Agglomeration-based algebraic multigrid for linear systems coming from edge-element discretizations
François Musy, Laurent Nicolas, Ronan Perrussel

To cite this version:

HAL Id: hal-00412339
https://hal.archives-ouvertes.fr/hal-00412339
Submitted on 1 Sep 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Agglomeration-based algebraic multigrid for linear systems coming from edge-element discretizations

François Musy¹, Laurent Nicolas² and Ronan Perrusset²
¹ Institut Camille Jordan, CNRS UMR5208; ² Laboratoire Ampère, CNRS UMR5005
Université de Lyon, École Centrale de Lyon, 69134 Écully cedex, France
e-mails: firstname.name@ec-lyon.fr

Abstract—An algebraic multigrid algorithm based on element agglomeration is proposed for linear systems coming from edge-element discretizations. The edge prolongation operator satisfies commutativity and energy-minimization properties. Robustness is illustrated on 2D numerical examples.

Multigrid methods are beyond the most performing linear system solvers and these solvers are a key point in finite element method libraries. Here, we focus on the discretization on a triangular mesh with the lowest order edge element of

\[ \text{curl} \delta \text{curl} \mathbf{U} + \gamma \mathbf{U} = \mathbf{f} \quad \text{on} \quad \Omega \subset \mathbb{R}^2, \]

which gives rise to a linear problem \( Ax = f \). As solver, we propose an Algebraic MultiGrid (AMG) algorithm which keeps a good efficiency with non-smooth functions \( \delta \) and \( \gamma \) and with unstructured triangulations. The coarsening process is based on element agglomeration. A low-energy edge prolongator satisfying a commutativity property [1] is obtained from the solution of local linear systems. Numerical examples demonstrate the robustness of our method.

I. COMPONENTS OF THE ALGORITHM

A. Levels

Starting from an initial fine grid partitioned into triangles, we build a hierarchy of generalized meshes \( \mathcal{T}^h = (\mathcal{D}^h, \mathcal{A}^h, \mathcal{S}^h) \). \( \mathcal{D}^h = \{ D_i^h \}_{i \in I_{D^h}} \) is a family of open polygons we call elements. On the finest mesh they are the original triangles. \( \mathcal{A}^h = \{ A_i^h \}_{i \in I_{A^h}} \) is a family of open one-dimensional manifolds we call edges. \( \mathcal{S}^h = \{ S_i^h \}_{i \in I_{S^h}} \) is a family of single points we call vertices. The coarsening procedure which builds a generalized mesh \( \mathcal{T}^H = (\mathcal{D}^H, \mathcal{A}^H, \mathcal{S}^H) \) from a generalized mesh \( \mathcal{T}^h = (\mathcal{D}^h, \mathcal{A}^h, \mathcal{S}^h) \) must satisfy constraints defined in [2], [3]. Moreover, any edge in family \( \mathcal{A}^H \) is a connected path of edges belonging to \( \mathcal{A}^h \) and has two different endpoints which are vertices in \( \mathcal{S}^H \) (Fig. 1). From the family of generalized mesh \( \mathcal{T}^h = (\mathcal{D}^h, \mathcal{A}^h, \mathcal{S}^h) \), we define a family of oriented simple graphs. For each vertex \( S_p^h \) of \( \mathcal{A}^h \) a node \( p \) is created and 2 separate nodes \( q, p \) are connected by an arc each time an edge of \( \mathcal{A}^h \) has \( S_p^h \) and \( S_q^h \) as endpoints. An arc starts from a node \( p \) to a node \( q \) if \( p < q \). The arc-node incidence matrices denoted \( G^h \) can be viewed as discrete gradient operators on the meshes.

B. Prolongation operator properties

For each couple of generalized meshes \( (\mathcal{T}^h, \mathcal{T}^H) \), \( \mathcal{T}^H \) being obtained from \( \mathcal{T}^h \) by a coarsening procedure, we give us a nodal prolongator \( P_{\text{nod}} \) with a prescribed non-zero pattern and with all row sums equal to 1. We build then an edge prolongator \( P_{\text{edg}} \) with a prescribed non-zero pattern and with low-energy columns \( (P_{\text{edg}})^e \), \( e \in I_{A^h} \). It must also satisfy a node-edge commutativity property [1]: \( P_{\text{edg}}G^H = G^h P_{\text{nod}} \). The energy function on a mesh \( \mathcal{T}^h \) is defined by

\[ g(x^e, e \in I_{A^h}) = \sum_{e \in I_{A^h}} \| x^e \|^2_{K^h} = \sum_{e \in I_{A^h}} (x^e)^t K^h x^e \]

where \( K^h \) is a sparse symmetric definite positive matrix. For its non-zero pattern we require that \( K^h_{n,n} = 0 \) if both edges \( A^h_n \) and \( A^h_n \) do not belong to the interior of the closure of the same element. Such a property is satisfied on the finest mesh by the finite element matrix \( A \).

To define the non-zero pattern of the nodal prolongator \( P_{\text{nod}} \) and the edge prolongator \( P_{\text{edg}} \) we mimic the situation in geometric multigrid on nested meshes:

- If \( S_p^h \) belongs to the interior of the closure of an element of \( \mathcal{D}^H \), then \( P_{\text{nod}}^{p,n} = 0 \) if \( S_p^h \) does not belong to its boundary.
- If \( S_p^h \) is an endpoint of an edge of \( \mathcal{A}^h \) included in edge \( A^H \) of \( \mathcal{A}^H \) with endpoints \( S_{n_k}^h, p, p \), \( k = 1, 2 \) if \( S_p^h = S_{n_k}^h, P_{p,n} = 0, \forall n \neq n_k \), else \( P_{p,n} = 0, \forall n \neq n_1, n_2 \).
- If edge \( A^h_0 \) of \( \mathcal{A}^h \) is included in edge \( A^H \) of \( \mathcal{A}^H \), then \( P_{e,e'} = 0, \forall e' \neq e \) (Fig. 2(a)).
- If edge \( A^h_0 \) of \( \mathcal{A}^h \) is included in the interior of the closure of an element of \( \mathcal{A}^H \), then \( P_{e,e'} = 0 \) if \( A^H_0 \) is not included in its boundary (Fig. 2(b)).

C. Solution of the constrained minimization problem

An element \( D_i^h \) of \( \mathcal{D}^h \) being fixed, we denote by \( \{ A_i^h \}_{i \in I_{\text{int}}} \) (resp. \( \{ A_i^h \}_{i \in I_{\text{bound}}} \)) the family of edges of \( \mathcal{A}^h \) included in the interior of its closure \( D_i^h \) (resp. included in

Fig. 1. Example of a coarse mesh \( \mathcal{T}^H \) builds from the finest mesh \( \mathcal{T}^h \).
2. A coarse element $D_h^H$. Coarse edges are in wide lines ($m = 3$). Coarse vertices are large bullets. Arrows indicate prolongation.

its boundary), $A_{e_1}^H, A_{e_2}^H, \ldots, A_{e_m}^H$ the path of the edges of $A^H$ included in its boundary. This path defines on the coarse graph an elementary cycle of nodes denoted $n_1, n_2, \ldots, n_m, n_1$.

Let $A_i^h$ of $A^h$ with starting point $p$ and ending point $q$. Two different cases have to be considered:

1. If $i \in I_{\text{bound}}$, then $A_i^h$ is included in an edge $A^H$ of $A^H$ (Fig. 2(a)). The non-zero entries of row $i$ of $P^\text{edg}$ are settled by the commutativity property since it writes

$$ P^\text{edg}_{i,e} = P^*_{i,e} \text{ with } P^*_{i,e} = P^\text{mod}_{p,n} - P^\text{mod}_{q,n} \quad (3) $$

and $S_i^h$ the starting endpoint of $A_i^h$.

2. If $i \in I_{\text{int}}$ (Fig. 2(b)) the commutativity property writes

$$ \epsilon_n(e_{k-1}) P^\text{edg}_{i,e_{k-1}} + \epsilon_n(e_k) P^\text{edg}_{i,e_k} = P^\text{mod}_{p,n_k} - P^\text{mod}_{q,n_k}, \forall k \in [2; m]; \quad (4) $$

where $\epsilon_n(e)$ denotes 1 (resp. -1) if $n_k$ is the starting point (resp. ending point) of the arc $e$.

We deduce that the non-zero entries of row $i$ of $P^\text{edg}$ are defined up to a constant $\theta_i$ as follows:

$$ P^\text{edg}_{i,e_k} = \epsilon_n(e_k) P^*_{i,e_k} + \theta_i \epsilon_n(e_k) \quad (5) $$

It can be proved that the prolongator with the lowest energy is obtained with the values $\theta_i$, $i \in I_{\text{int}}$ solution to a local linear system:

$$ K^{h,b} \theta = K^{DD^H}_b, $$

where $K^{DD^H}$ (resp. $K^{DD^H}_b$) is the matrix obtained from the matrix $K^h$ by keeping the entries $K_{i,j}$, $i, j \in I_{\text{int}}$ (resp. $K_{i,j}$, $i \in I_{\text{int}} \cup I_{\text{bound}}$). $b$ is given by:

$$ b_i = -\frac{1}{m} \sum_{k=1}^m \epsilon_n(e_k) P^*_{i,e_k}, \ i \in I_{\text{int}} \cup I_{\text{bound}}. $$

II. NUMERICAL RESULTS

The robustness of the method with parameters $\delta$ and $\gamma$ is illustrated using examples of [4]. The domain is simply a unit square and Dirichlet boundary conditions are enforced.

In our strategy (Aggl. in the tables), coarse elements are obtained by double-pairwise agglomeration of elements. The results obtained by our method are compared with the Reitzinger and Schöberl (RS in the tables) strategy [1]. The comparison is based on the convergence rate $\sigma$ in energy norm: $\sigma = (\epsilon r / A e / e / A e / k / f / k / f / i)$ with $\epsilon r / A e$ the error at the $k$-th iteration and $k / f / i$ the iteration where the stopping criterion is reached. The smoother is a symmetric version of this proposed in [5] in a geometric multigrid context (pre-, post-) smoothing steps in the tables.

For the homogeneous case in Table I, the two-grid convergence rate is quasi-independent of the size of the problem for both methods but the convergence rate of our method is better than for RS method and should lead to an optimal multigrid strategy. Moreover, increasing the number of pre- and post-smoothing steps significantly improves the convergence rate for the agglomeration. This behavior is confirmed in Table II and Table III for oscillating and discontinuous $\delta$ coefficients and two-grid and multigrid solver respectively. For this example, $f = C(2 + \sin(40 \pi x))(2 + \cos(40 \pi y))^2$ with $C = 10$ in $[0, 0.5] \times [0, 0.5]$.

**REFERENCES**


