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Abstract : Cross-species differences between human and fish estrogen receptor (ER) binding by 8 

environmental chemicals have been reported. To study ER transactivation in a fish cellular 9 

context, we stably co-transfected the PLHC-1 fish hepatoma cell line with a rainbow trout 10 

estrogen receptor (rtER) and the luciferase reporter gene driven by an estrogen response element 11 

(ERE). This new cell model, called PELN-rtER (for PLHC-1-ERE-Luciferase-Neomycin), 12 

responded to 17 -estradiol (E2) in a both concentration- and temperature-dependent manner, as 13 

well as to environmental ER ligands from different chemical classes: natural and synthetic 14 

estrogens, zearalenone metabolites, genistein, alkyphenoles and benzophenone derivatives. The 15 

comparison with other in vitro models, i.e. human reporter cell lines (HELN-rtER, MELN) and 16 

vitellogenin induction in primary cultures of rainbow trout hepatocytes, showed an overall higher 17 

sensitivity of the human cells for a majority of ligands, except for benzophenone derivatives 18 

which were active at similar or lower concentrations in fish cells, suggesting species-specificity 19 

for these substances. Correlation analyses suggest that the fish cell line is closer to the trout 20 

hepatocyte than to the human cell context, and could serve as a relevant mechanistic tool to study 21 

ER activation in fish hepatic cellular context. 22 

 23 



2 

 

Introduction 24 

The widespread presence of endocrine disrupter compounds (EDCs) in the aquatic environment 25 

has become a very important issue of environmental concern over the past few decades, as these 26 

natural or man-made chemicals may cause adverse effects on wildlife (Sumpter, 2005). Given 27 

the complexity of the endocrine system as well as the diversity of chemicals and their modes of 28 

action, tiered approaches have been proposed for the screening (Tier 1) and testing (Tier 2) of 29 

EDCs (reviewed by Hotchkiss et al., 2008). Tier 1 includes both in vitro and short term in vivo 30 

assays. In this context, the evaluation of non mammalian in vitro screening assays has been 31 

clearly identified as an important need to be addressed in EDC testing strategies (Hotchkiss et 32 

al., 2008). However, compared to mammalian species, fewer non mammalian in vitro screening 33 

assays have been developed. The lack of species specific screening assay may represent an 34 

important gap in risk assessment of EDCs for aquatic organisms, and for fish in particular, since 35 

cross-species differences have been identified with regard to the molecular mode of hormone 36 

action (i.e. receptor binding affinities) or xenobiotic metabolism (Matthews et al., 2000; Wilson 37 

et al., 2007; Hotchkiss et al., 2008).  38 

One important mechanism in EDC action is mediated by the modulation of estrogen receptor 39 

(ER) activation. Different assays exist to assess estrogenic activity of chemicals in fish. Among 40 

them, the most widely used is based on vitellogenin (VTG) induction in isolated fish hepatocytes 41 

(e.g. Pelissero et al., 1993, Smeet et al., 1999). Such in vitro assay is toxicologically relevant 42 

because it measures natural gene response in cultured cells derived from a main target organ of 43 

EDC (i.e. liver) and because it retains metabolic properties close to the in vivo situation. 44 

However, it has also some limitations for screening purpose since it is relatively time-consuming 45 

and may be the subject of inter-assay variability (reviewed by Navas and Segner, 2006). On the 46 
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other hand, the use of receptor mediated expression of stable reporter gene system using 47 

established cell lines serves as rapid, reproducible and specific assay. However to our 48 

knowledge, only few stable reporter gene assays using fish cell lines have been described 49 

(Ackermann et al., 2002), and none in hepatic cell context.  50 

In this study, we describe the development of a new stable reporter gene assay for the assessment 51 

of ER activation by chemicals in fish cellular context, by using the PLHC-1 hepatoma fish cell 52 

line (Ryan and Hightower, 1994). In this model, kinetics of luciferase transactivation by estradiol 53 

as function of exposure duration and temperature were determined, as well as its activation by 54 

various ER ligands representative of different chemical classes. Finally, the comparison of this 55 

new in vitro model with other well established assays for estrogenicity assessment, namely VTG 56 

induction in isolated rainbow trout hepatocytes and human reporter cell lines derived from HeLa 57 

(HELN-rtER) and MCF-7 (MELN) cells, highlighted some response specificity, possibly linked 58 

to the fish receptor and/or fish cell context. 59 

Materials and methods 60 

Chemicals, materials and reagents 61 

17β-estradiol (E2, CAS#50-28-2), 17α-Ethinylestradiol (EE2, CAS#57-63-6), Estrone (E1, 62 

CAS#53-16-7), Estriol (E3, CAS#50-27-1), 2,4-dihydroxybenzophenone (BP1, CAS#131-56-6), 63 

2,2’,4,4’-tetrahydroxybenzophenone (BP2, CAS#131-55-5), 2-hydroxy-4-methoxybenzophenone 64 

(BP3, CAS#131-57-7), 2,4,4’-trihydroxybenzophenone (THB, CAS#1470-79-7), 65 

diethylstilbestrol (DES, CAS#56-53-1), Hexestrol (Hex, CAS#84-16-2), genistein (Gen, 66 

CAS#446-72-0), 4-tert-octylphenol (4OP, CAS#140-66-9), 4-nonylphenol (4NP, CAS#54181-67 

64-5), bisphenol A (BPA, CAS#80-05-7), α-zearalenol (α-ZEE, CAS#36455-72-8), -zearalenol 68 

( -ZEE, CAS#71030-11-0) and α-zearalanol (α-ZEA, CAS#26538-44-3) were purchased from 69 
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Sigma-Aldrich (France). All compounds were of purity higher than 98 %.  Stock solutions of 70 

chemicals were prepared in dimethyl sulfoxide (DMSO) at 10 mM and stored at –20°C. Fresh 71 

dilutions of test chemicals were prepared before each experiment. Culture medium and additives 72 

were purchased from Gibco (France), fetal calf serum (FCS) and D-luciferin from Sigma-Aldrich 73 

(Quentin Fallavier, France). Cell culture plastics were obtained from BD Bioscience (France), 74 

except 96-well plates which were purchased from Greiner (France).  75 

Plasmids 76 

The construction of ERE- Glob-Luc-SVNeo and pSG5-rtERS-puro plasmids that encode 77 

respectively for the luciferase reporter gene and the rainbow trout estrogen receptor short form 78 

(rtER ), has been described previously by Balaguer et al. (1999) and Molina-Molina et al. 79 

(2008), respectively.  80 

PLHC-1 cell line : culture conditions and stable transfection 81 

The PLHC-1 cell line, obtained from the American Type Culture Collection (ATCC CRL 2406), 82 

is derived from the hepatocellular carcinoma of the topminnow Poeciliopsis lucida (Ryan and 83 

Hightower, 1994). PLHC-1 cells were routinely cultured at 30°C in minimum essential medium 84 

with Earle’s salts (E-MEM) supplemented with 10% v/v decomplemented fetal calf serum 85 

(FCS), 1% v/v non-essential amino acids, 1% v/v of sodium pyruvate, 50 U/ml of penicillin and 86 

streptomycin antibiotics in a 5% CO2 humidified atmosphere. For stable transfection 87 

experiments, PLHC-1 cells were plated onto 100 mm diameter Petri dishes in complete E-MEM 88 

without antibiotics. Twenty four hours after plating, confluent cells were co-transfected with the 89 

two plasmids described above by using the Lipofectamine 2000
TM

 reagent (Gibco, France), 90 

according to the manufacturer’s instructions. After three hours, transfection reagent was removed 91 

and cells were allowed to recover for 24 hours before addition of 3 mg/ml G418 and 0.5 µg/ml 92 
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puromycin as selecting agents. Medium was renewed every two days during one month before 93 

first clones were isolated and amplified. Only few resistant clones (about forty clones in three 94 

transfection dishes) were developed on the plates after one month of selection treatment with 95 

antibiotics. Nevertheless twenty clones could be isolated and tested for luciferase induction by 96 

E2. Among them, the clone 1.1 showed the highest induction of luciferase activity by E2. This 97 

clone was chosen for further experiments and called PELN-rtER for PLHC-1 ERE-Luciferase 98 

Neomycin-rtER. 99 

Luciferase induction assay 100 

PELN-rtER cells were seeded on 96 well plates (50 000 cells per well) in phenol red free 101 

medium supplemented with 3 % dextran-coated charcoal treated FCS to remove serum steroids 102 

(DCC medium) and left to incubate for 24 h before chemical exposure. This medium was used to 103 

avoid interference due to estrogenic activity of phenol red and serum steroids in the assay. 104 

Solvent (DMSO) content did not exceed 0.1 % v/v in the culture medium. Cells were exposed to 105 

test chemicals for 48 hours at 25°C. Luciferase activity was then determined in living cells as 106 

follows. The culture medium was removed and replaced by 50 µl of D-luciferin 0.3 mM in DCC 107 

medium. After 5 min allowing a stabilisation of the luminescent signal, luminescence counts 108 

were determined in a microplate luminometer (µBeta, Wallac). Results were expressed as 109 

percentage of maximal luciferase induced by E2, the reference ligand. 110 

Vitellogenin assay in primary culture of rainbow trout hepatocytes (PRTH) 111 

Adult male rainbow trout (Onchorynchus mykiss) were obtained from a local hatchery (INRA, 112 

Gournay-sur-Aronde, France). Fish were kept in tanks with aerated charcoal filtered tap-water at 113 

a temperature of 15 °C. Rainbow trout were fed with commercial fish food and acclimatized to 114 

laboratory conditions for a minimum of 2 weeks before use in the experiments. Hepatocytes 115 
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were isolated as previously described (Laville et al., 2004) and seeded in 96 well Primaria
TM

 116 

microplates at a density of 5×10
5
 cells per well and cultured at 15 °C in phenol red free 117 

Leibovitz-15 medium (L-15) supplemented with 5% DCC serum, penicillin and streptomycin (50 118 

U/mL each) and 10 mM HEPES. Cells were left to incubate for 24 h before exposure to 119 

chemicals for 96 hours. Solvent content (DMSO) did not exceed 0.1 % v/v in the culture medium 120 

and half of the medium was renewed after two days with fresh medium containing the test 121 

chemical at the desired concentration. VTG quantification in extracellular culture medium was 122 

performed using a competitive enzyme-linked immunosorbent assay (ELISA) according to the 123 

method of Brion et al. (2002), using the AA-1 anti-salmon vitellogenin polyclonal antibodies 124 

(Biosense, Norway) and home-made standard VTG purified from E2-induced male rainbow trout 125 

(Brion et al., 2002). 126 

Data analysis  127 

A range of concentrations of chemical (0.01 nM to 1 µM for estrogens and zearalenone 128 

metabolites and 1 nM to 10 µM for the other chemicals) were tested in triplicate in each 129 

independent experiment. Data were expressed as mean value of relative luminescence units 130 

(RLU) ± standard deviation (SD). Dose–response curves were modeled by using the Regtox 7.5 131 

Microsoft Excel™ macro (available at http://eric.vindimian.9online.fr/), which uses the Hill 132 

equation model and allows calculation of EC50. Relative estrogenic potencies (REP) were 133 

determined as the ratio of 17 -estradiol EC50 to EC50 of the test chemical. 134 

Results 135 

Influence of temperature and exposure duration on luciferase induction by 17 -E2 136 

The stable PELN reporter cell line was first examined for its ability to respond to the reference 137 

ER ligand E2 under different assay conditions. Since the functionality of rtERα has been shown 138 
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to be sensitive to temperature (Matthews et al., 2002), we first tested effect of E2 at different 139 

temperatures. As seen in Fig. 1a, the EC50 value of E2 was slightly lower at 22 and 25 °C (5 nM) 140 

than that observed at 30°C (7 nM) or 37°C (12 nM). In terms of fold induction, the luciferase 141 

signal was also affected by the temperature as luciferase appeared to be less inducible at 22°C, 142 

and to a lesser extent at 25°C, than at higher temperatures. Hence, by considering both the 143 

affinity of E2 to the rtER  and fold induction of luciferase, we chose to perform assays at 25°C 144 

in our experiments. Induction of luciferase was also dependent on exposure duration (Fig. 1b). In 145 

our experiments, we thus determined that a 48 h exposure was appropriate to detect maximal 146 

luciferase induction without affecting the EC50 of E2. 147 

Ability of different ER ligands to induce luciferase mediated by rtER  in PELN-rtER cells 148 

The figure 2 presents the ability of known ER ligands from different chemicals classes to induce 149 

luciferase in PELN-rtER cells. Overall, all examined compounds were able to induce luciferase 150 

with various transactivation profiles, in terms of both EC50 values (Table 1) and maximum 151 

luciferase response achieved at the highest dose examined (Fig. 2). The natural steroid estrogens 152 

E1 and E3 (Fig. 2a), as wells as the synthetic estrogen EE2 (Fig. 2b) behave as total agonists as 153 

they elicited maximal transactivation relative to E2. By contrast, partial transactivation curves 154 

were observed with the mycoestrogen α-ZEA, the phytoestrogen genistein (Fig. 2a) and the 155 

pharmaceuticals DES and hexestrol (Fig. 2b), as maximum transactivation was 60-70 %. 156 

The industrial chemicals presented also different profiles in their potency and efficacy. The 157 

alkylphenols 4-OP and 4-NP (Fig. 2c) were weakly estrogenic in this system, as 45 % of 158 

transactivation was achieved at the highest tested concentration (10 µM). Bisphenol A behaved 159 

as a partial ER agonist. It significantly induced luciferase at a relatively low concentration (0.3 160 

µM) but this induction was limited as it reached a maximum response of 35 % relative to E2. 161 
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Interestingly, among the different xeno-estrogens tested, benzophenone derivatives most 162 

efficiently induced luciferase in PELN-rtER cells (Fig. 2d), especially BP2 and THB that 163 

behaved as total agonists for the rtER , while BP1 induced partial activation of luciferase at 10 164 

µM and BP3 was found to be non active. 165 

VTG induction by ER ligands in isolated trout hepatocytes 166 

In order to compare our results with PELN-rtER with a well recognised in vitro fish system in 167 

our laboratory conditions, some chemicals were tested for their ability to induced vitellogenin in 168 

isolated rainbow trout hepatocytes (PRTH). As expected, the results summarised in Table 1 169 

indicate that all tested compounds induced Vtg in a dose-response manner allowing EC50 170 

determination and were ranked: EE2<E2< -ZEA<DES<Hexestrol<Genistein<BP2<4-171 

OP<THB<BP1. 172 

Discussion  173 

The stable fish reporter system (PELN-rtER) responded to a diversity of estrogenic compounds 174 

with different transactivation potency and efficacy (Fig. 2). In order to determine how this cell 175 

model compares with other established in vitro systems, the EC50 and relative estrogenic 176 

potencies (REP) were compared to values previously published using two other stable reporter 177 

gene systems, namely the HELN-rtER (for HeLa-ERE-Luc-Neo transfected with the rtER) 178 

(Pillon, 2005, Molina-Molina et al., 2008) and MELN (for MCF-7-ERE-Luc-Neo) cell lines 179 

(Balaguer et al., 1999, Pillon et al., 2005) (Table 1). These two models consist of human cell 180 

lines (HeLa and MCF-7 cells) that stably express the luciferase reporter gene under the control of 181 

the rtER and the human ER  (hER), respectively. In addition, the ability of chemicals to induce 182 

VTG synthesis in primary cultures of rainbow trout hepatocytes (PRTH) has been evaluated and 183 

is also reported in Table 1. Overall, the absolute sensitivity to E2 and a majority of the tested 184 
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compounds varied among the different assays, and were ranked: PRTH<PELN-rtER<HELN-185 

rtER<MELN. The relative estrogenic potency (REP) values allowed ranking of chemicals that 186 

was fairly similar in all assays. Nevertheless, Pearson’s correlation analyses showed that the fish 187 

cell line was better correlated to HELN-rtER (r
2
=0.91, n=9) and PRTH (r

2
=0.90, n=9) than to 188 

MELN (r
2
=0.80, n=9), suggesting a good adequacy between the different fish-based assays. 189 

The higher sensitivity of the human MELN assay can be partly attributed to the known lower 190 

binding affinity of E2 for the rtER than for the hER (LeDréan et al., 1995, Matthews et al., 2000, 191 

Molina-Molina et al., 2008), due to divergences in the amino acid sequences of the ligand 192 

binding domain of these receptors (Pakdel et al., 2000). However, this loss of sensitivity is not 193 

systematically found as certain xeno-estrogens, like polychlorobiphenyls (Matthews et al., 2000), 194 

some alkylphenols (Olsen et al., 2005) or zearalenone and its derivatives (Le Guevel and Pakdel, 195 

2001), have been shown to bind to and activate rtER at equal or lower concentrations than those 196 

required to active hER. 197 

In the present study, the most significant inter-assay difference concerns the estrogenic activity 198 

benzophenone (BP) derivatives, which were almost equipotent in PELN-rtER and HELN-rtER 199 

cells, and much less active in the human MELN cells. The good estrogenic potency of BPs 200 

towards rtER has been already reported in mammalian cell or yeast-based assays (Kunz et al., 201 

2006, Molina-Molina et al., 2008). Here, we report that in a fish cell line, these compounds still 202 

have a high estrogenic potency that is in the same order as that of natural ER ligands such as 203 

estriol (Table 1). Our results strengthen the recent view that such emerging aquatic pollutants 204 

present significant hazard to fish (Kunz et al., 2006) and present further evidence to support the 205 

use of appropriate species-related assays to investigate hormonal activity. 206 
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In addition, the different metabolic capacities of the cells may also have some influence on the 207 

sensitivity of the assays to detect estrogenic activity (Olsen et al., 2005, Bursztyka et al., 2008).  208 

HELN-rtER cells are derived from HeLa cells, which are poorly metabolically competent as 209 

compared to PLHC-1 cells. The latter have retained significant metabolic capacities including 210 

phase I and II biotransformation and efflux transporter proteins (Zaja et al., 2007), which may 211 

contribute to reduce the intracellular availability of chemicals for the receptors. In trout 212 

hepatocytes, which maintain substantial metabolic capacities in culture, the different tested 213 

chemicals were generally active at significantly higher concentrations than in cell lines, although 214 

the use of different endpoints (i.e. luciferase activation versus VTG detection) likely influenced 215 

the sensitivity of the response. Nevertheless, the observation that EC50 values in PELN-rtER 216 

were generally closer to PRTH than to HELN-rtER, could reflect, at least in part, different 217 

metabolic capacities in the assays and again a good agreement between the two fish cell models. 218 

In summary, the establishment of a reporter cell line that stably expresses rtER-mediated 219 

luciferase within a fish hepatoma-derived cell context is reported for the first time. It is proposed 220 

that such tool is useful to identify species-specific responses, as shown with benzophenone 221 

derivatives. However, the lower sensitivity of the response to a majority of chemicals than in 222 

similar human-derived reporter cell lines could lead one to conclude that these cells have 223 

limitations for a chemical screening purpose since false negative may occur when assessing 224 

weak estrogenic compounds. Nevertheless, correlation with the well-recognised vitellogenin 225 

assay in PRTH cells supports the use of PELN-rtER cells to investigate estrogenicity in fish 226 

hepatic cell context. Furthermore, the metabolic capacities and in particular the high expression 227 

of functional aryl hydrocarbon receptor (AhR) in PLHC-1 cells make the PELN-rtER cell line a 228 
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relevant mechanistic tool to study ER/AhR interaction on receptor transactivation by 229 

environmental chemicals in a fish cellular context (Aït-Aïssa et al., in preparation). 230 
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Figure legends 316 
 317 

 318 

Figure 1. (a) Influence of temperature on rtER transactivation (expressed as percentage of 319 

maximal luciferase induction) by 17β-estradiol (E2) in PELN-rtER cells after 24 h of 320 

exposure. (b) Kinetics of luciferase induction (expressed as relative luminescence units or 321 

RLU) by 17β-estradiol in PELN-rtER cells at 25°C. Values are means ± SD of triplicates. 322 

 323 

Figure 2. Typical dose response curves of luciferase induction (expressed as percentage of 324 

luciferase induction by E2 1 µM) in PELN-rtER by (A) natural (xeno)estrogens: 17 -325 

estradiol (E2), estrone (E1), estriol (E3), -zearalanol ( -ZEA), genistein (Gen), (B) 326 

pharmaceutical compounds: diethylstilbestrol (DES), hexestrol (Hex), 17 -327 

ethynylestradiol (EE2), (C) alkylphenols: 4-nonylphenol (4-NP), 4-t-octylphenol (4-OP), 328 

bisphenol A (BPA) and (D) benzophenone derivates: 2,4-dihydroxybenzophenone 329 

(benzophenone 1 or BP1), 2,2’,4,4’-tetrahydroxybenzophenone (benzophenone 2 or 330 

BP2), 2-hydroxy-4-methoxybenzophenone (benzophenone 3 or BP3), 2,4,4’-331 

trihydroxybenzophenone (THB). Cells were exposed for 48 hours at 25°C; values are 332 

means ± SD of triplicates. 333 

 334 
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Table 1: Effective concentrations (EC50) and relative estrogenic potencies (REP) of various ER ligands in fish (PELN-rtER, PRTH) and human 

(HELN-rtER, MELN) cell-based in vitro assays. 
a: Except for benzophenone derivatives, HELN-rtER and MELN data were taken from Pillon (2005) and Pillon et al. (2005), respectively. Effect of 

benzophenone derivatives in MELN, HELN-rtER and PRTH were from Molina-Molina et al. (2008); b: PRTH data were obtained as described in the 

Materials and Method section. 

n.d.: not determined ; n.a.: not active ; -: not applicable; n: number of independent experiments; SEM: standard error of the mean. 

  

 

PELN-rtER 

(fish PLHC-1 cells,  

rainbow trout receptor) 

 HELN-rtER
a 

(human HeLa cells,  

rainbow trout receptor) 

 MELN
a 

(human MCF-7 cells, 

endogenous receptor) 

 PRTH
b 

(isolated rainbow 

trout hepatocytes, 

endogenous receptor) 

Chemicals EC50 (nM) SEM n REP  EC50 (nM) REP  EC50 (nM) REP  EC50 (nM) REP 

17 -estradiol (E2) 5.5 1.5 9 1  0.25 1  0.018 1  22 1 

Estrone (E1) 130 25 3 0.04  12 0.02  0.69 0.03  n.d. - 

Estriol (E3) 176 58 3 0.03  7.8 0.03  0.10 0.18  n.d. - 

17 -ethynylestradiol (EE2) 3.6 0.4 3 1.54  0.18 1.39  0.01 2.56  12 1.94 

Hexestrol (Hex) 11 5 5 0.50  0.2 1.25  n.d. -  206 0.11 

Diethylstilbestrol (DES) 23 10 5 0.24  0.8 0.31  0.18 0.10  130 0.18 

-zearalanol ( -ZEA) 26 14 5 0.22  0.12 2.08  0.14 0.13  41 0.56 

- zearalenol ( -ZEE) 47 - 2 0.12  0.25 1.0  n.d. -  n.d. - 

- zearalenol ( -ZEA) 504 - 2 0.011  2.5 0.1  n.d. -  n.d. - 

Genistein (Gen) 498 - 1 0.010  220 1.1E-03  27 6.7E-04  1702 0.013 

Bisphenol A (BPA) 352 83 3 0.016  400 6.3E-04  96 1.9E-04  n.d. - 

4-octylphenol (4-OP) 1938 - 2 2.9E-03  300 8.3E-04  54 3.3E-04  36271 6.3E-04 

4-nonylphenol (4-NP) 23028 - 1 2.4E-04  600 4.2E-04  339 5.3E-05  n.d. - 

Benzophenone 1 (BP1) 3507 2515 3 1.6E-03  3477 7.2E-05  9192 1.9E-06  100000 2.3E-04 

Benzophenone 2 (BP2) 384 142 4 0.014  161 1.6E-03  3284 5.5E-06  30000 7.6E-04 

Benzophenone 3 (BP3) n.a. - 3 -  18426 1.4E-05  20315 8.8E-07  n.d. - 

Trihydroxybenzophenone 

(THB) 

620 460 3 0.009  578 4.3E-04  4012 4.5E-06  60000 3.8E-04 
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