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Abstract

We establish direct isomorphisms between different versions of

tiling cohomology. The first version is the direct limit of the coho-

mologies of the approximants in the Anderson-Putnam-Gähler system,

the second is the recently introduced PV-cohomology of Savinien and

Bellissard and the third is pattern equivariant cohomology. For the

last two versions one can define weak cohomology groups. We show

that the isomorphisms extend to the weak versions. This leads to

an alternative formulation of the pattern equivariant mixed quotient

group which describes deformations of the tiling modulo topological

conjugacy.

1 Introduction.

There exist various isomorphic pictures of what one now calls tiling coho-
mology. Originally it was defined as the groupoid cohomology of the tiling
groupoid [8] or as the Čech cohomology of the tiling space (the hull) [1]. If
the tiling space can be seen as an inverse limit of finite simplicial (or cellular)
complexes. the cohomology of the tiling space is a direct limit of simplicial
(or cellular) cohomology groups [1], [5, 16]. An intuitively simpler version was
later proposed using the concept of pattern equivariant exterior forms [9, 10]
and then modified using pattern equivariant simplicial (or cellular) cochains
[17]. Finally, a recent version making full use of the simplicial structure de-
fined by the tiling goes under the name of PV-cohomology [18]. Each version
has his own advantages and disadvantages. Computationally the groupoid
cohomology approach was most successful for cut & and project patterns [4]
and the direct limit approach for substitution tilings [1]. The newer versions
led conceptionally to new insight, especially the pattern equivariant de Rham
cohomology. The latter comes about as it naturally offers different choices
of cohomology groups based on the distinction between algebraic modules
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and their topological closure. The original tiling cohomology is isomorphic to
strongly pattern equivariant cohomology, the algebraic version. The topolog-
ically closed version is the so-called weakly pattern equivariant cohomology,
and this one is isomorphic to the tangential cohomology of the hull (seen as a
lamination) [10]. It has been shown that the theory of deformations of tilings
is related to the mixed group of strongly pattern equivariant cochains modulo
weakly pattern equivariant coboundaries [11]. It is therefore of quite some
interest to determine the latter. However, apart from substitution tilings [3],
we have at present no general method to offer to compute this mixed group.

The present article sheds new light on the different versions of pattern
equivariant cohomology in that it provides analogues of the weak and the
mixed version in the framework of PV-cohomology. To obtain these we
provide explicit descriptions of the isomorphisms between the various co-
homology groups. We establish in particular an explicit formula for the
isomorphism between pattern equivariant de Rham cohomology and PV-
cohomology and show that it carries the right continuity properties for it to
extend from the algebraic to the topological closed versions of the cohomol-
ogy groups.

2 Preliminaries.

In this section we provide some known background material on tilings. In
particular we recall the definitions of the following versions of tiling coho-
mology:

1. as direct limit of the simplicial cohomologies of the Anderson-Putnam-
Gähler complexes [1, 5, 16] (we refer to that simply as DL-cohomology),

2. as PV cohomology [18],

3. as PE de Rham cohomology [9, 10],

4. as PE simplicial cohomology [17].

We also recall or introduce weak versions of PV and PE cohomology. PE
stands for pattern equivariant, s-PE for strongly and w-PE for weakly pattern
equivariant.

2.1 Tilings and tilings spaces

A tiling of the euclidean space Rd is a covering of the space by closed topolog-
ical disks (its tiles) which overlap at most on their boundaries. We consider
here simplicial tilings of (translational) finite local complexity. This means
that the tiles are simplices of R

d which touch face to face and that there
are only finitely many simplices up to translation; we present more details
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in Section 2.1.1. In the context of tilings of finite local complexity the re-
striction to simplicial tilings is topologically not a restriction, since there are
ways to associate to any tiling of finite local complexity a simplicial tiling
which carries the same topological information.

The tiling space or hull of a tiling P is

ΩP := {tx(P)|x ∈ Rd}
D
,

the completion of the translation orbit of P w.r.t the metric given by

D(P1,P2) = inf
r>0

{
1

r + 1
|∃x, y ∈ B 1

r
(0) : Br[t

x(P1)] = Br[t
y(P2)]}

where P1 and P2 are tilings of Rd. Here t
x denotes the translation action

t
x(Q) = Q − x where Q is a point or a geometric object and we use the

notation Br[P] = Br[P
′] to indicate that the tiling P and P ′ coincide1 on

the r-ball around 0.
Tiling spaces can be obtained as inverse limits of simpler spaces. Such a

construction was given for substitution tilings by [1] and then later general-
ized to all tilings of finite local complexity in [5, 16] and a somewhat similar
construction given in [2]. We present the details of the construction using
k-neighborhoods.

Let P be a tiling of Rd and t be the tile (or the patch) of P. The first
corona of t is the set of its nearest neighbors, the second corona of t is the
set of the second nearest neighbors, and so on out to the kth corona. The k-
neighborhood of a tile is the collection of its jth coronae for j ≤ k. Consider
two tiles t1, t2 in P, we say that t1 is equivalent to t2, if t1 is translationally
congruent to t2, the equivalence class is called prototile. The condition of
finite local complexity implies that there are finitely many prototiles. A k-
collared tile is a tile labelled with its k-neighborhood. The labelling of the
tile does not change the set covered by the tile, which we call its support,
but it is only a decoration of it. A k-collared prototile is the translational
congruence class of the k-collared tile. Again, finite local complexity implies
that the number of k-collared prototiles is finite. Let f1 and f2 to be faces
of two k-collared prototiles t̃1 and t̃2. We say f1 is equivalent to f2 if t̃1 has
a representative t1 and t̃2 has a representative t2 in P such that the edges
corresponding to f1 and f2 coincide. The disjoint union of the supports of
the k-collared prototiles quotiened out by this equivalence relation on the
faces is the set Γk. Equipped with the quotient topology we consider it as
a topological space. It inherits the structure of a complex from P and is
therefore called an Anderson-Putnam-Gähler complex.

Let ρk+1k : Γk+1 −→ Γk the map which associates to a point of a
k + 1-collared prototile the same point in the k-collared prototile obtained

1e.g. their sets of boundary points of their tiles coincides on the r-ball around 0
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by forgetting about the (k + 1)th corona in its label. The inverse system
(Γk, ρk k−1)k∈N is called the Anderson-Putnam-Gähler system. Its impor-
tance lies in the fundamental result that its inverse limit is homeomorphic
to the tiling space

ΩP ∼= lim
←−
k

Γk.

A point of Γk tells us how to place a patch corresponding to a k-collared tile
around the origin of R

d. By definition of the inverse limit the surjections
ρk k−1 induce a continuous surjection

ρk : ΩP −→ Γk (2.1)

which can be described as follows. Consider the tile of ω ∈ ΩP together with
its k-neighborhood which lies on the origin 0Rd . Taking congruence classes
w.r.t. translations, the point in the tile above corresponds to a point in a
k-collared prototile. ρk(ω) is this point viewed as a point in Γk. By the
definition of the equivalence for Γk, this is well defined also in the cases in
which a boundary point of a tile lies on the origin. Related to the above is
the surjection ρ̃k : Rd −→ Γk

ρ̃k(x) = ρk(t
x(P)). (2.2)

2.1.1 Simplicial tilings and ∆-complexes

For their definition of PV-cohomology Savinien and Bellissard consider
tilings whose tiles are finite ∆-complexes which are compatible in the sense
that the intersection of two tiles are sub-∆-complexes. Intuitively the reader
should simply have in mind a tiling whose tiles are simplices which meet face
to face and such that simplices can be pattern equivariantly oriented. We
call such tilings simplicial tilings.

In more technical tems, a ∆-complex structure (see [6]) on a topological
space X is a collection of continuous maps σ : ∆n → X, where

∆n = {(x1, x2, · · · , xn+1) ∈ R
n+1|

n+1∑

i=1

xi = 1, xi ≥ 0}

is the standard n-simplex in euclidean space. It is supposed that these maps
are injective on the interior of ∆n. They are referred to as the characteristic
maps and their images are the so-called cells (of dimension n) of X. It is
also supposed that each point of X lies in the interior of exactly one cell. ∆n

has n+ 1 faces of dimension n− 1, we write ∂i∆n for the face described by
coordinates (x1, x2, · · · , xn+1) for which xi = 0 and call it the ith face. We
write ∂iσ for the restriction of σ to ∂i∆n. It is also a characteristic map, but
for an n − 1 cell. When cells are next to each other, touching along lower
dimensional faces, or when characteristic functions are not injective on the

4



boundary but identify different faces, then the corresponding characteristic
maps of the lower dimensional faces are identified. The vertices of ∆n are
ordered, the ith vertex being the one having coordinate xi = 1, and this order
passes to the faces. It is assumed that the identification of characteristic
maps preserves the ordering of the vertices. They are further compatibility
conditions among the characteristic maps for which we refer to [6, 18]. We
will use the phrasing "the simplex σ of X" to refer to the characteristic map
or to the cell it defines in X.

A simplicial complex is special kind of ∆-complex. In [19] this notion is
used for ∆-complexes discribing subsets of euclidean spaces whose cells are
actually simplices, i.e. convex hulls of n + 1 vertices (in general position) if
n is their dimension.

Lemma 2.1. Any tiling of finite local complexity is mutually locally derivable
with a tilings whose tiles are the top-dimensional simplices of a simplicial
complex. Moreover, the simplicial structure is pattern equivariant in the
following sense. If t1 and t2 are tiles which differ by a translation, i.e.
t2 = t

x(t1) for some x, then the characteristic functions σ1 and σ2 of t1 and
t2, respectively, differ by the same translation, σ2 = t

x ◦ σ1.

Proof. It is well known that any tiling of finite local complexity is mutually
locally derivable with a tiling whose tiles are polyhedra and match face to
face. One may then subdivide the polyhedra into simplices in a mutually
locally derivable way to obtain a tiling whose tiles are simplices and match
face to face. The issue is now to order the vertices of the simplices in a
pattern equivariant way. This can be done as follows: By the finite local
complexity the exists a unit vector ν in R

d (the ambient space) such that
none of the edges of the tiles is perpendicular to ν. Then the order on the
vertices defined by v1 ≤ v2 provided 〈ν, v1〉 ≤ 〈ν, v2〉 is total and translation
invariant in the sense that the pair (v1 − x, v2 −x) (if it occurs in the tiling)
has the same order than (v1, v2). We may therefore define the characteristic
maps to be translation invariant in the same sense.

We call a tiling with this property a simplicial tiling. We denote by Pn

the n-skeleton of the simplicial complex it defines, that is, Pn is the union
of all faces of dimension smaller or equal to n. In particular Pd = R

d.
If X carries in addition the structure of a differentiable manifold and

we want to integrate n-forms over certain n-dimensional submanifolds it is
useful to use charts defined by the cells. For that purpose we shall not
only require the characteristic maps to be diffeomorphisms, but even that
they extend to diffeomorphisms from an open neighborhood of ∆n to an
open neighborhood of the corresponding cell; in the terminologie of [19] this
means that the simplicial complex defines a smooth triangulation of X. This
is clearly possible for the simplicial complex defined by a tiling in R

d.
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The tiling defines a ∆-complex for the topological spaces X = Γk. This
is obvious from the construction of Γk. In fact, if σ is a characteristic map of
a k-collared tile then σ̃ := ρ̃k◦σ is a characteristic map for the corresponding
k-collared prototile in Γk. By Lemma 2.1 this is independent of the choice
of representative for the prototile. Note that σ̃ is not necessarily injective.
We denote by Sn

k the set of characteristic maps of the n-simplices on Γk.
An n-chain on X is a formal linear combination of oriented simplices from

X, and we denote the set of n-chains by Cn(X). It is thus the free Z-module
generated by elements 〈σ〉. An n-cochain with coefficients in an abelian
group A is an element of the Z-module Cn(X,A) = HomZ(Cn(X), A). Let
a ∈ A. We denote by aσ the morphism defined by

aσ(〈τ〉) =

{
a if σ = τ
0 else

.

2.1.2 The ∆-transversal of a tiling

The canonical transversal or discrete hull of a tiling is defined with the help
of punctures for the tiles of the tiling [7]. In [18] punctures for the faces of
tiles are introduced as well so that one gets a complex defined by transversals
of different dimension.

A puncture of a face of a tile is a chosen point in the face, for instance its
barycenter. The pair given by the face and its puncture is called a punctured
face. All punctures are supposed to be chosen in such way that two faces
of tiles in the tiling which agree up to translation have their punctures at
the same relative position. Then the puncturing passes to the equivalence
classes so that the simplices of Γk are also punctured. We denote by Pn,punc

the set of punctures of all n-faces of P.

Definition 2.2. [18] The n-dimensional ∆-transversal is

Ξn = {P ′ ∈ ΩP |0 ∈ P ′
n,punc

}.

The disjoint union Ξ =
⋃̇d

n=0Ξ
n is called the ∆-transversal of the tiling P.

In [18] the notation Ξ∆ for the ∆-transversal was used instead which
distinguishes it from the usual notation for the canonical transversal, but we
see no danger of confusion here. The sets Ξn are totally disconnected and
compact subsets of ΩP . Their topology is generated by the following clopen
subsets, referred to as acceptance zones for faces of Γk.

Definition 2.3. The acceptance zone of an n-simplex σ of Γk is the subset
Ξ(σ) of Ξn given by

Ξ(σ) = ρ−1k (pσ)

where pσ is the puncture of σ. The surjections ρk are defined in (2.1).
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Remark 2.4. Recall that a d-simplex σ in Γk corresponds to (the congruence
class of) a tile tσ in P labelled with its k-neighborhood. In a similar fashion
a n-simplex σ in Γk corresponds to an n-dimensional face of a tile in P
together with its k-neighborhood. Then Ξ(σ) can be seen as the subset of
tilings which contain a patch corresponding to a k-collared face defined by σ
whose puncture lies on 0 ∈ Rd.

We denote the restriction of D to Ξ by D0. The family of clopen balls
{BD0(P, ε)}P∈Ξ, of radius ε around P, is a base of the topology of the space
(Ξ,D0). We denote Bn

D0
(P, ε) = BD0(P, ε) ∩ Ξn.

Lemma 2.5. The family of acceptance zones {Ξ(σ)}σ∈Γk ,0≤k≤d is a base for
the topology of the metric space (Ξ,D0).

Proof. Let σ be an n-simplex of Γk and T a tiling in Ξn(σ). Recall that
D0(T ,T

′) ≤ 1
R+1 means that T and T ′ agree on the ball BR(0) of R

d of
radius R around the origin. Choose R > 0 large enough such that BR(0)
covers the k-neighborhood of the face of T at the origin. Then D0(T ,T

′) ≤
1

R+1 implies that T ′ contains as well that face with its k-neighborhood and
hence belongs to the acceptance zone Ξ(σ). We thus have proved ∃R > 0:
T ∈ Bn

D0
(T , 1

R+1 ) ⊂ Ξ(σ).
Conversely, let T be a tiling of Ξn and R > 0. Choose k large enough so
that the k-neighborhood of the face f at the origin of T covers BR(0). Let
σf ∈ Γk be the n-simplex corresponding to this k-collared face. Then T ′ ∈
Ξ(σf ) implies that T and T ′ agree on BR(0) and hence D0(T ,T

′) ≤ 1
R+1 .

We thus have proved that there exists an acceptance zone Ξ(σf ) such that
T ∈ Ξ(σf ) ⊂ Bn

D0
(T , 1

R+1 ).

We denote by Clc(Ξ
n, A) the Z-module of A-valued locally constant func-

tions over the n-dimensional ∆-transversal. It constitutes the degree n part
of the complex defining PV cohomology which we will consider below.

It follows from Lemma 2.5 that any element of Clc(Ξn, A) is a finite sum
of elements aΞ(σ) where a ∈ A and

aΞ(σ)(ξ) =

{
a if ξ ∈ Ξ(σ)
0 else

.

2.2 Cohomology as a direct limit (DL-cohomology)

As mentioned in the introduction, one way to define the cohomology of a
tiling P is as Čech cohomology Ȟ(ΩP , A) of ΩP . Since ΩP is an inverse
limit of spaces (Γk)k∈N its Čech cohomology can be expressed as a direct
limit of groups

Ȟ(ΩP , A) = Ȟ(lim
←−
l

Γl, A) = lim
−→
l

Ȟ(Γl, A).
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The main advantage is that Ȟ(Γk, A), the Čech cohomology of Γk, is simple
to compute. As Γk is a finite ∆-complex its Čech cohomology is isomorphic
to its simplicial cohomology. Furthermore, the maps ρk k−1 preserve the ∆-
complex structure and so the maps they induce on simplicial cohomology can
easily be handled. In its original version this was the method to calculate the
tiling cohomology for substitution tilings in [1] (although they used cellular
cohomology).

2.3 Savinien and Bellissard’s approach to tiling cohomology

2.3.1 PV-cohomology.

Recall that Sn
0 denotes the (finite) set of characteristic maps of the n-

simplices in Γ0. Let σ̃ ∈ Sn
0 and choose a characteristic map σ of an n-

simplex of P such that σ̃ = ρ̃0 ◦ σ. We define the vector

xσ̃,i = p∂iσ − pσ ∈ R
d

which is the difference vector pointing from the puncture of the cell defined
by σ to the puncture of its ith face. This is independent of the choice of σ
by Lemma 2.1. We denote by tσ̃,i : Ξ(σ̃) → Ξ(∂iσ̃) the restriction of t

xσ̃,i

to Ξ(σ̃), t
xσ̃,i(ξ) = ξ + pσ − p∂iσ. The following definition is essentially that

of [18].

Definition 2.6. Let σ̃ ∈ Sn
0 . Define the linear map θσ̃,i : Clc(Ξ

n−1, A) →
Clc(Ξ

n, A) by
θσ̃,i(f) = ı ◦ t

∗
σ̃,i(f

∣∣
Ξ(∂iσ̃) )

where t
∗
σ̃,i : Clc(Ξ(∂iσ̃), A) → Clc(Ξ(σ̃), A) is the pull back of tσ̃,i and ı :

Clc(Ξ(σ̃), A) →֒ Clc(Ξ
n, A) the inclusion. The strong PV-cohomology of P is

the cohomology of the complex (Clc(Ξ
∗, A), dPV ) where dPV : Clc(Ξ

n, A) −→
Clc(Ξ

n+1, A) is given by

dPV =
∑

σ̃∈Sn+1
0

n+1∑

i=0

(−1)iθσ̃,i.

We denote the strong PV-cohomology with coefficients in A by
H∗PV (Γ0, Clc(Ξ, A)).

H∗PV (Γ0, Clc(Ξ,Z)) is isomorphic to the Čech cohomology of the hull [18].

2.3.2 Relation with pattern groupoid cohomology

PV-cohomology can effectively seen as the continuous cocycle cohomology
(after [15]) of the pattern groupoid GP, which is the variant of the discrete
tiling groupoid defined in [4]. More precisely, the PV-complex is a reduction
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of the complex of continuous cocycle cohomology which has the advantage of
being trivial in degrees larger than the dimension of the tiling. This is similar
to using a finite resolution of length d instead of the standard resolution for
the cohomology of the group Z

d. Let us explain this.
By definition, GP is the reduction to Ξ(0) of the transformation groupoid

ΩP⋊Rd. Its elements are pairs (ω, v) ∈ ΩP×Rd which satisfy ω,tv(ω) ∈ Ξ(0).
The continuous cocycle cohomology of GP is the cohomology of the complex
of continuous functions

C(GP(n),Z)
δ

−→ C(GP(n+1),Z) · · ·

where GP(0) = Ξ0) and GP(n) is the subset of elements (ω, v1, · · · , vn) ∈
ΩP × (Rd)n which satisfy ω ∈ Ξ(0) and ω −

∑j
i=1 vi ∈ Ξ(0) for all j. Its

topology is the subspace topology of the product topology. The differential
is given by δf(ω, v) = f(tv(ω))− f(ω) in degree 0, and in degree n > 0 by

δf(ω, v1, · · · , vn+1) = f(tv1(ω), v2, · · · , vn+1) + (−1)n+1f(ω, v1, · · · , vn)

+

n∑

i=1

(−1)if(ω, v1, · · · , vi + vi+1, · · · , vn+1)

We define the map α : Ξ(n) → GP(n) by

α(ω) = (ω, σ(x1)− σ(x0), · · · , σ(xn)− σ(xn−1))

where σ(xi) is the ith vertex of the n-simplex of ω whose puncture is on
0. Clearly α is injective. It is continuous as the σ(xi) − σ(xi−1) are lo-
cally defined. A straightforward computation shows that the pullback of α
satisfies α∗ ◦ δ = dPV ◦ α∗. It hence yields a surjective chain map. It thus
induces a surjective map from the continuous cocycle cohomology of the pat-
tern groupoid to PV-cohomology. As we know that the two cohomologies
are isomorphic, α∗ has to be an isomorphism at least in the case that the
cohomology is finitely generated.

2.3.3 Weak PV-cohomology

We now consider the situation in which the abelian group A carries a metric
δ w.r.t. which it is complete. Then C(Ξn, A) is a complete module w.r.t. the
metric δ̃(f, g) := supξ∈Ξn δ(f(ξ), g(ξ)).

Lemma 2.7. The PV -differential extends to a continuous map dPV :
C(Ξn, A) → C(Ξn+1, A).

Proof. First observe that tσ̃,i is a partial translation. θσ̃,i is essentially its
pull-back and since domain and range of tσ̃,i are clopen θσ̃,i(f) is continuous
for continuous f . Since δ̃ is translation invariant the pull back of a partial
translation is a partial isometry. Hence θσ̃,i is continuous. Since dPV is a
finite sum of θσ̃,i the result follows.
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Definition 2.8. The weak PV -cohomology is the cohomology of the so-called
weak PV -complex (C(Ξ∗, A), dPV ). It is denoted by H∗PV (Γ0, C(Ξ, A)).

While for discrete groups, like Z, the strong and the weak PV-complex
coincide they differ vastly in the case that A is a continuous group, like R.
Although the inclusion Clc(Ξ

n, A) ⊂ C(Ξn, A) is a chain map, there is no
evident relation between the two cohomologies in the continuous case.

2.4 PE de Rham cohomology

In this section, we recall the definition of the pattern equivariant de Rham
cohomology of a tiling.

Definition 2.9. Let P be a tiling of finite local complexity. A function f on
R
d is pattern equivariant with range R > 0 if

∀x, y ∈ R
d, BR[t

x(P)] = BR[t
y(P)] ⇒ f(x) = f(y).

It is called strongly pattern equivariant (s-PE) if it is pattern equivariant with
some finite range R.2

We denote by An
b (R

d) the space of bounded (smooth) n-forms over R
d.

Such forms can be seen as smooth functions from R
d into Λn

R
d∗, the exterior

algebra of the dual of R
d (equipped with some norm). We may therefore

consider An
s−P(R

d) the space of s-PE n-forms over R
d. Together with the

standard exterior derivative (A∗s−P(R
d), d) is a subcomplex of the usual de

Rham complex of differential forms on R
d.

The cohomology of the differential complex (A∗s−P(R
d), d) is called the

strongly pattern equivariant cohomology and denoted by H∗s−P(R
d). As

ordinary de Rham cohomology it is a cohomology with real coefficients.
H∗s−P(R

d) is isomorphic to the Čech cohomology of the tiling space with
real coefficients [10].

Strongly pattern equivariant functions are in some sense algebraic,
namely the size R of the patch around a point x which has to be inspected
to obtain the value of the function is fixed and finite. This naturally calls for
looking at functions which are obtained as limits of strongly pattern equivari-
ant functions. These are called weakly pattern-equivariant. More precisely,
the space of smooth weakly pattern equivariant n-forms A∗w−P(R

d) is the
closure of A∗s−P(R

d) in A∗b(R
d) with respect to the Fréchet topology given

by the family of semi norms sk,

sk(f) = sup
|κ|≤k

||Dκf ||∞

2This definition does not only apply to tilings but to any kind of pattern of Rd, but it

captures what we want only in the case of finite local complexity.
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where κ = (κ1, . . . , κn) ∈ N
n, |κ| =

∑n
i=1 κi, D

κf = ∂κ1

∂x
κ1
1

· · · ∂κn

∂x
κn
n
f and

||.||∞ is the norm of the uniform convergence. The weakly pattern equivari-
ant cohomology H∗w−P(R

d,R) is the cohomology of the differential complex
(A∗w−P(R

d), d). H∗w−P(R
d,R) is isomorphic to the tangential cohomology

of the tiling space [10]. We shall provide below an example which confirms
our expectation that the weak pattern equivariant cohomology of aperiodic
tilings is always infinitely generated.

In the last section, we will be interested in deformations of tilings. These
deformations are parameterized3 (in [11]) by a group called the pattern equiv-
ariant mixed group. It is defined by the quotient

Z1
s−P(R

d)/B1
w−P(R

d) ∩ Z1
s−P(R

d)

of closed strongly PE 1 forms modulo those 1 forms which are weakly exact,
Z1
s−P(R

d) = A1
s−P(R

d) ∩ ker d and B1
w−P(R

d) = d(A0
w−P(R

d)).

2.5 PE simplicial cohomology

Since P is a simplicial tiling it defines a simplicial complex in R
d. The

concept of pattern equivariance can equally well be defined for cochains (with
values in any abelian group A) over this complex. In fact, a cochain is s-PE
if there is some k > 0 such that its value on 〈σ〉 depends only on the k-
neighborhood of the simplex σ of P. We denote the degree n s-PE cochains
with coefficients in A by Cn

s−P(P, A). Clearly the coboundary operator maps
s-PE cochains to s-PE cochains and so we may consider what is called the s-
PE simplicial cohomology, which is the simplicial cohomology of the complex
(C∗s−P(P, A), dS). We denote it by H∗s−P(P, A).

It has been shown in [17] that s-PE simplicial cohomology is isomorphic
to the Čech cohomology of the tiling space.

Just as one can define weak PE de Rham cohomology by using a comple-
tion w.r.t. a natural family of semi-norms, one can define weak PE simplicial
cohomology by means of completion in the (metric) topology of uniform
convergence. More precisely we define the w-PE cochains Cw−P(P, A) (with
coefficients in A) as the closure of Cs−P(P, A) in the set of bounded cochains
Cb(P, A) w.r.t. to the metric δ̃(c, c′) = supσ δ(c(〈σ〉), c

′(〈σ〉)). Clearly the
simplicial coboundary-boundary operator is continuous in the topology and
defines the w-PE complex (C∗w−P(P, A), dS) whose cohomology we call the
w-PE simplicial cohomology and denote by H∗w−P(P, A).

3Strictly speaking the parameterization is in terms of this group with coefficients in

R
d.
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3 PE simplicial cohomology and PV cohomology

We start with comparing the strong versions of PE simplicial cohomology
and PV cohomology. This material is essentially known though not written
in this form. At the end of the section we compare the weak versions. This
is new.

3.1 PV cohomology as DL cohomology

We need to discuss in some detail the construction of the isomorphism be-
tween DL cohomology and PV cohomology. It essentially establishes that
PV-cochains yield a model for the direct limit of the simplicial cochains of
the APG complexes.

We denote in this section the pull back of ρk+1 k : Γk+1 → Γk by
πk k+1. Recall that the direct limit of the directed system Cn(Γk, A)

πk k+1
−→

Cn(Γk+1, A) is a module (denoted lim
−→

Cn(Γk, A)) together with module maps
πk such that the diagram

Cn(Γk, A)
πk k+1=ρ∗

k+1k
//

πk

&&NNNNNNNNNNN
Cn(Γk+1, A)

πk+1

wwooooooooooo

lim
−→
l

Cn(Γl, A)

commutes. It has moreover the universal property that, whenever another
module M with module maps π′k : Cn(Γk, A) → M yields a commuting
diagram

Cn(Γk, A)

π′

k ))

πk k+1
// Cn(Γk+1, A)

π′

k+1tt
M

then the π′i factor uniquely through the direct limit [12]. The latter means
that there exists a unique homomorphism h : lim

−→
Cn(Γk, A) −→M satisfying

h ◦ πk = π′k for all k ∈ N.
Define the module maps ηk : Cn(Γk, A) −→ Clc(Ξ

n
∆, A) by

ηk(aσ) = aΞ(σ).

These maps induce a new commuting diagram

Cn(Γk, A)

ηk ((

πkj
// Cn(Γj, A)

ηjvv

Clc(Ξ
n, A)

12



By the universal property of the direct limit there exists a unique homomor-
phism

η : lim
−→
l

Cn(Γl, A) −→ Clc(Ξ
n, A)

such that
η ◦ πk = ηk k ∈ N.

Lemma 3.1. The maps ηk are one-to-one.

Proof. Let ξ in Ξ(σ0) for some σ0 ∈ Sn
k . Hence ξ contains a patch at the

origin which is translationally congruent to the face with its k-neighborhood
encoded by σ0. Thus

aΞ(σ)(ξ) =

{
a if σ = σ0,
0 if σ 6= σ0.

Let γ ∈ Cn(Γk, A). Then the above shows that ηk(γ)(ξ) = γ(〈σ0〉). Letting
ξ vary we see that ηk(γ) = 0 implies γ = 0.

Lemma 3.2. For all γ ∈ C(Ξn, A) there is k ∈ N such that γ ∈ im(ηk).

Proof. By Lemma 2.5 every element of C(Ξn, A) is a finite sum of aΞ(σ),
a ∈ A and σ ∈ Γk for some k. Since aΞ(σ) ∈ im(ηk) and im(ηk) ⊂ im(ηk+1)
the statement follows.

Lemma 3.3. The ηk intertwine the differentials, i.e. ηk ◦ dS = dPV ◦ ηk.

Proof. Recall the definition of the simplicial coboundary operator dS on Γk:
Given σ ∈ Sn

k we have

dS(aσ) =
∑

τ∈Sn+1
k

n+1∑

i=0

(−1)iδσ ∂iτaτ .

Hence

ηk ◦ dS(aσ)(ξ) =

n+1∑

i=0

(−1)iδσ ∂iσ
k
ξ

where σkξ is the k-collared simplex of ξ on 0. On the other hand

dPV ◦ ηk(aσ) =
∑

τ∈Sn+1
0

n+1∑

i=0

θτ,i(aΞ(σ))

=
∑

τ∈Sn+1
0

n+1∑

i=0

ı ◦ t
∗
τ,i(aΞ(σ)

∣∣
Ξ(∂iτ) ).
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Now

ı ◦ t
∗
τ,i(aΞ(σ)

∣∣
Ξ(∂iτ) )(ξ) =

{
aΞ(σ)(tτ,i(ξ)) if ξ ∈ Ξ(τ)

0 else

=

{
1 if σkξ−xτ,i

= σ and σ0ξ = τ

0 else

and since σkξ−xτ,i
= σ and σ0ξ = τ can happen iff ∂iσ

k
ξ = σ the claim follows.

Recall that the cohomology of lim
−→

C(Γk, A) is the direct limit

lim
−→

H(Γk, A) together with module maps H(πk) : H(Γk, A) → lim
−→

H(Γk, A)

such that H(πk+1) = H(πk) ◦H(πk k+1).

Theorem 3.4 ([18]). η is a module isomorphism. It induces an isomorphism
in cohomology.

Proof. As the ηk intertwine the differentials they induce homomorphisms in
cohomology H(ηk) : H(Γk, A) → HPV (Γ0, Clc(Ξ, A)) such that H(ηk+1) =
H(ηk)◦H(πk k+1). By the universal property we get a unique homomorphism
which we denote H(η) making

H(Γk, A)

H(ηk)

$$

H(πkj)
//

H(πk)

''PPPPPPPPPPPP
H(Γj, A)

H(ηj)

{{

H(πj)

wwnnnnnnnnnnnn

lim
−→
l

H(Γl, A)

H(η)

��

HPV (Γ0, Clc(Ξ, A))

commute. Hence H(η) ◦ H(πk)([ω]) = H(ηk)([ω]) = [ηk(ω)] = [η ◦ πk(ω)]
where we have denote by [·] cohomology classes.

Injectivity: Let x ∈ lim
−→

H(Γl, A) such that H(η)(x) = 0. There exists

k ∈ N and a cochain in Γk such that x = H(πk)[ω]. Thus 0 = [ηk(ω)]. Let
γ ∈ Clc(Ξ, A) satisfy ηk(ω) = dPV γ. By Lemma 3.2, there is l ∈ N and
α ∈ C(Γl, A), such that γ = ηl(α). By Lemma 3.3 dPV ηl(α) = ηl(dSα). We
may suppose that l ≥ k. Then the above implies that ηl(ω) = ηl(dSα) and
hence, by Lemma 3.1 ω = dSα.

Surjectivity: Let [γ] ∈ H(Γ0, Clc(Ξ, A)). Then γ = η(ω̃) for some ω̃ ∈
lim
−→

C(Γl, A). There exists k ∈ N and a cochain ω ∈ Γk such that ω̃ = πk[ω].

Hence [γ] = [η ◦ πk(ω)] = H(η) ◦H(πk)([ω]).
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3.2 PE simplicial as DL cohomology

Recall the definition (2.2) of ρ̃k : Rd → Γk. In particular, to each simplex σ
of P corresponds a simplex ρ̃k ◦ σ ofΓk. Pulling these back over cochains we
obtain module maps ρ̌∗k : C∗(Γk, A) → C∗s−P(P, A)

ρ̌∗k(c)(〈σ〉) = c(〈ρ̃k ◦ σ〉).

They induce a new commuting diagram

Cn(Γk, A)

ρ̌∗
k

))

πkj
// Cn(Γj, A)

ρ̌∗j
vv

Cn
s−P(P, A)

By the universal property of the direct limit there exists a unique homomor-
phism

ρ̌∗ : lim
−→
l

Cn(Γl, A) −→ Cn
s−P(P, A)

such that for all k ∈ N,
ρ̌∗ ◦ πk = ρ∗k.

As Sadun explains in [17], every s-PE cochain on P can be viewed as the
pull back of a cochain on Γk provided k is sufficiently large and vice versa.
In other words, the analogue of Lemma 3.1 and Lemma 3.2 are true and
ρ̌∗ is an isomorphism. It is trivial that the ρ∗k intertwine the differentials as
they are defined in essentially the same way. Hence the same proof as that
for Thm. 3.4 yields that ρ̌∗ induces an isomorphism between DL cohomology
and s-PE simplicial cohomology.

3.3 PE simplicial and PV-cohomology

The last two sections can be summarized by saying that the strong versions
of PE simplicial and PV-cohomology are abstractly the same thing: in both
cases the cochains arise as models for the direct limit of the cochains of
APG-complexes. In fact, by the universal property the module morphism
φ : Cs−P(P, A) → Clc(Ξ, A):

φ = η ◦ (ρ̌∗)−1

is an isomorphism which, by Lemma 3.3 and its analogon intertwines the
differentials. It hence induces an isomorphism between the strong versions
of PE simplicial and PV cohomology. By construction φ(ρ̌∗k(aσ)) = ηk(aσ̃) =
aΞ(σ̃) and hence φ(c) is on the dense orbit through P given by

φ(c)(P − p) = c(〈σp〉) (3.1)

where σp is the simplex of P whose puncture is on p.
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Lemma 3.5. φ is an isometry and thus extends to an isomorphism, which
we also denote by φ, between Cw−P(P, A) and C(Ξ, A).

Proof. That φ is an isometry is direct. The continuous extension of a
bijective isometry is bijective as well.

Corollary 3.6. φ induces a isomorphism between the weakly pat-
tern equivariant cohomology Hw−P (P, A) and the weak PV-cohomology
HPV (Γ0, C(Ξ, A)).

Proof. By continuity φ intertwines the differentials. Hence φ is a bijective
chain map.

4 PE de Rham versus PE simplicial cohomology

4.1 A PE de Rahm theorem

The de Rham theorem for smooth manifolds states that, given a smooth
triangulation of the manifold and hence a simplicial decomposition, then the
de Rham cohomology of the manifold and the simplicial cohomology of the
complex are isomorphic. Moreover, the isomorphism has a very simple form,
it is induced from a chain map which associates to a k-form the k-cochain
whose evaluation on the generator associated with a k-simplex is given by
integrating the form over the simplex. A very careful exposition of the proof
is given in [19] for the case of finite simplicial complexes in euclidean spaces.

We shall adapt this proof to obtain a PE version of the de Rham theorem
the role of the manifold being played by R

d with its simplicial decomposi-
tion defined by the tiling P. This then will lead to an explicit isomorphism
between the s-PE de Rham cohomology of Rd and the s-PE simplicial coho-
mology of P with values in R. We furthermore show that the maps involved
are continuous so that the isomorphism extends to an explicit isomorphism
between the weak versions.

Recall that P defines a smooth triangulation on R
d but even a smooth

triangulation. This allows us to integrate a k-form ω ∈ Ak
b (R

d) over a k-
simplex σ. In fact we write

∫
σ
ω to mean ± the integral of ω over the set imσ

where the sign is + provided the orientation of σ is the same than that in-
duced on im(σ) by the (chosen) orientation of Rd, and − otherwise. We equip
Cb(P,R) with the sup-norm: ‖c‖ = supσ |c(〈σ〉)|. This makes it a complete
real vector space on which the simplicial differential acts continuously.

Definition 4.1. Let Jl : A
l
b(R

d) → C l
b(P,R) be given by

Jl(ω)(〈σ〉) =

∫

σ

ω

for any l-simplex σ.
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Our aim is to prove the following theorem

Theorem 4.2. Jl induces an isomorphism between H l
s−P(R

d) and

H l
s−P(P,R) and also between H l

w−P(R
d) and H l

w−P(P,R).

We should say that the first part could also be derived from the de Rham
type theorems for transversally locally constant tangential forms [10] or for
branched manifolds [17], but these proofs use the Čech-de Rham double
complex and hence yield a priori isomorphisms with Čech cohomology. We
provide here a proof avoiding Čech cohomology and double complexes at
all. So it is more elementary but also longer. But it has the advantage of
extending directly to the topological closures (weak versions).

Lemma 4.3. Jl has the following properties:

1. Jl+1 ◦ d = dS ◦ Jl.

2. Jl is continuous.

3. If ω is s-PE then Jl(ω) is s-PE.

4. If ω is w-PE then Jl(ω) is w-PE.

Proof. The first statement is Stokes theorem. Continuity follows from
‖Jl(ω)‖ ≤ supσ |

∫
σ
ω| ≤ ‖ω‖∞ supσ vol(σ). The third statement is evident

and implies the last one by continuity of Jl.

The first step in showing a de Rham theorem is the construction of right
inverse maps for Jl. We proceed as in [19].

Lemma 4.4. There are module maps αl : C
l
b(P,R) → Al

b(R
d) which satisfy

the following properties:

1. Jl ◦ αl = id.

2. αl+1 ◦ dS = d ◦ αl.

3. αl is continuous.

4. If c is s-PE then αl(c) is s-PE.

5. If c is w-PE then αl(c) is w-PE.

Proof. We follow the construction of αl given in [19]. It is based on a
partition of unity {gv}v∈P(0) which is subordinate to the covering given by
the stars of the vertices v: The star St(v) of v is simply the interior of the
1-neighborhood of v, i.e. the union over all open simplices touching v. Let
Fv be the compact set points of St(v) which have at least distance 1

n+1 from
the boundary of St(v) and Gv the closed set of points which have at most
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distance 1
n+2 from the complement of St(v). As is well known there exists

a smooth positive function ǧv which vanishes on Gv and equals 1 on Fv .
Clearly we can require that the choice of ǧv be made so that if v and v′ have
the same 1-neighborhood up to translation then ǧv and ǧv′ coincide up to
translation by v − v′. Now gv = ǧv/

∑
v′∈P(0) ǧv′ and αl is given as follows.

Let σ be a l-simplex and vi the ith vertex, i.e. the image under σ of xi ∈ ∆l.
Then

αl(1σ) = ωσ := l!

l∑

i=0

(−1)igvidgv0 ∧ · · · d̂gvi · · · dgvl .

A proof of the first two properties can be found in [19]. The above formula
shows that αl(1σ) = t

x∗αl(1σ′) (tx∗ denotes the pull back of t
x) if σ =

t
x(σ′) and their 2-neighborhoods coincide. αl(c) is therefore s-PE provided
c is a s-PE cochain.

To show continuity let c =
∑

σ∈P(l) rσ1σ, rσ ∈ R. Then

sk(αl(c)) ≤
∑

|κ|≤k

‖Dκ
∑

σ∈P(l)

rσωσ‖∞.

Since the support of ωσ is contained in St(v) and the number of l-
simplices in a star is uniformly bounded, let’s say by Nl, we have
supx |D

κ
∑

σ∈P(l) rσωσ(x)| ≤ Nl supσ∈P(l) |rσ | supx |D
κωσ(x)| and hence

sk(αl(c)) ≤ Nl‖c‖ max
σ∈P(l)

sk(ωσ).

Hence αl is continuous from which the last statement follows by continuous
extension.

Corollary 4.5. Jl induces a surjective homomorphism between H l
s−P(R

d)

and H l
s−P(P,R) and also between H l

w−P(R
d) and H l

w−P(P,R).

The proof injectivity of these maps is essentially based on Poincaré’s
lemma. In contrast to the usual case we need however good control on the
contracting homotopies involved. Let U be an open star-shaped subset of Rd

and u ∈ U a center, i.e. for all x ∈ U we have ∀0 ≤ t ≤ 1 : tx+(1− t)u ∈ U .
Then we denote by hU,uk−1 : Ak

b (U) → Ak−1
b (U), k > 0, the following module

map:

hU,uk−1(fdxi1∧· · · dxik)(x) = Iuk−1(f)(x)

k∑

j=1

(−1)j(xij−uij)dxi1∧· · · d̂xij · · · dxik

where

Iuk−1(f)(x) =

∫ 1

0
tk−1f(tx+ (1− t)u)dt.
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Lemma 4.6. Let U be bounded and as above. hU,uk have the following prop-
erties

1. hU,uk ◦ d = d ◦ hU,uk−1 for k ≥ 1,

2. hU−x,u−xk = t
x∗ ◦ hU,uk ,

3. hU,uk is continuous.

Proof. hU,uk−1 is a standard homotopy for U and the first statement (Poincaré
lemma for U) proven for instance in [19]. The second statement is a direct
consequence of the definition. As for the third, continuity of hU,uk−1 follows
from continuity of Iuk−1 since the form ω(x) =

∑k
j=1(−1)j(xij − uij )dxi1 ∧

· · · d̂xij · · · dxik does not depend on f and has bounded seminorms given that
U is bounded. Now

‖DκIuk−1(f)‖∞ =

∥∥∥∥
∫ 1

0
tk−1+|κ|(Dκf)(tx+ (1− t)u)dt

∥∥∥∥
∞

≤ ‖Dκf‖∞

shows that Iuk−1 is indeed continuous.

Let σ be an k-simplex. We denote by [σ]ǫ the ǫ-neighborhood of im(σ)
and by [∂σ]ǫ the ǫ-neighborhood of its boundary ∂im(σ). We denote by
Zr
b (U) the closed bounded r-forms on U . For r 6= k, r, k ≥ 1 let

Dr
ǫ (σ) = {(ω, τ) ∈ Zr

b ([σ]ǫ)⊕Ar−1
b ([∂σ]ǫ) : ω

∣∣
[∂σ]ǫ = dτ}

and for r = k ≥ 1 let

Dk
ǫ (σ) = {(ω, τ) ∈ Zk

b ([σ]ǫ)⊕Ak−1
b ([∂σ]ǫ) : ω

∣∣
[∂σ]ǫ = dτ,

∫

σ

ω =

∫

∂σ

τ}.

Lemma 4.7. There exists an ǫ > 0 and a module map βr(σ) : Dr
ǫ (σ) →

Ar−1
b ([σ]ǫ) satisfying

1. τ ′ = βr(σ)(ω, τ) coincides with τ on [∂σ]ǫ,

2. dτ ′ = ω,

3. If t
x(σ) is a simplex then βr(tx(σ)) = t

x∗ ◦ βr(σ),

4. βr(σ) is continuous.

Proof. The proof is by induction. For that we need to consider a second
module map. For r 6= k, r ≥ 0, k ≥ 1 let Er

ǫ (σ) = Zr
b ([∂σ]ǫ and for

r = k − 1 ≥ 0 let

Ek
ǫ (σ) = {ω ∈ Zk

b ([∂σ]ǫ :

∫

∂σ

ω = 0}.

We aim to show that there exists a module map γr(σ) : Er
ǫ (σ) → Zr

b ([σ]ǫ)
which satisfies
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1. γr(σ)(ω) coincides with ω on [∂σ] ǫ
2
,

2. If t
x(σ) is a simplex then γr(tx(σ)) = t

x∗ ◦ γr(σ),

3. γr(σ) is continuous.

γ0(σ) Let ω ∈ E0
ǫ (σ). Since dω = 0, ω is constant on any connected subset of

∂σ. If k 6= 1 ∂σ is connected and hence ω constant. If k = 1 the extra
condition

∫
σ
ω = 0 implies that ω is constant. Thus for all choices of

k we can define γ0(σ)(ω) to be the constant extension of ω to σ. The
properties stated are obviously satisfied.

βr(σ) We assume the existence of γr−1(σ) satisfying the above properties.
This is certainly correct for r = 1 and then will follow inductively in
view of the next step. Let (ω, τ) ∈ Dr

ǫ (σ). Let bσ be the barycenter of
σ and hσ = h[σ]ǫ,bσ . Define

βr(σ)(ω, τ) := hσ(ω)− γr−1(σ)(hσ(ω)
∣∣
[∂σ]ǫ − τ).

The first two properties are verified in [19]. The other two follow
immediately from the properties of γr−1(σ) and Lemma 4.6.

γr(σ) We assume the existence of βr(σ) satisfying the properties stated in
the lemma. This follows inductively in view of the preceding step.
Let ω ∈ Er

ǫ (σ). Let v be the first vertex of σ (w.r.t. the ordering of
the vertices) and σ′ the corresponding k − 1-simplex of the bound-
ary of σ, i.e. the face which does not contain v. Then [∂σ\σ′]ǫ is
star-shaped with center v. We let µ′σ = h[∂σ\σ

′]ǫ,v(ω
∣∣
[∂σ\σ′]ǫ] ) and

µ′′σ = βr(σ)(ω
∣∣
[σ′]ǫ , µ0

∣∣
[∂σ′]ǫ ). µ′σ and µ′′σ coincide on their com-

mon domain and hence define an r − 1-form µσ on [∂σ]ǫ. It follows
from Lemmata 2.1 and 4.6 and the induction hypothesis for βr that
µ

t
x(σ) = t

x∗µσ provided t
x(σ) is a simplex of the tiling. Now consider

a family of smooth functions bσ : [σ]ǫ → R, defined for all k-simplices,
which is s-PE in the sense that b

t
x(σ) = t

x∗bσ. We suppose that each
bσ is identically 1 on [∂σ] ǫ

2
and identically 0 on the complement of

[∂σ]ǫ. Then
γr(σ)(ω) := d(bσµσ)

satisfies γr(σ)(ω) = ω on [∂σ] ǫ
2
, as is shown in [19], and γr(tx(σ)) =

t
x∗ ◦ γr(σ). Continuity of γr(σ) follows from the continuity of
h[∂σ\σ

′]ǫ,v, βr(σ) and d, and smoothness of bσ.

Let Dr
ǫ (P

(k)) be defined as Dr
ǫ (σ) except replacing the simplex by the

k-skeleton. If r = k we demand the integral equation
∫
σ
ω =

∫
∂σ
τ to hold

for all k-simplices. We then define βr : Dr
ǫ (P

(k)) → Ar−1
b ([Pk)]ǫ) by glueing
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the βr(σ)(ω
∣∣
[σ]ǫ , τ

∣∣
[∂s]ǫ ) defined for the k-simplices σ of P(k) together which

is possible as they agree with (ω, τ) along the ǫ-neighborhood of P(k−1).

Corollary 4.8. 1. If (ω, τ) ∈ Dr
ǫ (P

(k)) is s-PE then βr(ω, τ) is s-PE.

2. If (ω, τ) ∈ Dr
ǫ (P

(k)) is w-PE then βr(ω, τ) is w-PE.

Lemma 4.9. Let ω ∈ Z l
b(R

d), l ≥ 1, and Jl(ω) = dSc. Then there exists
τ ∈ Al−1

b (Rd) such that ω = dτ . Moreover,

1. If ω and c are s-PE then τ can be chosen s-PE.

2. If ω and c are w-PE then τ can be chosen w-PE.

Proof. We follow again [19] constructing τ by a composition of module
maps

τ = β̃n ◦ · · · ◦ β̃0(ω).

β̃0(ω) is an l−1-form on the ǫ-neighborhood of P(0). We may therefore define
it through its restrictions to the connected components of [P(0)]ǫ, namely the
restriction to [v]ǫ is given by

h[v]ǫ(ω)− δl1(h
[v]ǫ(ω)(v) − c(v)).

If k > 0 then

β̃k(ω) = βl(ω, β̃k−1(ω))− δl−1 kαl−1(Jl−1(β
l(ω, β̃k−1(ω))− c).

This construction of τ follows exactly the lines of the proof of [19] and so
the proof given there for the first statement applies also in our context. The
two remaining statements are now obtained by finite iteration of the results
of Lemmata 4.3, 4.4, 4.6 and Cor. 4.8.

We thus have proved Theorem 4.2.

Corollary 4.10. The map ψ = φ ◦ J : Aw−P(R
d) → C(Ξ,R) induces an

isomorphism H(ψ) between Hw−P(R
d) and HPV (Γ0, C(Ξ,R)) which restricts

to an isomorphism between Hs−P(R
d) and HPV (Γ0, Clc(Ξ,R)).

Let ω ∈ An
w−P(R

d). An explicit formula for ψ(ω) ∈ C(Ξn,R) is given by

ψ(ω)(P − p) =

∫

σp

ω,

where σp is the simplex of P whose puncture is on p ∈ Pn,punc.

Proof. Combine Cor. 3.6 with Thm. 4.2 and Eq. 3.1.
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5 Some applications

5.1 Weak cohomology of cut & project tilings with dimen-
sion and codimension equal to one

We saw that the weak PE de Rham cohomology, the weak PE simplicial
cohomology with real values and the weak PV cohomology with real values
are all isomorphic. We refer to this cohomology simply as the weak tiling co-
homology. The following calculation shows that this cohomology is infinitely
generated even for the simplest aperiodic tilings of finite local complexity.
Our calculation is based on an old result, namely that the transversally con-
tinuous tangential cohomology of a Kronecker foliation on a torus is infinitely
generated in degree 1 [13]. We expect that weak tiling cohomology is always
infinitely generated for aperiodic tilings of finite local complexity.

As explained in [18] for one dimensional tilings PV-cohomology is just the
cohomology of the group Z with coefficients in C(Ξ0,Z) where the action is
induced by shifting the tiling by a tile (this is more precisely the first return
map into the 0-dimensional ∆-transversal Ξ0 of the R-action by translation
of the tilings). The same argument applies to weak PV-cohomology upon
replacing C(Ξ0,Z) by C(Ξ0,R).

For cut & project tilings with dimension and codimension equal to one
the dynamical system (Ξ0,Z) can be described as follows [4]: The cut &
project tiling is determined by two data, θ and K. θ is an irrational number
defining the slope of a line E ⊂ R

2 w.r.t. a choice of orthonormal base. K
is a subset of the orthocomplement of E which is supposed to be compact
and the closure of its interior. These data define a one dimensional tiling
of E ∼= R. Indeed the tiles are intervals whose end points are given by
the ortho-projection onto E of all points in Z

2 ∩ (K + E) (Z2 is the lattice
generated by the base and it is supposed that no point of that intersection
lies on the boundary of K + E). Since θ is irrational the tiling is aperiodic.

On the 0-dimensional ∆-transversal of this tiling Ξ0 the group Z acts
via the first return map of the R-action by translation of the tilings. This
dynamical system (Ξ0,Z) factors onto the dynamical system (S1 = R/Z,Z)
given by the rotation around θ. The factor map µ : Ξ0 → S1 is almost
one-to-one. The points where it is not one-to-one, the preimages of so-called
cut points, form a union of orbits under the Z-action. On these orbits µ is
two-to-one and we denote such points by a = (a+, a−).

Theorem 5.1. The first weak tiling cohomology of a cut & project tiling with
dimension and codimension equal to one is infinitely generated.

Proof. By the last theorem and the above remark the first weak tiling co-
homology is isomorphic to H1(Z, C(Ξ0,R)), the cohomology of the group Z

with values in C(Ξ0,R). The pull back of the factor map µ : Ξ0 → S1 gives
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rise to a Z-equivariant short exact sequence of Z-modules

0 → C(S1,R)
µ∗

−→ C(Ξ0,R) → Q→ 0

where Q = C(Ξ0,R)/C(S1,R) naturally inherits a Z-action. We claim that
H0(Z, Q) = 0 so that the long exact sequence in group cohomology contains
the short exact sequence

0 → H1(Z, C(S1,R)) → H1(Z, C(Ξ0,R)) → H1(Z, Q) → 0.

We prove the claim: For a pre-image of a cut point a = (a+, a−) ∈ Ξ0 let
τa : C(Ξ0,R) → R be given by τa(f) = f(a+)− f(a−). This is a module ho-
momorphism which vanishes on functions of µ∗(C(S1,R)) and hence extends
to a homomorphism τa : Q→ R. H0(Z, Q) is the group of invariant elements.
Assuming that H0(Z, Q) is non-trivial suppose that f ∈ C(Ξ0,R) projects
onto a non-trivial invariant element in Q. Then there exists an a such that
τa(f) = τa(f ◦ ϕ) 6= 0. Choose 0 < 4ǫ < |τa(f)|. There exists g ∈ Clc(Ξ

0,R)
such that ‖f − g‖∞ < ǫ. This implies that |τa(f ◦ ϕn) − τa(g ◦ ϕ

n)| < 2ǫ,
for all n ∈ Z. Hence |τa(f) − τa(g ◦ ϕn)| < 2ǫ < 1

2 |τa(f)|, for all n ∈ Z,
and therefore |τa(g ◦ ϕn)| > 1

2 |τa(f)|, for all n ∈ Z. It follows that g has
infinitely many jumps. But by compactness of Ξ0 the elements of Clc(Ξ0,R)
have only finitely many jumps. This being a contradiction we must have
H0(Z, Q) = 0.

Hence H1(Z, C(Ξ0,R)) is an extension of H1(Z, Q) by H1(Z, C(S1,R)).
Now by the results of Mostow [13][page 98f], H1(Z, C(S1,R)) is infinitely
generated, as θ is irrational.

5.2 The mixed group in PV-cohomology

There are two approaches to the deformation theory of tilings. The
first is based on the description of tiling cohomology as the direct limit
lim→H((Γl,R

d) and asymptotic negligible cocycles [3], and the second on
pattern equivariant 1-forms [11]. In the context of the second approach a
deformation of a Delone set P into a Delone set P ′ is given by a bi-Lipschitz
smooth function ϕ : Rd −→ R

d which has a strongly pattern equivariant dif-
ferential and satisfies P ′ = ϕ(P). Moreover, if two such functions differ on P
by a constant vector (which amounts to a global translation) then they define
the same deformation. The deformations of P are therefore parameterized
by the elements of Z1

s−P(R
d,Rd)/N1

s−P (R
d,Rd) where

N1
s−P(R

d,Rd) = {dϕ ∈ B1
s−P(R

d,Rd)|ϕ is constant on P}.

Deformations of tilings can be seen as deformations of their set of punctures.
Denote by B||.||∞(ω, ε) the open ε-ball around an element ω ∈

Z1
s−P(R

d,Rd) w.r.t. the uniform norm. For sufficiently small ǫ the elements
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of Z1
s−P(R

d,Rd) ∩ B||.||∞(did, ε) define invertible deformations (in sense of
[11]) of P. If two such elements differ by an element of B1

s−P(R
d,Rd) then

their images on P are mutually locally derivable. If their difference is in
B1

w−P(R
d,Rd) then their images on P define pointed topological conjugate

dynamical systems. The elements near the class of did in the mixed quotient
group

Z1
s−P(R

d,Rd)/B1
w−P (R

d,Rd) ∩ Z1
s−P(R

d,Rd)

parameterize therefore the set of small deformations modulo bounded defor-
mations which are in the same pointed conjugacy class.

The following corollary yields a description of the parameter space
of deformations modulo topological conjugacy in terms of a mixed PV-
cohomology group. We denote by Z∗PV (Γ0,−) and B∗PV (Γ0,−) PV coycles
and PV coboundaries, respectively.

Corollary 5.2. The pattern equivariant mixed quotient group
Z∗s−P(R

d,Rd)/B∗w−P(R
d,Rd) ∩ Z∗s−P(R

d,Rd) is isomorphic to

Z∗PV (Γ0, Clc(Ξ,R
d))/B∗PV (Γ0, C(Ξ,R

d)) ∩ Z∗PV (Γ0, Clc(Ξ,R
d)).

Proof. H∗(ψ) : H∗w−P(R
d) → H∗PV (Γo, C(Ξ,R)) is injective and hence

its restriction to Z∗s−P(R
d)/B∗w−P(R

d) ∩ Z∗s−P(R
d) ⊂ H∗w−P(R

d) is injec-
tive as well. H∗(ψ) : H∗s−P(R

d) → H∗PV (Γo, Clc(Ξ,R)) is surjective and
ψ(B∗w,P(R

d)) ⊂ B∗PV (Γ0, C(Ξ,R)). It follows that the restriction of H∗(ψ)
to Z∗s−P(R

d)/B∗w−P (R
d) ∩ Z∗s−P(R

d) is surjective.
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