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ABSTRACT

Solar thermal energy represents an increasingly attractive renewable source. However, to provide continuous
availability of this energy, it must be stored. This paper presents the state of the art on high temperature (573-
1273 K) solar thermal energy storage based on chemical reactions, which seems to be the most advantageous
one for long-term storage. The paper summarizes the numerical, experimental and technological studies done
so far. Each system is described and the advantages and drawbacks of each reaction couple are considered.

Keywords:

Thermal Energy Storage (TES)
Thermochemical

Reversible reactions
Concentrated solar plant (CSP)

Contents

B B U e ATt o) o PPN
2. Thermal energy storage: definitions. . . . ... ...ttt et e e e e e e e e
D72 TR 23 <] o VA« 1<) 3 ]

2.2, Comparison of different TES SYStEIMIS . . . . . . oottt ittt et e et et e e e e e e e

3. State-of-the-art on solar thermal energy storage based on chemical reactions. .. .........oiu ittt it
3.1.  Technical disciplines and skills for developing a thermochemical TES SYStem. . .. ... .. ..ttt ettt it ie e

3.2.  Hydrogen systems: metallic hydrides. . ... ... . . e e e

3.3, CarbONate SYSTOIMIS. . o vttt ittt et e e e e e e e e e e e e e e e e e e e e e
3.3.1. Calcite calcination/carbonation . . . . ... ...ttt e e e e e e e

3.3.2. Cerrusite calcination/carbonation . . .. ... ... . .t e e e e

3.4, HydroXide SYSteIMIS . .ottt t ittt et et e e e et e e e e e e e e e e e e e e e e
34.1. Hydration/dehydration of magnesium OXide . . .. ... .. ...ttt ettt ettt ettt et

34.2. Hydration/dehydration of calcium oXide . .. ... ... ... . e e

3.5, The REDOX SYSTEIM . . v v vttt ettt e et e et et e e e e e e e e e e e e et e et e e e e e et e e e e e e e
3.5.1. Oxidation/decomposition of barium PeroXide . .. ... .. ... ...ttt it e e e

3.5.2. Other oxidation/decomposition peroXide COUPIES . . . .. ... .ttt e e e ettt et e ettt

3.6 AMMONIA SYSTRIMI. . . o ottt ettt ettt et e et e et e e e e e e e e e e e e e e e e e e e e e e e e e e e
3.6.1. The ammonium hydrogen sulfate SYStemL. . . ... ...ttt ittt e et e ettt et e e e

3.6.2. Dissociation/synthesis of NHs . . . .. ..ottt e et e e e e e e e e e e e

O O]y = o} (o) 2] < 0 0 P
3.7.1. Methane TefOrMINg . . . ..ottt ettt e e e et et e e e e e e e

3.7.2. Cyclohexane dehydrogenation — benzene hydrogenation . ... ......... ...ttt ettt ittt

3.7.3. Thermal dissociation of sulfur trioXide. . . .. ... ... e

3.8, SUMMATY Of CAS@ STUAIES. . . . .t i ittt ettt et e e e et e e et e et e et e et et e e

4. CONCIUSION . . o ettt e e e e e e e e e e
REfEIOIICES . .« . oottt e e e e e e e

* Corresponding author.
E-mail address: zoe.minvielle@cea.fr (Z. Anxionnaz-Minvielle).

http://dx.doi.org/10.1016/j.rser.2013.12.014



Nomenclature

A product A [dimensionless]

B Product B [dimensionless]

C product C [dimensionless]

Cp specific heat of the media, kWh kg=! K~!
or kf kg7 1K1

D, gravimetric energy density, kWh kg !

D, volumetric energy density, kWh m 3

K thermodynamic equilibrium constant [dimensionless]

L latent enthalpy, kWh kg !

M mass of media, kg

Na mol number of product A, mol

P, useful power, kW

Q thermal energy stored, kWh

T temperature of the system, K

T* turning temperature, K

1% volume of media, m—3

AH, reaction enthalpy, kWh mol~! or k] mol !

At time difference, s

AT temperature difference, K

AS; reaction entropy kj K—!

n thermal efficiency [dimensionless]

+ advantages level of importance (+ + +high,
+ +medium, +low) [dimensionless]

- drawbacks level of importance (— — — high, ——
medium, —low) [dimensionless]

1. Introduction

The use of renewable energy is essential today to decrease
the consumption of fossil resources and to decrease the pro-
duction of carbon dioxide partly responsible for the greenhouse
effect [1]. Solar energy constitutes an attractive source of
energy because it is both free and endless. It can be converted
into electricity by means of a concentrated solar plant (CSP)
composed of four elements: a concentrator, a receiver, a trans-
port media system and a power conversion machine. However,
the major drawback of this energy is its intermittence. One
solution is to develop thermal energy storage (TES) systems,
which will store heat during the sunshine periods and release it
during the periods of weak or no solar irradiation. A CSP
equipped with a TES system would continuously supply elec-
tricity. Thus, the development of an efficient and cost-effective
TES system is crucial for the future of this technology.

At the moment, three kinds of TES systems are known: the
sensible heat storage, the latent heat storage and the thermo-
chemical heat storage [1,2]. Sensible heat storage systems are the
most mature technologies. They have been and are still being used
in industrial plants, most notably in Spain, with the PS10 and PS20
projects (2007 and 2009) or the Andasol 1 and 2 plants (2008), but
also in the USA, e.g. with Solar One (1982) [2]. Among the other
techniques, thermochemical heat storage seems to be a valid
option to be used as a TES system [3,4]. However, in order to be
efficient and cost-effective, the appropriate reversible chemical
reactions have to be identified [5]. Recently, two reviews focusing
on low temperature (273-573 K) TES systems based on chemical
reactions have been published. They respectively concern long-
term sorption solar energy storage [6] and chemical heat pump
technologies and their applications [7]. Cot-Gores et al. [8] also
published a state-of-the-art on sorption and chemical reaction
processes for TES application and some of the high temperature
reactions are listed in the Felderhoff et al. article [9].

The purpose of this work is to provide a state-of-the-art of
the thermochemical heat storage solutions, focusing on tem-
peratures comprised between 573 K and 1273 K. General defini-
tions as well as the disciplines involved in the development of a
TES system are detailed. The experimental facilities at pilot or
laboratory scales and their applications are reviewed and
described. The systems have been classified according to their
reaction family (carbonation, hydration, oxidation...) since they
often share the same advantages and drawbacks. The main data
have been compiled in 2 graphs (densities versus temperature)
and a general table which summarizes the literature data about
reversible reactions studied for thermochemical storage appli-
cations is given.

2. Thermal energy storage: definitions

Thermal storage systems have to be used to correct the existing
mismatch between the discontinuous solar energy supply and the
continuous electricity consumption [1]. They involve at least three
steps: heat charging, storage and discharging. Three mechanisms
of storing thermal energy exist. They are described below.

In sensible heat storage systems, during the charging step, solar
energy is used to heat a fluid or a solid medium, thus, increasing
its energy content. Then, the medium is stored at the charging
step temperature. When this energy is released (discharging step),
the medium temperature decreases. The sensible heat stored
is associated with this increase or decrease of temperature.
The thermal energy stored by sensible heat can be expressed as

Q = mCpAT

Where m is the mass of the material (kg), Cp is the specific heat
over the temperature range operation (k] ke~!' K~1!) and AT is the
temperature difference (K). Two reviews list the materials and the
works done for high temperature thermal energy storage based on
sensible heat [1,2].

In latent heat storage, during the charging step, solar energy
can be used as the heat source that initiates a phase change. Then,
the medium is stored at the charging step temperature into its
new phase. When this energy is released (discharging step), the
medium phase changes into the first state. The latent heat stored is
associated with this phase change. The thermal energy stored in
phase change material can be expressed as:

Q=mL

Where m is the mass of the material (kg) and L is the latent heat of
the material (k] kg~ !).Many publications deal with latent TES
systems. For instance, a review lists the materials, the heat transfer
analysis and the applications [10]; another one lists both the
materials and the works done for high temperature thermal
energy storage based on phase change material (PCM) [11].

The reactions involved in the thermochemical heat storage
system are reversible ones:

A+AH; < B+C

Heat is stored during the endothermic reaction step and
released during the exothermic one. The thermochemical heat
stored is linked to the reaction enthalpy. During the charging step,
thermal energy is used to dissociate a chemical reactant (A), into
products (B) and (C). This reaction is endothermic. During the
releasing step, the products of the endothermic reaction (B and C)
are mixed together and react to form the initial reactant (A). This
reaction is exothermic and releases heat. The products of both



reactions can be stored either at ambient temperature or at
working temperature. The thermal energy stored in thermoche-
mical material can be expressed as:

Q= nAAHr

Where ny is the mol number of the reactant A (mol) and AH, is the
reaction enthalpy (kWh mol,~1!). The simplified scheme of a TES
system based on chemical reactions is presented on Fig. 1.

2.1. Energy density

In this paper, the energy density is assessed from the endother-
mic reactant (A) mass or volume. The energy density can be
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Fig. 1. Simplified scheme of a TES system based on chemical reactions.

Table 1
Characteristics and comparison of the thermal energy storage systems [1].

defined in two ways. The first one and also the most used is the
volumetric energy density, expressed as:

Dv:Q/V

Where D, is the volumetric energy density (kWhm™3), Q is
the stored thermal energy (kWh) and V is the storage material
volume (m?3).

In case of G/S reactions, if the A product is a gas, the
temperature and pressure conditions have to be specified. If the
A product is a solid, it is important to know which property among
the true density, the apparent density or the bulk density is being
used. True density is defined as the material density without
porosity. Apparent density is defined as the average density of the
material and includes the volume of pores within the particle
boundary. Bulk density is defined as the density of the packed bed
of particles. Once this property is known, the volume can be
assessed. To be rigorous, the volumetric energy density should be
calculated with the biggest volume or the installation volume.

The second definition is that of gravimetric energy density,
expressed as

Dm=Q/m

Where D,, is the mass energy density (kWh kg~ 1), Q is the stored
thermal energy (kWh) and m is the storage material mass (kg).

Both energy densities are important in order to estimate the
size and the cost of the TES system.

Sensible heat storage system

Latent heat storage system

Thermochemical storage system

Energy density
Volumetric density
Gravimetric density

Storage temperature

Storage period

Small ~50 kWh m~3 of material
Small~0.02-0.03 kWh kg~ ! of material
Charging step temperature

Limited (thermal losses)

Medium ~100 kWh m~> of material
Medium ~0.05-0.1 kWh kg~ ! of material
Charging step temperature

Limited (thermal losses)

High~500 kWh m~3 of reactant
High ~0.5-1 kWh kg~ of reactant
Ambient temperature

Theoretically unlimited

Transport Small distance Small distance Distance theoretically unlimited [12]
Maturity Industrial scale Pilot scale Laboratory scale
Technology Simple Medium Complex
CHEMITIK PROCESS ENGINEERING
e o Operating process plant
o Reversibility ik
5 o Process sizing
x PSacGy e Process optimisation
o Operating condition 9 P

o Catalyst lifetime
o Kinetic

SYSTEM ANALYSIS
o Technical and economic

MATERIALS
o Corrosion
o Impurity effects
o Inexpensive materials of
construction

@

feasibility studies
o Process safety
o Cost/Benefit studies

HEAT TRANSFER

o Reactor/heat exchanger design
o Catalytic reactor design

o Heat transfer characteristics

o Improving the heat transfer

o Thermodynamic optimisation

Fig. 2. Technical disciplines necessary to the development of a TES system based on chemical reactions [4].



Thermochemical TES system at medium and high temperatures (300-1100°C)

Metallic Carbonates || Hydroxydes Redox Ammonia Organic
Hydrides System System System System System
- MgH, - PbCO, - Mg(OH), - BaO, - NH,HSO, - CH,/H,0
- CaH, - CaCo, - Ca(OH), Co;0, - NH, - CH,/co,

- GHy,
- SO,
Fig. 3

2.2. Comparison of different TES systems

To compare the three different TES systems, six parameters
are considered: the energy density, the storage temperature,
the storage period, the material transportation possibility, the
maturity of the TES system and the complexity of associated
technologies.

The characteristic data of each storage system are given in
Table 1.

Thermochemical storage systems have several advantages.
Their energy densities are 5 to 10 times higher than latent
heat storage system and sensible heat storage system respec-
tively. Both storage period and transport are theoretically un-
limited because there is no thermal loss during storage, as
products can be stored at ambient temperature. Thus, these
systems are promising to store solar thermal energy during a
long-term period. Nevertheless, unlike sensible and latent heat
storage systems there is only little experience feedback on
thermochemical storage.

3. State-of-the-art on solar thermal energy storage based on
chemical reactions

3.1. Technical disciplines and skills for developing a thermochemical
TES system

Thermochemical TES systems are still at a very early stage of
development. Most of the studies are done at laboratory scale.
Considerable amount of time, money and efforts are required
before a commercially viable system becomes operational. The
technical disciplines identified by Garg et al. [4] to develop a
thermochemical TES system are updated and presented on Fig. 2.

Usually, the first step to develop a thermochemical TES system
is the selection of the reaction and the study of its chemical
characteristics such as the reversibility, the rate of reaction, the
operating conditions (P and T) and the kinetic properties. Went-
worth and Chen [5] reported that the following criteria ought to be
respected for choosing the most suitable chemical reaction in the
thermochemical TES system:

® The endothermic reaction used for heat storage should occur at
a temperature lower than 1273 K.

® The exothermic reaction used to recover heat should occur at a
temperature higher than 773 K.

e Large enthalpies of reaction and a product of small molar
volume are required to maximize the storage capacity
(~500 kWh m—3).

® Both reactions should be completely reversible, with no side
reactions, and have high yields in order to use the materials
over a long period of time.

® Both reactions should be fast enough so that the absorption of
solar energy and heat release can be carried out rapidly.

® The chemical compounds of both reactions should be easily
handleable.

® When stored, the chemical compounds should not react with
their environment.

® Experiment feedback on the reaction is required to use a well-
known chemical process.

® [ow costs should be required.

Some papers list reversible reactions which can be used for a
TES system [3-5,13]. Usually, their characteristics are reactant
family, reaction enthalpy and turning temperature. For a reversible
reaction of the type aA < bB+cC and a given pressure, the turning
temperature T* is defined as the temperature at which the reaction
rate constant K is equal to 1, and is approximated as T*=AH,/ASr.
As K<1 when T>T* and K>1 for T<T* [4,5]. The turning
temperature T may help knowing the required temperature
conditions to carry out both endothermic and exothermic reac-
tions [4,5]. The study of chemistry properties allows the determi-
nation of the required operating conditions. Then, the chemical
engineering work can start with the choice of the reactor technol-
ogy, the material, the operating process plant design and the
system analysis.

The following state-of-the-art underlines the different reactions
which were or are studied for a thermochemical TES plant. These
reactions are classified in six systems which are illustrated in Fig. 3.

3.2. Hydrogen systems: metallic hydrides

The general form of a reaction using a metal M, is
MH, + AH; <= M+n/2H,

Usually, the reversible metallic hydride reactions are used to store
hydrogen. In fact, one of the first research works were performed in
the automotive industry for the hydrogen motor [14]. They led to
the design of reactor before being used for heat pumps [15] and,
in the beginning of the 90s, for the thermal energy storage [14].



Three metallic hydrides have been studied for the thermal energy
storage in concentrated solar plants: lithium hydride (LiH) for the TES
using its energy of phase change, calcium hydride (CaH,) for heat
storage at high temperature between 1223 and 1373 K and magne-
sium hydride (MgH,) for both applications [16].

We only focus on the reaction involving magnesium hydride
studied for a thermochemical TES application [17]. The reaction is
written as

MgH,(s, + AHy < Mg +Hag  with AH, =75 kJ mol ~ .

The working temperatures range between 523 and 773 K with
a hydrogen partial pressure between 1 and 100 bar. The knowl-
edge of the H; dissociation (equilibrium) pressure as a function of
temperature is of fundamental importance for the use of MgH,/Mg
couple as storage system (Fig. 4).

In the beginning of the 90s, the first research works start with the
magnesium hydride [17] because of its high capacity of hydrogen
storage (7.7 wt%) [16]. Nevertheless, using magnesium hydride
involves major problems like slow kinetics and transfer limitations
for large quantities of products. A paper reviews the works done for
TES application [18]. In order to improve the rate of chemical
reactions, the Mg powder was doped with a commercial Ni powder
(4-10 wt%) and a Fe-powder (50 mol%). More than 1000 cycles were
achieved with the Mg-Ni mixed powder, but a sintering phenomenon
occurred. With the Mg,FeHg powder, this phenomenon did not occur.
600 cycles were achieved without any drop in hydrogen capacity and
the working pressure was lower than the working pressure for the
pure material.

The Max-Planck institute designed and built three prototypes [18]:
a steam generator (Fig. 5), a thermochemical solar plant (Fig. 6) and a
solar cooking and cooling device.

The steam generator involves a MgH,/Mg heat storage. The volume
of the pressure vessel, closed to 20L, is filled with a magnesium
powder doped with a Ni powder (14.5 kg). A H, permeable tube set in
the centre of the pressure vessel allows the hydrogen supply and the
hydrogen recovery. Pressurized water flowing in a helical tube is set
into the metallic hydride for the heat recovery and the vapour
generation. The endothermic reaction can be implemented with a
ribbon heater sealed around the pressure vessel. The hydrogen
produced during the endothermic reaction is stored in six commercial
vessels. The operating conditions are at a maximal pressure of 50 bar, a
maximal temperature of 723 K and a maximal power of 4 kW.

The thermochemical solar plant is composed of a solar radiation
concentrator, a cavity radiation receiver, a Stirling engine, a hydrogen
tank pressure, a heat exchanger and a MgH,/Mg storage device. The
operating temperatures range between 623 K and 723 K. During the
sunshine periods, electricity is produced and heat is stored by
dissociating MgH,. During the periods of weak or no solar irradiation,
the hydrogen stored is supplied to the reactor to produce heat. Then,
the heat is converted into electricity by the Stirling engine.

Table 2 presents the advantages and the drawbacks of the
MgH,/Mg system as a thermochemical TES system.

3.3. Carbonate systems

The general reaction form is
MC03(S) +AH; < MO(S) + COz(g)

Usually, these reactions occur at high temperature (T > 723 K).
The calcination/carbonation reactions are driven by the CO, partial
pressure and the temperature of the system. Two reversible
reactions, the calcite and the cerrusite calcination/carbonation,
were studied for a TES application. Today, most studies focus on
the CO, sequestration with calcium carbonate [19].

100 +
80
5 01 wg +H, —> MgH, + 75kJmol
=
40 -
20 4 MoH, + 78kl ol
— Mg + H,
0 T T T T ]
250 300 350 400 450 500

TI°C

Fig. 4. Dissociation pressure curve of MgH, [13].
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Fig. 5. Steam generator process based on MgH, [13].

3.3.1. Calcite calcination/carbonation
The reaction is

CaCOs() + AH; <> CaOgs)+COq)  with AH, =178 kj mol .

The reversibility of the reaction can be used for a TES system
application, for CO, sequestration or for limestone production.
The working temperatures range between 973 and 1273 K with
CO,, partial pressure between 0 and 10 bar.
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Fig. 6. Thermochemical solar plant [13].

Table 2
Advantages and drawbacks of the MgH,/Mg system.

Reaction Advantages

Drawbacks

MgH,+ AH, < Mg+H,

Reversibility of the reaction (600 cycles) 4=
No by-product ===

Product separation (Gas-solid) ===
Experiment feedback -

H, storage =

Slow reaction kinetics ===

Need of Fe- or Ni-doping ==
Sintering ==

Operating pressure (50-100 bar) ===

L]
L]
[ ]
[ ]
L]
e Heat transfer (solid/wall) mm=

In the mid 70s, Barker [20] suggests to use this reaction for
energy storage. His work focuses on the reversibility of the
reaction. Many problems are observed with a 10 um particle size
powder due to the loss of specific surface. Indeed, a passivation
layer is created during the carbonation and leads to a reaction
limitation by decrease of the CO, diffusion in the particles. In order
to solve this limitation, submicron particles have been used to
avoid diffusion problems and finally to improve the reaction
reversibility. While the material conversion reaches 93%, another
problem arises. The volumetric energetic density of the product
does not exceed 10% of the theoretical value of 35.3 kWh m > [21].
This huge decrease comes from the diminution of the density of
the product in bulk.

At the beginning of the 80s, the calcination reaction is operated
in two technologies of reactor: a fluidized bed in a batch mode
(Fig. 7) and a continuous rotary kiln (Fig. 8) [22]. The fluidized bed
works at a temperature between 873 and 1573 K with a solar
furnace useful power of 1,4 kW.

A total conversion of CaCOs is reached. The thermal efficiency,
defined as the ratio between the sum of the sensible energy and
the reaction energy over the useful power given to the material
during At, is between 20 and 40%. It is expressed as

n=(mCpAT+nAH;)/(AtPy)

Where 7 is the thermal efficiency ([-]), m is the initial mass of the
reactant A (kg), Cp is the specific heat over the temperature range
operation (k] kg~ K~1), AT is the temperature difference (K), n is
the mol number of reactant A (mol), AHr is the reaction enthalpy
(kfmol~1), At is the time difference (s) and P, is the useful
power (kW).

The rotary kiln (see Fig. 8) works at a temperature between 873
and 1573 K with a solar furnace useful power of 1.4 kW and is
inclined 5° to the horizontal. A maximal conversion of 60% of
CaCOs5 is experimentally reached with thermal efficiencies ranging
from 10% to 30% [22,23]. Here, the residence times reached in the
reactor are included between 20 and 120 s for rotary speed from
4 to 25 trmin~ L.

In order to improve the energetic efficiency of the reactors,
Flamant [22] identifies the main causes of thermal losses and
suggests some technological improvements on both the fluidization
distributor and the cooling system of the rotary kiln. According to
these proposals, Foro [25] develops an annular continuous fluidized
reactor with an electrical power of 3 kW and 1 kW of useful power.
He also demonstrates the thermal decomposition feasibility in the
fluidized bed.

After many years without surveys, Kyaw et al. [26] realise
a thermogravimetric study and suggest some new concepts for
the storage system [13]. A conceptual flow diagram of CaO-CO,



energy storing system is evaluated [26]. Three ways are used to
store CO5:

® 3 compressor and a tank;
® 3 carbonation reaction with MgO; and
® an adsorption reaction with zeolite.

The Ca0-CO,-MgO system was the best system to convert heat
energy at 773 K to temperatures around 1273 K. The CaO-CO,
compressor system was the most suitable for storing and deliver-
ing thermal energy at the same temperature. The efficiency of
Ca0-CO,-zeolite systems was strongly governed by the adsorption
power of the zeolite.

Aihara et al. [27] improved the reversibility of the reaction by
doping the material with titanium oxide (CaTiO3). A thermogravi-
metric study was done and showed a stabilisation of the reversi-
bility and no sintering. 10 cycles have been reached without loss of
reversibility and with a global conversion rate of 65%. The operat-
ing conditions for the carbonation and the calcination were
respectively 1023 K in nitrogen atmosphere and 1023 K with a
gas mixture of N,-CO, containing 20% of CO,.

Meier et al. [24] developed a new solar reactor based on the
technology of the rotary kiln (Fig. 8). The objective was to produce
calcium oxide from limestone with an available power of 10 kW.
The experiments have been done with 1 to 5 mm particles size and
a conversion rate of 90-98% has been reached with a thermal
efficiency of 20%.

Table 3 presents the advantages and the drawbacks of the CaO/
CaCOs3 system as the thermochemical TES system.

3.3.2. Cerrusite calcination/carbonation
The reaction scheme is

PbCO3(5)+ AH; < PbO(s)+COy¢,  with AH, =88 kJ mol .

This reaction was studied for chemical heat pump applications
[28-30] in order to be combined with the CaCOs/Ca0 system. The
authors give operating temperatures from 573 to 1730 K with
partial pressure of CO, included between 0 and 1 bar. A thermo-
gravimetric analysis of the PbCO3/PbO/CO, system was done
to study the equilibrium relationship, the reaction reversibility
(7 cycles of carbonation without loss of reactivity were achieved)

and the kinetics of the reaction system [29]. The following
mechanism of the decomposition reaction has been proposed:

Step A: 2PbCO3;=Pb - PbCO;3 +CO,
Step B: 3(PbO - PbCO3)=2(2PbO - PbCO3)+CO,
Step C: 2PbO - PbCO3=3Pb0 4 CO,

A packed bed reactor which combined PbO and CaO was built
to study the thermal storage performance of the chemical heat
pump [30]. The authors showed that the heat released by
carbonation of CaO was measured experimentally up to 1143 K
under a reaction pressure up to 1 atm.

Table 4 presents the advantages and the drawbacks of the PbO/
PbCO3 system as thermochemical TES system.

3.4. Hydroxide systems

The general reaction scheme is
M(OH)y) + AH; <> MO +H20)

These reactions occur at medium temperature, usually
523 <T<723 K. The H,0O partial pressure and the temperature
drive the hydration/dehydration reactions. Fig. 9 shows some of
couples which could be used for a thermochemical TES application.
Two reversible reactions were studied for a TES application [3,4].
These reactions are MgO/Mg(OH), and CaO/Ca(OH), hydration/
dehydration.

3.4.1. Hydration/dehydration of magnesium oxide
The reaction is

Mg(OH), ;) +AH; < MgO,, +H,0( with AH, =81 kj mol ™.

The preliminary studies showed that the reaction rate (forward
and backward reactions) is sufficient to be used for a TES applica-
tion [3,4]. This reaction couple is proposed for chemical heat pump
application to store and convert heat at temperatures of 370-
440K [32].

Ervin [3]| made a cycling study over 500 cycles. He observed a
conversion decrease from 95% to 60% within the fortieth cycle. It
then stabilized for the next 460 cycles.

Table 3
Advantages and drawbacks of the CaO/CaCO5 system.
Reaction Advantages Drawbacks
CaCO3+ AH, < Ca0+CO, ® No catalyst 4= e Agglomeration and sintering ==
e Industrial technology known for the limestone production = ® Poor reactivity ===
e Material energy density (Theoretical: 692 KWh m™3) 44 e Change of volume (105%) =
® No by-product 4=+ ® (CO, storage =
® Easy product separation (gas-solid) 4=+ ® Doping with Ti ==
e Availability and price of the product 4= ===
Table 4

Advantages and drawbacks of the PbO/PbCO5 system.

Reaction Advantages Drawbacks

PbCO5;+ AH; < PbO+CO, ® No catalyst 4+ ® Poor reversibility ===
e Material energy density (Theoretical: 300 KWh m™3) 44+ e Few experiment feedback =
® No by-product 4= ® (O, storage =
® Product separation (gas-solid) 4= e Toxicity of the products =




The following studies have been done in a Japanese laboratory
of the institute of Tokyo, the nuclear reactors laboratory. These
researches aimed at developing chemical heat pumps. The first
kinetic study of the hydration reaction was led by Kato et al. [33]
for 10 pm particles. A 4 steps mechanism between MgO(, and
H,0() has been proposed: (i) containment of water as fixed
structural, (ii) physical adsorption of water, (iii) chemical reaction
with water producing Mg(OH),) and (iv) inert portion of water.
The kinetic parameters have been assessed and the model shows a
good accuracy with the experimental results.

L—10

1: Fluid bed

2: Concentrated solar rays

3: Gas distributor consisting of glass, iron or zirconia beads
4: Grid

5: Transparent silica tube

6: Gas inlet

7: Gas outlet

8: Thermocouples

9: Reflectors

10: Pressure loss mesurement

Fig. 7. Solar fluidized bed reactor [19].

1: Refractory tube (AI20, or LaCrO;)
2: Power inlet

3: Power outlet

4: Insulator

5: Axis of the kiln

6: Concentrated solar rays

7: Water cooled metallic shell

Kato et al. [13] led a reversibility study in a thermobalance with a
10 nm Mg(OH), powder [32]. In order to get a durable reversibility of
the reaction, the authors concluded that the system temperature had
to be between 363 and 383 K and the water partial pressure between
474 and 57.8 kPa. They observed a constant reversibility with a
conversion rate of 50%.

Kato et al. [34,35] have also developed a packed bed reactor
used as a chemical heat pump (Fig. 10).

The packed bed (1.8 kg Mg(OH),) was suspended to a balance
in order to measure the mass change of the bed during the
reaction. An evaporator and a vacuum pump controlled the water
partial pressure in the system. A heating tube controlled the
temperature in the system. The operating conditions of dehydra-
tion reaction were a temperature of 703 K and a water partial
pressure of 14.7 kPa. Regarding the hydration reaction, several
water pressures were tested: 31.2, 47.4 and 70.1 kPa. The results
showed the possibility to use the chemical heat pump to produce
heat at 383 K.

In 2005, Kato et al. [36] developed a new heat pump which is
able to operate with partial steam pressure from 30 to 203 kPa.
Higher pressures increase the return temperature during the
hydration reaction. Here, 52 kg of Mg(OH), are introduced in

Temperature, T [°C]
500 300 200 100 50

100 ¢

: —— (1) MgO/H,0
=— (2) CaO/H,0
= = (3) ZnO/H,0
----- (4) NiO/H,0
----- (5) CoO/H,0
- — (6) FeO/H,0
i | === (7) CUOMH,0
i | ===— (8) BaO/H,0

Pressure, Py,0 [atm]

0.1 -4

0.01

Inverse temperature, 1000/T [K™]

Fig. 9. Equilibrium relationship for metal oxide/water reactions systems [26].

Fig. 8. Solar rotary kiln (a) [19] and (b) [21].
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the reactor which is heated by an electrical resistor during the
dehydration reaction. For the hydration reaction, the study of the
influence of steam partial pressure underlines that for a steam
pressure of 203 kPa, the temperatures in the reactor were close to
473 K. Later, the works [31,37-39] dealt with the shaping and the
doping of the material in order to diminish the costs and the
minimum temperature for dehydration. To reduce the price of Mg
(OH),, the authors used magnesium hydroxide of sea water
which they have purified and obtained a cost divided by 10.
Concerning the doping, the authors used Ni and LiCl and a
decrease of the dehydration temperature of Mg(OH), (around
100 K) was observed.

Table 5 presents the advantages and the drawbacks of the MgO/
Mg(OH), system as thermochemical TES system.

3.4.2. Hydration/dehydration of calcium oxide
The reaction is [40]:

Ca(OH)y() +AH; < CaO) +H20( with AH, =104 K] mol !

The operating temperatures range from 623 to 1173 K with
steam partial pressures from O to 2 bar. Many authors studied this
reaction for many applications: heat pump, heat storage of con-
centrated solar plants, motors preheating or electrical generation
on the moon. In the following sub-sections, these works are
classified into two categories: the heat pumps and the thermal
energy storage.

3.4.2.1. The heat pumps. Matsuda et al. [41] studied the kinetics of
both the Ca(OH), dehydration and the CaO hydration in a
thermogravimetric apparatus for heat pump applications. The
study have been done with 5 pm Ca(OH), particles and 10 mg of
product. The following table lists the range of temperature and
steam partial pressure for both hydration and dehydration
reactions. Table 6

From the end of the 90s to the beginning of the 2000s, most of
the studies have been carried out in a Japanese institute, the
Kyushu Institute of Technology (KIT) ([41-47]). These works
allowed developing and simulating the chemical heat pumps

N M’\ o using the couple CaO/Ca(OH),. These heat pumps work in closed
o e
(b) 7 c Table 6 ) .
& NN € Range of Femperature a.nd §team partial pressure for both hydration and dehydra-
N : =] tion reactions for the kinetic study of Mastuda et al. [41].
et . 0
\T. C. Reaction Temperatures (K) Steam concentration (vol%)
a: top view; b: cross section view (A — A’); 1: reactor bed; 2: heating tube;
The solid circles show thermocouple position Dehydration 693-723 1.5-6%
Hydration 356-611 2.0-15.7%
Fig. 10. (a) Laboratory-scale chemical heat pump; (b) reactor bed design [30].
Table 5
Advantages and drawbacks of the MgO/Mg(OH), system.
Reaction Advantages Drawbacks
Mg(OH),+ AH, <+ MgO+H>0 ® No catalyst 4= e Change of volume =
e Material energy density (Theoretical: 380 KWh m™3) 444 ® No industrial feedback =
® Operating pressure (1 bar) 4= e Product reactivity (50%) m=
® Good reversibility of the reaction === e Doping =
® No by-product 4=+ e Low thermal conductivity =
® Product separation (gas-solid) 4=+
® No toxicity ==
e Experimental feedback (10 years) ==
® Availability and price of the product 44




1: reactor; 2: condenser; 3: vacumm pump
4: temperature control bath; 5: valve; 6: heater;
7: insulator; X. temperature measuring points

Fig. 11. Standard type chemical heat pump [39].

system and Fig. 11 presents the principle and the operating
schemes.

3.4.2.2. The thermal heat storage. Ervin [3] was the first to suggest
using this reaction in a thermal energy storage plant. He achieved
290 cycles with an average conversion rate of 95%. Kanzawa and
Arai [48] developed a fixed bed reactor. To increase the heat
transfer during the Ca(OH), dehydration, they proposed to use a
reactor with copper fins. They made a 2D unsteady state model for
the fixed bed and determined the optimal distance between the
copper fins. Darkwa [49] aimed at developing an energy storage
system for the preheating of motors. Experimental and numerical
studies have been carried out and he underlined the fact that the
heat transfer into the installation limits the reaction. Azpiazu et al.
[50] studied the reversibility in a fixed bed reactor with copper
fins and 20 cycles were achieved. They observed that using an air
atmosphere causes the apparition of a side reaction: the calcium
oxide carbonation.

The following studies focus on the development of a thermo-
chemical storage system for applications in solar plants.

Wereko-Brobby [51] worked on the feasibility of the storage
system applied to a 1 MWh concentrated solar plant. He suggested
using a fluidized bed reactor and he obtained a storage system
yield of 45% with reactant storage temperature of 298 K. Brown
et al. [52] carried out a technical-economic survey on the devel-
opment of a thermochemical storage process. The results demon-
strate the feasibility of the process for a solar plant with an energy
efficiency of 80% and an initial price for the installation of
453 kWht;l. Fujii et al. [53] achieved a study on the kinetics of
the particles of calcium hydroxide and calcium oxide as pellets and
spheres. The work has been realized with pure products (spheres
and pellets) and doped products (pellet) with copper, zinc and
aluminum. The best results, for the reaction kinetics are obtained
with aluminum doping for an optimal concentration of 15% in
weight. Between 2010 and 2013, Schaube et al. [54,55] carried out
a survey on the feasibility of the storage process in a thermo-
dynamical solar plant. They used a fixed bed reactor and simulated
a one dimensional chemical reactor in unsteady state. They
concluded that the heat transfer between the bed and the wall
was not a viable solution because the heat conductivity of the
material is too low. To improve the heat transfer, they suggested
using the circulating gas into the reactor as the heat transfer fluid.
In 2012, Schaube et al. [56] worked on the physic-chemical

Fig. 12. Experimental setup of a laboratory scale of the DLR system [34].

characterization of the products. The authors determined the
particles diameter, the specific heat, the reaction enthalpy and
the kinetics of both hydration and dehydration with a thermo-
gravimetric analysis. They achieved 100 cycles without reversi-
bility loss. Later, Schaube et al. [57,58] led experimental and
numerical studies on the technology of the fixed bed reactor. They
used the reactor presented on Fig. 12 for the experimental part and
achieved 25 cycles without reversibility loss. The numerical model
in two dimensions and in unsteady state has been developed with
the COMSOL software. The authors obtained a good accuracy
between the simulated and the experimental results.

Table 7 presents the advantages and the drawbacks of the CaO/
Ca(OH), system as a thermochemical TES system.

3.5. The REDOX system

The general reaction form is
MXOy(S) +AH, < XM(S) +y/202

These reactions occur at temperatures between 623 and 1373 K.
Only few studies have been made on these materials. The first
studied couple was Ba0O,/BaO in 1978 [59] and after 30 years without
survey, DLR is interested again in these systems for storage applica-
tion in tower centrals.

3.5.1. Oxidation/decomposition of barium peroxide
The reaction is

2Ba0y + AH, <> 2BaOs) + Oag  With AH,; =77 k] mol .

This reaction occurs at temperatures between 673 and 1300 K
for partial oxygen pressure between 0 and 10 bar. Preliminary
thermogravimetric studies showed the potential of BaO/BaO,
system for a thermochemical TES application [59,60]. Some
difficulties arose when trying to achieve the complete conversion
of reaction, because of mass transfer limitations and a crusting of
the material surface [60]. The kinetic equations of both forward
and reverse reactions were determined and the reaction reversi-
bility had shown a decrease after the first cycle [59]. Recently,
Wong et al. [60] studied this couple and compared it with other
redox couples for a feasibility study in tower centrals



Table 7
Advantages and drawbacks of the CaO/Ca(OH), system.

Reaction Advantages

Drawbacks

Ca(OH),+ AH, < Ca0O+H,0 No catalyst ==

No by-product ===

Nontoxic product ==

Material energy density (Experimental: 300 KWh m™3) =4+
Reversibility of the reaction (~100 cycles) 4=

Product separation (gas-solid) ===
Operating pressure (1 bar) ===
Availability and price of the product 4=+

e Agglomeration and sintering ==
e Change of volume (95%) =
e Low conductivity =

Experimental feedback (10 years)

Table 8
Advantages and drawbacks of the BaO/BaO, system.

Reaction Advantages

Drawbacks

2Ba0,+ AH, < 2Ba0+0,
0, reactant ===

No catalyst 4=

No side reaction ===

Products separation (gas-solid) 4=

L]
[ ]
[ ]
L]
[ ]
® Operating pressure (0-10 bar) 4=+

Operating temperature (400-1300 K) ==+

e [ncomplete conversion of both forward and reverse reactions ===
e No experiment feedback =

Table 9
Advantages and drawbacks of the Co304/CoO system.

Reaction Advantages Drawbacks

2C0304+ AH; < 6C00+0; ® High reaction enthalpy (~205 k] mol~!) 4= ® Few experiment feedback =
® O, as a reactant 4=+ e Storage of Oy ==
® No catalyst 4= e Toxicity of the products =
® No by product 4= ® Cost of the products ===
e Reversibility (500 cycles) 4=
® Products separation (gas-solid) 4=

Table 10

Advantages and drawbacks of the NH4HSO4/NH3/H,0/SO3 system.

Reaction Advantages

Drawbacks

NH4HSO4+ AHr < NH3+H,0+S03
® No catalyst 4=

® Product separation (gas-liquid) ===

e Material energy density (Theoretical: 860 KWh m™3) e

® Corrosive products ===
® Toxic products =
e No experiment feedback =

Table 8 presents the advantages and the drawbacks of the BaO/
BaO, system as thermochemical TES system.

3.5.2. Other oxidation/decomposition peroxide couples

More recently, a study about the potential of six oxide/peroxide
couples for a thermochemical TES application has been investi-
gated by Wong et al. [61]. To assess the relevance of various
couples, a thermodynamic analysis, an engineering feasibility
study and thermogravimetric measurements have been done.
The relevant couples are: Co304/CoO, MnO,/Mn;03, CuO/Cu,0,
Fe,03/FeO, Mn304/MnO and V,0s5/VO,. Nevertheless, for their

application, the most promising reaction is:
2C0304)+ AH; < 6C00) + 0y, With AH, =205 k] mol I

The decomposition occurs at 1123 K in a nitrogen atmosphere and
the oxidation occurs at 973 K in an air atmosphere with partial oxygen
pressure between 0 and 1 bar. This reaction has been implemented
both in a thermogravimetric balance and in a fixed bed [62]. 500
cycles have been achieved and the morphologic study of the product
showed a progressive magnification of the particles progressively
during the cycles. Buckingham et al. [63] have done a numerical
analysis of packed bed parameters and operating conditions. They



concluded that a packed bed design for metal oxide TES couple will
not be economically competitive and recommended to study a
“moving bed” design, as a rotary kiln, to improve the TES process.
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Fig. 13. Installation of a parabolic through power plant with chemical energy
storage [49].
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Neises et al. [64] used a rotary kiln based on the work of Buckingham
et al. [63] to implement the reaction which is heated through a solar
furnace of 22 kW. They carried out a reversibility study on three
samples: pure Co304 and two mixtures of doped Co304 with alumina
oxide. They achieved 30 cycles and demonstrated the feasibility of the
process with an energetic density in the reactor of 95 kWh m—3,
Table 9 presents the advantages and the drawbacks of the
Co0304/Co0 system as the thermochemical TES system.

3.6. Ammonia system

Historically, two reactions using the “Ammonia system” have
been studied. The first one, studied by Wenthworth et Chen [5] is
the decomposition of NH4HSO, but only few surveys have been
carried out. The second one, studied by the Australian National
University (ANU) since 40 years, is the decomposition/synthesis of
the ammonia for thermal energy storage.

Fig. 14. Solar ammonia dissociation reactor (a) design of the cavity receiver with 15 kW, and its assembly on ANU’s 20 m? dish without insulation fitted; and (b) reactor in

operation on the ANU’s 20 m? dish [49].
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Fig. 15. Design of the 10 kW, ammonia synthesis heat recovery [49].



3.6.1. The ammonium hydrogen sulfate system A preliminary study showed the potential of this system for
The reaction is TES application [5]. The reaction occurs at 690 K and 1.46 atm.
No catalysts are required for both forward and reverse reactions.
NH4HSO4) + AH; < NH3(g)+H20g) +S03,, with AH, =336 k] mol 1. A process flowsheet was designed to carry out a thermochemical
TES process based on ammonium hydrogen sulfur cycle [5].
Prengle et al. [5] defined the thermal efficiency as the ratio
between the released heat energy and the required solar energy.
The preliminary energy analysis of the cycle confirmed the
engineering feasibility of the process with a thermal efficiency of
62% and a theoretical energetic density of 860 kWh m~3.
Table 10 presents the advantages and the drawbacks of the
NH4HSO,4/NH3/H,0/SO3 system as the thermochemical TES system.

3.6.2. Dissociation/synthesis of NH3
The reaction is

2NH3g) + AH; < Ny +3Hae  With AH, =66.9 k] mol .

This reaction occurs at temperatures between 673 and 973 K and
pressures between 10 and 30 bar. The Haber-Bosch process is based
Fig. 16. ANU’s 500 m* paraboloidal dish concentrator [57]. on this reaction for the NH3 production since 100 years. A lot of

Table 11
Advantages and drawbacks of the NH3/N,/H, system.

Reaction Advantages Drawbacks
2NH3(g)+ AH; < Nag)+3Ha(g) ® Ammoniac synthesis known since 100 years (Haber-Bosch process) === ® H, and N, storage (gases) =
® Ammoniac: liquid at ambient conditions 4+ ® Use of catalyst (Fe/CO) ==
e ANU'’s important experiment feedback (40 years) - e Operating pressure (80-200 bar) ===
® No side reaction === e Incomplete conversion of both forward and

reverse reactions mmm=

Nuclear high
temperature
helium reactor

Catalytic Catalytic
reactor for reactor for
methane  1TaNSPOTt  methanation
reforming of syn-gas

Heat to
consumer,
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Fig. 18. Schematic diagram of reforming methane process cycle using carbon dioxide for heat conversion and transportation of concentrated solar energy [58].



studies (e.g.: kinetic studies by Temkin et al. [65]) have already been
done for this application (NH; production). Fig. 13 shows the scheme
of the installation developed and used by the Australian National
University (ANU) for a thermochemical TES application.

Both forward and reverse reactions are catalysed. The catalyst
materials used in the endothermic reactor and in the exothermic
reactor are respectively the Haldor-Tops@e “DNK-2R” [66] and
Haldor-Tops@e “KM1” [67].

The works on a thermochemical TES system using the ammo-
nia system began with Carden [68] and Williams and Carden [69].
They assessed a theoretical energetic efficiency of 90% if the
conversion rate of the ammonia into the reactor was higher than
60%. Later, the thermodynamic limitations associated with the use
of the reversible reaction of the ammonia have been studied by
Lovegrove et al. [70,71] thanks to a pseudo-homogeneous two
dimensions model of reactor. The first solar driven high pressure
ammonia reactor of 1 kW has been successfully tested in a closed
loop system [67]. This reactor allowed the validation of a numer-
ical model to predict the temperatures in the catalyst, on the wall
and in the gas, and also the conversion rate and the product
flowrates. A detailed study of a 10 MW, base load power plant in
Australia, has indicated that levelled electricity costs lower than
AUS $ 0.15/kWh were potentially achievable [72]. A scale-up
(Fig. 14) of the first solar driven ammonia reactor has been done
in order to accept the full (=15 kW) input from the ANU’s 20 m?
dish system [66].

Fig. 15 shows the design of the ammonia synthesis heat
recovery reactor of 10 kW, [66].

A new 500 m? parabolic dish solar concentrator has been built
by the ANU in 2009 (Fig. 16). The receiver geometry was numeri-
cally optimized to improve the dissociation reaction [73]. This
numerical model can then be applied to develop an ammonia
receiver for the 500 m? SG4 dish concentrator.

ANU has done the most advanced works in this sector, by
working for over 40 years on the thermochemical energy storage
using the dissociation and synthesis of ammonia. ANU is also the
first laboratory which continuously store and release energy
during 24 h thanks to its closed loop system composed of a solar
reactor of 15 kW for the dissociation reaction and a synthesis
reactor of 10 kW [75].

Table 11 presents the advantages and the drawbacks of the
NH;3/N,/H, system as the thermochemical TES system.

3.7. Organic systems

3.7.1. Methane reforming

Reforming of methane using steam or carbon dioxide is
industrially used for the H, production. These reactions have also
been studied for heat transportation. There is no study about the
TES system based on the methane reforming, but this could be an
application. Both reactions are catalysed by Ni-based or Ru-based
catalysts [76].

3.7.1.1. Methane steam reforming. The reaction is

CH4(g)+H20([) +AH; < CO(g) +3H2(g) with AH, =250 l(J molflq.h.

The side reaction is

CO) +H20q <> COg)+Hag +AH,  with AH,; = —41.2k] mol ' co.

This reaction occurs at temperatures between 873 and 1223 K
and pressures between 20 and 150 bar. In 1975, Kugelers et al. [77]
suggested to use the reaction of methane steam reforming for the
transport of the thermal energy coming from the nuclear plants. The
authors made a feasibility survey and proposed a process flowsheet
(Fig. 17) with energetic efficiencies between 60% and 73%. In order to
study and understand the phenomena involved during the reaction,
a first pilot plant, EVA 1, was built by Fedders et al. [78]. An
industrial-scale pilot plant EVA I/ADAM I of 300 kW was developed
in 1979 at the Intitut fiir Reaktorbauelemente in Germany. 850
operating hours have been investigated. They showed the feasibility
of the energy transport system by means of the reversible reaction
[79]. More recently, a new design process (ICAR: immediate catalytic
accumulation of ionizing radiation energy) was developed by
Aristov et al [80]. The endothermic reactor is directly combined
with the nuclear reactor to improve the process efficiency.

3.7.1.2. Methane reforming using carbon dioxide. Methane refor-
ming using carbon dioxide presents an advantage for a TES

gas inlet
insulation structure

\ | window
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absorber

Fig. 19. Schematic of the solar chemical receiver-reactor [64].

Table 12

Advantages and drawbacks of the CH4/CO, and the CH4/H,0 systems.
Reaction Advantages Drawbacks
CH4+H,0+AH, < 3H,+CO e Industrial feedback =+ H, storage =

® High reaction enthalpy (~250 k] mol~!) 4=

® Gas phase 4=

CH4+CO,+ AH, < 2H,+2CO

[ ]
® Cost of CHy ==

® Side reactions ===
e Use of catalyst ==

e Low reversibility m=




Table 13
Advantages and drawbacks of the CgH12/CsHg system.

Reaction Advantages

Drawbacks

CgHi2+ AH, < CgHg+3H>

e [ndustrial feedback -
® Operating temperature (~580 K) ===

® H, storage =

® Use of Catalyst ==

e Secondary reaction ==
® Toxic products =

® Reversibility ===

Table 14
Advantages and drawbacks of the SO3/SO,/O, system.

Reaction Advantages

Drawbacks

2503+ AH, < 250, +0,

® O, as a reactant <=

e Industrial feedback with the H,SO, production -
e Operating temperature (773-1223 K) ===

e Corrosive product m=m=
e Toxic product =

e Need of catalyst ==

® Storage of Hy =

application compared to the steam reforming process. It does not
involve water evaporation [76].
The carried out reaction is

CHag)+COsg)+ AH; < 2CO(g) +2Hyg  With AH, =247 kj mol ™" .

The side reaction is:

COyg)+Hagg +AH; < COg +Hy0  with AH, = —41.2 K molo '

Fig. 18 shows the process flowsheet. During the endothermic
reaction, methane and carbon dioxide are decomposed at a
temperature between 973 and 1133 K and absolute pressure of
3.5 bar to form hydrogen and carbon monoxide. Edwards and
Maitra [81] outlined the potential of this reforming for TES
application. Edwards et al. [82] achieved a technical-economic
survey in order to evaluate the energetic efficiencies of two
different processes for a production of 100 MWe. The first one
works in closed loop (Solar/Rankine cycle plant) and the second
one in open loop (Solar/Gas turbine combined cycle). Both cases
have energetic efficiencies of 33.6% and 44.6%.

Later, the DLR [83] developed a solar reactor of 300 kW to
implement the reforming reaction (Fig. 19). This solar reactor has
been used in a global test loop at the WIS (Weizmann Institute of
Science) in Rehovot, Israel. Nevertheless, in spite of good conver-
sion rate of methane, many problems of catalyst deactivation
appeared due to a deposit of sodium.

Table 12 presents the advantages and the drawbacks of the
CH,4/CO, and the CH4/H,0 systems as thermochemical TES system.

3.7.2. Cyclohexane dehydrogenation — benzene hydrogenation
The carried out reaction is

CGHIZ(g) +AH; < CGHG(g) +3H2(g) with AH, =206 k_] molfl.

This reaction is well known in the chemical industry and the
reactor technologies to carry out both forward and reverse reactions
are known. During the charging step, the cyclohexane is heated up to
566 K at 1bar at which the endothermic reaction occurs. The
decomposition reaction products are hydrogen (gas) and benzene
(gas). During the storing step, benzene can be stored as a liquid at
atmospheric pressure and hydrogen has to be compressed and stored.
During the discharging step, benzene and hydrogen are mixed at
610K and 70 bar to generate heat and the initial cyclohexane. Both
forward and reverse reactions are catalysed [4]. Process simulations of
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Fig. 20. Energy density versus turning temperature for the reversible reactions
studied as a TES system in the literature: (a) volumetric energy density; and
(b) mass energy density.

chemical heat pumps were investigated to improve the coefficient of
performance (COP) [80,84].

Table 13 presents the advantages and the drawbacks of the
CgH12/CsHg system as the thermochemical TES system.
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3.7.3. Thermal dissociation of sulfur trioxide
The reaction is
with AH, = 98 k] mol__!

S03(G) "

2503@) +AH; < 2502(g) + OZ(g)

This reaction occurs at temperatures between 773 and 1373 K
for pressures between 0.1 and 0.5 MPa. During the charging step,
the liquid sulfur trioxide is heated up to vaporization. This phase
change requires 43 kJ mols’olm. The gas product is heated up to
the decomposition temperature (1073-1373 K), at which the
endothermic reaction occurs. The endothermic reaction has to be
catalysed, generally with V,05 [4,85]. The decomposition reaction
products are sulfur dioxide (gas) and oxygen (gas). During the
discharging step, the oxygen is added to the sulfur dioxide to
regenerate the heat (773-973 K) and the initial sulfur trioxide. A
process analysis has been done by Chubb [85] to use this reaction
in a Solchem system to produce a continuous 24 h electricity
output of 100 MW with a 72 h storage. A process simulation
assessed the thermal efficiency to 58% [4].

Table 14 presents the advantages and the drawbacks of the SO5/
S0O,/0, system as the thermochemical TES system.

3.8. Summary of case studies

Several numerical, experimental and technological studies
concerning thermochemical energy storage have been found in
the literature. Fig. 20a and b plot the volumetric energy density
and the gravimetric energy density versus the turning tempera-
ture of the studied reactions. To assess the volumetric energy
density of the solid reactant, the bulk density with a packed bed
porosity of 0.5 has been chosen. Usually, a packed bed porosity of
spherical particle is between 0.4 and 0.5 [86]. The volume of pores
inside a particle is considered to be equal to zero.

Fig. 20 is extremely useful to quickly screen the candidate
reactions in the desired temperature and the energy density
ranges. Each reaction system is detailed in Table 15. Table 15 lists
the reversible reaction, the phase of the A reactant, the reaction
enthalpy by mol of reactant A, the operating temperatures, the
energy density and the related works and technologies.

4. Conclusion

This paper presents a state of the art of the current numerical
and experimental researches on chemical reactions for high
temperature thermochemical heat energy storage. Most of the
described systems were only tested on laboratory scale until now.
This paper has also offered an updated review of the high
temperature (573-1273 K) thermochemical TES system which
have the potential to become an important part of sustainable
handling of energy in a close future. The following conclusions
that can be drawn are

® The energy density of a thermochemical TES system
(~500 kWhm~3) is 5 to 10 times higher than latent heat
storage systems and sensible heat storage systems respectively.

® Thermochemical TES systems appear to be the most promising
way to store solar thermal energy during a long-term period.
Indeed, both storage period and transport distance are theoreti-
cally unlimited because there is no loss of thermal energy during
storage as products can be stored at ambient temperature.

® [aboratory-scale experiments, numerical and technological
studies have demonstrated the feasibility of several reaction
systems for a TES application.

® The system involving the ammonia dissociation and synthesis
is the most mature technology for a high temperature

TES application with 40 years of researches and pilot-scale
equipment.

® The dehydration/hydration of the Ca(OH),/CaO couple shows a
high potential for TES application but future works need to
focus on the intensification of heat and mass transfers inside
the reactor.

® For a high temperature thermochemical heat storage (CSP
application), the following chemical reactions seem to be the
most interesting ones in terms of actual development, cost and
temperature range:

MgH, < Mg+H,
PbCO3 < PbO+CO,
Ca(OH), < Ca0+H,0

NH;3; < N, +H,

Nowadays, the storage system with the reaction couple
NH3 < N, +H; is the most mature one especially with the ANU
works and their 40 years feedback. Nevertheless, recently the
reaction couple Ca(OH), < CaO+H,0 appears to be promising for
thermochemical heat storage and many studies and projects
contribute to develop this system. The main barriers to remove
are linked to the reactor heat and mass transfers. As a consequence
the development of intensified heat exchanger/reactor could be
interesting to study. Mass transfer issues have also to be
addressed, especially if fast hydration and dehydration kinetics
are expected. A compromise between particle diameter and mass
transfer limitation will have to be found and future works could
focus on the functionalization of the particles, supported particles
or doping. Moreover, for G/S reactions in general, an effort should
be done on the optimization of the particle size and the reaction
bed structure to guarantee a constant heat output during the
discharging step. This optimization must be done without com-
promising, as far as possible, the system compactness.

Another area of research is the optimization of the temperature
level during charging/discharging steps. The objective is to dimin-
ish the difference of temperature between both steps to improve
the efficiency and the ease to control the process and the down-
stream turbine for instance.

At present, only laboratory and pilot experiments have been
done and scale-up is an important point to address. Large-scale
experiments are necessary to prove the feasibility of the thermo-
chemical TES system for both short and long-term storage. The
process must be reversible with a constant conversion rate and
without degradation after a large number of cycles. To support the
scale-up procedure, numerical models of the storage process have
to be developed. The objective is to insert them in the whole
power plant scheme to assess the performances according to the
application case (seasonal storage, 24 h electricity production,
peak load,...).

The future works should also allow the definition of a meth-
odology to choose suitable materials for a given TES application.
Technical-economic studies will be required to assess the profit-
ability of the whole TES process. Thus, storage materials, storage
equipment, control strategies of the system and applications cases
are important points to address.
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