), 3.29-3.35 (m, 3H), 3.39-3.44 (m, 1H), 4.32 (dd, \(J = 2.8\) Hz, \(J = 12.2\) Hz, 1H), 4.75 (dd, \(J = 2.8\) Hz, \(J = 12.2\) Hz, 1H), 7.42-7.50 (m, 2H), 8.06 (d, \(J = 7.5\) Hz, 1H), 8.27 (s, 1H), 8.73 (s, 1H), 10.04 (s, 2H). \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta\) 20.2 (CH\(_3\)), 37.8 (CH\(_2\)), 38.2 (CH\(_2\)), 38.7 (CH\(_2\)), 40.5 (CH\(_2\)), 41.0 (CH\(_2\)), 56.9 (CH), 65.6 (Cq), 118.2 (CH), 124.0 (CH), 129.1 (CH), 132.8 (Cq), 133.5 (Cq), 134.3 (CH), 134.6 (Cq), 139.7 (CH), 146.0 (Cq), 146.9 (Cq), 151.8 (Cq), 164.7 (Cq). HRMS (ESI) calc. for C\(_{20}\)H\(_{22}\)N\(_5\)O\(_2\)S\(_2\) [M+H]\(^+\): 428.1215, found: 428.1229.

8.1.25. cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindole-2,2\'-[1,3]dithiolan]-10-yl)urea 28.

Compound 28 was prepared following the general procedure A from the amine 9 and 5-methylpyrazine-2-carboxylic acid after purification by flash chromatography (CH\(_2\)Cl\(_2\)/MeOH 99/1) as a yellow solid in 76% yield. m.p. 140-142 °C. IR (ATR-Diamond, cm\(^{-1}\)) \(\nu\) 1688,
1598, 1554, 1484, 1438, 1344, 1291, 753. 1H NMR (400 MHz, CDCl$_3$) δ 1.06 (q, $J = 12.0$ Hz, 1H), 1.30-1.40 (m, 1H), 2.22 (d, $J = 12.5$ Hz, 1H), 2.54 (s, 3H), 2.96-3.06 (m, 2H), 3.38 (s, 3H), 3.53-3.61 (m, 1H), 4.53-4.62 (m, 2H), 7.49 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.66 (d, $J = 7.5$ Hz, 1H), 8.02 (d, 1H), 8.42 (d, 1H), 9.80 (s, 1H), 11.16 (s, 1H).

13C NMR (100 MHz, CDCl$_3$) δ 20.6 (CH$_3$), 30.5 (CH$_2$), 35.7 (CH$_2$), 37.1 (CH$_2$), 55.9 (CH$_3$), 56.9 (CH), 77.3 (CH), 120.0 (CH), 124.6 (CH), 129.5 (CH), 132.6 (Cq), 133.3 (Cq), 135.0 (Cq), 135.1 (CH), 137.7 (CH), 146.6 (Cq), 146.7 (Cq), 153.5 (Cq), 165.9 (Cq). HRMS (ESI) calc. for C$_{19}$H$_{22}$N$_{5}$O$_3$ [M+H]$^+$: 368.1723, found: 368.1722.

8.1.26. cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-methylpyridin-2-yl)urea 29.

Compound 29 was prepared following the general procedure A from the amine 9 and 4-methylpicolinic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a yellow solid in 76% yield. m.p. 218-220 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1690, 1619, 1573, 1481-1439, 1310, 1293, 752. 1H NMR (400 MHz, DMSO-d$_6$) δ 0.75 (q, $J = 12.0$ Hz, 1H), 1.08-1.19 (m, 1H), 2.14 (d, $J = 12.0$ Hz, 1H), 2.30 (s, 3H), 2.99 (d, $J = 12.0$ Hz, 1H), 3.10 (td, $J = 3.2$ Hz, $J = 13.2$ Hz, 1H), 3.25 (s, 3H), 3.69-3.77 (m, 1H), 4.29 (dd, $J = 3.2$ Hz, $J = 13.2$ Hz, 1H), 6.92 (d, $J = 5.2$ Hz, 1H), 7.08 (s, 1H), 7.37 (d, $J = 7.5$ Hz, 1H), 7.46 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 8.20 (d, $J = 5.2$ Hz, 1H), 8.26 (d, $J = 8.0$ Hz, 1H), 9.86 (s, 1H), 11.43 (s, 1H). 13C NMR (100 MHz, DMSO-d$_6$) δ 20.8 (CH$_3$), 30.7 (CH$_2$), 35.2 (CH$_2$), 36.5 (CH$_2$), 55.2 (CH$_3$), 55.8 (CH), 76.3 (CH), 112.1 (CH), 117.4 (CH), 118.8 (CH), 122.2 (CH), 129.1 (CH), 132.7 (Cq), 133.9 (Cq), 134.0 (Cq), 145.6 (CH), 150.0 (Cq), 152.2 (Cq), 152.9 (Cq), 164.7 (Cq). HRMS (ESI) calc. for C$_{20}$H$_{23}$N$_{4}$O$_3$ [M+H]$^+$: 367.1770, found: 367.1761.

8.1.27. (6-Bromopyridin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)urea 30.
Compound 30 was obtained following the general procedure A from the amine 8 and 6-bromopicolinic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a yellow solid in 57% yield. m.p. 168-170 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1654, 1565, 1530, 1486, 1430, 786. 1H NMR (400 MHz, CDCl$_3$) δ 1.66 (t, $J = 12.0$ Hz, 1H), 2.03 (td, $J = 5.0$ Hz, $J = 13.4$, 1H), 2.18 (d, $J = 13.5$ Hz, 1H), 2.85 (dd, $J = 1.9$ Hz, $J = 10.0$ Hz, 1H), 3.09-3.38 (m, 5H), 4.55 (dd, $J = 3.7$ Hz, $J = 13.8$ Hz, 1H), 4.97 (dd, $J = 3.3$ Hz, $J = 11.5$ Hz, 1H), 7.14 (d, $J = 7.7$ Hz, 2H), 7.51 (td, $J = 5.7$ Hz, $J = 7.8$ Hz, 2H), 7.72 (dd, $J = 7.6$ Hz, $J = 13.4$ Hz, 2H), 9.91 (s, 1H), 10.88 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 38.6 (CH$_2$), 38.9 (CH$_2$), 39.1 (CH$_2$), 41.0 (CH$_2$), 45.2 (CH$_2$), 58.3 (CH), 65.6 (Cq), 111.2 (CH), 121.0 (CH), 121.4 (CH), 127.3 (CH), 129.4 (CH), 132.4 (Cq), 133.7 (Cq), 137.3 (Cq), 138.3 (Cq), 140.9 (CH), 153.1 (Cq), 153.6 (Cq), 166.1 (Cq). HRMS (ESI) calc. for C$_{20}$H$_{19}$N$_4$O$_2$S$_2$BrNa [M+Na]$^+$: 513.0031, found: 513.0014.

Compound 31 was obtained following the general procedure A from the amine 8 and 5-bromopicolinic acid after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a yellow solid in 82% yield. m.p. 240-242 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1700, 1551, 1481, 1430, 1367, 1240, 1048, 759. 1H NMR (400 MHz, DMSO-d$_6$) δ 1.66 (t, $J = 12.0$ Hz, 1H), 1.95 (td, $J = 5.0$ Hz, $J = 13.0$ Hz, 1H), 2.15 (d, $J = 13.0$ Hz, 1H), 2.92 (d, $J = 11.6$ Hz, 1H), 3.17 (td, $J = 3.2$ Hz, $J = 13.3$ Hz, 1H), 3.27-3.50 (m, 4H), 4.34 (dd, $J = 3.2$ Hz, $J = 13.5$ Hz, 1H), 4.78 (dd, $J = 3.3$ Hz, $J = 11.6$ Hz, 1H), 7.33 (d, $J = 8.9$ Hz, 1H), 7.43 (d, $J = 6.8$ Hz, 1H), 7.49 (t, $J = 7.8$ Hz, 1H), 8.01 (dd, $J = 2.5$ Hz, $J = 8.9$ Hz, 1H), 8.17 (d, $J = 7.8$ Hz, 1H), 8.57 (d, $J = 2.4$ Hz, 1H), 10.10 (s, 1H), 10.69 (s, 1H). 13C NMR (100 MHz, DMSO-d$_6$) δ 37.7 (CH$_2$), 38.2 (CH$_2$), 38.8 (CH$_2$), 40.7 (CH$_2$), 44.0 (CH$_2$), 56.9 (CH), 65.7 (Cq), 111.4 (Cq), 114.0 (CH), 118.0 (CH), 123.6 (CH), 129.1 (CH), 132.7 (Cq), 133.6 (Cq), 134.2 (Cq), 141.3
8.1.29. General procedure B: Preparation of the ketones 32-36.

The chosen acetal (0.52 mmol) and a solution of hydrochloric acid 10% (2 mL) in acetone (4 mL) was refluxed for 3 h. After cooling, acetone was removed under reduced pressure. The resulting solid was filtered, washed with water (2 mL) and dried to give the corresponding ketones.

8.1.30. 1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyridin-2-yl)urea 32.

Compound 32 was obtained following the general procedure B from compound 11 as a white solid in 98% yield. m.p. 253-255 °C. IR (ATR-Diamond, cm⁻¹) ν 1692, 1623, 1568, 1479, 1457, 1421, 1309, 1243, 751. ¹H NMR (400 MHz, DMSO-d₆) δ 2.34 (t, J = 12.0 Hz, 1H), 2.38-2.45 (m, 1H), 2.57-2.66 (m, 1H), 3.26 (dd, J = 2.8 Hz, J = 13.0 Hz, 1H), 3.49 (td, J = 4.4 Hz, J = 12.6 Hz, 1H), 4.47-4.50 (m, 1H), 5.08 (dd, J = 3.9 Hz, J = 11.9 Hz, 1H), 7.10 (dd, J = 5.4 Hz, J = 6.8 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 6.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.76-7.85 (m, 1H), 8.30 (d, J = 8.3 Hz, 1H), 8.34-8.40 (m, 1H), 9.99 (s, 1H), 11.26 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 36.6 (CH₂), 39.0 (CH₂), 44.0 (CH₂), 56.0 (CH), 112.2 (CH), 117.5 (CH), 117.6 (CH), 122.7 (CH), 129.4 (CH), 132.5 (Cq), 133.7 (Cq), 134.0 (Cq), 139.1 (CH), 146.2 (CH), 152.1 (Cq), 152.8 (Cq), 165.3 (Cq), 206.3 (Cq). HRMS (ESI) calc. for C₁₈H₁₇N₄O₃ [M+H]⁺: 337.1301, found: 337.1294.

8.1.31. 1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyrazin-2-yl)urea 33.

Compound 33 was obtained following the general procedure B from compound 14 as beige solid in 95% yield. m.p. > 260 °C. IR (ATR-Diamond, cm⁻¹) ν 1689, 1660, 1569, 1502, 1477, 1430, 1304, 1143, 1065. ¹H NMR (400 MHz, DMSO-d₆) δ 2.31 (dd, J = 2.7 Hz, J =
13.5 Hz, 1H), 2.37-2.44 (m, 1H), 2.57-2.67 (m, 1H), 3.17 (dd, J = 2.7 Hz, J = 13.5 Hz, 1H), 3.48 (td, J = 4.4 Hz, J = 12.8 Hz, 1H), 4.44-4.49 (m, 1H), 5.05 (dd, J = 3.9 Hz, J = 11.9 Hz, 1H), 7.48 (dd, J = 1.2 Hz, J = 7.7 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 8.18 (dd, J = 0.9 Hz, J = 7.5 Hz, 1H), 8.32 (d, J = 2.7 Hz, 1H), 8.35-8.37 (m, 1H), 8.90 (d, J = 1.2 Hz, 1H), 9.86 (s, 1H), 10.12 (s, 1H). 13C NMR (100 MHz, DMSO-d$_6$) δ 36.6 (CH$_2$), 39.0 (CH$_2$), 43.9 (CH$_2$), 56.0 (CH), 118.1 (CH), 123.4 (CH), 129.4 (CH), 132.6 (Cq), 133.5 (Cq), 134.4 (Cq), 135.5 (CH), 137.9 (CH), 141.0 (CH), 149.1 (Cq), 151.7 (Cq), 165.2 (Cq), 206.3 (Cq). HRMS (ESI) calc. for C$_{17}$H$_{15}$N$_5$O$_3$Na [M+Na]$^+$: 360.1073, found: 360.1078.

8.1.32. 1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(6-methylpyridin-2-yl)urea 34.

Compound 34 was obtained following the general procedure B from compound 17 as white solid in 79% yield. m.p. 226-228 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1683, 1621, 1566, 1467-1435, 1323, 1287, 752. 1H NMR (400 MHz, DMSO-d$_6$) δ 2.37 (t, J = 12.5 Hz, 1H), 2.44 (s, 3H), 2.54-2.68 (m, 1H), 3.11 (dd, J = 2.5 Hz, J = 12.8 Hz, 1H), 3.17 (d, J = 5.0 Hz, 1H), 3.45 (td, J = 5.0 Hz, J = 12.8 Hz, 1H), 4.48 (dd, J = 2.8 Hz, J = 12.5 Hz, 1H), 5.08 (dd, J = 2.8 Hz, J = 12.5 Hz, 1H), 6.91 (d, J = 7.5 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.45-7.55 (m, 2H), 7.66 (dd, J = 7.5 Hz, J = 8.0 Hz, 1H), 8.18 (d, J = 7.5 Hz, 1H), 9.84 (s, 1H), 10.70 (s, 1H). 13C NMR (100 MHz, DMSO-d$_6$) δ 23.6 (CH$_3$), 36.6 (CH$_2$), 39.0 (CH$_2$), 43.7 (CH$_2$), 56.1 (CH), 109.0 (CH), 116.9 (CH), 118.0 (CH), 123.9 (CH), 129.3 (CH), 132.5 (Cq), 133.8 (Cq), 134.4 (Cq), 139.2 (CH), 152.1 (Cq), 152.3 (Cq), 155.5 (Cq), 165.3 (Cq), 206.4 (Cq). HRMS (ESI) calc. for C$_{19}$H$_{19}$N$_4$O$_3$ [M+H]$^+$: 351.1452, found: 351.1451.

8.1.33. 1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-methoxyquinolin-2-yl)urea 35.

Compound 35 was obtained following the general procedure B from compound 20 as white solid in 83% yield. m.p. 223-225 °C. IR (ATR-Diamond, cm$^{-1}$) ν 2976, 1683, 1621,
1558, 1469, 1435, 1329, 1289, 751. 1H NMR (400 MHz, DMSO-d_6) δ 2.29 (t, $J = 12.5$ Hz, 1H), 2.41 (d, $J = 12.5$ Hz, 1H), 2.53-2.62 (m, 1H), 3.20 (d, $J = 12.8$ Hz, 1H), 3.50 (td, $J = 2.5$ Hz, $J = 12.8$ Hz, 1H), 4.13 (s, 3H), 4.44 (dd, $J = 2.8$ Hz, $J = 12.8$ Hz, 1H), 5.18 (dd, $J = 2.8$ Hz, $J = 12.5$ Hz, 1H), 7.02 (s, 1H), 7.55-7.59 (m, 3H), 7.82 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 8.00-8.11 (m, 3H), 10.99 (s, 1H), 11.32 (s, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 36.5 (CH$_2$), 39.0 (CH$_2$), 43.6 (CH$_2$), 56.1 (CH$_3$), 57.1 (CH), 92.1 (CH), 117.6 (Cq), 119.0 (CH), 122.0 (CH), 122.8 (Cq), 124.9 (CH), 125.6 (CH), 129.4 (2 x CH), 132.4 (CH), 132.7 (Cq), 132.8 (Cq), 135.8 (Cq), 152.0 (Cq), 152.3 (Cq), 165.1 (Cq), 165.3 (Cq), 205.7 (Cq). HRMS (ESI) calc. for C$_{23}$H$_{21}$N$_4$O$_4$ [M+H]$^+$: 417.1563, found: 417.1571.

8.1.34. 1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(3-methylpyridin-2-yl)urea 36.

Compound 36 was obtained following the general procedure B from compound 23 as white solid in 85% yield. m.p. > 260 °C. IR (ATR-Diamond, cm$^{-1}$) ν 1684, 1621, 1559, 1479, 1434, 1414, 1329, 1289, 751. 1H NMR (400 MHz, DMSO-d_6) δ 2.22 (t, $J = 12.5$ Hz, 1H), 2.40 (d, $J = 12.8$ Hz, 1H), 2.49-2.60 (m, 4H), 3.33-3.38 (m, 1H), 3.47 (td, $J = 2.5$ Hz, $J = 12.8$ Hz, 1H), 4.40-4.46 (m, 1H), 5.20 (dd, $J = 2.5$ Hz, $J = 12.5$ Hz, 1H), 7.36 (dd, $J = 5.2$ Hz, $J = 7.5$ Hz, 1H), 7.52-7.58 (m, 2H), 8.04 (d, $J = 7.5$ Hz, 1H), 8.16 (d, $J = 7.5$ Hz, 1H), 8.28 (d, $J = 5.2$ Hz, 1H), 10.91 (s, 1H), 11.49 (s, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 17.9 (CH$_3$), 36.9 (CH$_2$), 39.4 (CH$_2$), 44.1 (CH$_2$), 56.6 (CH), 118.8 (CH), 119.5 (CH), 124.7 (CH), 125.3 (Cq), 129.9 (CH), 132.9 (Cq), 133.3 (Cq), 136.1 (Cq), 137.1 (CH), 145.5 (CH), 148.4 (Cq), 153.2 (Cq), 165.5 (Cq), 206.3 (Cq). HRMS (ESI) calc. for C$_{19}$H$_{19}$N$_4$O$_3$ [M+H]$^+$: 351.1452, found: 351.1451.

At -20 °C, to a solution of ketone (0.2 mmol) in a mixture THF/MeOH 1/2 (6 mL) was added portionwise NaBH$_4$ (15 mg, 0.4 mmol, 2.0 eq.). The mixture was stirred at this
temperature for 30 min. and the temperature was then allowed to rise to 0-5 °C for 2 h. Water (10 mL) was added, and the aqueous phase was extracted first with CH₂Cl₂ (2 x 10 mL) and then with EtOAc (2 x 10 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure.

8.1.36. cis-1-(2-Hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-α]isoindol-10-yl)-3-(pyridin-2-yl)urea 37.

Compound 37 was obtained following the general procedure C from compound 32 after purification by flash chromatography (CH₂Cl₂/MeOH 93/7) as a white solid in 76% yield. m.p. 218-220 °C. IR (ATR-Diamond, cm⁻¹) ν 3217, 1695, 1562, 1512-1478-1430, 1309. ¹H NMR (400 MHz, DMSO-d₆) δ 0.77 (q, J = 12.0 Hz, 1H), 1.10-1.28 (m, 1H), 1.95 (d, J = 11.7 Hz, 1H), 2.89 (d, J = 11.7 Hz, 1H), 3.08 (td, J = 4.1 Hz, J = 12.0 Hz, 1H), 3.60 (s, 1H), 3.96 (t, J = 10.7 Hz, 1H), 4.24 (dd, J = 4.1 Hz, J = 13.2 Hz, 1H), 4.69 (dd, J = 2.8 Hz, J = 11.8 Hz, 1H), 7.04-7.13 (m, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 7.3 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.81 (t, J = 7.3 Hz, 1H), 8.21 (d, J = 7.7 Hz, 1H), 8.32 (d, J = 4.5 Hz, 1H), 9.96 (s, 1H), 11.21 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 34.5 (CH₂), 36.6 (CH₂), 38.7 (CH₂), 56.0 (CH), 66.7 (CH), 112.1 (CH), 117.5 (CH), 117.6 (CH), 122.6 (CH), 128.9 (CH), 132.7 (Cq), 133.8 (Cq), 134.4 (Cq), 139.1 (CH), 146.2 (CH), 152.1 (Cq), 152.8 (Cq), 164.7 (Cq). HRMS (ESI) calc. for C₁₈H₁₉N₄O₃ [M+H]⁺: 339.1457, found: 339.1462.

8.1.37. cis-1-(2-Hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-α]isoindol-10-yl)-3-(pyrazin-2-yl)urea 38.

Compound 38 was obtained following the general procedure C from compound 33 after purification by flash chromatography (CH₂Cl₂/MeOH 96/4) as a white solid in 60% yield. m.p. 250-252 °C. IR (ATR-Diamond, cm⁻¹) ν 1694, 1671, 1622, 1568, 1545, 1500, 1485, 1427, 1296, 1056. ¹H NMR (400 MHz, DMSO-d₆) δ 0.75 (q, J = 11.8 Hz, 1H), 1.14-1.23 (m, 1H), 1.94 (d, J = 12.1 Hz, 1H), 2.78 (d, J = 11.8 Hz, 1H), 3.07 (td, J = 3.1 Hz, J = 13.2 Hz,
1H), 3.88-3.95 (m, 1H), 4.25 (dd, \(J = 3.9 \) Hz, \(J = 13.2 \) Hz, 1H), 4.65 (dd, \(J = 3.1 \) Hz, \(J = 11.8 \) Hz, 1H), 5.01 (d, \(J = 4.9 \) Hz, 1H), 7.42 (dd, \(J = 0.8 \) Hz, \(J = 7.4 \) Hz, 1H), 7.48 (t, \(J = 7.7 \) Hz, 1H), 8.10 (dd, \(J = 0.6 \) Hz, \(J = 7.7 \) Hz, 1H), 8.31 (d, \(J = 2.7 \) Hz, 1H), 8.32-8.38 (m, 1H), 8.94 (d, \(J = 1.2 \) Hz, 1H), 9.85 (s, 1H), 10.08 (s, 1H). ¹³C NMR (100 MHz, DMSO-\(d_6 \)) \(\delta \) 34.4 (CH₂), 36.6 (CH₂), 38.7 (CH₂), 56.0 (CH), 66.7 (CH), 118.1 (CH), 123.3 (CH), 129.0 (CH), 132.8 (Cq), 133.4 (Cq), 135.0 (Cq), 135.4 (CH), 137.9 (CH), 141.1 (CH), 149.2 (Cq), 151.7 (Cq), 164.6 (Cq). HRMS (ESI) calc. for C₁₇H₁₇N₅O₃Na [M+Na]+: 362.1229, found: 362.1223.

8.1.38. cis-1-(2-hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(6-methylpyridin-2-yl)urea 39.

Compound 39 was obtained following the general procedure C from compound 34 after purification by flash chromatography (CH₂Cl₂/MeOH 99/1) as a white solid in 80% yield. m.p. 240-242 °C. IR (ATR-Diamond, cm⁻¹) ν 3143, 1685, 1589, 1508, 1484, 1424, 1270. ¹H NMR (400 MHz, DMSO-\(d_6 \)) \(\delta \) 0.76 (q, \(J = 12.5 \) Hz, 1H), 1.11-1.25 (m, 1H), 1.94 (d, \(J = 12.5 \) Hz, 1H), 2.51 (s, 3H), 2.76 (d, \(J = 12.5 \) Hz, 1H), 3.07 (td, \(J = 2.5 \) Hz, \(J = 12.8 \) Hz, 1H), 3.82-3.93 (m, 1H), 4.26 (dd, \(J = 2.8 \) Hz, \(J = 12.2 \) Hz, 1H), 4.71 (dd, \(J = 2.8 \) Hz, \(J = 12.2 \) Hz, 1H), 5.01 (d, \(J = 5.0 \) Hz, 1H), 6.93 (d, \(J = 7.5 \) Hz, 1H), 7.16 (d, \(J = 8.2 \) Hz, 1H), 7.39-7.51 (m, 2H), 7.67 (dd, \(J = 7.5 \) Hz, \(J = 8.2 \) Hz, 1H), 8.17 (d, \(J = 7.5 \) Hz, 1H), 9.84 (s, 1H), 10.75 (s, 1H). ¹³C NMR (100 MHz, DMSO-\(d_6 \)) \(\delta \) 23.8 (CH₃), 34.4 (CH₂), 36.6 (CH₂), 38.4 (CH₂), 56.1 (CH), 66.8 (CH), 108.9 (CH), 116.8 (CH), 117.7 (CH), 123.6 (CH), 128.8 (CH), 132.7 (Cq), 133.7 (Cq), 134.7 (Cq), 139.1 (CH), 152.2 (Cq), 152.3 (Cq), 155.4 (Cq), 164.7 (Cq). HRMS (ESI) calc. for C₁₉H₁₇N₅O₃[M+H]+: 353.1614, found: 353.1619.

8.1.39. cis-1-(2-hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-methoxyquinolin-2-yl)urea 40.

Compound 40 was obtained following the general procedure C from compound 35 after purification by flash chromatography (CH₂Cl₂/MeOH 99/1) as a white solid in 82% yield.
m.p. > 260 °C. IR (ATR-Diamond, cm$^{-1}$) ν 2977, 1686, 1585, 1512, 1479, 1414, 1289. 1H NMR (250 MHz, DMSO-d_6) δ 0.76 (q, $J = 12.5$ Hz, 1H), 1.04-1.21 (m, 1H), 1.93 (d, $J = 12.5$ Hz, 1H), 2.79 (d, $J = 12.5$ Hz, 1H), 3.14 (td, $J = 2.8$ Hz, $J = 12.5$ Hz, 1H), 3.77-3.90 (m, 1H), 4.02 (s, 3H), 4.26 (dd, $J = 2.8$ Hz, $J = 12.5$ Hz, 1H), 4.82-4.91 (m, 2H), 6.87 (s, 1H), 7.42-7.53 (m, 3H), 7.73 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.88 (d, $J = 8.0$ Hz, 1H), 8.03 (d, $J = 8.0$ Hz, 1H), 8.21 (d, $J = 7.5$ Hz, 1H), 10.16 (s, 1H), 11.95 (s, 1H). 13C NMR (63 MHz, DMSO-d_6) δ 34.5 (CH$_2$), 36.6 (CH$_2$), 38.1 (CH$_2$), 56.1 (CH$_3$), 66.7 (CH), 91.9 (CH), 117.9 (CH), 118.1 (Cq), 121.4 (CH), 123.8 (CH), 124.0 (CH), 126.1 (CH), 128.9 (CH), 130.8 (CH), 132.8 (Cq), 133.5 (Cq), 135.0 (Cq), 145.7 (Cq), 152.3 (Cq), 153.7 (Cq), 163.0 (Cq), 164.7 (Cq). HRMS (ESI) calc. for C$_{23}$H$_{23}$N$_4$O$_4$ [M+H]$^+$: 419.1719, found: 419.1728.

8.1.40. cis-1-(2-Hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl) -3-(3-methylpyridin-2-yl)urea 41.

Compound 41 was obtained following the general procedure C from compound 36 after purification by flash chromatography (CH$_2$Cl$_2$/MeOH 99/1) as a white solid in 82% yield. m.p. 204-206 °C. IR (ATR-Diamond, cm$^{-1}$) ν 2960, 1684, 1584, 1503, 1486-1420, 1262. 1H NMR (400 MHz, DMSO-d_6) δ 0.80 (q, $J = 12.5$ Hz, 1H), 1.12-1.23 (m, 1H), 1.97 (d, $J = 12.5$ Hz, 1H), 2.32 (s, 3H), 2.90 (d, $J = 12.5$ Hz, 1H), 3.08 (td, $J = 2.5$ Hz, $J = 12.8$ Hz, 1H), 3.95-4.02 (m, 1H), 4.25 (dd, $J = 2.8$ Hz, $J = 12.2$ Hz, 1H), 4.70 (dd, $J = 2.8$ Hz, $J = 12.2$ Hz, 1H), 5.01 (d, $J = 5.0$ Hz, 1H), 7.06 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.37 (d, $J = 7.5$ Hz, 1H), 7.47 (dd, $J = 7.5$ Hz, $J = 8.0$ Hz, 1H), 7.67 (d, $J = 7.5$ Hz, 1H), 8.22 (d, $J = 7.5$ Hz, 1H), 8.27 (d, $J = 8.0$ Hz, 1H), 8.87 (s, 1H), 12.32 (s, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 17.4 (CH$_3$), 31.1 (CH$_2$), 35.0 (CH$_2$), 37.1 (CH$_2$), 56.5 (CH), 67.2 (CH), 117.9 (CH), 118.3 (CH), 121.8 (Cq), 123.0 (CH), 129.5 (CH), 133.2 (Cq), 134.3 (Cq), 134.8 (Cq), 140.6 (CH), 143.5 (CH), 151.6 (Cq), 152.8 (Cq), 165.2 (Cq). HRMS (ESI) calc. for C$_{19}$H$_{21}$N$_4$O$_3$ [M+H]$^+$: 353.1614, found: 353.1616.
8.2. Kinase assay.

Kinase activities were assayed in Buffer A or C, at 30 °C, at a final ATP concentration of 15 µM. Blank values were subtracted and activities expressed in % of the maximal activity, i.e. in the absence of inhibitors. Controls were performed with appropriate dilutions of DMSO. The kinase peptide substrates were obtained from Proteogenix (Oberhausbergen, France).

DYRK1A (human, recombinant, expressed in E. coli as a GST fusion protein) was purified by affinity chromatography on glutathione-agarose and assayed in buffer A (+ 0.5 mg BSA / mL) using Woodtide (KKISGRGLSPIMTEQ) (1.5 µg / assay) as a substrate, in the presence of 15 µM [γ-33P] ATP (3,000 Ci / mmol ; 10 mCi / mL) in a final volume of 30 µL. After 30 min incubation at 30 °C, the reaction was stopped by harvesting onto P81 phosphocellulose papers (Whatman) using a FilterMate harvester (Packard) and filters were washed in 1% phosphoric acid. Scintillation fluid was added and the radioactivity measured in a Packard counter. CDK5 / p25 (human, recombinant) was prepared as previously described [13]. Its kinase activity was assayed in buffer B, with 1 mg histone H1 / mL. GSK-3α/β (porcine brain, native) was assayed in Buffer A using a GSK3 specific substrate (GS-1: RRAAVPPSPSLSRHSSPH QSpEDEEE) (pS stands for phosphorylated serine) [14].

8.3. Cell culture and survival assay.

HuH7, CaCo-2, MDA-MB-231, HCT116, PC3, HaCaT and NCI-H727 cell lines were obtained from the ECACC collection. Skin diploid fibroblastic cells were provided by BIOPREDIC International Company (Rennes, France). Cells were grown according to ECACC recommendations. The toxicity test of the compounds on these cells was as follows: 2.10^3 cells/well for HCT116 cell line or 4.10^3 cells/well for the other cell lines were seeded in 96 well plates. 24h after cell seeding, cells were exposed to increasing concentrations of the compounds (0.1µM-0.3µM-0.9µM-2.7µM-8.3µM-25µM). After 48h of treatment, the cells were washed in PBS and fixed in cooled 90% ethanol/5% acetic acid for 20min. Then, the
nuclei were stained with Hoechst 3342 (Sigma). Image acquisition and analysis was performed using a Cellomics ArrayScan VTI/ HCS Reader (Thermo Scientific). The IC50 were determined using XIfit software.

8.4. Molecular modeling.

Hardware and software: molecular modelling studies were performed with the Schrodinger Molecular Modelling Suite 2014 update 3 [15] with Maestro, the interface piloting the diverse modules. Glide was used to dock ligands. Analysis and visualization tasks were performed with MOE software [16].

Structure preparation: crystal structures were retrieved from the protein data bank: GSK3b with the PDB code 1J1B [17], CDK5 with the PDB code 4AU8 [18] and DYRK1A with the PDB code 4MQ1 [19]. Subunit A was conserved regarding the three structures which were next prepared using the Protein Preparation Wizard workflow of the Schrodinger Molecular Modelling Suite. Proteins were preprocessed (hydrogen atoms added, incomplete residues filled), bond orders and connections of ligands were manually corrected. An exhaustive sampling was conducted regarding hydrogen bond assignment and the complex was finally refined by a minimization stage with a constraint to converge to a structure with an RMSD of 0.3 _A (OPLS2005 force field), essentially in order to remove steric clashes. Ligands, other than the one cocrystallized, were built within Marvin Sketch 5.8.0 [20] and were submitted to Corina [21], a 3D structure generator. Next 3D structures were submitted to the LigPrep module of the Schrodinger Molecular Modelling Suite in order to take into account tautomerization and ionization via the Epik module. The resulting structures became the starting point for docking simulations. Docking parameters: docking calculations were performed with extra precision. Ligand flexibility was taken into account and the option of sampling of ring conformation was activated.

References and notes

List of figure captions.

Figure 1. Some examples of CDK5, GSK3 and DYRK1A inhibitors.

Figure 2. Binding mode representation of compound 29 in GSK3β (PDB entry 1J1B).
Figure 1. Some examples of CDK5, GSK3 and DYRK1A inhibitors.

Scheme 1. Retrosynthetic scheme for the design of novel CDK5, GSK3 and DYRK1A valmerin inhibitors.

Scheme 2. Reagents and conditions: i) 1,2-ethanedithiol (5.0 eq.), BF$_3$.Et$_2$O (5.0 eq.), CH$_2$Cl$_2$, r.t., 24 h, 86%; ii) NaBH$_4$ (2.0 eq.), THF/MeOH (1/2), -20 °C to r.t., 5 h, 86% (mixture of cis-6 and trans-6); iii) Ag$_2$O (4.0 eq.), CH$_3$I (10.0 eq.), THF, 50 °C, 48 h, 61% (from 4); iv) SnCl$_2$ (15.0 eq.), EtOH, r.t., 12 h, 8 80% or 10 82%; v) H$_2$, Prt, Raney Ni, EtOH, r.t., 14 h, 95%.
Scheme 3. Reagents and conditions: i) a) Et$_3$N (1.3 eq.), -10 °C, THF, 5 min.; b) ClCO$_2$Et (1.5 eq.), -10 °C, THF, 2 h; c) NaN$_3$ (1.7 eq.), -10 °C, H$_2$O, 1 h; d) toluene, reflux, 1 h; ii) (Het)ArNCO, dioxane, 100 °C, 24 h; iii) HCl 10%, acetone, reflux, 3 h; iv) NaBH$_4$ (2.0 eq.), THF/MeOH (1/1), 0 °C-5 °C, 2 h. For yields see Table 1.
Table 1. Synthesis of Valmerins 11-41.

<table>
<thead>
<tr>
<th>Entry</th>
<th>(Het)Ar</th>
<th>R / R<sub>i</sub></th>
<th>Product</th>
<th>Yield<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c</td>
<td>cis OCH<sub>3</sub></td>
<td>13</td>
<td>81 %</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>32</td>
<td>Obtained from 11, quant.</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>cis OH</td>
<td>37</td>
<td>Obtained from 32, 76 %</td>
</tr>
<tr>
<td>a</td>
<td>-OCH<sub>2</sub>CH<sub>2</sub>O-</td>
<td>11</td>
<td>78 %</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>12</td>
<td>96 %</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>cis OCH<sub>3</sub></td>
<td>16</td>
<td>78 %</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>33</td>
<td>Obtained from 14, 95 %</td>
</tr>
<tr>
<td>a</td>
<td>-OCH<sub>2</sub>CH<sub>2</sub>O-</td>
<td>14</td>
<td>68 %</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>15</td>
<td>90 %</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>cis OCH<sub>3</sub></td>
<td>19</td>
<td>75 %</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>34</td>
<td>Obtained from 17, 79 %</td>
</tr>
<tr>
<td>a</td>
<td>-OCH<sub>2</sub>CH<sub>2</sub>O-</td>
<td>17</td>
<td>75 %</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>18</td>
<td>78 %</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>cis OCH<sub>3</sub></td>
<td>22</td>
<td>80 %</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>35</td>
<td>Obtained from 20, 83 %</td>
</tr>
<tr>
<td>a</td>
<td>-OCH<sub>2</sub>CH<sub>2</sub>O-</td>
<td>20</td>
<td>72 %</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>21</td>
<td>80 %</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>c</td>
<td>cis OCH<sub>3</sub></td>
<td>24</td>
<td>73 %</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>36</td>
<td>Obtained from 23, 85 %</td>
</tr>
<tr>
<td>a</td>
<td>-OCH<sub>2</sub>CH<sub>2</sub>O-</td>
<td>23</td>
<td>72 %</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>24</td>
<td>73 %</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>cis OCH<sub>3</sub></td>
<td>26</td>
<td>81 %</td>
</tr>
<tr>
<td>7</td>
<td>b</td>
<td>cis OCH<sub>3</sub></td>
<td>28</td>
<td>76 %</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>cis OCH<sub>3</sub></td>
<td>29</td>
<td>76 %</td>
</tr>
<tr>
<td>9</td>
<td>c</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>30</td>
<td>57 %</td>
</tr>
<tr>
<td>10</td>
<td>c</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>31</td>
<td>82 %</td>
</tr>
</tbody>
</table>

^a Yields are indicated for isolated products.
Table 2. Kinase inhibitions of derivatives 11-41.

<table>
<thead>
<tr>
<th>Entry</th>
<th>(Het)Ar</th>
<th>R / R₁</th>
<th>Product</th>
<th>CDK5 IC₅₀ (µM)</th>
<th>GSK3α/β IC₅₀ (µM)</th>
<th>Selectivity CDK5 / GSK3</th>
<th>DYRK1A IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>-OCH₂CH₂O-</td>
<td>11</td>
<td>11</td>
<td>0.7</td>
<td>1.5</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>-SCH₂CH₂S-</td>
<td>12</td>
<td>0.24</td>
<td>0.033</td>
<td>7.2</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>cis OCH₃</td>
<td>13</td>
<td>0.55</td>
<td>0.081</td>
<td>6.8</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>32</td>
<td>1.6</td>
<td>0.23</td>
<td>6.3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>cis OH</td>
<td>37</td>
<td>2.1</td>
<td>0.26</td>
<td>8.0</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>-OCH₂CH₂O-</td>
<td>14</td>
<td>7.1</td>
<td>0.26</td>
<td>27.3</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>-SCH₂CH₂S-</td>
<td>15</td>
<td>0.15</td>
<td>0.044</td>
<td>3.4</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>cis OCH₃</td>
<td>16</td>
<td>0.48</td>
<td>0.2</td>
<td>2.4</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>33</td>
<td>3.6</td>
<td>1.2</td>
<td>3.0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>cis OH</td>
<td>38</td>
<td>0.084</td>
<td>0.032</td>
<td>2.6</td>
<td>> 10</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>-OCH₂CH₂O-</td>
<td>17</td>
<td>> 10</td>
<td>0.92</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>-SCH₂CH₂S-</td>
<td>18</td>
<td>> 10</td>
<td>2</td>
<td>> 5</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>cis OCH₃</td>
<td>19</td>
<td>4.3</td>
<td>0.32</td>
<td>13.4</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>34</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>cis OH</td>
<td>39</td>
<td>1.0</td>
<td>0.030</td>
<td>33.3</td>
<td>7.0</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>-OCH₂CH₂O-</td>
<td>20</td>
<td>> 10</td>
<td>1.0</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>-SCH₂CH₂S-</td>
<td>21</td>
<td>> 10</td>
<td>4</td>
<td>> 2.5</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>cis OCH₃</td>
<td>22</td>
<td>8.5</td>
<td>0.18</td>
<td>47.5</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>=O</td>
<td>35</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>cis OH</td>
<td>40</td>
<td>4.9</td>
<td>0.035</td>
<td>140</td>
<td>> 10</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>-OCH₂CH₂O-</td>
<td>23</td>
<td>3.1</td>
<td>0.61</td>
<td>5.0</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>cis OCH₃</td>
<td>24</td>
<td>1.1</td>
<td>0.25</td>
<td>4.4</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>=O</td>
<td>36</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>cis OH</td>
<td>41</td>
<td>0.63</td>
<td>0.16</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>-SCH₂CH₂S-</td>
<td>25</td>
<td>≥ 10</td>
<td>1.9</td>
<td>≥ 5.2</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>cis OCH₃</td>
<td>26</td>
<td>2.3</td>
<td>1.1</td>
<td>2.0</td>
<td>> 10</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>-SCH₂CH₂S-</td>
<td>27</td>
<td>0.22</td>
<td>0.055</td>
<td>4.0</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>cis OCH₃</td>
<td>28</td>
<td>0.32</td>
<td>0.14</td>
<td>10.0</td>
<td>> 10</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>cis OCH₃</td>
<td>29</td>
<td>0.32</td>
<td>0.032</td>
<td>10.0</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>-SCH₂CH₂S-</td>
<td>30</td>
<td>> 10</td>
<td>0.71</td>
<td>> 14.0</td>
<td>8.7</td>
</tr>
<tr>
<td>9</td>
<td>a</td>
<td>-SCH₂CH₂S-</td>
<td>31</td>
<td>7.3</td>
<td>0.068</td>
<td>107.3</td>
<td>≥ 10</td>
</tr>
<tr>
<td>10</td>
<td>a</td>
<td>-SCH₂CH₂S-</td>
<td>32</td>
<td>7.3</td>
<td>0.068</td>
<td>107.3</td>
<td>≥ 10</td>
</tr>
</tbody>
</table>

Assays were performed in triplicate.
Figure 2. Binding mode representation of compound 29 in GSK3β (PDB entry 1J1B).

Table 3. Most potent Valmerins in cell line assays.

<table>
<thead>
<tr>
<th>Entry</th>
<th>(Het)Ar</th>
<th>R / R<sub>1</sub></th>
<th>Product</th>
<th>Human cell lines</th>
<th>IC<sub>50</sub> (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Huh7</td>
<td>Caco2</td>
</tr>
<tr>
<td>1</td>
<td>----</td>
<td>----</td>
<td>Roscovitine</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>15</td>
<td>0.1</td>
<td>0.5</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>-SCH<sub>2</sub>CH<sub>2</sub>S-</td>
<td>27</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>cis OCH<sub>3</sub></td>
<td>29</td>
<td>0.1</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Assays were performed in triplicate.
Highlights

Advances in tetrahydropyridoisoindolone (Valmerin) series
31 new potent GSK3 / CDK5 inhibitors synthesized.
Molecular modelling confirm the binding mode
In cellulo effects on cancer cell lines are given
Advances in Tetrahydropyrido[1,2-\textit{a}]isoindolone (Valmerins) Series: Potent Glycogen Synthase Kinase 3 and Cyclin Dependent Kinase 5 Inhibitors.

Rajaa Boulahjar,1 Aziz Ouach,1 Stephane Bourg,1 Pascal Bonnet,1 Olivier Lozach,2 Laurent Meijer,2 Christiane Guguen-Guillouzo,3 Remy Le Guevel,3 Saïd Lazar,4 Mohamed Akssira,4 Yves Troin,5 Gérald Guillaumet1,* and Sylvain Routier1,*
Spectral data of representative compounds

10-Nitro-1,3,4,10b-tetrahydro-6H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-6-one 5.
Cis-2-hydroxy-10-nitro-1,3,4,10b-tetrahydropyrido[2,1-\(a\)]isoindol-6(2\(H\))-one cis-6.
Cis-2-methoxy-10-nitro-1,3,4,10b-tetrahydropyrido[2,1-α]isoindol-6(2H)-one 7.
10-Amino-1,3,4,10\textit{b}-tetrahydro-6\textit{H}-spiro[pyrido[2,1-\textit{a}]isoindole-2,2'\textit{-}[1,3]dithiolan]-6-one

8.
Cis-10-amino-2-methoxy-1,3,4,10b-tetrahydropyrido[2,1-a]isoindol-6(2H)-one 9.
10-Amino-1,3,4,10b-tetrahydro-6H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dioxolan]-6-one
1-(6-Oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2’-[1,3]dioxolan]-10-yl)-3-(pyridin-2-yl)urea 11.
1-(6-Oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)-3-(pyridin-2-yl)urea 12.
Cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyridin-2-yl)urea 13.
1-(6-Oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2’-[1,3]dioxolan]-10-yl)-3-(pyrazin-2-yl)urea 14.
1-(6-Oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)-3-(pyrazin-2-yl)urea 15.
Cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyrazin-2-yl)urea 16.
1-(6-Methylpyridin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dioxolan]-10-yl)urea 17.
1-(6-Methylpyridin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)urea 18.
Cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(6-methyl-pyridin-2-yl)urea 19.
1-(4-Methoxyquinolin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a] isoindole-2,2'-[1,3]dioxolan]-10-yl)urea 20.
1-(4-Methoxyquinolin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a] soindole-2,2'-[1,3]dithiolan]-10-yl)urea 21.

![Diagram](image-url)
Cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-methoxyquinolin-2-yl)urea 22.
1-(3-Methylpyridin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a] isoindole-2,2'-[1,3]dioxolan]-10-yl)urea 23.
cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(3-methylpyridin-2-yl)urea 24.
1-(1-methyl-1H-pyrazol-3-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)urea 25.
Cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(1-methyl-1H-pyrazol-3-yl)urea 26.
1-(5-Methylpyrazin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)urea 27.
Cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(5-methylpyrazin-2-yl)urea 28.
Cis-1-(2-Methoxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-methylpyridin-2-yl)urea 29.
(6-Bromopyridin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiro[pyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-y1)urea 30.
(5-Bromopyridin-2-yl)-3-(6-oxo-3,4,6,10b-tetrahydro-1H-spiropyrido[2,1-a]isoindole-2,2'-[1,3]dithiolan]-10-yl)urea 31.
1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyridin-2-yl)urea 32.
1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyrazin-2-yl)urea 33.
1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(6-methyl-pyridin-2-yl)urea 34.
1-(2,6-dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-methoxyquinolin-2-yl)urea 35.
1-(2,6-Dioxo-1,2,3,4,6,10b-hexahydropyrido[2,1-\textit{a}]isoindol-10-yl)-3-(3-methylpyridin-2-yl)urea 36.
Cis-1-(2-Hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyridin-2-yl)urea 37.
Cis-1-(2-Hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(pyrazin-2-yl)urea 38.
cis-1-(2-hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(6-methylpyridin-2-yl)urea 39.
cis-1-(2-hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-methoxyquinolin-2-yl)urea 40.
cis-1-(2-Hydroxy-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-\textit{a}]isoindol-10-yl)-3-(3-methylpyridin-2-yl)urea 41.