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émanant des établissements d’enseignement et de
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A regular update of genome annotations is a prerequisite step to help maintain the 16 

accuracy and relevance of the information they contain. Five years after the first 17 

publication of the complete genome sequence of C. difficile strain 630, we manually re-18 

annotated each of the coding sequences (CDS), using a high-level annotation platform. 19 

The function of more than 500 genes annotated previously with putative functions, were 20 

re-annotated based on updated sequence similarities of proteins whose functions have 21 

been recently identified by experimental data from the literature. We also modified 222 22 

CDS starts, detected 127 new CDS and added the enzyme commission numbers, which 23 

were not supplemented in the original annotation. In addition, an intensive project was 24 

undertaken to standardise the names of genes and gene products and thus harmonising 25 

as much as possible with the HAMAP project. The re-annotation is stored in a relational 26 

database that will be available on the MicroScope web-based platform, 27 

“http://www.genoscope.cns.fr/agc/microscope/ClostridioScope”. The original 28 

submission stored in the INSDC nucleotide sequence databases was also updated.  29 

 30 

Scope : Clostridium difficile special issue of the Journal of Medical Microbiology 31 

 32 

*The EMBL accession number for the re-annotation of C. difficile strain 630 is AM180355 33 

and its plasmid pCD630 is AM180356. 34 

35 
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INTRODUCTION 36 

 37 

The re-annotation of several model genomes has been recently performed, 38 

among these there are Escherichia coli for the gram negative bacteria (Luo et al., 2009) 39 

and Bacillus subtilis for the firmicutes (Barbe et al., 2009). This provided new 40 

information about genomic structure and organisation as well as gene function and 41 

plays an essential role in defining reference knowledge. In addition the re-annotation of 42 

the B. subtilis genome also benefits the other firmicutes such as Clostridium difficile. 43 

  44 

C. difficile is one of the major enteropathogenic clostridia and C. difficile-45 

associated diarrhea (CDAD) is currently the most frequently occurring nosocomial 46 

infection in many European hospitals. Although toxins are generally recognised as the 47 

main virulence factors, C. difficile pathogenesis remains poorly understood. The global 48 

genetic analysis of C. difficile appeared to be an useful approach to find potential 49 

mechanisms involved in the bacterial virulence for which an updated of the gene list and 50 

corresponding annotations is tremendously important. 51 

 52 

The first complete genome sequence of a C. difficile strain (630) was sequenced in 53 

2006 (Sebaihia et al., 2006). It led to the development of high throughput projects such 54 

as comparative genomic, transcriptomic and proteomic studies (Jain et al., 2010; 55 

Janvilisri et al., 2010; Marsden et al., 2010), which were recently reinforced with an 56 

increase of multiple genomic projects (Stabler et al., 2009). However, the relevance of all 57 

these experiments greatly depends on the information available for the genes 58 

particularly their functions experimentally identified or predicted in silico. Thus, it is 59 

critical that the information is accurate, relevant and useful. This is why we undertook 60 

the re-annotation of the C. difficile strain 630 genome.  61 

 62 

The advances in second-generation sequencing technologies combined with their 63 

relative low cost has led to the increased need for a rapid genome annotation system 64 

(Petty, 2010). However the fastest way to obtain an accurate annotation remains to 65 

transfer annotation from a reference strain. This requires to have access to a closely 66 

related genome for each species annotated to a high standard and regularly updated. 67 



 68 

We described in this paper the manual re-annotation of all CDS of the C. difficile 69 

strain 630 genome. For this purpose we used improved methods in bioinformatics, 70 

literature surveys and genome data from closely related species such as Clostridium 71 

sticklandii, which has recently been sequenced (Fonknechten et al., 2010) or B. subtilis 72 

whose genome has been re-sequenced and re-annotated (Barbe et al., 2009). The re-73 

annotation resulted in the function precision of more than 500 genes and the addition of 74 

new CDSs as well as the correction of the start sites of 222 CDSs. All information from 75 

laboratory research publications could be continuously integrated though the 76 

MicroScope platform to maintain this up-to-date annotation. 77 

 78 

METHODS 79 

 80 
Identification of new or modified CDS in the C. difficile genome 81 

The sequence and the original annotation of the published C. difficile 630 genome  82 

(Sebaihia et al., 2006) was integrated into the Microscope platform (Vallenet et al., 83 

2009). MicroScope is a web-based framework for the systematic and efficient revision of 84 

microbial genome annotation and comparative analysis. Its main features are (i) 85 

integration of annotation data from bacterial genomes enhanced by a gene coding re-86 

annotation process using accurate gene models, (ii) integration of results obtained with 87 

a wide range of bioinformatics methods, among which exploration of gene context by 88 

searching for conserved synteny and reconstruction of metabolic pathways, (iii) an 89 

advanced web interface allowing multiple users to refine the automatic assignment of 90 

gene product functions. MaGe is also linked to numerous well-known biological 91 

databases and systems. The original gene prediction was systematically checked using 92 

the AMIGene software (Bocs et al., 2003) and the MICHeck strategy (Cruveiller et al., 93 

2005). The initial identifier of genes ‘CD0000(A)’ used a prefix of two letters, ‘CD’, 94 

followed by a four-digit number corresponding to the position of CDS in the genome. 95 

Whenever a new gene interleave, a capital letter was added in alphabetical order. Since 96 

2006, the locus tag usage has evolved (Cochrane et al., 2008).  The prefix now has to 97 

contain only alpha-numeric characters and it must be at least 3 characters long. In 98 

addition the locus tag prefix must be separated from the tag value by an underscore 99 



ending with a number. So we assigned for all CDS a new locus tag code: ‘CD630_00000’.  100 

The four-digit number after the underscore is still the original CDS position in the 101 

genome. The capital letter of the original identifier was converted to a number which 102 

has been added at the end of each gene : 1 to 9 for genes previously ended with capital 103 

letter A to I, and 0 for all others e.g. CD0001 into CD630_00010 and CD0163B into 104 

CD630_01632. Finally, because the genomic position of the non coding CDS was defined 105 

with only three-digit numbers, we replaced the first number after the locus tag prefix 106 

with a ‘t’ or ‘r’ respectively for transfer RNA and ribosomal RNA respectively, e.g. CDt001 107 

into CD630_t0010 and CDr001 into CD630_r0010. We used the same coding method for 108 

the 11 CDSs encoded by the plasmid pCD630, adding the letter ‘p’, after the locus tag e.g. 109 

CDP01 into CD630_p010.  110 

 111 

During the re-annotation process using the AMIGene predictions, we identified 112 

new CDS and we assigned them the locus tag of the previous CDS with the last number 113 

incremented by 1 e.g. a new gene detected after CD630_02670 (previously named 114 

CD0267) was coded CD630_02671. The original locus tag will be kept in the EMBL file 115 

using the /Old_locus_tag identifier. 116 

 117 

Re-annotation of the complete C. difficile strain 630 118 

The predicted proteins were subjected to a wide range of bioinformatics tools, 119 

which includes conserved synteny computations, alignments against TrEMBL and 120 

SWISS-PROT databases (Apweiler R, 2011) and TMHMM (Sonnhammer et al., 1998), 121 

SignalP (Bendtsen et al., 2004) and PsortB (Yu et al., 2010) software to predict 122 

subcellular localization of proteins as well as INTERPROSCAN (Zdobnov & Apweiler, 123 

2001) to identify possible functions of newly discovered proteins (Apweiler R, 2011). 124 

This work flow led to an automatic functional annotation for each CDS as previously 125 

described (Vallenet et al., 2006). Finally, these pre-computed results served as basis for 126 

the manual re-annotation of each CDS proceeding by inference.  127 

 128 

To normalise the process of manual annotation among multiple users, we set up 129 

several guidelines: (a) The product field is filled with the functional annotation for all 130 

genes identified with ’Hypothetical protein’ or ‘Conserved Hypothetical protein’ when 131 

the gene was not identified. For all others we added ‘Putative’ prior to the product 132 



annotation. Pseudogene and gene remnant have a specific nomenclature : ”Fragment of” 133 

+ function + position (N-terminal, C-terminal or center of the encoding protein). (b) The 134 

name of gene was completed by searching in the literature using PubMed data libraries 135 

(http://www.ncbi.nlm.nih.gov/pubmed) and when we changed gene names, old names 136 

were indicated in the synonymous field. (c) The start sites were modified according to 137 

the  combination of the graphical data such as codage probability curves deduced from 138 

the AMIGene method (Bocs et al., 2003), as well as alignments with orthologous genes 139 

(Altschul et al., 1990). Then, the label ‘/START=’  was added in the comment field  140 

followed by a capital letter associated to an informative code (M: modified, C: coding 141 

curve, S: sequence similarity, O : overlap, R : RBS).  (d) PubMed identifiers (PMIDs) of 142 

each gene were classified from the specific references to the articles corresponding to 143 

orthologuous genes and/or the global reviews concerning its function. (e) Protein 144 

families were standardized using the same keywords, PMIDs and global classification, 145 

such as CMR roles (http://cmr.jcvi.org/cgi-bin/CMR/RoleIds.cgi). 146 

 147 

RESULTS & DISCUSSION 148 

 149 

Evaluation of annotation improvement 150 

The original annotation of the C. difficile strain 630, published in 2006 (Sebaihia 151 

et al., 2006), identified 3776 predicted coding sequences (CDSs). We have updated 152 

annotation of all CDSs and assigned or precised their functions. During the re-annotation 153 

process we attributed a class of function to each gene re-annotated: (i) “known”: when 154 

function was experimentally demonstrated or when high level of similarities with 155 

characterised genes were found (ii) “putative”: based on conserved motif, structural 156 

feature or limited similarities, (iii) “unknown”: when genes were unidentified and (iv) 157 

“pseudo”: for pseudogenes or gene remnants. The same classification was applied 158 

manually to the 2006 annotation to allow comparison of both annotations  (Table 1A). 159 

 160 

Thus, 518 and 18 genes whose encoding function was previously described as 161 

putative and unknown respectively have now a functional annotation identified by the 162 

experimental data from the literature (Table 1A). For example, CD630_26030 163 

(previously named CD2603), recognised as a putative response regulator, is now 164 

http://cmr.jcvi.org/cgi-bin/CMR/RoleIds.cgi


designated cdtR, since it was shown that it controls the binary toxin expression in C. 165 

difficile (Carter et al., 2007). In addition, 117 genes of unknown function have now a 166 

putative function. For instance, 12 conserved hypothetical proteins which contain a 167 

CRISPR-associated domain (clustered regularly interspaced short palindromic repeats) 168 

are annotated “Putative CRISPR-associated family protein”. Furthermore, we showed 169 

that the ATP synthase epsilon chain, CD630_34670 (CD3467), which was defined as a 170 

gene remnant (pseudo class) because of a lack of amino-acid in the C-terminus relative 171 

to database matches, actually belongs to the class of  “known function”. This enzyme 172 

usually combines ATP synthesis and hydrolysis but the hydrolysis function is still active 173 

in the truncated version (Ferguson et al., 2006).  174 

 175 

Following the re-annotation we included 127 new CDSs and defined 222 new CDS 176 

start sites. The majority of the new CDS are divided into putative (25), unknown (86) or 177 

pseudogene (15) classes (Table 1B). Only one gene, CD630_15951 has an orthologue, 178 

whose function was experimentally demonstrated. This gene, detected during the 179 

proteomic analysis recently performed in C. difficile (Lawley et al., 2009), is highly 180 

homologous (~60%) to a ferredoxin gene of Clostridium thermoaceticum (Elliott et al., 181 

1982).  182 

 183 

We were looking for papers corresponding to each gene, and particularly those 184 

published after the original annotation. We added at least one PMID reference number 185 

to 64% of the C. difficile genes. Like many other genome-wide updates, several 186 

specificities were added to the original product function. When possible, we attached 187 

new motifs and enzymatic domains identified by INTERPROSCAN, allowing a more 188 

accurate description of the original function. For example, putative peptidase enzymes 189 

have now family information according to the classification scheme of the MEROPS 190 

database (http://merops.sanger.ac.uk). The revised nomenclature of the pathogenicity 191 

locus region (Rupnik et al., 2005) has been introduced during re-annotation process as 192 

well as genes involved in the C. difficile motility and flagellar glycosylation since they 193 

were recently published (Twine et al., 2009). A locus tag, product annotation and class 194 

comparison between the two annotations performed in 2006 and 2010 were 195 

summarised in the Table S1. All information of the CDS re-annotated (Fig. S1), are 196 

currently available on the MicroScope platform: 197 

http://merops.sanger.ac.uk/


http://www.genoscope.cns.fr/agc/microscope/ClostridioScope. We also updated the C. 198 

difficile 630 genomic entry in genomic databases: EMBL, GenBank and DDBJ.  199 

 200 

Deciphering the annotation origin 201 

Several pieces of information appeared when we evaluated the source used 202 

during the functional annotation of known, putative or unknown genes (Fig. 1). In the 203 

known category, 1% of the gene function came from C. difficile strain 630 publications, 204 

1,5% from other C. difficile strains, 4% from other clostridia and 93,5% from other 205 

species (Fig. 1A.). The putative category was defined according to the enzymatic domain 206 

(40%), homology to mobile elements (20%) or cell localisation (15%) (Fig. 1B). As an 207 

example a gene will be annotated “Putative membrane protein” when 3 or more 208 

transmembrane helix was detected by TMHMM (Sonnhammer et al., 1998). Finally, we 209 

classified the unknown genes from the alignement results with TREMBL (Boeckmann et 210 

al., 2003). Although 45% were orphan of the C. difficile strains, 20% were also found in 211 

the genus Clostridium, 15% in the firmicutes phylum and 20% in other bacteria (Fig. 212 

1C). 213 

 214 

 Concerning genes annotated as known, we noted that only few of them came 215 

from a published clostridial experiments (Fig. 1A). This was mainly due to the lack of 216 

effective tools to mutate clostridial genes. However gene inactivation method and 217 

random mutagenesis system recently developed in C. difficile (Cartman & Minton, 2010), 218 

should greatly improve the number of publications on C. difficile gene functions. Half of 219 

the genes with an unidentified function, orphan, are found only in C. difficile 630 (Fig. 220 

1C.). However, most orphans are present in the C. difficile strains already sequenced 221 

such as strains 027, CD196 and R20291 (Stabler et al., 2009). This may constitute a 222 

source of gene targets that could be used both in research, diagnosis or treatment of the 223 

CDAD. 224 

 225 

Miscellaneous improvements  226 

 To re-annotate the C. difficile genome of strain 630 we used the MaGe interface, 227 

which contains classic database fields (type, position, name, product, EC numbers) and 228 

several specific fields such as gene synonymous (synonyms), authors notes (comments), 229 

pubmed identifiers (PMID), product type, localisation and functional classification (Fig. 230 



S1).  All information found during the re-annotation process that did not fit in the classic 231 

fields were added in the specific MaGe field or in the comments. For example, the novel 232 

virulence factor called Srl for « Sensitivity regulation of C. difficile toxins », (Miura et al., 233 

2010) was presented during the third international clostridium difficile symposium. 234 

This information was only indicated in the comment field of the CD630_22980 (CD2298) 235 

gene until further validation. 236 

 237 

 The names of gene products were harmonizing as much as possible with the 238 

HAMAP project (Lima et al., 2009). On the other hand, all gene products have now been 239 

named with a specific keyword related to their functional family (Fig. S1). Thus, 240 

CD630_05310 (CD0531), previously annotated «DeoR-like regulator of transcription» (a 241 

regulator of sugar and nucleoside metabolic systems) was re-annotated  242 

« Transcriptional regulator (keyword), DeoR family ». We also normalised the 243 

annotation of genes that share the same characteristics. As an example, proteins that 244 

were only determined according to their membrane localization were annotated: 245 

« Putative membrane proteins ». The annotation standardization we used will facilitate 246 

the mining of the data using bioinformatics as well as manual search (Fig. S1). 247 

 248 

Membrane Transport 249 

 The C. difficile genome contains a lot of proteins encoding several membrane 250 

transport systems: ATP-binding cassette (ABC) transporters, phosphoenolpyruvate-251 

dependent phosphotransferase systems (PTS), charged substrate transporters 252 

(antiporters, symporters) and facilitators. The general function of the genes encoding 253 

such proteins can be easily determined from bioinformatic approaches, like those used 254 

for the protein domain analysis in InterProScan (Zdobnov & Apweiler, 2001). However 255 

it is quite difficult to distinguish the exact metabolite they transport, especially when the 256 

transport systems have a wide specificity. We reannotated most of the transporter 257 

systems by inference including clues about targets using specialized databases such as 258 

TransportDB (http://www.membranetransport.org/)(Ren et al., 2007) which compile 259 

all information on cytoplasmic membrane transporters. We added a suffix in the 260 

classification which indicate, from a global trend to the expected target, the motif 261 

(family), the high sequence homology (like) and the evidence of a target metabolite 262 

http://www.membranetransport/


(specific). However, this classification should be taken with caution since it was mainly 263 

deduced from in silico analysis rather than from experimental data. 264 

 265 

 The table 2 showed annotation of 19 PTS systems with a specific 266 

metabolite suggestion. The targeted metabolite was deduced from the INTERPROSCAN 267 

motif search but could also be defined by the presence in the same locus of gene 268 

encoding enzyme involved in specific sugar assimilation (associated enzyme). As an 269 

example CD630_22690 (CD2269) is now annotated as “PTS system, fructose-specific 270 

IIABC component”. This is due to the detection of three motif signatures the mannitol 271 

family PTS EII component A, B and C, as well as the presence of the neighbouring gene, 272 

the CD630_22700 (CD2270), which encodes an enzyme involved in the utilization of 273 

fructose: “Fructose 1-phosphate kinase” as indicated in the gene annotation (Table S1).  274 

 275 

Metabolism update 276 

Updating the genome annotation of C. difficile led to many changes within the 277 

metabolism pathways. The gene cluster involved in the anaerobic oxidative degradation 278 

of L-ornithine has been identified in C. sticklandii (Fonknechten et al., 2009). From this 279 

publication we reannotated genes CD630_04420 (CD0442) to CD630_04480 (CD0448) 280 

whose encoding proteins share high similarities to the ornithine catabolism compounds 281 

of C. sticklandii e.g. Ord, OrtA, OrtB, OraS, OraE, Or-4 and Orr, respectively (Table S1). 282 

This suggested that C. difficile could produce acetyl-CoA from the ornithine 283 

fermentation. The ability to use a variety of carbohydrates is an important feature for C. 284 

difficile to colonize the host gut. Enterococcus faecalis found in the same niche as C. 285 

difficile, provided hints to explore the consistency of a specific pathway required for 286 

ethanolamine utilisation, a constituent of an abundant class of phospholipids present in 287 

the eucaryotic cell membranes and the host’s dietary intake (Del Papa & Perego, 2008) 288 

(Fox et al., 2009). Using the E. faecalis gene synteny and protein similarities, we were 289 

able to reconstruct the whole ethanolamine pathway in C. difficile, a cluster of 19 genes, 290 

from CD630_19060 (CD1906) to CD630_19260 (CD1926) encoding the ethanolamine 291 

ammonia-lyase, an alcohol dehydrogenase, a carboxysome associated proteins, the 292 

transporter EutH and the two-component system EutV, EutW. (Table S1). 293 

 294 



Interestingly, in B. subtilis several enzymes involved in RNA degradation were 295 

recently identified (Even et al., 2005) (Shahbabian et al., 2009). In C. difficile, a unique 296 

Rnase J protein CD630_12890 (CD1289) was detected as well as an ortholog of ymdA 297 

CD630_13290 (CD1329), encoding the Rnase Y protein.  298 

 299 

CONCLUSION 300 

 301 

Finally, nearly half of the genes of the C. difficile strain 630 encode proteins with 302 

known function, whereas one-third of the gene products have a putative function and 303 

only fifteen percent of proteins with unknown function are encoded by C. difficile 304 

genome (Table 1A). In addition, 127 new CDSs were discovered (Table 1B) and 222 CDS 305 

starts were modified. The re-annotation was performed using a high standard 306 

annotation MicroScope platform, which significantly increased the amount of 307 

information available for the majority of the CDS, such as literature references, product 308 

types, localisation and gene synonymous (Fig. S1). 309 

 310 

Nevertheless, there is still great deal of work to be completed since only 116 311 

annotated genes came from a published clostridial experiments. The EMBL entries are 312 

now resubmitted and to maintain the annotation up-to-date, all new information would 313 

be addressed directly to marc.monot@pasteur.  314 

 315 
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TABLE & FIGURE LEGENDS 332 

 333 

Table 1 : Review of the 2006’s annotation update. A) CDSs were identified and separated 334 

according to the four major annotation classes in both 2006 and 2010 annotations: 335 

(Known) when function were experimentally demonstrated, (Putative) based on 336 

conserved motif, structural feature or limited homology, (Unknown) when function are 337 

unidentified and (Pseudo) for pseudogenes. Dark grey padding numbers indicated no 338 

change and “±”and “-“ correspond to a change betwenn the classes of annotation 339 

between 2006 annotation and 2010 re-annotation. B) Annotation of the new CDS 340 

detected and referenced as known, putative, unknown and pseudo classes.  341 

 342 

Table 2 : Re-annotation of the PTS systems according to the metabolite specificity. List of 343 

locus tags corresponding to 19 PTS re-annotated. The PTS metabolite was deduced from 344 

the motif class detection and/or the presence of associated enzymes involved in a 345 

specific sugar metabolism. 346 

   347 

Figure 1 : Distribution of the functional re-annotation origin. A) Known functions 348 

were identified from the literature references of: Clostridium difficile strain 630 (C. diff 349 

630), other Clostridium difficile strains (C. difficile), Clostridium species (Clostridia) and 350 

others species (Others). B) Putative functions were defined from: enzymatic domains 351 

(Enzyme), homology with mobile elements (Mobile), localisation in the cell 352 

(Localization ) and the remaining origin (Others). C) Unknown functions which were 353 

found only in: Clostridium difficile (Orphan), in the Clostridium species (Clostridia), in 354 

the firmicutes plylum (Firmicutes) or in diverse bacteria (Others). 355 



SUPPLEMENTARY DATA 356 

 357 
Table S1 : Comparison between 2006 and 2010 annotations. For each CDS, the locus 358 

tags, annotation function and classes are compared for both 2006 and 2010 annotations.  359 

 360 

Table S2 : Standardization of family product names. The product names were 361 

constructed around a keyword specific to the gene’s functional family.  362 

 363 

Figure S1 : C. difficile CDS re-annotation by MaGe. MaGe annotation window for tcdR 364 

gene. Bold and grey outline focus on information added specifically within this process : 365 

mutation, synonyms, comments, PMID, product type, localization, MaGe classification 366 

and standard classification (Bioprocess and Roles).  367 

 368 
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Table 1 
 
 

2010         

2006 

Known 
47% 

Putative 
37% 

Unknown 
14% 

Pseudo 
2% 

Known 
34% 

1222 -63 -0 -10 

Putative 
47% 

+518 1163 -115 -12 

Unknown 
17% 

+18 +177 397 -7 

Pseudo 
2% +1 +2 +1 63 

 
 
 

New CDS Known Putative Unknown Pseudo 

127 1 25 86 15 

 
 
 

A 

B 



Table 2 
 
 

Locus tag Motif class Associated enzyme 
Propposed PTS 

metabolites 

CD630_04690 Glucose CD630_04680 Sucrose 

CD630_03880 Glucose CD630_03890 b-glucoside 

CD630_30970  Glucose CD630_30950 / CD630_30960 b-glucoside 

CD630_31160  Glucose CD630_31150 b-glucoside 

CD630_31250  Glucose CD630_31240 b-glucoside 

CD630_31370 Glucose CD630_31360 b-glucoside 

CD630_26660 / CD630_26670 Glucose - Glucose 

CD630_30580 / CD630_30610 Glucose CD630_30600 a-glucoside 

CD630_22690 Mannitol CD630_22700 Fructose 

CD630_30750 Mannitol CD630_30740 Tagatose 

CD630_30860 Mannitol CD630_30850 2-O-a-mannosyl-D-glycerate 

CD630_23320 / CD630_23330 Mannitol CD630_23310 Mannitol 

CD630_00410 / CD630_00420 / CD630_00430 Mannitol - Galactitol 

CD630_36450 / CD630_36470 / CD630_36480 Lactose - Lichenan 

CD630_28800 / CD630_28830 / CD630_28840 Lactose CD630_28820 Cellobiose 

CD630_30130 / CD630_30140 / CD630_3015 Mannose CD630_30120 Mannose 

CD630_25660 / CD630_25670 / CD630_25680 Mannose CD630_25690 Mannose 

CD630_30670 / CD630_30680 / CD630_30690 / CD630_30700    Mannose CD630_30710 Xyloside 

CD630_07640 / CD630_07650 / CD630_07660 / CD630_07670  Sorbitol CD630_07680 Sorbitol 

 
 
 
 


