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Abstract

The creation of semantically relevant clusters is vital in bag-of-visual words mod-
els which are known to be very successful to achieve image classification tasks.
Generally, unsupervised clustering algorithms, such as K-means, are employed
to create such clusters from which visual dictionaries are deduced. K-means
achieves a hard assignment by associating each image descriptor to the clus-
ter with the nearest mean. By this way, the within-cluster sum of squares of
distances is minimized. A limitation of this approach in the context of image
classification is that it usually does not use any supervision that limits the dis-
criminative power of the resulting visual words (typically the centroids of the
clusters). More recently, some supervised dictionary creation methods based
on both supervised information and data fitting were proposed leading to more
discriminative visual words. But, none of them consider the uncertainty present
at both image descriptor and cluster levels. In this paper, we propose a super-
vised learning algorithm based on a Gaussian Mixture model which not only
generalizes the K-means algorithm by allowing soft assignments, but also ex-
ploits supervised information to improve the discriminative power of the clusters.
Technically, our algorithm aims at optimizing, using an EM-based approach, a
convex combination of two criteria: the first one is unsupervised and based on
the likelihood of the training data; the second is supervised and takes into ac-
count the purity of the clusters. We show on two well known datasets that our
method is able to create more relevant clusters by comparing its behavior with
the state of the art dictionary creation methods.
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1. Introduction

Many of the object recognition and scene classification algorithms first ag-
gregate local statistics computed from images to induce object models before
classifying images using supervised techniques such as SVM [1]. Bag of visual
words (BoW) approaches have indisputably become a reference in the image
processing community [1, 2, 3]. In this context, visual dictionary creation con-
stitutes the first crucial step in BoW methods usually known as vector quan-
tization. Generally, clustering algorithms are used to achieve this task in the
descriptor space. Each cluster representative (typically the centroid) is consid-
ered as a visual word of the visual dictionary. The K-means clustering algorithm
[1, 4] is the most common method to create such visual dictionaries even though
other unsupervised methods such as K-median clustering [5], mean-shift clus-
tering [6], hierarchical K-means [7], agglomerative clustering [8], radius based-
clustering [6, 9], or regular lattice-based strategies [10] have also been used.
One of the common features of these unsupervised methods is that they only
optimize an objective function fitting to the data but ignoring their class infor-
mation. Therefore, this reduces the discriminative power of the resulting visual
dictionaries. For example, the K-means algorithm minimizes the within-cluster
sum of squares of distances without considering the class of the data (i.e. the
label of the image the descriptor has been extracted from). Without any su-
pervision, only one dictionary can thus be created for all the categories in the
dataset, usually called universal dictionary or universal vocabulary.

To create more discriminative visual words, one solution consists in using
supervised approaches. In this context, some methods have been proposed to
create class specific or concept specific multiple dictionaries. For instance, in
[11, 12], an image is characterized by a set of histograms - one per class - where
each histogram describes whether the image content is well modeled by the
dictionary of that specific class. But one limitation of these methods is that they
ignore the correlation in the D-dimensional space representing the descriptors.
For instance, descriptors of a cat’s eye and a dog’s eye are highly correlated
and are likely complementary to learn the generic concept of eye. In [13], a
dictionary creation method based on the learning of a set of classifiers - one per
category - is presented, but they are learned independently. In [14], class specific
dictionaries are first created and then merged. Despite the fact that, once again,
this is achieved without considering the correlations, visual words are redundant
because they can occur in different class specific dictionaries. In [15], Zhang et al.
solve this problem of redundancy using a boosting procedure and learn multiple
dictionaries with complementary discriminative power. A disadvantage of this
approach is that the number of visual dictionaries corresponds to the number
of boosting iterations. Too many iterations (dictionaries) obviously leads to
overfitting and the authors do not provide any theoretical result to determine
the optimum number of visual dictionaries.

Recently, some methods have been proposed to create a unique universal
dictionary while using supervised information. In [16], the authors use a Gaus-
sian mixture model to take advantage of a soft assignment (unlike K-means)

2



and try to maximize the discriminative ability of visual words using image la-
bels. They use a supervised logistic regression model to modify the parameters
of the Gaussian mixture. In [17], the authors optimize jointly a single sparse
dictionary (using the L1 norm) and a classification model in a mixed gener-
ative and discriminative formulation. In both methods [16, 17], each image
descriptor is assumed to have been generated from a single object category or
a single class. We claim that this is a too strong assumption that limits the
efficiency of the resulting vocabularies. We will show experimental evidences of
this limitation in this paper. In [18], the authors present a general approach
to vector quantization that tries to minimize the information loss under the
assumption that each descriptor approximates a sufficient statistic for its class
label. Once again, this is a strong assumption notably for images described by
local descriptors (e.g. SIFT descriptors [19]). In [20], randomized clustering
forests are used to build visual dictionaries. This approach is first based on the
supervised learning of small ensembles of trees which contain a lot of valuable
information about locality in descriptor space. Then, ignoring the class labels,
these trees are used as simple spatial partitioners that assign a distinct region
label to each leaf. The disadvantage of this method is that the resulting clus-
ters suffer from a lack of generalization ability since only normalized mutual
information is used as splitting criterion during the construction process. More-
over, the method totally ignores the likelihood of the data which is important in
BoW image representation. In [21], the authors present an incremental gradient
descent-based clustering algorithm which optimizes the visual word creation by
the use of the class label of training examples. This method also assumes that
each descriptor is generated from a single class and ignores the correlation in the
D-dimensional space representing the descriptors. Even though all the previous
supervised methods allow us to significantly outperform traditional dictionary
creation methods, they often assume that each local descriptor belongs to a
single object category. Moreover, they do not try to optimize at the same time
the likelihood of the training data and the purity of the clusters.

By integrating both criteria in the objective function to optimize, we claim
that it is possible to jointly manage the two kinds of uncertainty the descrip-
tors are usually subject to: the cluster uncertainty and the class uncertainty.
The cluster uncertainty expresses the fact that it is something of an over-
simplification to achieve a hard assignment (like K-means) during the construc-
tion of the clusters. For instance, a wheel can contribute to the construction of
a visual word representing either a wheel of a bicycle or a wheel of a stroller,
with different probabilities of membership. Taking into account this uncertainty
during the creation of the visual dictionary can be realized using soft cluster-
ing such as Gaussian Mixture (GM) models, which have already been shown to
outperform hard assignment-based approaches [9]. The class uncertainty can be
illustrated by the following example: a brown patch descriptor may have been
generated from both dog and cow classes. So given a brown patch descriptor,
it would be short-sighted to label it by only one of these two classes. This
type of uncertainty is usually ignored at the image descriptor level in most of
the supervised dictionary creation algorithms. To overcome this limitation, we
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propose to exploit the probability for each descriptor to belong to each class.
The estimation of these probabilities can be achieved by resorting to learned
classifiers and approximating the Bayesian rule.

It is important to note that the discriminative power of a cluster in the
context of image classification is a function of its purity which depends on
both the cluster uncertainty and the class uncertainty. Although several super-
vised or semi-supervised GM models have been proposed in various domains
[22, 23, 24, 25] and in visual dictionary creation [12, 16, 26, 27], none of them
addresses the problem of this two-fold uncertainty and none jointly optimizes
generalization and discriminative abilities of clusters. To solve these limitations,
we present in this paper a new dictionary learning method which optimizes a
convex combination of the likelihood of the (labeled and unlabeled) training
data and the purity of the clusters. We show that our GM-based method has
the ability to quantify both uncertainties during the dictionary creation process
and leads to semantically relevant clusters.

The rest of this paper is organized as follows: after having introduced some
notations and definitions in Section 2, we present in Section 3 our GM model
and the corresponding objective function which will be optimized using an
Expectation-Maximization algorithm. Section 4 is devoted to an experimen-
tal analysis. We evaluate our method using the PASCAL VOC-2006 dataset
[28] and the Caltech-101 dataset [29] and show that it significantly outperforms
the state of the art dictionary creation approaches. We conclude this paper in
Section 5 by outlining promising lines of research on dictionary learning.

2. Notations and Definitions

Let X = {xk|k = 1 . . . n , xk ∈ R
D} be the set of training examples, i.e.

descriptors extracted from images and living in a D-dimensional space (e.g.
SIFT descriptors usually live in a 128-dimensional space). Let C = {cj |j = 1
. . . R } be the set of classes (i.e. the labels of the original images). Since labeling
data can be very expensive, we assume that X may contain both labeled and
non-labeled data. Let S = {si|i = 1 . . . I} be the set of clusters, where I > 1.

A Gaussian Mixture (GM) model is a generative model where it is assumed
that data are i.i.d from an unknown probability density function [30]. In our
approach, the distribution over the set of clusters is modeled using a GM model
Θ = {θi, i = 1 . . . I} where θi = {µi,Σi, wi} are the model parameters of the
ith Gaussian (corresponding to the cluster si). Here, µi is the mean, Σi is the
covariance matrix and wi is the weight of the ith Gaussian. Given the GM
model defined by its parameters Θ, the probability of the descriptor xk ∈ X is
computed as follows:

p(xk|Θ) =

I∑

i=1

wi ×Nµi,Σi
(xk), (1)
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where Nµ,Σ(x) is the multivariate Gaussian distribution, such that

Nµ,Σ(x) =
1

(2π)D/2|Σ|
1
2

exp(−
1

2
(x− µ)

′

Σ−1(x− µ)). (2)

In a GM model, the posterior probability p(si|xk,Θ) is calculated as follows:

p(si|xk,Θ) =
wi × p(xk|si, θi)∑
t wt × p(xk|st, θt)

(3)

subject to
Σiwi = 1, (4)

where p(xk|si, θi) is the probability for xk to belong to the ith Gaussian and
that is exactly equal to Nµi,Σi

(xk) given by Eq.2.

Usually, GM models are trained using the Expectation Maximization (EM)
algorithm to find maximum likelihood parameters [31]. This is achieved by
maximizing the log likelihood L(X) of the training set X defined as follows:

L(X) = log(

n∏

i=1

p(xi|Θ)) =

n∑

i=1

log(p(xi|Θ)). (5)

Since p(si|xk,Θ) and p(xk|Θ) are unknown, they will be estimated by the
GM and will be denoted by p̂(si|xk,Θ) and p̂(xk|Θ) respectively in the rest of
the paper. Note that we will use the same notation for all the other unknown
probabilities.

Unlike K-means algorithm which builds clusters in which each descriptor
belongs to the cluster with the nearest mean, a GM model has the ability
to allow soft assignments by providing a probability for a given instance to
belong to each cluster (thanks to Eq.3). It can be very useful to exploit these
probabilities not only during the visual dictionary construction (as we will see
in the next section) but also in the recognition step as shown in Figure 1.

3. Supervised GM-based Dictionary Learning

3.1. Intuitive idea

We claim that a relevant visual dictionary must be composed of visual words
which are not only specific enough to be sufficiently discriminative, but also
general enough to avoid overfitting phenomena. Note that to fulfill these two
required conditions, one has to find a good compromise between the cluster
purity and the likelihood of the data. If only the purity of the clusters is op-
timized using supervised information and without considering the likelihood of
the data, the resulting clusters will be very discriminative but the generalization
behavior of the BoW model will be likely subject to an overfitting phenomenon.
On the other hand, when no class information is considered (like in a standard
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Figure 1: Soft assignment vs. hard assignment. Let us assume that the visual dictionary is
made of three visual words A, B and C and that three descriptors have been extracted from
three images I1, I2 and I3. With a hard assignment, the label A is assigned to the descriptors
of I1, B to those of I2 and C to those of I3. By representing each image by a (normalized)
histogram, the (Euclidean) distances between I1, I2 and I3 are all the same while I1 and I2
are closer in the D-dimensional space. Applying a soft assignment (at the bottom) allows us
to better reflect the realities of the situation.

K-means algorithm), the resulting clusters will tend to be too general and each
cluster (visual word) might represent (too) many classes, reducing the discrim-
inative ability of the visual dictionary. Our objective is to optimize not only
the likelihood of the data but also the cluster purity by resorting to a convex
combination of both criteria optimized by a standard EM-based approach. The
aim is to find a good trade-off allowing us to generate visual words that are dis-
criminative enough to classify instances of various concepts and general enough
to represent an object model. The motivation behind our method is graphically
presented in Fig.2. The next sections are devoted to the presentation of the
technical aspects to reach this goal.

3.2. Joint optimization of the likelihood and the purity

In our method, we use a GM model where each Gaussian models a visual
word. Contrary to standard GM-based approaches, our supervised GM algo-
rithm not only takes advantage of the soft assignment allowed by a GM model,
but also integrates in the objective function a term estimating the purity of the
clusters. This purity can be defined in different ways from the entropy of the
clusters. In this paper, as it is also usually done to change a distance into a
similarity measure, we have used the negative logarithm to define the purity
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A B

C D

Figure 2: Rough illustration of the idea behind our approach. (A) Original data consisting
of two classes. (B) Totally unsupervised clustering (e.g. K-Means). The purity of the cluster
on the right is very low but the global likelihood (w.r.t. the centroids of the clusters) is
optimized. (C) Totally supervised approach. The purity is optimal but the resulting clusters
are too specific to allow some generalization ability. (D) Combination of both likelihood and
purity criteria leading to a “good” trade-off.

F (si|θi) from the entropy of the cluster si:

F (si|θi) = −log(−
∑

j

p̂(cj |si, θi)× log(p̂(cj |si, θi))) + φ, (6)

where p̂(cj |si, θi) is the estimated probability of class cj given cluster si which
depends on the GM parameters θi of cluster si

2. φ is a constant equal to
log(log(R)) if R > 2, otherwise φ = 0. This constant makes sure that F (si) is
a positive function. The higher the value of F (si), the purer the cluster.

p̂(cj |si) is estimated using its marginal distribution expansion w.r.t. all
possible samples x ∈ X (see Appendix A for more details):

p̂(cj |si) =

∑
k p̂(xk|cj)× p̂(xk|si)∑

t

∑
k p̂(xk|ct)× p̂(xk|si)

. (7)

The above equation is nothing more than a generalization of the proportion
of examples which belong to a class cj given a cluster si. But since we are using
a GM, probabilities are used to estimate p̂(cj |si) rather than counting exam-
ples. To do that, we first need to estimate p̂(xk|si). This can be done using the
posterior probability p̂(si|xk,Θ) (i.e. the so-called cluster uncertainty) given by
Eq.3. Second, we have to estimate p̂(xk|cj). To achieve this task, we suggest
to learn a classifier, use it to compute the posterior probability p̂(cj |xk) (i.e.

2To simplify the notations, θi will be omitted when it is explicitly related in a formula to
cluster si. This is the case e.g. for F (si|θi) or p̂(cj |si, θi).

7



the so-called class uncertainty), and apply the Bayesian rule to get the estimate
p̂(xk|cj). Note that this way to proceed allows the computation of the purity
F (si) even in situations where the training set is composed of both labeled and
unlabeled examples. Indeed, by taking advantage of the learned classifier to esti-
mate p̂(cj |xk), it is possible to deal with a set X containing unlabeled instances
xk and therefore reduce the risk of errors and the expensive cost of manually
and hardly labeling a large amount of data.

As mentioned before, the GM parameters are generally estimated by only
optimizing the log likelihood of the data using the expectation maximization
(EM) algorithm. Here, our objective is to find the parameters Θ by optimizing
not only the likelihood of Eq.5 but also the cluster purity of Eq.6. By this
way, the two-fold uncertainty p̂(cj |xk) and p̂(si|xk) are taken into consideration
in the estimation. The objective function we aim at maximizing is defined as
follows:

J(Θ) = (1− α)×
∑

xk∈X

log(p̂(xk|Θ)) + α×
I∑

i

log(F (si)), (8)

where α (0 ≤ α ≤ 1) is a control parameter of the algorithm that determines
the level of supervision authorized in the GM. If α = 0, the algorithm is totally
unsupervised and so only optimizes the likelihood. In this case, it boils down
to learning a standard GM model with the limitations already mentioned in the
context of image classification. If α = 1, the optimization process only aims at
building pure clusters with the obvious risk to lead to overfitting phenomena.
Therefore, α plays an important role in our method and deserves a special atten-
tion in order to find a good compromise between these two extreme situations
(see Section 4.5 for an experimental study).

Our objective is to find the optimal model parameters Θ∗ that maximize the
above objective function such that:

Θ∗ = argmaxΘJ(Θ). (9)

To do this, we compute the derivatives with respect to each model parameter
µi,

∑
i, wi for i = 1 . . . I. Since we are constrained by Eq.4, we use a Lagrange

multiplier λ as follows:

J̃(Θ) = J(Θ) + λ(1−
∑

i

wi). (10)

Computing the partial derivatives of Eq.10 w.r.t. µi,
∑

i, wi respectively and
equating them to zero allows us to find the optimal parameters. The general
formula of the derivative of Eq.10 w.r.t. µi or

∑
i (noted (µi,

∑
i)) is given by

(see Appendix B for more details):
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∂J̃

∂(µi,
P

i)
=

∑

k

{(1− α)p̂(si|xk) + (11)

αBi

∑

j

a
j
i × p̂(xk|cj)× p̂(xk|si)} ×

∂

∂(µi,
∑

i)
log(p̂(xk|si))

where Bi, the normalization parameter of the ith Gaussian, is given by

Bi =
−1

F (si)[
∑

j p̂(cj |si)× log(p̂(cj |si))]
(12)

×
1∑

t

∑
k p̂(xk|ct)× p̂(xk|si)

,

and where

a
j
i = 1 + log(p̂(cj |si)). (13)

Using either µi or Σi in Eq.11, and equating to zero we find the optimal
parameters of each Gaussian such that:

µi =

∑
k{(1− α)p̂(si|xk) + αBi

∑
j a

j
i p̂(xk|si)p̂(xk|cj)}xk

∑
k{(1− α)p̂(si|xk) + αBi

∑
j a

j
i p̂(xk|si)p̂(xk|cj)}

, (14)

Σi =

∑
k{(1− α)p̂(si|xk) + αBi

∑
j a

j
i p̂(xk|si)p̂(xk|cj)}A

k
i∑

k{(1− α)p̂(si|xk) + αBi

∑
j a

j
i p̂(xk|si)p̂(xk|cj)}

, (15)

where Ak
i = (µi − xk)(µi − xk)t.

Computing the derivatives of Eq.10 with respect to parameter wi (see Ap-
pendix B for more details), we get

∂J̃(Θ)

∂wi
= Σk

p̂(xk|si)

Σtwt × p̂(xk|st)
− λ, (16)

and equating to zero, we get

wi =

∑
k p̂(si|xk)

n
. (17)

In the next section, we will use Equations 14, 15 and 17 to update the
parameters of the GM model using an EM-based iterative learning algorithm.
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3.3. EM-based learning algorithm

After an initialization step, our EM-based algorithm iteratively performs (as
usually) an expectation (E) step and a maximization (M) step. The E-step con-
sists of estimating from the training set the expected value of the parameters,
which are then used in the M-step (i) to maximize the expected value of our
objective function J and (ii) to estimate the new model parameters.

To initialize our GM model, we have to predetermine the number of clusters I

(i.e. the number of visual words). We also have to provide to the EM-algorithm
a first series of estimates for the parameters µi,Σi and wi, i = 1 . . . I. To do
this, we simply run K-means algorithm on the training set X. The mean µi

corresponds to the centroid of the ith cluster si and Σi to the corresponding
covariance matrix. Finally, the initial weight wi is calculated by counting the
number of training examples located in the cluster si and by normalizing it to
satisfy Condition 4.

The pseudo-code of our algorithm (called GEMP) is presented in Algorithm
1. The convergence of GEMP is reached if the objective function J does not
increase sufficiently between two iterations. This condition can be verified w.r.t.
a given threshold. But note that since J is a weighted average computed from
more than 30 examples, we can apply the central limit theorem stating that
J asymptotically convergences towards a normal distribution and check the
convergence by resorting to a statistical test of average equivalence.

Data: X = {x1...xn}, a number of clusters I, and a learned classifier
providing p̂(cj |xk) ∀j, k

Result: Final GM parameters

t← 0;
Initialization-Step: use of K-means to initialize parameters Θ0;
while No convergence do

E-Step;
Estimate expected value for p̂(xk|si), p̂(si|xk), p̂(xk|cj), Bi and a

j
i ,

∀i, j, k;
M-Step;
Update parameters Θt+1 using Equations 14,15 and 17;
Evaluate objective function J(Θt+1);
t← t + 1;

Return parameters Θt;

Algorithm 1: GEMP Algorithm.
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Figure 3: Sample images drawn from the 10 classes of PASCAL VOC-2006 dataset.

Figure 4: Sample images drawn from the 10 classes of Caltech-10 dataset.

4. Experiments

4.1. Database

In order to assess the efficiency of our new dictionary creation method, we
carry out experiments from the well-known challenging PASCAL-VOC-2006
dataset [28] and from the Caltech-10 [29] dataset, as also used in [16]. The first
one contains 5,304 images, 2,618 are used as training examples and 2,686 as
testing data including 9,507 annotated objects. The second one contains 400
images for training and 2644 for testing. In both cases, ten annotated object
classes are provided which are equally distributed between the training and the
test sets.

4.2. Data preparation and compared methods

Before learning a visual dictionary, one needs to represent each image by a
set of descriptors. To achieve this task, we first apply a Harris-Laplace [32] key
point detector using the implementation provided in [33]. Then, SIFT descrip-
tors [19] are generated from these key points. As pointed out in [26], dimension-
ality reduction is an important step in GM-based BoW image representation.
This makes sure that the most relevant directions of the input feature space are
identified and that the remaining noisy directions discarded. Moreover, this al-
lows us to substantially reduce the computational complexity of the algorithm.
Therefore, we perform a principal component analysis to reduce the dimension
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D of the descriptors from 128 to 32.

We compare our algorithm GEMP with three other approaches:

� The K-means clustering algorithm which is used as a baseline.

� The SDLM model introduced in [16] which combines an unsupervised
model (a GM) and a supervised model (a logistic regression model) in a
probabilistic framework. To avoid having to implement this method and
to allow us to simply report the results presented in [16], we use the same
experimental setup.

� The incremental gradient descent-based clustering algorithm (SA for short)
presented in [21] which optimizes the visual word creation by the use of
the class label of training examples. Unlike SDLM, note that SA is a su-
pervised hard-assignment method.

Note that the choice of these methods is driven by our desire to compare
GEMP with the state of the art dictionary methods, that is with either (i) unsu-
pervised methods (K-means) or (ii) supervised methods with hard-assignment
(SA) or (iii) supervised methods with soft-assignment (SDLM).

For both datasets, we build the visual dictionary using 20,000 SIFT descrip-
tors per class leading to a whole training set X of 200,000 examples. Among
these data, we only use 40,000 labeled descriptors (i.e. 20% of X) to create the
dictionary. These labeled examples are obtained from training images using a
bounding box surrounding the considered object for the PASCAL-VOC-2006
dataset (see Figure 3) and using the boundaries of the object provided by the
authors for the Caltech-10 dataset (see Figure 4). The 80% remaining descrip-
tors are generated from the whole image without bounding boxes. Moreover, as
explained before, we need in our algorithm to estimate the posterior probability
p̂(cj |xk) of the descriptors. To do this, we train several classifiers (Random
Forests, Decision Trees, Bayesian model, etc.) and keep the most performing
one (using a validation set) to estimate p̂(cj |xk). For both datasets, the best
learner is the Random Forest algorithm [34] which is run with 20 trees and 8
random features are used during the induction process.

4.3. Image classification task

To compare the different visual dictionaries learned by the four approaches
and assess their respective discriminative power, we perform an image classifi-
cation task. For both datasets, we learn 10 classifiers (one for each class against
the others) using a Support Vector Machine algorithm and a chi-square kernel
as used in [16]. The binary classification performance for each object class is
quantitatively estimated by the average precision, which is a popular measure
that takes into account both recall and precision [35]. One can express precision
as a function of recall, denoted by p(r).
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Definition 1. The average value of p(r) over the entire interval from r = 0 to

r = 1,
∫ 1

0
p(r)dr, is called the average precision.

Note that to be able to achieve this classification task, an image P has to be
represented in the form of a feature vector H. For the hard assignment-based
methods (i.e. K-means and SA), we use a standard normalized term frequency
histogram approach. In this case, a component Hi of H corresponds to the
proportion of times the ith visual word (representing cluster si) is assigned to
the descriptors extracted from the image P . More formally,

Hi =
1

|P |

∑

xk∈P

11[si=NN(xk)], (18)

where 11[si=NN(xk)] is an indicator function which takes the value of 1 if the
center of si is the nearest neighbor NN(xk) (using the Euclidean distance) of
the descriptor xk and 0 otherwise, and where |P | is the number of descriptors
extracted from the image P .

For the two soft-assignment methods based on a GM model (i.e. SDLM and
our method GEMP), each component is obtained by summing (and normalizing)
the conditional probabilities p̂(si|xk) for a descriptor xk to belong to cluster si,
that exactly corresponds to the observed frequency of descriptors in cluster si.
More formally,

Hi =
1

|P |
×

∑

xk∈P

p̂(si|xk). (19)

4.4. Experimental results

The mean average precisions (Mean AP) are reported in Tables 1 and 2 for
each binary classification problem. In each table, we indicate the number of
visual words (parameter I) required to reach the best performance on average.
Note that we use a value α = 0.5 for GEMP (an experimental study on the
effect of α is presented in Section 4.5). Several remarks can be made:

� First, for both datasets, our GEMP algorithm allows us to outperform all
the other supervised and unsupervised methods. Using a Student paired-t
test with a Type I error of 5%, we can show that the difference between the
mean average precisions is significant in favor of our method. We obtain
a precision of 0.8257 for GEMP versus 0.6425, 0.6715 and 0.7516 for K-
means, SA and SDLM respectively for the PASCAL-VOC-2006 dataset
and 0.9293 for GEMP versus 0.8373, 0.8748 and 0.8928 for K-means, SA
and SDLM respectively for the Caltech-10 dataset.

� Second, on the PASCAL-VOC-2006 dataset, for all the binary classifi-
cation problems, GEMP is better than SDLM. Better still, for 9 binary

13



K-Means SA SDLM GEMP
I=2,000 I=1,000 I=400 I=400

Object class
Bicycle 0.7295 0.7081 0.8198 0.8267

Bus 0.4994 0.6457 0.8538 0.8959
Car 0.6822 0.6538 0.8122 0.9038
Cat 0.7131 0.7119 0.7537 0.8639
Cow 0.6358 0.6469 0.7581 0.8582
Dog 0.5917 0.6635 0.7234 0.7617

Horse 0.6431 0.6966 0.6322 0.7604
Motorbike 0.6890 0.6216 0.7946 0.8332

Person 0.5773 0.6686 0.6307 0.6818
Sheep 0.6905 0.6982 0.7376 0.8714

Mean AP 0.6425 0.6715 0.7516 0.8257

Table 1: Mean average precision evaluated on PASCAL VOC-2006 dataset. An average
precision in bold font means that GEMP significantly outperforms all the other methods
using a Student paired-t test with a Type I error of 5%.

problems out of 10, GEMP significantly outperforms SDLM using a Stu-
dent paired-t test (the difference is not significant only for the class Bicy-
cle). For the Caltech-10 dataset, GEMP is better than the other methods
on 9 out of 10 classes and significantly better on 5. This constitutes an
experimental evidence of the efficiency of GEMP since SDLM has already
been proven to be very competitive in comparison with state of the art
approaches [16]. The main reason of this improvement comes from the
fact that we do not assume in our approach that each image descriptor
is generated from a single object category. By taking into consideration
the two-fold uncertainty in our GM model, GEMP is able to improve the
discriminative power of the created visual words.

� Finally, we can note that like SDLM, GEMP is sparse in terms of visual
words required to reach the optimal performance. For the PASCAL-VOC-
2006 dataset, only 400 visual words are sufficient for GEMP and SDLM
while 1,000 clusters are necessary for SA, and 2,000 for K-means. The
same remark can be made for the Caltech-10 dataset for which SDLM
and GEMP need a small number of visual words (I = 200) to outperform
the other methods. Through this classification in terms of required visual
words to reach the optimal behavior, we can confirm that (i) using su-
pervised information is better (≫) than resorting to a standard K-Means
clustering (i.e. SA ≫ K-means), (ii) allowing a soft-assignment is bet-
ter than a hard assignment of a descriptor to the nearest centroid (i.e.
SDLM ≫ SA) and finally (iii) taking into consideration in a GM model
the two-fold uncertainty provides better results (i.e. GEMP ≫ SDLM).

To show the behavior of our method on various sizes of visual dictionaries, we
report on Figure 5 the results obtained with GEMP according to an increasing
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K-Means SA SDLM GEMP
I=400 I=400 I=200 I=200

Object class
Airplanes 0.8253 0.9212 0.8803 0.9253
Bonsai 0.8020 0.7050 0.8649 0.8721
Car 0.7981 0.8012 0.8000 0.8981

Chandelier 0.8286 0.8393 0.9310 0.9486
Faces 0.8988 0.9191 0.9772 0.9989

Hawksbill 0.7816 0.8885 0.7375 0.8217
Ketch 0.7948 0.9085 0.9153 0.9248

Leopards 0.8956 0.9937 0.9157 0.9957
Motorbikes 0.8781 0.8441 0.9314 0.9381

Watch 0.8697 0.9272 0.9750 0.9697
Mean AP 0.8373 0.8748 0.8928 0.9293

Table 2: Mean average precision evaluated on Caltech-10 dataset. An average precision in
bold font means that GEMP significantly outperforms all the other methods using a Student
paired-t test with a Type I error of 5%.
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Figure 5: Mean average precision of GEMP (using α = 0.5) evaluated on PASCAL VOC-2006
and Caltech-10 datasets on different dictionary sizes (from 50 to 1,000 visual words).
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Figure 6: Mean average precision of K-Means evaluated on PASCAL VOC-2006 and Caltech-
10 datasets on different dictionary sizes (from 50 to 1,000 visual words).

number of visual words from 50 to 1,000. We can see that whatever the size
(even for very small dictionaries), GEMP is very competitive that shows that
it is a very interesting sparse method. A comparison with the behavior of K-
Means (see Figure 6) confirms that the use of supervised information for building
dictionaries dramatically improves the quality of the resulting visual words. K-
Means requires much more visual words (1,000 for PASCAL-VOC-2006 - in fact
it needs 2,000 clusters to reach its optimum- and 400 for Caltech-10 ) to reach
rather poor average precisions.

Figures 7 and 8 show for both datasets the mean and the standard devia-
tion of the purity (with α = 0.5) w.r.t. an increasing number of visual words
(clusters). We can note that the average purity increases showing that clusters
generally tend to be specialized for a given class. Interestingly, we can also note
that the standard deviation of the purity grows as we increase the number of
words. This can be explained by the nature of our objective function which
aims at jointly optimizing the likelihood and the entropy. Therefore, this leads
to some clusters having a high purity and some others having moderate purity
but high likelihood.

In order to give an idea about which kind of words contributes the most
to a good performance in image categorization, we estimate the mean average
precision with (i) only words of high purity, (ii) only words of low purity and (iii)
“intermediate” words representing a compromise between high purity and high
likelihood. To achieve this task, we split the optimal set of visual words obtained
for PASCAL VOC-2006 and Caltech-10 (i.e. 400 and 200 words respectively)
into three balanced subsets: the most pure words, the less pure words, and the
remaining intermediate ones. The results are presented in Figures 9 and 10.
GEMP∗ is the optimal mean average precision (as already shown in Tables 1
and 2). GEMP (1/3) is the mean average precision of our algorithm when only
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Figure 7: Mean cluster purity and standard deviation of the cluster purity according to an
increasing number of visual words for the PASCAL VOC-2006 dataset.
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Figure 8: Mean cluster purity and standard deviation of the cluster purity according to an
increasing number of visual words for the Caltech-10 dataset.
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Figure 9: Mean average precision on not pure (Low), moderately pure (Intermediate) and
pure (High) visual words for the PASCAL VOC-2006. GEMP (1/3) and GEMP∗ are the
results obtained with our algorithm with 133 and 400 visual words respectively.
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Figure 10: Mean average precision on not pure (Low), moderately pure (Intermediate) and
pure (High) visual words for the Caltech-10 dataset. GEMP (1/3) and GEMP∗ are the results
obtained with our algorithm with 66 and 200 visual words respectively.

a third of the words are used (to be fair with the other results). As expected,
using only words of high purity or of low purity is not sufficient to obtain a good
precision. Though a good behavior is obtained with the intermediate words,
we can see that one needs the three categories to reach the best performance
(with the same number of words) that provides an experimental evidence of the
interest of our algorithm.

4.5. Effect of the parameter α in GEMP

As we said before, GEMP depends on the parameter α which controls the
level of supervision in the objective function J(Θ). If α = 0, the algorithm is
totally unsupervised and so only optimizes the likelihood. If α = 1, the opti-
mization process only aims at building pure clusters. To assess the impact of α
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Figure 11: Impact of α on the average precision. Fifteen points were computed and the curve
has been interpolated using a 3rd order function.

on the average precision and on the average purity, we perform an experimental
study by varying α from 0 to 1 with a constant number of visual words I = 400.
The following remarks can be made from the results obtained on the PASCAL-
VOC-2006 dataset and presented in Figures 11 and 12 (note that since the same
behavior is observed on the Caltech-10 dataset, we do not report the results):

� As expected, for small values (α < 0.15), the level of supervision is not
sufficient to take advantage of GEMP (see Figure 11). We obtain more or
less the same results as K-Means. On the other hand, for large values (α >

0.85), most of the clusters become purer and purer leading to overfitting
phenomena. Therefore, even if in both situations the obtained average
precisions are almost the same (smaller than 0.65), this is definitely not
due to the same reasons. In the first case, the resulting clusters are too
general to be discriminative, while in the second case, the visual words are
too specific to allow us to generalize.
The best results are obtained with middle values (α ≈ 0.5). Even if we
are aware that the optimal α obviously depends on the application we
deal with, we can note that a good balance between the two criteria (i.e.
likelihood and purity) of the objective function seems to be a relevant way
to obtain good results.

� From Figure 12, we can note that, as expected, the average purity of the
clusters monotonically increases as α raises. But as explained before, a too
large purity leads to overfitting, compromising the generalization ability
of the resulting clusters.

5. Conclusion and future work

In this paper, we have presented a new supervised Gaussian Mixture model
to build discriminative visual dictionaries. Our algorithm, called GEMP, aims
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Figure 12: Impact of α on the average purity of the clusters. Nine points were computed and
the curve has been interpolated using a 3rd order function.

at maximizing not only the likelihood of a training set of labeled and unlabeled
data but also the purity of the clusters. The originality of GEMP comes from
the fact that it takes into consideration a two-fold uncertainty (cluster and class
uncertainty) in the optimization process. We carried out a large experimen-
tal study on the VOC-2006 and Caltech-101 datasets and compared GEMP
with three other dictionary creation methods. We provided some experimental
evidences that GEMP outperforms the state of the art methods, and has the
interesting ability to be rather sparse, i.e. it only requires a small amount of
visual words to reach its optimum in classification.

In our experiments, we have shown that the average precision depends on the
parameter α. In this paper, we considered α as a meta-parameter to manually
tune. But Figure 11 brings to the fore the need for α to be optimized. This
could be achieved by slightly modifying Eq.8 and by generalizing it as follows:

J(Θ, α) = f(α)×
∑

xk∈X

log(p(xk|Θ)) + g(α)×

I∑

i

log(F (si)). (20)

So far, we assumed in our model that a simple relationship is sufficient to
model the trade-off between the likelihood of the training data and the purity
of the clusters. In this context, we used f(α) = (1− α) and g(α) = α in Eq.20.
While we empirically tried to find a good α, the results suggest that it would be
interesting to directly optimize J(Θ, α) with respect to both θ and α with the
EM-algorithm. This will allow us to find not only the optimal Gaussian Mix-
ture parameters but also the best possible parameter α via an iterative learning
process. The interesting challenge we plan to deal with is to define relevant
functions for f(α) and g(α).

Another interesting point which would deserve further investigation is re-
lated to the optimal number of clusters (as suggested by Figure 5). In GEMP,
we have to predetermine this parameter. While this question is still an open
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problem in unsupervised learning, we think that our specific probabilistic model
provides a good framework to find a relevant solution. One possible way would
consist in using a greedy approach starting at time t = 1 from a small number of
clusters It=1 ≥ 1 and splitting step by step during the iterative process the one
with the worst contribution to the objective function J(Θ). But this solution
raises another problem related to the complexity cost and requires algorithmic
improvements.

A usual way to select key points from the images consists in using a Harris
Laplace detector (as we did in this paper) or a dense sampling. We think that
our new GM model could be very useful to select the most relevant key points of
a new image to classify w.r.t. their probabilities and so reduce the algorithmic
complexity of the classification algorithm.

Finally, a current trend in image categorization is to exploit color information
to improve the classification accuracy. However, color features are not always
relevant and highly depend on the considered application. Our objective is to
use our performing dictionary construction method from two different descriptor
spaces respectively built from color and shape features, merge the resulting
dictionaries and then learn by a Logistic Regression model about the relevance
of each visual words. By this way, our aim is to be able to weight color features
and estimate their discriminative power to learn some specific classes of objects.

Appendix A: Derivation of p̂(cj|si)

Eq.7 shows the way to compute p̂(cj |si). This expression is obtained by
using the marginal distribution expansion of p̂(cj |si) w.r.t. all possible samples
x ∈ X. The probability p(cj |si) is obtained as follows:

p(cj |si) =
p(cj , si)

p(si)
.

Using the training set X to estimate p(cj |si), we get:

p̂(cj |si) ∝

∑
k p̂(cj , si, xk)

p̂(si)
. (21)

Assuming cj is conditionally independent (⊥) of si given xk and using the
property cj⊥si|xk ⇔ p̂(cj |si, xk) = p̂(cj |xk), we get

p̂(cj , si, xk) = p̂(cj |xk)× p̂(si, xk).

Since we know that p̂(cj |xk) ∝ p̂(xk|cj)p̂(cj) and p̂(xk|cj)p̂(cj) = p̂(xk, cj),
we get p̂(cj , si, xk) ∝ p̂(xk, cj)× p̂(si, xk).

So, we can assume the conditional independence between p̂(cj , xk) and p̂(si, xk)
and rewrite Eq.(21) as follows:
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p̂(cj |si) ∝

∑
k p̂(cj , xk)× p̂(si, xk)

p̂(si)

p̂(cj |si) ∝

∑
k p̂(xk|cj)× p̂(cj)× p̂(xk|si)× p̂(si)

p̂(si)

p̂(cj |si) ∝
∑

k

p̂(xk|cj)× p̂(cj)× p̂(xk|si).

In order to satisfy the constraint of a probability distribution, let us normal-
ize the previous expression as follows:

p̂(cj |si) =

∑
k p̂(xk|cj)× p̂(cj)× p̂(xk|si)∑

t

∑
k p̂(xk|ct)× p̂(ct)× p̂(xk|si)

Assuming that the class prior probability p̂(cj) = 1
R ,∀j = 1 . . . R, we get:

p̂(cj |si) =

1
|C| ×

∑
k p̂(xk|cj)× p̂(xk|si)

1
|C| ×

∑
t

∑
k p̂(xk|ct)× p̂(xk|si)

.

Therefore, we get:

p̂(cj |si) =

∑
k p̂(xk|cj)× p̂(xk|si)∑

t

∑
k p̂(xk|ct)× p̂(xk|si)

,

and so Eq.7 holds.

Appendix B: Derivation of ∂ eJ

∂θi

Derivation of ∂ eJ
∂θi

can be performed in two steps, first by computing the

partial derivative ∂ eJ
∂(µi,

P

i)
where the term λ(1−

∑
i wi) disappears as a constant,

and then by calculating ∂ eJ
∂wi

.

Derivation of ∂ eJ
∂(µi,

P

i)

∂J̃

∂(µi,
P

i)
=

∂

∂(µi,
P

i)
[(1− α)

∑

k

log(p̂(xk|Θ)) + α

I∑

i

log(F (si))]

= (1− α)
∑

k

wi
∂p̂(xk|si)
∂(µi,

P

i)∑I
j wj p̂(xk|sj)

+ α
F

′

(si)

F (si)
.
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Using the property holding for any function G and stating that G′(x) =
G(x)× ∂

∂x log(G(x)), we get:

∂J̃

∂(µi,
P

i)
= (1− α)

∑

k

p̂(si|xk)
∂

∂(µi,
∑

i)
log(p̂(xk|si)) + α

F
′

(si)

F (si)
, (22)

where F
′

(si) is the partial derivative of F (si) with respect to (µi,
∑

i).

F (si|θi) = −log(−
∑

j

p̂(cj |si)× log(p̂(cj |si))) + φ

F
′

(si) =
−

∑
j(1 + log(p̂(cj |si))

∂
∂(µi,

P

i)
p̂(cj |si)

∑
j p̂(cj |si)× log(p̂(cj |si))

Let us simplify the notations by changing (1 + log(p̂(cj |si)) by a
j
i . We get,

F
′

(si) =
−

∑
j [a

j
i ×

∑
k

∂
∂(µi,

P

i)
p̂(xk|cj)× p̂(xk|si)]

∑
j p̂(cj |si)× log(p̂(cj |si))×

∑
t

∑
k p̂(xk|ct)p̂(xk|si)

,

=
−

∑
j [a

j
i × p̂(xk|cj)×

∑
k

∂
∂(µi,

P

i)
p̂(xk|si)]

∑
j p̂(cj |si)× log(p̂(cj |si))×

∑
t

∑
k p̂(xk|ct)p̂(xk|si)

,

=
−

∑
k

∑
j [a

j
i × p̂(xk|cj)×

∂
∂(µi,

P

i)
p̂(xk|si)]

∑
j p̂(cj |si)× log(p̂(cj |si))×

∑
t

∑
k p̂(xk|ct)p̂(xk|si)

,

=
−

∑
k

∑
j [a

j
i × p̂(xk|cj)× p̂(xk|si)]×

∂
∂(µi,

P

i)
log(p̂(xk|si))

∑
j p̂(cj |si)× log(p̂(cj |si))×

∑
t

∑
k p̂(xk|ct)p̂(xk|si)

.

Substituting this expression in Eq.22, we get:

∂J̃

∂(µi,
P

i)
= (1− α)

∑

k

[p̂(si|xk)]×
∂

∂(µi,
∑

i)
log(p̂(xk|si)) +

αBi

∑

k

∑

j

[aj
i × p̂(xk|cj)× p̂(xk|si)]×

∂

∂(µi,
∑

i)
log(p̂(xk|si))

where

Bi =
−1

F (si)[
∑

j p̂(cj |si)× log(p̂(cj |si))]×
∑

t

∑
k p̂(xk|ct)× p̂(xk|si)
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∂J̃

∂(µi,
P

i)
=

∑

k

{(1− α)p̂(si|xk) + αBi

∑

j

a
j
i × p̂(xk|cj)× p̂(xk|si)} ×

∂

∂(µi,
∑

i)
log(p̂(xk|si))

Derivation of ∂ eJ
∂wi

∂J̃

∂wi

= (1− α)
∑

k

p̂(xk|si)∑
t p̂(xk|st)wt

− λ

By setting ∂ eJ
∂wi

= 0, we get

(1− α)
∑

k

p̂(xk|si)∑
t p̂(xk|st)wt

− λ = 0

=⇒ (1− α)
∑

k

p̂(xk|si)wi∑
t p̂(xk|st)wt

− λ× wi = 0

=⇒ (1− α)
∑

k

p̂(si|xk)− λ× wi = 0

=⇒ (1− α)
∑

i

∑

k

p̂(si|xk)−
∑

i

λ× wi = 0

=⇒ (1− α)n−
∑

i

λ× wi = 0

=⇒ λ = (1− α)× n

=⇒ wi =

∑
k p̂(si|xk)

n
.
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