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Résumé

La plupart des écoulements granulaires denses dans la nature, tels que les avalanches

de débris, les écoulements pyroclastiques, les glissements de terrain et les avalanches

sous-marines, sont constitués d’un large éventail de différents composants solides im-

mergés dans un environnement fluide. Afin d’obtenir une bonne représentation de la

dynamique de ces écoulements, il est nécessaire d’examiner les mécanismes d’interaction

entre les différents composants du mélange. Dans ce travail, nous avons développé

un cadre théorique basé sur la théorie de mélange afin de représenter la dynamique

d’un écoulement dense de matériau granulaire hétérogène composé d’un certain nombre

d’espèces solides avec des propriétés différentes, et immergé dans un environnement flu-

ide Newtonien. Le système d’équations obtenu a été validé en comparant les résultats

numériques avec des mesures expérimentales obtenues pour des écoulements gravitaires

de matériaux granulaires, générés par l’effondrement d’une colonne de grains en deux

dimensions, en utilisant de l’air ou de l’eau comme milieu fluide. Cette théorie a ensuite

été utilisée pour étudier les effets du fluide ambiant sur la dynamique des écoulements de

matériaux granulaires homogènes, ainsi que les effets de la ségrégation sur la dynamique

des écoulements granulaires de mélanges binaires constitués de petites et grandes partic-

ules sphériques d’égale densité. Nos résultats suggèrent que les équations reproduisent

les caractéristiques essentielles de la dynamique des écoulements granulaires denses

hétérogènes. En particulier, nous montrons que le fluide ambiant modifie la dynamique

de l’écoulement granulaire via des changements de la pression hydrodynamique et des

interactions de frottement entre le fluide et les particules solides. D’une part, la pression

hydrodynamique du fluide peut supporter le poids apparent des particules, induisant

ainsi une transition entre un écoulement granulaire dense compactée et un écoulement

granulaire dense en suspension. D’autre part, les forces de frottement s’opposent au

mouvement des particules, en particulier près des bords. En outre, nous démontrons

que la ségrégation des matériaux granulaires augmente la vitesse du front en raison

de la dilatation de l’écoulement. Cette augmentation de la vitesse d’écoulement est

amortie par l’environnement fluide, et ce comportement est plus marqué dans l’eau que

dans l’air. Par conséquent, la vitesse réelle du front est le résultat de l’équilibre entre

l’expansion volumétrique causée par la ségrégation et la force de frottement imposée

par le milieu fluide. Sur la base des résultats de cette étude, nous concluons qu’un

modèle réaliste pour des écoulements granulaires hétérogènes doit considérer au moins

trois éléments: des grains de petite et de grande taille et un environnement fluide. Ainsi,

le cadre théorique proposé dans cette thèse peut être utile pour étudier la dynamique

grande échelle des écoulements géophysiques dans la nature. Les principaux résultats

de cette thèse ont fait l’objet de deux articles, le premier publié dans Journal of Fluid

Mechanics (2010, 648: 381 - 404), et le second soumis au même journal.



Summary

Most dense grains flows in nature, such as debris avalanches, pyroclastic flows, land-

slides and subaquatic avalanches, involve a wide range of different solid constituents

that are immersed in an ambient fluid. In order to obtain a good representation of

these flows, the interaction mechanisms among the different constituents of the mixture

should be considered. In this research, it was developed a theoretical framework based

on the mixture theory for representing the dynamics of a dense heterogeneous granular

flow composed by a number of solid species with different properties, and immersed in

a Newtonian ambient fluid. These fully coupled equations were solved numerically and

validated by comparing the numerical results with experimental measurements of grav-

itational granular flows, triggered by the collapse of two-dimensional granular columns

in ambient air or water. This theory was then used to investigate the ambient fluid

effects on homogeneous granular flow dynamics, and the segregation effects on the dy-

namics of binary mixtures of small and large spherical particles of equal mass density.

Our results suggest that the model equations include the essential features that describe

the dynamics of dense heterogeneous granular flows. In particular, it is shown that the

ambient fluid modifies the granular flow dynamics via hydrodynamic fluid pressure and

drag interactions between the fluid and the solids. On the one hand, hydrodynamic

fluid pressure can hold the reduced weight of the solids, thus inducing a transition from

dense-compacted to dense-suspended granular flows. On the other hand, drag forces

counteract the solids movement, especially within the near-wall viscous layer. Further-

more, it is shown that segregation of the granular material increases the front speed

because of the volumetric expansion of the flow. This increase in flow speed is damped

by the ambient fluid, and this behaviour is more pronounced in water compared to the

case in air. Therefore, the actual front speed is the result of the balance between the

volumetric expansion caused by segregation and the drag force imposed by the ambient

fluid. Based on the results of this thesis, it is concluded that a realistic model of dense

heterogeneous granular flows should consider at least three constituents: large and small

grains, and the ambient fluid. So that, the continuum framework proposed here may be

useful to study the large scale dynamics of these kinds of flows in nature, such as geo-

physical flows. The main results of this thesis were published in two scientific articles,

the first one in the Journal of Fluid Mechanics (2010, 648: 381 - 404), and the second

one submitted to the same journal.
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Chapter 1

Introduction

1.1. Approaches to model granular flows

A granular flow is a collection of discrete solid particles that in motion behaves like

a fluid (Campbell 2006). These flows are common in numerous industrial and environ-

mental contexts. In the latter case, landslides, debris avalanches and pyroclastic flows

represent important natural hazards (Forterre & Pouliquen 2008). In general, granular

flows in nature are composed of various particle types that differ in size, shape, density,

and roughness, and the spaces between the particles are filled with a lighter fluid, usually

water or air (Ancey 2007). As the dynamics of these flows involve different aspects of

fluid mechanics, plasticity theory, solid mechanics and rheology (Wang & Hutter 2001),

the combination of experimental and theoretical studies, as well as field observations

and numerical simulations, is often required for their understanding (Ancey 2007). Al-

though in specific cases our knowledge of the dynamics of granular flows has greatly

improved (Goldhirsch 2003), so far no widely accepted set of governing equations exists.

The dynamics of granular flows has been commonly represented using two different

approaches: the discrete element approach (Cundall & Strack 1979) and the contin-

uum approach (Goldhirsch 2003; Hutter et al. 2005). In the first approach, each grain

is modelled by using the standard equations of motion that describe its kinematics

(Cundall & Strack 1979), and the interactions between the grains are represented by

contact laws models (Moreau 1994). In the second approach, the granular material

is represented as a continuum, for which two different approaches are used depend-

ing on the granular flow regime. On the one hand, the dilute and rapid granular flow

regime is represented in a way similar to the thermal motion of molecules in the ki-

netic theory of gases, but also considering the energy loss due to inelastic collisions

(Campbell 1990; Goldhirsch 2003). On the other hand, the dense quasi-static regime is

represented with the Mohr-Coulomb sliding condition, in which it is further assumed

that the flow is incompressible, and the mass and momentum conservation equations

are vertically averaged such as obtaining the so-called Savage-Hutter avalanche model

(Hutter et al. 2005). Because of practical reasons of numerical efficacy, the discrete

element approach has been limited to obtain information on the evolution of the inter-

nal microstructure of the granular flow under idealized conditions (e.g Staron & Hinch
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2005), whereas the Savage-Hutter avalanche model has been used extensively for describ-

ing flows in complex geometry, as in the case of geophysical flows (e.g Savage & Huter

1989; Wieland et al. 1999; Hutter et al. 2005; Pudasaini et al. 2005). The advantage of

the Savage-Hutter model is that the rheology of the granular material is included as a

single term that describes the frictional stress with the substrate (Forterre & Pouliquen

2008). The disadvantage, however, is that the analysis is restricted to the case of a

homogenous mixture, when the active layer is very thin compared to the horizontal di-

mensions and the role of ambient fluid is negligible (Hutter et al. 2005). Recently, more

sophisticated approaches that consider the presence of the interstitial fluid have been

developed (Iverson 1997; Iverson & Denlinger 2001; Pitman & Le 2005; Pelanti et al.

2008); however, the ambient fluid effects on the granular flow dynamics has not been

investigated in detail.

The role of the ambient fluid can be investigated through a two-phase continuum

model, considering the respective relationships that describe the interactions between

the constituents (Drew 1983). Two different continuum theories can be followed: the

mixture theory (Truesdell 1957) and the phase-averaged theory (Anderson & Jackson

1967). The mixture theory was formulated for studying the dynamics of mixtures of

gases, through a generalisation of basis and principles of continuous mechanics. The key

abstraction in this theory is that, at any time, every point in space is occupied simulta-

neously by one particle of each constituent (Truesdell 1984). In order to derive a similar

approach for fluid-solid mixtures, immiscibility of the constituents was considered by

introducing the volume fraction of the components as additional kinematic variables

(e.g. Bedford 1983; Passman et al. 1984). On the other hand, the phase-averaged for-

mulation is based on an average of the mass and momentum balance laws for fluid and

solid constituents over time or volume (Anderson & Jackson 1967; Drew 1983). Even

if both theories allow the study of the dynamics of fluid-solid mixtures, they give dif-

ferent representations of the constitutive relations (Joseph & Lundgren 1990). A major

challenge is to unify both theories and obtain a unique set of governing equations.

Another important point that has not been deeply taken into account in the ap-

proaches described above is the heterogeneity of the granular material. Geophysical

flows commonly involve a wide range of solid particle sizes that vary between microm-

eters to meters (Ancey 2007). As a consequence, granular flows in nature often exhibit

a non-uniform spatial distribution of particles, which is the result of a combination of

mechanisms associated to the nature of the flow and the properties of the constituents

(Ottino & Khakhar 2000). For instance, granular avalanches are very efficient at sort-

ing particles by size, in which the small particles percolate downwards and the large

ones rise up to the free surface of the flow (Savage & Lun 1988). This configuration,

called inverse gradient, has been obeserved in deposits of pyroplastics flows and de-
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bris avalanches (e.g van Wyk de Vries et al. 2001; Wang & Hutter 2001; Clavero et al.

2002). This segregation mechanism may compete against the diffusive remixing mech-

anism that occurs in rapid avalanches (Dolgunin & Ukolov 1995; Gray & Chugunov

2006), or against the mass effect mechanism in case of large diameter ratios (Thomas

2000). Moreover, when the large particles are more angular and therefore more resistant

to flow, segregation occurs simultaneously with fingering instability of the avalanche

front (Pouliquen et al. 1997), or with spontaneous stratication in two-dimensional si-

los (Makse et al. 1997). Another notable feature of granular flows of binary mixtures

is their high mobility, defined as the ratio of the runout distance to the fall height,

compared to the cases involving only one grain size (Roche et al. 2005; Phillips et al.

2006; Linares-Gerrero et al. 2007). This may be caused by a thin layer of small par-

ticles at the base of the flow that changes the frictional dynamics from sliding to

rolling (Phillips et al. 2006; Linares-Gerrero et al. 2007). Furthermore, the interactions

between the particles and their ambient fluid may also have a role on the mixture flow

dynamics. For instance, in case of binary mixtures of small and large particles, front

fingering instability and inverse vertical segregation are damped in the presence of water

(Pouliquen & Vallance 1999; Vallance & Savage 2000); and binary mixtures of bronze

and glass beads of equal size exhibit an spontaneous separation under vertical vibra-

tion in the presence of air, with a bronze-rich and glass-rich layers forming a sandwich

configuration (Burtally et al. 2002), which is the result of the interaction with the air

flow that is induced by the vertical vibration of the container (Biswas et al. 2003).

The examples described above show that in order to obtain a good representation

of dense heterogenous granular flows, the interaction mechanisms between the differ-

ent constituents of the mixture should be considered. In this context, the mixture

theory (Truesdell 1957, 1984) appears to be a useful tool for describing the dynam-

ics of these flows. This idea has been recently followed by Gray & Thornton (2005),

Gray & Chugunov (2006), and Thornton et al. (2006), who used the mixture theory to

describe particle-size segregation and diffusive remixing in granular avalanches of two or

three constituents. Their models consist of a single equation for the volume fraction of

the smaller particles, and are closely related to the models proposed by Savage & Lun

(1988) and Dolgunin & Ukolov (1995). Although these approaches are promising for pre-

dicting segregation in dense granular avalanches, at present days there is no empirical

relations for the parameters introduced to describe the segregation and remixing fluxes,

neither their dependence with the particles and flow properties (Gray & Chugunov

2006). In particular, these theories do not consider the feedback that exists between the

particle-size distribution and the dynamics of the flow (Gray & Ancey 2009).
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1.2. Purpose of this research

The main objective of this thesis was to develop a theoretical framework based on the

continuum approach for representing the dynamics of a dense heterogeneous granular

flow composed by a number of solid species with different properties (grain size, density

and roughness), and immersed in a Newtonian ambient fluid. With this aim, two specific

objectives were defined:

(a) To study the role of the ambient viscous fluid on the dynamics of gravitational

granular flows. In this context, we proposed and validated a set of two-phase continuum

equations for studying a granular flow composed of homogeneous solid particles and a

Newtonian ambient fluid. With this set of governing equations, the role of the ambient

viscous fluid on the dynamics of gravitational granular flows was analysed experimen-

tally and numerically for the collapse and spreading of a two-dimensional granular

column in air or water, for different solid particle sizes and column aspect (height to

length) ratios. We chose this particular configuration because it has widely been stud-

ied, it is characterised by an unsteady behaviour with a transition between static and

flowing states, and it represents an ideal case to validate the non-hydrostatic model (e.g.

Balmforth & Kerswell 2005; Staron & Hinch 2005; Lube et al. 2005; Lajeunesse et al.

2005; Larrieu et al. 2006).

(b) To develop a continuum mixture theory for representing the dynamics of a dense

heterogeneous granular flow composed of a number of species with different properties

and immersed in a Newtonian ambient fluid. In this context, we extended the proposed

two-phase approach to the case of dense heterogeneous mixtures of solid particles, by

including in the momentum equations a constitutive relation that describes the inter-

action mechanisms between the solid constituents in a dense regime. Although these

governing equations are general for any mixture of solid constituents in a dense regime,

we focused on binary mixtures of small and large spherical particles of equal mass den-

sity. For this case, the dynamics of the granular flow was analysed experimentally and

numerically for the collapse and spreading of two-dimensional granular columns in air

or water, for different binary mixtures of solid particles and column height to length

ratios.

To carry out the research needed to accomplish the declared objectives, a numerical

code in FORTRAN 90 was developed to solve the fully coupled system of proposed

equations, and laboratory experiments of gravitational granular flows triggered by the

collapse of two-dimensional granular columns in ambient air or water were done.
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1.3. Outline

This thesis is organised as follows. The derivation of the governing equations is de-

tailed in Chapter 2, in which we first propose a set of two-phase continuum equations

for studying a granular flow composed of homogeneous solid particles and immersed

in a Newtonian ambient fluid, and then we extend the two-phase approach to the case

of dense heterogeneous mixtures of solid particles. In Chapter 3, the experimental and

numerical methods for the collapse and spreading of a two-dimensional granular column

are described, and the dimensionless equations for this particular problem are detailed

in Chapter 4. The results are presented in Chapter 5, in which the model equations

are validated by comparing directly the numerical results with the experimental mea-

surements using the front speed to describe the flow. Furthermore, it is shown in this

chapter that the ambient fluid modifies the granular flow dynamics via hydrodynamic

fluid pressure and drag interactions, and the segregation of the granular flow increases

the front speed because of the volumetric expansion of the flow. Finally, in Chapter

6 we discuss the main results and show that a realistic model of dense heterogeneous

granular flows should consider at least three constituents: large and small grains, and

the ambient fluid.

The main results of this thesis were published in two scientific articles, the first one

in the Journal of Fluid Mechanics (2010, 648: 381 - 404), and the second one submitted

to the same journal.



Chapter 2

Governing equations

2.1. Mixture theory framework

The mixture theory framework (Truesdell 1984) formulated for constituents with

microstructure, is used here to obtain the governing equations for a dense granular flow

consisting of an heterogeneous mixture of solid particles and a Newtonian ambient fluid.

This framework is based on the mathematical theory formulated by Truesdell (1957)

for studying the dynamics of mixtures of gases, in which the continuum description for

each constituent was possible by assuming that, at any time, every point in space is

occupied simultaneously by one particle of each constituent (Truesdell 1984). As this

assumption is not valid in case of immiscible mixtures such as fluid-solids mixtures,

in order to extend this theory to mixtures with microstructure, the immiscibility of

the constituents was taken into account by introducing the volume fraction of the

components as additional kinematic variables (e.g. Bedford 1983; Passman et al. 1984).

This continuum description is only valid if the smaller dimension of the flow problem

is larger than the dimension of a typical particle o pore (Passman et al. 1984).

Starting with this approach, we consider a mixture of N+1 medium continuous, that

is, it is assumed that all the space is filled simultaneously by particles of each constituent

at any time t. In order to identify the components of the mixture, the sub-index α = 0

and α = 1, 2, ..., N are used for fluid and solids constituents, respectively. The mixture

occupies a reference volume V , which is large compared to the particles size, and the

constituent α occupies a volume Vα within V , such as V =
∑

α Vα. Each constituent

has a material density γα, a velocity uαi, and a volumetric concentration cα. The partial

density is defined as ρα ≡ cαγα.

Because there is no mass transfer between constituents, the mass and momentum

conservation equations for each constituent are written as (Truesdell 1984)

∂ρα

∂t
+

∂(ραuαi)

∂xi
= 0, (2.1)

∂ραuαi

∂t
+

∂(ραuαjuαi)

∂xj
= ραfαi +

∂Tαij

∂xj
+ m̂αi, (2.2)

where ραfαi represents the body forces acting on the constituent α in the ith direction;
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Tαij denotes the partial stress tensor of the constituent α; and m̂αi represents the

interaction force between the constituent α and the other components of the mixture

such as m̂αi =
∑

β 6=α m̂βαi, with m̂βαi = −m̂αβi being the reciprocal forces between the

constituents β and α, and
∑

α m̂αi =
∑

α

∑
β 6=α m̂βαi = 0.

Constitutive relations for the interaction force between the constituents, as well as

the stress tensor for each constituent are required to close the mathematical system

of equations formed by (2.1) and (2.2). By simplicity, a two-phase approach for homo-

geneous solid particles is analysed first, and then it is further extended to the case of

dense heterogeneous mixtures of solid particles.

2.2. Compressible homogeneous granular flows

In this section, a two-phase approach for studying a compressible granular flow com-

posed of homogeneous solid particles and immersed in a Newtonian ambient fluid is

derived. In order to identify the components of the mixture, the sub-index α = 0, 1 is

used for fluid and solid phases, respectively.

2.2.1. Constitutive relation for the interaction force between fluid and solid phases

As the constituents of a fluid-solid mixture remain physically separated in the space,

the interaction force between the constituents is identified as superficial forces acting on

a singular surface that separates the phases (Bedford 1983; Drew 1983; Morland & Sellers

2001). In order to obtain the mathematical representation of the constitutive equation

from the integral balance laws of momentum, we identify this singular surface as the

border ∂V1 of V1 on which a tensor of interaction surface forces T̂01ij acts. Consider-

ing this, the integral balance laws of momentum for the case of solid particles in a

gravitational field are expressed as
∫

V

{
∂ρ1u1i

∂t
+

∂(ρ1u1ju1i)

∂xj

}
dV =

∫

V

{
ρ1gi +

∂T1ij

∂xj

}
dV +

∫

∂V1

T̂01ijnjdS. (2.3)

Applying the divergence theorem on the last term of (2.3), and since dV1 = c1dV ,

then ∫

∂V1

T̂01ijnjdS =

∫

V1

∂T̂01ij

∂xj
dV1 =

∫

V

c1

∂T̂01ij

∂xj
dV. (2.4)

Defining T̂01ij as the sum of a compression part −p̂1δij , and a shear stress part τ̂1ij ,

so

T̂01ij = −p̂01δij + τ̂01ij , (2.5)
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where δij denotes the delta Kronecker function, (2.3) is then written as

∂ρ1u1i

∂t
+

∂(ρ1u1ju1i)

∂xj
= ρ1gi +

∂T1ij

∂xj
− c1

∂p̂01

∂xi
+ c1

∂τ̂01ij

∂xj
. (2.6)

Hence, the interaction force between the fluid and the solids in the momentum equa-

tions (2.2) is identified as

m̂1i = −m̂0i = −c1

∂p̂01

∂xi

+ c1

∂τ̂01ij

∂xj

. (2.7)

The normal stress component in (2.7), p̂01, arises from the saturation constraint; that

is, c1 + c0 = 1, and it specifies how one phase transmits forces to another keeping the

contact between the phases (Passman et al. 1984). Although this surface pressure was

identified in early studies on two-phase flows (Bedford 1983), so far no agreement exists

on the specific form of this part of the constitutive equation (Joseph & Lundgren 1990).

Most works have considered an equal pressure for all phases and then for the interface

pressure (e.g. Drew 1983; Morland 1992), but later investigations have shown that this

assumption is not physically possible (e.g. Jackson 2000; Morland & Sellers 2001). For

instance, equal pressure assumption forces to define the partial pressure of each phase as

pα = cαp, where p = p1 + p0 is the pressure of the mixture. Under these circumstances,

unphysical forces arise in the fluid phase given by volume concentration gradients,

particularly under rest conditions, and an extra term, p∂xi
c0, has to be included in

order to obtain the correct force balance. We will analyse two simple cases in order to

postulate that the interface pressure is the pressure of the fluid phase, and the correct

mathematical representation for this interaction is presented in (2.7).

Let us consider first the static situation of a reservoir filled by solid particles with

an interstitial fluid. The reduced weight of the solid particles is sustained by direct

contacts among particles, identified here as the solid pressure p1, and at places where

no direct contact occurs the normal stress is the pressure of the surrounding fluid p0.

That is, the pressure of the fluid is sustained by both fluid and solid phases, while the

reduced weight of the solids is sustained only by direct contacts among solid particles.

Therefore, and in agreement with the Archimedes’ principle, the interstitial fluid force

balance is described between the equivalent weight of the fluid over the total mixture

volume and the fluid pressure gradient, i.e. ∂xi
p0 = γ0gi. Second, let us consider the

dynamic case of solid particles falling down within a wide reservoir filled with a fluid,

for instance water. We conducted laboratory tests by measuring the weight of such

reservoir on a weigh scale and these revealed that while the particle were falling down,

without touching the walls of the reservoir, the scale recorded the equivalent weight

of water occupying the total volume of mixture, i.e. γ0(V0 + V1)g, and only once the
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particles impacted the bottom of the reservoir the balance recorded the total weight of

the fluid-particles system, i.e. (γ0V0 + γ1V1)g. This second experiment shows the same

fact described for the static case, that is, the reduced weight of the solid particles is not

transmitted through the ambient fluid, so that different measurements will be recorded

in the weigh scale depending on whether the particles are falling down or are resting on

the bottom. These two simple analyses allow us to postulate that the interface pressure

in (2.7) is the pressure of the fluid phase, p0, i.e. p̂01 = p0. Thus, the normal interaction

force is −c1∂xi
p0, which can be identified as a buoyancy force, that is, it is the surface

pressure exerted across the surface of the solids because of the surrounding fluid.

The last term of (2.7) arises from the stresses induced by the fluid when it passes

through the interstices between the particles (e.g. Anderson & Jackson 1967). These

stresses are well identified considering the fluidisation of a bed of particles at rest, in

which a uniform upward fluid flow generates a drag force that counteracts the gravita-

tional force (Sundaresan 2003). Although, as in the case of one solid particle immersed

in a fluid, other effects arise because of the fluid-solid interactions, such as lift force,

virtual mass effects and Basset force (Drew 1983), we consider only the total drag force,

which can be written as (e.g. Di Felice 1995; Jackson 2000)

c1

∂τ̂01ij

∂xj

= (1 − δij)K1(u0i − u1i), (2.8)

where K1 is a well constrained phenomenological drag function (see Di Felice (1995)

and references therein). Thus, (2.7) has the final frame indifferent form:

m̂1i = −m̂0i = −c1

∂p0

∂xi

+ K1(u0i − u1i). (2.9)

The drag function, K1, is usually obtained through a generalisation of the drag force

for a single particle by introducing a voidage function, f1(c0), such as (Di Felice 1995)

K1 =
3

4
CD1

γ0

d1

|u 0 − u 1|c1f1(c0), (2.10)

where d1 is the diameter of the solid particles and CD1 is the drag coefficient given by

Dallavalle (1948) as

CD1 =

(
0.63 +

4.8√
Red1

)2

, (2.11)

where Red1 is a modified particle Reynolds number, defined as Red1 = ρ0d1|u 0 −
u 1|/µ0 = c0d1|u 0 − u 1|/ν0, where µ0 and ν0 are the dynamic and kinematic viscosity

of the fluid phase, respectively. The most common form for the voidage function is

f1(c0) = c2−ζ1
0

, with ζ1 a coefficient with values ranging from 3.6 to 3.7 for the viscous
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and inertial flow regimes, respectively (Di Felice 1994). We use the coefficient proposed

by Di Felice (1994) that fits empirically the two regimes as

ζ1 = 3.7 − 0.65 exp

[
−(1.5 − log(Red1))

2

2

]
. (2.12)

2.2.2. Stress tensor of the fluid phase

Assuming that the state variables of the governing equation are mean quantities

obtained by a Reynolds (1895) average of the equations, and using the eddy viscosity

concept proposed by Boussinesq (1877) as a model for turbulent fluctuations, the stress

tensor for the fluid phase can be written as (Rodi 1983)

T0ij = −p0δij + (µ0 + µT )

(
∂u0i

∂xj

+
∂u0j

∂xi

)
, (2.13)

where µT is the turbulent or eddy viscosity because of the velocity fluctuations from

the mean flow. This eddy viscosity for the case of fluid-particles flows is more com-

plicated than that for the case of pure fluid flows, because the solid particles modify

the structure and intensity of the fluid turbulence, thus altering the transport rate

of momentum (Elghobashi & Truesdell 1993). For instance, any slip between phases

generates boundary layers around individual particles.

Although there are no general turbulent closures for the fluid phase in the case of

two-phase flows, this issue is currently solved by including a source term in the kinetic

energy equation of the fluid phase, which represents the irreversible work on the fluid

associated with the drag force on the particles (Crowe et al. 1996). Following Crowe

(2000), we propose a standard turbulence energy-dissipation model for the turbulence

of the fluid phase (k − ǫ model, Rodi 1983), which includes the work done by the drag

force as a production term in both k- and ǫ-equations. Then, the set of k − ǫ equations

is written as

µT = ρ0cµ
k2

ǫ
, (2.14)

∂(ρ0k)

∂t
+

∂(ρ0u0ik)

∂xi
=

∂

∂xi

(
µT

σβ

∂k

∂xi

)
+ µT

(
∂u0i

∂xj
+

∂u0j

∂xi

)
∂u0i

∂xj

+K1|u 0 − u 1|2 − ρ0ǫ,

(2.15)

∂(ρ0ǫ)

∂t
+

∂(ρ0u0iǫ)

∂xi
= c1ǫ

ǫ

k

[
µT

(
∂u0i

∂xj
+

∂u0j

∂xi

)
∂u0i

∂xj
+ K1|u 0 − u 1|2

]

+
∂

∂xi

(
µT

σǫ

∂ǫ

∂xi

)
− c2ǫρ0

ǫ2

k
,

(2.16)
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where k is the kinetic energy of the fluid turbulent motion, and ǫ is the dissipation rate

of k. The values of the constants in (2.14)-(2.16) are taken equal to the standard values

for a pure fluid: cµ=0.09, c1ǫ=1.44, c2ǫ=1.92, σβ=1.00, and σǫ=1.30 (Rodi 1983; Pope

2000).

2.2.3. Stress tensor of the solid phase

The stress tensor of the solid particles represents the forces transmitted by direct

inter-particle contacts. These forces are well-known for two opposite regimes of the

granular flow. On the one hand, the dilute and rapid granular flow regime in which the

particles interact by binary collisions (Campbell 1990; Goldhirsch 2003), and on the

other hand, the dense quasi-static regime in which the onset of the flow is determined

by the Mohr-Coulomb condition (Hutter et al. 2005). However, the constitutive equa-

tion for the intermediate regime in which both collisional and frictional interactions

might be important is not well-known (Forterre & Pouliquen 2008). In order to take

into account these three regimes, we will follow the assumption of Savage (1983) and

Johnson & Jackson (1987), who proposed that the stress tensor of the solid particles

is represented by the linear sum of a rate-independent quasi-static part, T s
1ij , and a

rate-dependent collisional part, T c
1ij , such as

T1ij = T s
1ij + T c

1ij . (2.17)

The rate-independent quasi-static part, T s
1ij , can be decomposed as

T s
1ij = −p1δij + τ1ij , (2.18)

where p1 is the solid pressure (assumed isotropic) and τ1ij is the solid shear stress

tensor. We define the solid pressure as the reaction force that arises in response to the

constraint of incompressibility when the solid particles are packed, which in the static

case can be interpreted as the fraction of the weight of the solids that is sustained by

direct contacts among solid particles or at boundaries. Accordingly, the solid pressure

can be written as

p1(c1) =

{
p1 c1 > c,

0 c1 < c,
(2.19)

where c is the loose packing concentration defined as the lowest stable packing of par-

ticles. Mathematically, the inclusion of the closure (2.19) means that one of the two

variables, c1 or p1, will be constant depending on whether the flow is packed or not.

When the granular flow is packed, i.e. when it is incompressible, the solid density

ρ1 = c1γ1 is constant; in contrast, when the granular flow is unpacked, i.e. when it is

compressible, p1 is equal to zero. In fact, this model ensures that once the granular flow

is unpacked, the maximum concentration that it can acquire is the loose packing value.
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The quasi-static solid shear stress tensor, τ1ij , is represented by the Mohr-Coulomb

condition, which states that the compressible and shear stresses acting in a particular

plane over a particular point are related by (e.g. Goodman & Cowin 1971)

|τ1ij | = (1 − δij)|p1| tanϕ, (2.20)

where ϕ is the internal friction angle. Note that because of the closure of (2.19), the

solid shear stress also vanishes when the flow is unpacked.

The rate-dependent collisional part, T c
1
, on the other hand, arises in a rapid sheared

flow in which each particle has a random fluctuation of the velocity respect to the

mean flow. As this random motion arises from particles collisions, the granular flow is

represented in a similar way as the thermal motion of molecules in the kinetic theory of

gases, considering additionally the energy loss because of inelastic collisions (Campbell

1990; Goldhirsch 2003). We use the kinetic theory proposed by Jenkins & Savage (1983),

in which the collisional stress tensor can be written as

T c
1ij = −pcδij + 2µcγ̇1ij, (2.21)

where γ̇1ij = (∂xj
u1i +∂xi

u1j) is the shear rate tensor, pc = γ1fa(c1, e)T is the collisional

pressure, µc = γ1d1fb(c1, e)
√

T is the collisional viscosity, with T = 〈u′2
1i〉/3 the granular

temperature, where u′
1i is the instantaneous deviation from the mean velocity, and

〈〉 represents an ensemble average. In this model, the parameterizations fa(c1, e) and

fb(c1, e) are equal to

fa(c1, e) = 2c2

1
(1 + e)g(c1), fb(c1, e) =

2

5
√

π
c2

1
(2 + δ)(1 + e)g(c1), (2.22)

where e is the coefficient of restitution, δ is a parameter equal to one as Lun et al. (1984)

suggested, and g(c1) is the radial distribution function. We use the function proposed

by Lun et al. (1984) that is implicit in the work of Bagnold (1954)

g(c1) =

[
1 −

(
c1

cM

)1/3
]−1

, (2.23)

where cM is the dense packing concentration equal to 0.64 for spheres (Lun et al. 1984).

Finally, we relate this model with our representation through the relation between the

shear rate and the granular temperature S = d1γ̇1T
−1/2, for which S ≈ 1 in most of the

range of the solid concentration (Campbell 2006), so that we consider

T = (d1γ̇1)
2, (2.24)

where γ̇1 =
√

1/2|γ̇2

1ii − γ̇1ij γ̇1ji| is the root of the second invariant of the shear rate

tensor.
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2.2.4. Final form of the two-phase equations

The final system of two-phase equations is represented by:

∂ρα

∂t
+

∂(ραuαi)

∂xi
= 0, α = 0, 1, (2.25)

∂ρ0u0i

∂t
+

∂(ρ0u0ju0i)

∂xj
= ρ0gi − c0

∂p0

∂xi
+

∂

∂xj

[
(µ0 + µT )

(
∂u0i

∂xj
+

∂u0j

∂xi

)]

−K1(u0i − u1i),

(2.26)

∂ρ1u1i

∂t
+

∂(ρ1u1ju1i)

∂xj

= ρ1gi −
∂p1

∂xi

+ sij
∂p1

∂xj

tan ϕ +
∂

∂xj

[
µc

(
∂u1i

∂xj

+
∂u1j

∂xi

)]

−∂pc

∂xi

− c1

∂p0

∂xi

+ K1(u0i − u1i),

(2.27)

where sij ≡ sgn(∂xj
u1i). This system of equations is closed with the saturation con-

straint c1 + c0 = 1, and (2.10)-(2.12), (2.14)-(2.16), (2.19), (2.22)-(2.24).

2.3. Dense heterogeneous granular flows

In this section, we extend the two-phase approach proposed in the previous section

to the case of dense heterogeneous mixtures of solid particles, by including in the mo-

mentum equations a constitutive relation that describes the interaction mechanisms

between the solid constituents in a dense regime. In order to identify the components

of the mixture, the sub-index α = 0 and α = 1, 2, ..., N are used for fluid and solids

constituents, respectively.

2.3.1. Stress tensor of the solid constituents in a dense regime

According to (2.17) the stress tensor of the solid constituents in a dense regime

is represented by the rate-independent quasi-static part, which was decomposed as

Tαij = −pαδij + ταij , α = 1, 2, ..., N , where pα is the pressure of the constituent α

(assumed isotropic), and ταij is the shear stress tensor of the constituent α. The solid

pressure, pα, was defined as the reaction force that arises in response to the constraint

of incompressibility when the solid particles are packed, which in the static case can be

interpreted as the fraction of the weight of the solids that is sustained by direct contacts

among solid particles or at boundaries. Here we extend that definition and interpret

the solid pressure of the constituent α as the reaction force related to the constraint
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of incompressibility when the particles of the constituent α are packed, which can be

mathematically represented by

pα =

{
pα cα > c∗α,

0 cα < c∗α,
α = 1, 2, ..., N, (2.28)

where c∗α is the loose packing concentration of the solid constituent α, which depends

on the relative particle diameter and the local concentration of each solid constituent

of the mixture, as discussed in § 2.4.

Furthermore, the shear stress tensor of the constituent α is represented by the Mohr-

Coulomb condition:

|ταij | = (1 − δij)|pα| tanϕα, α = 1, 2, ..., N, (2.29)

where ϕα is the internal friction angle of the solid constituent α. Note that because of the

closure of (2.28), the solid shear stress also vanishes when the constituent α is unpacked,

which is an approximation as stresses may arise due to particles collisions (Campbell

1990; Goldhirsch 2003). These collisional stresses, however, are not considered here

because we focus on dense granular flows for which long-lived contact stresses dominate

the flow dynamics (Campbell 2006).

2.3.2. Constitutive relation for the interaction force between solid constituents in a

dense regime

For obtaining the constitutive relation that represents the interaction force between

the solid components, m̂βαi = −m̂αβi, we follow the second guiding principle proposed

by Truesdell (1957) to describe the motion of a constituent. This principle states that

we may, in imagination, isolate a constituent from the rest of the mixture as long as

the effects of the other components are considered as forces acting upon it. In this

context, let us do the abstraction of a volume Vα, containing only particles of the solid

constituent α and surrounded by a mixture that contains all the other components

(figure 2.1a). This abstraction allows us to interpret the actions of the other solid

components on the constituent α as superficial forces acting on the surface ∂Vα of Vα,

such as the action force of the component β 6= α = 1, ..., N on α can be represented by

a tensor of superficial forces T̂βαij acting on ∂Vα (note that the case β = 0 is analyzed

in § 2.3.3). In this way, the action force of the constituent β on α is
∫

∂Vα
T̂βαijnj dS, with

nj the outward normal vector, and in response there is an equivalent and opposite force

acting on β, −
∫

∂Vα
T̂βαijnj dS. Similarly, if we now consider the same abstraction for the

constituent β (figure 2.1b), then the action force of the solid constituent α 6= β = 1, ..., N

on β is
∫

∂Vβ
T̂αβijnj dS, and in response there is an equivalent and opposite force acting

on α, −
∫

∂Vβ
T̂αβijnj dS. Thus, the reciprocal interaction force between the constituents
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(a) (b)

V − Vα V − Vβ

Vα Vβ

∂Vα ∂Vβ T̂αβijT̂βαij

Figure 2.1. In imagination the solid constituents α and β are isolated from the rest of the mixture. (a)R
∂Vα

T̂βαijnjdS corresponds to the action force of the solid constituent β acting on the surface ∂Vα of Vα,

and in response there is an equivalent and apposite force acting on β, −
R

∂Vα
T̂βαijnjdS. (b) In the same way,R

∂Vβ
T̂αβijnjdS corresponds to the action force of the solid constituent α acting on the surface ∂Vβ of Vβ, and

in response there is an equivalent and apposite force acting on α, −
R

∂Vβ
T̂αβijnjdS. Thus, the mutual actions

between constituents are represented by
R

V
m̂βαidV = −

R
V

m̂αβidV =
R

∂Vα
T̂βαijnjdS −

R
∂Vβ

T̂αβijnjdS.

α and β has two components, one representing the action force of the constituent β

on the constituent α that is applied on the border ∂Vα, and another representing the

reaction force of the constituent β on the constituent α that is applied on the border

∂Vβ , such as the reciprocal force is represented by
∫

V

m̂βαi dV = −
∫

V

m̂αβi dV =

∫

∂Vα

T̂βαijnj dS −
∫

∂Vβ

T̂αβijnj dS. (2.30)

Applying the divergence theorem and since dVα = cα dV , so that
∫

∂Vα

T̂βαijnj dS =

∫

Vα

∂T̂βαij

∂xj
dVα =

∫

V

cα
∂T̂βαij

∂xj
dV, (2.31)

(2.30) is then written as

m̂βαi = −m̂αβi = cα
∂T̂βαij

∂xj

− cβ
∂T̂αβij

∂xj

. (2.32)

Defining T̂βαij as the sum of a compression part −p̂βα, and a shear stress part τ̂βαij ,

so that T̂βαij = −p̂βαδij + τ̂βαij , the first component of (2.32) that represents the action
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force of β on α, is then written as

cα
∂T̂βαij

∂xj
= −cα

∂p̂βα

∂xi
+ cα

∂τ̂βαij

∂xj
. (2.33)

The normal interaction term of (2.33), −cα∂p̂βα/∂xi, can be interpreted as a buoyancy

force, as it represents the normal force exerted by the constituent β on the surface of

the constituent α, so that p̂βα is the pressure of the constituent β, i.e. pβ. The shear

interaction term of (2.33), cα∂τ̂βαij/∂xj , on the other hand, represents the tangential

force exerted by the constituent β on the surface of the constituent α, so that by

analogy to the homogeneous dense flow regime, the shear stress component, τ̂βαij , can

be represented by the Mohr-Coulomb condition:

|τ̂βαij | = (1 − δij)|p̂βα| tanϕβα = (1 − δij)|pβ| tanϕβα, (2.34)

where ϕβα represents the internal friction angle between the constituents β and α.

Therefore, the final action force of the constituent β on α in a dense regime is represented

by

cα
∂T̂βαij

∂xj
= −cα

∂pβ

∂xi
− sβαijcα tanϕβα

∂pβ

∂xj
, (2.35)

where sβαij ≡ sgn (∂(uβi − uαi)/∂xj). In the same way, the second component of (2.32),

which represents the reaction force of the constituent β on α due to the action force of

α on β, is represented by

− cβ
∂T̂αβij

∂xj
= cβ

∂pα

∂xi
+ sαβijcβ tanϕαβ

∂pα

∂xj
, (2.36)

such as the final reciprocal interaction force is

m̂βαi = −m̂αβi = −cα
∂pβ

∂xi
− sβαijcα tanϕβα

∂pβ

∂xj
+ cβ

∂pα

∂xi
+ sαβijcβ tan ϕαβ

∂pα

∂xj
, (2.37)

and the total interaction force acting on the solid constituent α due to the other com-

ponents of the mixture is then

m̂αi =
N∑

β 6=α=0

m̂βαi = m̂0αi+
N∑

β 6=α=1

{
−cα

∂pβ

∂xi

+ cβ
∂pα

∂xi

− sβαij tan ϕβα

(
cα

∂pβ

∂xj

+ cβ
∂pα

∂xj

)}
,

(2.38)

where m̂0αi is the interaction force with the ambient fluid (β = 0), sβαij = −sαβij and

ϕβα = ϕαβ .
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2.3.3. Constitutive relation for the interaction force between the fluid and the solids

According to (2.9), the interaction force between the ambient fluid (α=0) and each

solid constituent can be written as

m̂β0i = cβ
∂p0

∂xi
− Kβ(u0i − uβi), β = 1, 2, ..., N, (2.39)

As discussed, the first component of this interaction term, cβ∂p0/∂xi, represents the

reaction force of the solid constituent β in response to the buoyancy force exerted by

the fluid; and the second component, −Kβ(u0i − uβi), represents the reaction force of

the solid constituent β in response to the drag force induced by the fluid when it passes

through the interstices between the particles of the solid constituent β.

Thus, the total interaction force acting on the ambient fluid due to the solid con-

stituents can then be written as

m̂0i =

N∑

β=1

m̂β0i = (1 − c0)
∂p0

∂xi
−

N∑

β=1

Kβ(u0i − uβi). (2.40)

From (2.10)-(2.12), the drag function, Kβ, can be written as

Kβ =
3

4
CDβ

γ0

dβ

|u 0 − u β|cβfβ(c0), β = 1, 2, ..., N, (2.41)

where dβ is the diameter of the solid particles and CDβ is the drag coefficient given by

CDβ =

(
0.63 +

4.8√
Redβ

)2

, β = 1, 2, ..., N. (2.42)

with Redβ = ρ0dβ|u 0 − u β|/µ0, fβ(c0) = c
2−ζβ

0
, and ζβ given by

ζβ = 3.7 − 0.65 exp

[
−(1.5 − log(Redβ))2

2

]
. (2.43)

2.3.4. Stress tensor of the ambient fluid

The stress tensor for the ambient fluid is given by (2.13), for which the turbulent

or eddy viscosity due to the velocity fluctuations from the mean flow, µT , is obtained

from the standard turbulence energy-dissipation model (k − ǫ model, Rodi 1983). In

this case of several solid constituents, the k− ǫ model have to include the work done by

the drag force of each solid constituent as a production term in both k- and ǫ-equations
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(Crowe et al. 1996). Then, the set of k − ǫ equations are written as

µT = ρ0cµ
k2

ǫ
, (2.44)

∂(ρ0k)

∂t
+

∂(ρ0u0ik)

∂xi
=

∂

∂xi

(
µT

σk

∂k

∂xi

)
+ µT

(
∂u0i

∂xj
+

∂u0j

∂xi

)
∂u0i

∂xj

+
N∑

β=1

Kβ |u 0 − u β|2 − ρ0ǫ,

(2.45)

∂(ρ0ǫ)

∂t
+

∂(ρ0u0iǫ)

∂xi
= c1ǫ

ǫ

k

[
µT

(
∂u0i

∂xj
+

∂u0j

∂xi

)
∂u0i

∂xj
+

N∑

β=1

Kβ |u 0 − u β|2
]

+
∂

∂xi

(
µT

σǫ

∂ǫ

∂xi

)
− c2ǫρ0

ǫ2

k
,

(2.46)

The values of the constants in (2.44), (2.45) and (2.46) are taken equal to the standard

values for a pure fluid: cµ=0.09, c1ǫ=1.44, c2ǫ=1.92, σk=1.00, and σǫ=1.30 (Rodi 1983;

Pope 2000).

2.3.5. Final form of the multi-species equations

The final system of governing equations is represented by:

∂ρα

∂t
+

∂(ραuαi)

∂xi

= 0, α = 0, 1, ..., N, (2.47)

∂ρ0u0i

∂t
+

∂(ρ0u0ju0i)

∂xj
= ρ0gi − c0

∂p0

∂xi
+

∂

∂xj

[
(µ0 + µT )

(
∂u0i

∂xj
+

∂u0j

∂xi

)]

−
N∑

β=1

Kβ(u0i − uβi),

(2.48)

∂ραuαi

∂t
+

∂(ραuαjuαi)

∂xj
= ραgi −

∂pα

∂xi
+ sαij

∂pα

∂xj
tanϕα − cα

∂p0

∂xi
+ Kα(u0i − uαi)

+

N∑

β 6=α=1

{
−cα

∂pβ

∂xi
+ cβ

∂pα

∂xi
− sβαij tanϕβα

(
cα

∂pβ

∂xj
+ cβ

∂pα

∂xj

)}
, α = 1, 2, ..., N,

(2.49)

where sαij ≡ sgn(∂xj
uαi). This system of equations is closed with the saturation con-

straint
∑N

α=0
cα = 1, and (2.28), (2.41)-(2.43), (2.44)-(2.46).
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2.4. Binary mixtures of small and large spherical grains

In this section, we analyse the particular case of binary mixtures of small and large

spherical particles. By denoting α = 1, 2 to small and large grains, respectively, three

solid packing concentrations are used in the solid pressure closure (2.28) to determine

whether the solid pressure of each constituent is zero or not: the loose packing value

of the mixture, c∗, and the loose packing values of small and large particles, c∗
1

and c∗
2
,

respectively. Here, we discuss these values and the criterion for calculating the solid

pressure for each solid constituent.

2.4.1. Packing concentration of binary mixtures of spherical grains

Binary mixtures of small and large spherical grains can pack to higher concentrations

than assemblages of monosized grains, and the improvement on the packing concentra-

tion depends on the size ratio, d1/d2, and on the fractional solid concentration of each

constituent, Xα = cα/(c1 + c2), α=1,2 (German 1989, pp. 135 - 163). Several models

account for the influence of these parameters on the packing of mixtures (German 1989,

pp. 135 - 163), and we chose the empirical formula of Fedors & Landel (1979) that for

bimodal spheres of the same composition and packing concentration can be written as

c∗ (d1/d2, X2) =





(
1 −

√
d1/d2

)
c(1 − c)(2 − c)X2 + c X2 6 1/(2 − c),(

1 −
√

d1/d2

)
c(2 − c)(1 − X2) + c X2 > 1/(2 − c),

(2.50)

where c is the loose packing concentration of monosized particles that is equal to 0.6 for

spheres (e.g. Rutgers 1962). An example of the dependence of the packing concentration

with the relative concentration of the small grains, X1 = 1−X2, is shown in figure 2.2, in

which is observed that the optimal packing is found for % of small grains close to 28%,

case for which the small spheres fill all the voids in the large sphere packing (German

1989, pp. 140). Furthermore, the loose packing concentration of each solid constituent

can be written as

c∗α = c∗ − cβ, α 6= β = 1, 2. (2.51)

2.4.2. Criterion for the calculation of the solid pressure

The inclusion of the loose packing limits (2.51) in the solid pressure closure (2.28)

means that for mixture concentrations less than c∗ both small and large particles loose

their contacts and fall down, if there are no other forces that can support their weight.

However, it is well known that below a critical value of the mixture concentration, only

the small particles fall down while the large particles remain packed. This is because

the small particles have a greater probability than the large ones of finding a hole in

which they can fall into (Savage & Lun 1988), so that the packing limit of small and
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Optimal packing (% small = 28.5%)
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Figure 2.2. Calculated loose packing concentration of binary mixtures of small and large grains using (2.51)
and c=0.6, d1/d2=0.07 (solid line) and d1/d2=0.22 (dashed line).

large particles should be different. We make two assumptions: first, ηc∗ (η 6 1) is the

limit under which (i.e. c1 + c2 < ηc) both large and small particles fall down, where

η 6 1 is an empirical parameter; second, c∗ is the limit under which (i.e. c1 + c2 < c∗)

the small particles percolate downward while the large particle remain packed. In this

way, the loose packing concentration used in the pressure closure (2.28) for small and

large particles is represented by

c∗
1

= c∗ − c2, c∗
2

= ηc∗ − c1. (2.52)

The empirical function η has to preserve the physical limit of η = 1 when c1 = 0 or

c2 = 0 or d1 = d2, and it should increase with d1/d2, so that we propose the following

expression:

η(c1, c2, d1/d2) = exp (−σc1c2[1 − d1/d2]) , (2.53)

with σ > 0 an empirical constant order one that is discussed in § 5.2.

An additional condition that should be considered is the sifting of small grains when

d1/d2 < (2/
√

3− 1) ≈ 0.15, which corresponds to the Apollonian ratio in which a small

particle exactly fit inside a hole between three tangent spheres in the packing of the

larger particles (Ippolito et al. 2000). This means that when d1/d2 < 0.15 and the large

particles are in point contact with one another, i.e. c2 > c, percolation of small particles

occurs spontaneously as long as the interstitial voids between the large particles are not

filled, i.e. c1 < (1 −
√

d1/d2)c(1 − c) (German 1989, pp. 135 - 163).

Considering these restrictions, the final conditions for the calculation of the solid



Governing equations 21

pressure for small and large particles are given by

p1(c1, c2, c
∗, d1/d2) =





p1





d1/d2 > 0.15 & c1 > (c∗ − c2)

d1/d2 < 0.15 &





c2 > c & c1 > (1 −
√

d1/d2)c(1 − c)

or

c2 < c & c1 > (c∗ − c2)

0 otherwise
(2.54)

p2(c1, c2, c
∗, d1/d2) =





p2





d1/d2 > 0.15 & c2 > (ηc∗ − c1)

d1/d2 < 0.15 &





c2 > c

or

c2 < c & c2 > (ηc∗ − c1)

0 otherwise

(2.55)
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Methods

3.1. Experimental procedure

Experiments were conducted in a 1.5 m-long perspex rectangular channel, 0.5 m-deep

and 0.1 m-wide, by suddenly opening a vertical gate that initially hold a granular column

in air or water (the water depth was 0.45 m). The initial column aspect ratio ho/xo

was in the range [1,16], with ho and xo the initial height and length, respectively. The

experimental facility is shown in figure 3.1, in which is shown the initial experimental

set up (figure 3.1 a), and the sketch of the final deposits in air (figure 3.1 b) and in water

(figure 3.1 c).

We first did experiments with monosized glass beads of three particle sizes d1 =

0.2, 0.7, 3.0 mm, with a total of six sets of experiments listed in table 3.1. Then, we

combined the grains in order to obtain binary mixtures of small and large glass beads

with mixtures of 0.2 and 3.0 mm, and 0.7 and 3.0 mm, with a total of four sets of

experiments listed in table 3.2.

The physical properties presented in tables 3.1 and 3.2 correspond to the typical

mean values of the materials used at 20 oC, and we measured the loose packing concen-

tration of the monosized particles (c=0.6± 0.2) as well as the internal friction angle

(ϕ=26± 3 deg). The loose packing volume concentration was estimated by measuring

the volume of water displaced when a known volume of packed particles is immersed

in water. The internal angle of friction was assumed to be equal to the angle of repose,

which was estimated by pouring the particles on a rough horizontal plane from a fixed

source. The angle below which the heap stays unchanged at rest and above which sur-

face motion down slope starts was considered as the internal friction angle. This angle

is in the range measured in other experimental studies with subspherical glass beads

(e.g. Balmforth & Kerswell 2005; Lajeunesse et al. 2005).

Each set of experiments of binary mixtures was carried out by varying the proportion

of small and large glass beads. In case of mixtures with d1/d2 >0.15 (sets B1 and B2 in

table 3.2) we used homogeneous mixtures with four initial relative solid concentrations

of small particles: % small ≡ 100(hoxo)
−1
∫ ho

0

∫ xo

0
(c1/[c1 + c2])t=0

dxdy equal to 0, 25,

50 and 100%. In contrast, for mixtures with d1/d2 <0.15 (sets A1 and A2 in table

3.2), for which percolation of small particles occurs spontaneously when the interstitial
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Figure 3.1. Experimental facility, perspex rectangular channel of 1.5 m-long, 0.5 m-deep and 0.1 m-wide. (a)
Initial experimental set up with a column of grains of aspect ratio ho/xo. (b,c) Sketch of the final deposits in
air (b) and in water (c).



Methods 24

Set γf νf ds

(kgm−3) (×10−5 m2 s−1) (×10−3 m)

1 1.2 1.7 3.0
2 1.2 1.7 0.7
3 1.2 1.7 0.2
4 1000 0.1 3.0
5 1000 0.1 0.7
6 1000 0.1 0.2

Table 3.1. Mean values of material properties and boundary conditions for laboratory and numerical exper-
iments of monosized mixtures. For each set: γ1=2.5×103 kgm−3, c=0.6, e=0.95, ϕ=26o, xo=0.1 m for ho/xo

∈ [1, 4.5], xo=0.05 m for ho/xo ∈ [5, 16], ∆x = ∆y=7.14×10−3 m, and ∆t=2.5×10−3 s.

Set (d1 , d2) d1/d2 γf νf

(×10−3 m) (kgm−3) (×10−5 m2 s−1)

A1 (0.2 , 3.0) 0.067 1.2 1.7
B1 (0.7 , 3.0) 0.233 1.2 1.7
A2 (0.2 , 3.0) 0.067 1000 0.1
B2 (0.7 , 3.0) 0.233 1000 0.1

Table 3.2. Laboratory and numerical experiments of binary mixtures in air and water. For each set:
γ1=γ2=2.5×103 kgm−3, ϕ1=ϕ2=26o, c=0.6, xo=0.1 m for ho/xo ∈ [1, 4], xo=0.05 m for ho/xo ∈ [5, 8],
∆x = ∆y=7.14×10−3 m, and ∆t=2.5×10−3 s

voids between the large particles are not filled, different proportions of small and large

particles were achieved by varying the height of the column of large particles (h2 in

table 3.3), and filling at different levels (h1 in table 3.3) the interstices between them

(without forcing the large particles apart) as indicated in table 3.3.

The experimental procedure can be summarised as follow. The glass beads were

poured into the reservoir without agitation or vibration. The channel was illuminated

with diffuse back lighting that provided a good contrast for video analysis, and a video

camera was carefully aligned along the horizontal direction. The gate was then manually

removed to release the granular mass that spread into the horizontal channel until it

came to rest, while the flow was recorded with the video camera at 50 frames per second.

Finally, the movie was processed with Matlab R© in order to obtain series of the free

surface and of the front position of the granular flow.

As the effect of gate removal was not considered in the numerical simulations, we

verified the time of opening and found that it was ∼ 0.1 s, which was less than about 5

and 10 % of the typical flow duration in water and air, respectively. Furthermore, the

error in the front velocity was ± 0.05 m s−1, which corresponded to less than about 4

and 8 % of the typical flow front velocity in air and water, respectively.
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Sets Experiment h1 h2 % small

A1 and A2 1 - ho 0
2 1/3ho ho 11
3 2/3ho ho 20
4 ho ho 27
5 ho 2/3ho 47
6 ho 1/3ho 70
7 ho - 100

B1 and B2 1 ho ho 25
2 ho ho 50
3 ho ho 75
4 ho - 100

Table 3.3. Experimental set up for initial columns of experiments listed in table 3.2. h1 and h2 are the
column height of small and large grains, respectively, and

% small ≡ 100(hoxo)
−1

R ho

0

R xo

0
(c1/[c1 + c2])t=0

dxdy.

3.2. Numerical solution

Before discussing the numerical solution, two important properties of the systems

of non-linear second order partial differential equations (2.25)-(2.27) and (2.47)-(2.49)

should be noted. First, as in the case of Navier-Stokes equations, it is not possible to de-

fine whether the hyperbolic or parabolic feature of the momentum equations dominates,

since the ratio between the rate of convection of the flow to its rate of diffusion (the

Péclet number) is not known a priori. Then, the discretisation method should handle

both convection and diffusion terms as a unit (Patankar 1980, pp. 79–80). Second, the

inviscid limit of these equations, in which momentum losses are not considered, gives

an ill-posed system of equations because some wave celerities acquire complex values,

i.e. the inviscid equations are non-hyperbolic, and the numerical solution shows that

small-scale phenomenon grows rapidly (Drew 1983; Stewart & Wendroff 1984; Ystrom

2001). Then, viscous terms should be retained in order to have a well-posed system of

equations (Drew 1983; Ystrom 2001).

Based on this and on the fact that the pressure fields for each constituent are not

known, we chose the implicit finite volume pressure-correction scheme proposed by

Patankar (1980) for solving the momentum equations of each constituent, which is an

iterative procedure for calculating the flow field in a way that improves the guessed pres-

sure. This procedure is based on the fact that the pressure field is indirectly specified

via the mass continuity equation, so that when the correct pressure field is substituted

into the momentum equations, the resulting velocity field satisfies the mass continuity

equation (Patankar 1980, pp. 124–126). In order to prevent numerical instabilities of

the velocity field associated to the central difference approximations, the convection and

diffusion fluxes were solved with the hybrid scheme, which is a combination of the cen-
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tral difference and upwind schemes, and depends on the Péclet number (Patankar 1980,

pp. 88–90). Furthermore, we adopted a closed two-dimensional (vertical-longitudinal)

domain with a staggered Cartesian grid, in which the velocity components are calcu-

lated for the points lying on the faces of the control volumes, which allows avoiding

the difficulties that arise when pressure and velocity fields are calculated at the same

location, such as non uniform pressure field (Patankar 1980, pp. 118–120).

Regarding to the boundary conditions, a zero mass flow across the walls was consid-

ered for both fluid and solids constituents because the domain was closed, so that a

normal velocity equal to zero was given as a boundary condition to both the pressure-

correction and the momentum equations. Additionally, the non-slip boundary condition

was considered for the fluid, so that the fluid velocity parallel to the walls was equal to

zero; and a zero momentum flux across the walls was assumed for the solid constituents,

so that the gradient of the solids velocity parallel to the walls was equal to zero, which

means that solid particles can slip on the walls. Moreover, a wall friction equal to the

inner Coulomb friction tanϕ was assumed. Finally, as both mean and fluctuating fluid

velocities were zero at the walls, the turbulent kinetic energy, k, was also zero at the

walls; in contrast, the dissipation rate ǫ should have been finite (Rodi 1983, pp. 44–45).

The usual way to treat the boundary conditions for ǫ is by placing the boundaries out

of the viscous wall boundary layer, where the flow is fully turbulent, and assuming that

the rate of production and dissipation of k are equal in that point, which also required

to know the flow velocity in that point (Rodi 1983, pp. 44–45). The same methodology

is no longer valid for multi-species flows because there is not a clear definition of the

wall viscous boundary layer within the grains; then, we decided to impose ǫ = 0 at

the boundary. Note that no specific treatment of the free surface boundary conditions

of the granular flow is required, because the proposed granular pressure closure (2.28)

naturally creates interfaces as it induces the fall of the particles while the flow is not

packed, and because the properties of each constituent vary in space according to the

volume fraction.

The final discretised equations are detailed in the Appendix, for which the solution

algorithm for one time step can be summarised as follows. (i) Start the calculation of

the fields at the new time step with the solution of the previous time step. (ii) Solve

the discretised momentum equations for the fluid. (iii) Solve the discretised momentum

equations for the small particles. (iv) Solve the discretised momentum equations for the

large particles. (v) Solve the pressure-correction equation for the fluid, and correct fluid

pressure and velocities (underrelaxed). (vi) Solve the pressure-correction equation for

the small particles, and correct solid pressure and velocities (underrelaxed). (vii) Solve

the pressure-correction equation for the large particles, and correct solid pressure and

velocities (underrelaxed). (viii) Solve the discretised conservation of mass equation for
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the small particles. (ix) Solve the discretised conservation of mass equation for the large

particles. (x) Solve the discretised k−ǫ equations for the fluid. (xi) With the new fields,

return to step (ii) until a converged solution for both the continuity and momentum

equations is satisfied to an acceptable tolerance (difference in velocity between two

successive iterations less than 1 mm s−1) for each constituent.

We solved numerically the sets of experiments presented in tables 3.1 and 3.2. The

horizontal dimension of the computational domain, L, was given by the experimental

facility (i.e. L=1.5 m); whereas, the vertical dimension, H , was chosen as H = 2ho,

as we verified that for H larger than ∼ 1.5ho the influence of the boundary condition

at the top of the computational grid was negligible. For simplification and because the

horizontal dimension of the domain was fixed, independently of the experiment, we

used a fixed grid size of ∆x = ∆y=7.14×10−3 m (i.e. L/∆x=210), and a time step

of ∆t=2.5×10−3 s (i.e.
√

Lg−1/∆t=156), such as ∆x/∆t=2.9 m s−1 was about twice

the maximum front propagation speed. The details of the numerical set up for each

simulation are also summarised in tables 3.1 and 3.2.
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Dimensionless form of the

governing equations

4.1. Characteristics scales and dimensionless variables

We used the governing equations for studying the collapse and spreading of two-

dimensional granular columns in air or water, for different binary mixtures of small

and large spherical particles of equal mass density and surface roughness (i.e ϕ12 =

ϕ1 = ϕ2 = ϕ). Previous experimental studies with monosized grains in air (e.g.

Lajeunesse et al. 2005; Lube et al. 2005) have established that the characteristic time

scale is
√

ho/g, independent of the properties of the granular material (grain size, rough-

ness and shape) and of the initial column aspect ratio ho/xo, where ho and xo are the

initial height and length, respectively. As we also apply the equations in cases in which

water is the ambient fluid, we define T =
√

ho/g′ as the characteristic time scale, where

g′ = (γ1 −γ0)/γ1g is the reduced gravity. On the other hand, the traditional dam-break

problem for flows of water indicates that the characteristic horizontal velocity scale is

the gravity wave celerity U =
√

g′ho (von Karman 1940), so that the characteristic hor-

izontal length scale is ∼ UT ∼ ho. In order to have each term of the same order in the

conservation of mass equation, U and ho are also chosen as scales for both vertical ve-

locity and length. Using the loose packing density of the mixture, c∗γ1, (where c∗ is the

loose solid volume fraction of the mixture, equation 2.50) and the material density of

the fluid, γ0, as density scales, then the following dimensionless variables are obtained:

t̃ = t

√
g′

ho
, x̃i =

xi

ho
, ũαi =

uαi√
g′ho

, ũ0i =
u0i√
g′ho

, ρ̃α =
ρα

c∗γ1

, ρ̃0 =
ρ0

γ0

,

p̃α =
pα

c∗γ1g′ho

, p̃0 =
p0

γ0g′ho

, p̃c =
pc

c∗γ1g′ho

, k̃ =
k

g′ho

, ǫ̃ =
ǫ

g′ho

, T̃ =
T

g′ho

,

(4.1)

where x1 = x, x2 = y are the horizontal and vertical directions, respectively, ∼ denotes

scaled variables, and the sub-index α=1,2 denotes small and large particles, respectively.
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4.2. Dimensionless form of the two-phase equations

The dimensionless form of the two-phase equations for compressible granular flows of

monosized grains, is obtaining by substituting the dimensionless variables (4.1) in the

conservation of mass (2.25), and momentum equations (2.26) and (2.27):

∂ρ̃α

∂t̃
+

∂(ρ̃αũαi)

∂x̃i

= 0, α = 0, 1 (4.2)

∂ρ̃0ũ0i

∂t̃
+

∂(ρ̃0ũ0j ũ0i)

∂x̃j
= ρ̃0

gi

g′
+

∂

∂x̃j

[
1

Re

(
∂ũ0i

∂x̃j
+

∂ũ0j

∂x̃i

)]
− c0

∂p̃0

∂x̃i

−
√

1

DeAr1

ho

d1

K̃1(ũ0i − ũ1i),

(4.3)

∂ρ̃1ũ1i

∂t̃
+

∂(ρ̃1ũ1jũ1i)

∂x̃j
= ρ̃1

gi

g′
− ∂p̃1

∂x̃i
+ sij

∂p̃1

∂x̃j
tan ϕ +

∂

∂x̃j

[
1

Rec

(
∂ũ1i

∂x̃j
+

∂ũ1j

∂x̃i

)]

−∂p̃c

∂x̃i
− De

c1

c

∂p̃0

∂x̃i
+

√
De

Ar

ho

d1

K̃1

c
(ũ0i − ũ1i),

(4.4)

where K̃1 = 3/4(0.63
√

Red1 + 4.8)2c1c
1−ζ1
0

. The density number, De, the Archimedes

number, Ar1, and the Reynolds numbers, Rec and Re0, are defined as

De =
γ0

γ1

, Ar1 =
(γ1 − γ0)gd3

1

γ0ν2
0

, Rec =
cγ1ho

√
g′ho

µc
, Re0 =

γ0ho

√
g′ho

µ0 + µT
. (4.5)
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4.3. Dimensionless form of the three-species equations

The dimensionless form of the three-species equations for binary mixtures of small

and large grains of equal mass density in a dense regime, is obtaining by substituting

the dimensionless variables (4.1) in the conservation of mass (2.47), and momentum

equations (2.48) and (2.49):

∂ρ̃α

∂t̃
+

∂(ρ̃αũαi)

∂x̃i
= 0, α = 0, 1, 2, (4.6)

∂ρ̃0ũ0i

∂t̃
+

∂(ρ̃0ũ0j ũ0i)

∂x̃j

= ρ̃0

gi

g′
+

∂

∂x̃j

[
1

Re

(
∂ũ0i

∂x̃j

+
∂ũ0j

∂x̃i

)]
− c0

∂p̃0

∂x̃i

−
2∑

β=1

√
1

DeArβ

ho

dβ
K̃β(ũ0i − ũβi),

(4.7)

∂ρ̃αũαi

∂t̃
+

∂(ρ̃αũαj ũαi)

∂x̃j

= ρ̃α
gi

g′
− (1 − cβ)

∂p̃α

∂x̃i

+ (sαij − sβαijcβ)
∂p̃α

∂x̃j

tanϕ − De
cα

c∗
∂p̃0

∂x̃i

+

√
De

Arα

ho

dα

K̃α

c∗
(ũ0i − ũαi) − cα

∂p̃β

∂x̃i
− sβαijcα

∂p̃β

∂x̃j
tanϕ, α 6= β = 1, 2,

(4.8)

where K̃α = 3/4(0.63
√

Redα + 4.8)2cαc1−ζα

0
, and the Archimedes number, Arα, is now

defined as

Arα =
(γ1 − γ0)gd3

α

γ0ν2

0

, α = 1, 2. (4.9)
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Results

5.1. Results of the two-phase model equations

In this section, the two-phase approach (4.2) - (4.3) is used to study the dynamics of

homogeneous granular flows and their ambient fluid effects.

5.1.1. Dynamics of the granular column collapse and spreading

In order to characterise the particular dynamics of the granular column collapse

and spreading, we present in figures 5.1 to 5.3 the results of laboratory experiments

and numerical simulations carried out in air or in water with grains size of 3 mm in

diameter and columns with ho/xo = 3.

Figures 5.1 (a,f ) show frames of the dimensionless solid pressure, p̃1, the streamlines

of the granular flow, and a comparison of measured and computed, c−1
∫ eH

0
c1(x̃, ỹ)dỹ,

free surface of the granular flow, for three dimensionless times t̃. Figure 5.1 (g) compares

time series of p̃1 at the left bottom corner of the column and the column height at the

left top, yt/ho. Finally, a comparison between measured and simulated time series of

the dimensionless front position, (xF − xo)/ho, is shown in figure 5.1 (h). Figure 5.1

illustrates the mechanisms of the granular collapse. The granular flow is first driven by

the horizontal solid pressure gradient; however, the wall boundary condition curves the

streamlines and tilts the isobars, inducing the fall of the top of the column where solid

pressure is equal to zero (figures 5.1a and 5.1d). The vertical collapse progressively

increases the solid pressure at the base of the column (figure 5.1g), thus transferring

vertical to horizontal solid phase momentum (figures 5.1b and 5.1e). As a consequence,

the flow is mostly non-hydrostatic since p̃1 is different than yt/ho (figure 5.1g). Finally,

the granular motion ends in a static state because of the Mohr-Coulomb condition

(figures 5.1c, 5.1f, and 5.1h).

Figure 5.2 shows contour graphs of the dimensionless solid and fluid velocities, ũ 1

and ũ 0, kinetic energy of the fluid turbulent motion, k̃, and granular temperature, T̃ , in

air at t̃=1.5 (left hand panels) and in water at t̃=2.0 (right hand panels). It is observed

static and dynamic regions of the granular flow because of the Mohr-Coulomb condition

(figures 5.2a and 5.2b), with a surface above which material slides down and below which

grains remain almost static, while in the front area the movement can be described as
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Figure 5.1. Frames of ep1 (contours), streamlines of the granular flow (→→), and experimental (——–) and

computed c−1
R eH

0
c1(ex, ey)dey (– – –) free surface, for the collapse of grain columns with d1=3 mm and ho/xo=3

in air at (a) et=0.5, (b) et=1.0, (c) et=3.0, and in water at (d) et=0.75, (e) et=1.5, (f ) et=6.0. (g) Time series of ep1

at the left bottom corner of the column (——–), and column height yt/ho at the left top (– – –), in air (light
lines) and in water (dark lines). (h) Comparison between simulated (——–) and measured (◦) time series of
(xF − xo)/ho, in air (light line) and in water (dark line).

a plug-like flow. Furthermore, the movement of the surrounding fluid is induced by the

solid particles through two mechanisms: drag interactions and volume interchanges. On

the one hand, the drag force induces about the same fluid velocity as the solid particles

(magnitude and direction), except at the walls where the fluid velocity is constrained

by the no-slip fluid boundary condition (figures 5.2c and 5.2d). On the other hand,

because of the volume continuity (c1 + c0 = 1), the ambient fluid occupies the space left

by the solid particles, thus generating the large fluid recirculation patterns shown in

figures 5.2c and 5.2d. Finally, fluid turbulence is generated in the whole granular flow

and is transported by the fluid to zones where there are no solid particles (figures 5.2e

and 5.2f ), whereas granular temperature is generated mainly at the free surface of the

granular flow (figures 5.2g and 5.2h). As a consequence, the eddy viscosity of the fluid

phase, µT , acts in a much larger volume than the collisional viscosity of the solid phase,

µc, so that fluid turbulence is expected to be more important than particles collisions,

although Re0 ∼ Rec ∼100.
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Figure 5.2. Numerical results of grain columns with d1=3 mm and ho/xo=3 in air at et =1.5 (left panels) and

in water at et =2.0 (right panels). Spatial variation of the magnitude (contour) and direction (arrows) of eu 1

(a,b) and of eu 0 (c,d). Contour graph of ek (e,f ) and of eT (g,h), and horizontal dimensions of CV , δx/ho = 0.3

(g,h). The black solid line represents the dimensionless free surface of the granular flow, c−1
R eH

0
c1(ex, ey)dey.

The dimensionless front position in figure 5.3 (a,b) shows the well known acceleration,

constant velocity, and deceleration regimes, which characterise the dynamics of granular

column collapses (e.g. Lajeunesse et al. 2005; Lube et al. 2005). To understand the con-

stant velocity regime, the force balance at the front was studied by integrating (4.4) in

the Lagrangian control volume, CV , defined between x̃ = (xF − δx)/ho and x̃ = xF /ho,

and the whole vertical domain (δx is shown in figures 5.2g and 5.2h, and δx/ho = 0.3).

The horizontal solid phase momentum equation (4.4) was written for the Lagrangian co-

ordinates t̃′ = t̃, ỹ′ = ỹ, and x̃′ = x̃−ũF t̃, with ũF = uF/
√

g′ho constant. Figure 5.3 (c,d)

shows the time series of volume integrated dimensionless terms of the horizontal solid

phase momentum equation: Lagrangian momentum advection (−∂x̃′ [ρ̃1(ũ1 − ũF )ũ1]),

solid pressure gradient (−∂x̃′ p̃1), Coulomb friction (sxy∂ỹ′ p̃1tanϕ), collisional pressure

gradient (−∂x̃′ p̃c), collisional shear stress (∂x̃′ [2Re−1

c ∂x̃′ ũ1] + ∂ỹ′ [Re−1

c (∂ỹ′ ũ1 + ∂x̃′ ṽ1)]),

fluid pressure gradient (−Dec1/c∂x̃′ p̃0), and drag force (
√

De ho/(Ar1 d1)K̃1/c[ũ0−ũ1]).

Note that because Lagrangian momentum advection is calculated with a constant front

speed, this is only valid in the constant velocity regime (shaded areas in figure 5.3).
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Figure 5.3. Results of grain columns with d1=3 mm and ho/xo=3 in air (left panels) and in water (right
panels). (a,b) Measured (◦) and simulated (——–) time series of (xF −xo)/ho. (c,d) Temporal variation of the
horizontal forces integrated over CV : advection −∂x̃′ [eρ1(eu1 − euF )eu1] (—×—), solid pressure gradient −∂x̃′ ep1

(—◦—), Coulomb friction sxy∂ỹ′ ep1 tan ϕ (—•—), collisional pressure gradient −∂x̃′ epc (—N—), collisional

shear stress ∂x̃′ [2Re−1

c ∂x̃′ eu1] + ∂ỹ′ [Re−1

c (∂ỹ′eu1 + ∂x̃′ev1)] (—△—), fluid pressure gradient −Dec1/c∂x̃′ ep0(– – –),

and drag force
p

De ho/(Ar1 d1) eK1/c[eu0 − eu1] (——–). Shaded areas correspond to the constant velocity
regime.

The temporal variation of the horizontal forces integrated over CV shows that the

force balance, for the case of the larger particles considered, is described mainly by the

balance between horizontal pressure gradient and Coulomb friction (figures 5.3c and

5.3d); however, as shown in the following sections, the relative importance of these forces

on the balance changes as a consequence of the particle diameter and fluid properties.

5.1.2. Role of the solid pressure and Coulomb friction

In order to identify the solid pressure and Coulomb friction effects on granular flow

dynamics, we carried out two types of numerical experiments without both fluid and

particles collisions, either with or without Coulomb friction. The results of the di-

mensionless front speed in the constant velocity regime uF/
√

gxo (with uF defined as

uF ≡ max(dxF /dt)), as a function of ho/xo, are presented in figure 5.4(a). They show
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that, as expected from energy considerations, the front speed for the frictionless case is

larger than that for the case with friction. Moreover, whereas uF depends on ho/xo for

the frictional case (figure 5.4a), uF ≈
√

2gho in the case without friction, which corre-

sponds to the speed of free fall of the grains from a high ho. Thus, for the frictionless

case, the solid pressure deviates the motion of the granular flow without influencing

its speed. As a result, in order to quantify the Coulomb friction effect, we define an

equivalent height, he, as

he = he(tan ϕ, ho/xo) =
u′2

F

2g
, (5.1)

where u′
F refers to the front speed without fluid and particles collisions. The ratio he/ho

and the dimensionless runout distance, (x∞−xo)/xo, as a function of ho/xo, are shown in

figures 5.4 (b) and 5.4 (c), respectively. Both curves show a break in slope at ho/xo ≈ 3,

and the runout distance is in quite good agreement with the experimental scaling laws

found by Balmforth & Kerswell (2005), Lube et al. (2005) and Lajeunesse et al. (2005),

among others. These numerical experiments show that the physical origin of the break

in slope for the dimensionless runout distance is the Coulomb friction (tan ϕ); however,

the two-dimensional non-hydrostatic feature of the flow complicates the analysis, so

that it is not possible to obtain a direct algebraic expression to compute neither he/ho

nor (x∞ − xo)/xo as a function of tanϕ. Nevertheless, from the numerical results of

figure 5.4 (b), we can obtain the following expression:

he

ho
=

{
0.4 1 6 ho/xo 6 3,

0.76(ho/xo)
−0.58 3 < ho/xo 6 16,

(5.2)

which is valid for the case of monosized glass beads (ϕ=26o) and 1 6 ho/xo 6 16, and

is used in the next sections to subtract the effects of tan ϕ and ho/xo.

5.1.3. Role of the ambient fluid on granular flow dynamics

The six sets of experiments summarised in table 3.1 are used for studying the role

of the ambient fluid on the granular flow dynamics. We chose the front speed in the

constant velocity regime to describe the granular flow because it is more sensitive to

the ambient fluid effects. Figure 5.5 (a) shows a comparison of simulated and measured

dimensionless front speed, uF/
√

g′xo, as a function of ho/xo, for the six sets of exper-

iments. A good agreement is observed without fitting any parameter on the model,

thus validating the system of governing equations proposed. Furthermore, the results

of figure 5.5 (a) suggest that the dependence between uF and ho/xo obtained for the

case without fluid is also present when the ambient fluid is considered. This is shown

in figure 5.5 (a) with the dashed lines that were obtained by multiplying the results

curve obtained without fluid and particles collisions (black solid line) by a factor that
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Figure 5.4. Results of numerical experiments without fluid and particles collisions. (a) Dimensionless front
speed uF /

√
gxo and (b) ratio he/ho, as a function of ho/xo, for both sets with (•) and without (�) Coulomb

friction. (c) Dimensionless runout distance, (x∞ − xo)/xo, as a function of ho/xo, for the case with Coulomb
friction (•).

fits each set of experiments. Therefore, the front speed can be written as

uF = Fr
√

2g′he, (5.3)

where Fr is a Froude number, and he is calculated from the numerical experiments

without fluid and particles collisions (5.2). On the other hand, in the dimensional anal-

ysis of § 4.2, the dimensionless groups that weight the interaction terms of (4.4) were

introduced: De, Ar1, c1/c,
√

ho/d1, and K̃1/c. The last three groups depend on the

initial and boundary conditions, and from figure 5.5 (a) they are contained in he, at

least for the laboratory scale considered. Thus, Fr = Fr(De, Ar1) only depends on the

solid particle diameter and fluid properties. Experimental front velocities are used to

test this hypothesis, and figure 5.5 (b) shows the best fit curve that relates Fr and one

function of De and Ar1, preserving the physical limits Fr = 0 for γ1 = γ0, and Fr = 1

defined without fluid.

Note that even if the front speed is made dimensionless with g′, the ambient fluid

effects cannot be restricted to the buoyancy force (figure 5.5), and it is required to

analyse the hydrodynamic fluid pressure and drag interactions to characterise accurately



Results 37

0.27

0.42

0.59

0.72
0.80
0.88
1.00

u
F
/

√
g
′
x

o

ho/xo
1 2 3 6 10 20

0.2

0.3

0.4

0.6

1

2
(a)

log10(Ar1/De
2 + 1)

u
F
/

√
2
g
′
h

e

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
(b)

y = 1-exp ( - 1

7
x

)

Figure 5.5. (a) Results of dimensionless front speed, uF /
√

g′xo, as a function of ho/xo, for experiments of
table 3.1: set 1 (�), set 2 (⊳), set 3 (⋄), set 4 (∇), set 5 (△), and set 6 (◦). White and black marks are numerical
and experimental results, respectively. The dashed lines were obtained by multiplying the results curve without
fluid and particles collisions (——–) by the factor indicated. (b) Froude number, Fr = uF /

√
2g′he, as a function

of log
10

(Ar1/De2 +1), for the six sets of experimental measurements of table 3.1 (◦). The best fit is represented
by the solid line that preserves the physical limits Fr = 0 for γ1 = γ0, and Fr = 1 defined without fluid.

the role of the ambient fluid on granular flow dynamics. Therefore, it is instructive to

examine in more detail the spatial and temporal variation of quantities involved in the

balance of forces at the front.

Figure 5.6 shows the results of columns with ho/xo=8 and grains of 0.7 mm, in air

at t̃=2.0 (left panels) and in water at t̃=3.5 (right panels). This figure synthesises the

role of the ambient fluid. The grains are not packed at the front (figures 5.6a and

5.6b) because their weight is held by both hydrostatic and hydrodynamic fluid pressure

(figures 5.6c and 5.6d). Thus, the solid pressure as well as the Coulomb friction is zero

in this area (figures 5.6c and 5.6d). This effect is larger in water than in air, suggesting
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Figure 5.6. Numerical results of grain columns with d1=0.7 mm and ho/xo=8 in air at et=2.0 (left panels) and

in water at et=3.5 (right panels). (a,b) Contours of c1 with the streamlines of fluid velocity (→→). (c,d) Contours

of ep1, computed free surface c−1
R eH

0
c1(ex, ey)dey (– – –), non-hydrostatic fluid pressure at the bottom of the

reservoir dimensionless by cγ1g
′ho (——–), and horizontal dimensions of CV , δx/ho = 0.3. (e,f ) Dimensionless

drag force eFx drag =
p

De ho/(Ar1 d1) eK1/c[eu0 − eu1] (→), and horizontal fluid velocity eu0 (− · − ·), profiles in
the front area.

that the magnitude of the fluid pressure fluctuations depends on the fluid density, that

is, it is described by De. Even when there is no Coulomb friction at the front, the

solid phase movement may decelerate, as the increase of fluid pressure is caused by

momentum transfer through drag interactions, and because the no-slip fluid boundary

condition imposes small speed regions near the walls (figures 5.6e and 5.6f ).

Figure 5.7 (a,b) shows measured and simulated time series of (xF −xo)/ho, and figure

5.7 (c,d) shows the time series of volume integrated dimensionless terms of the horizon-

tal solid phase momentum equation for the experiments presented in figure 5.6. The

temporal variation of the horizontal forces shows that the force balance is described

by different interacting forces that depend on the nature of the ambient fluid. In air,

the movement is mainly driven by solid pressure gradient, while Coulomb friction (and
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Figure 5.7. Results of grain columns with d1=0.7 mm and ho/xo=8 in air (left panels) and in water (right
panels). (a,b) Measured (◦) and simulated (——–) time series of (xF −xo)/ho. (c,d) Temporal variation of the
horizontal forces integrated over CV : advection −∂x̃′ [eρ1(eu1 − euF )eu1] (—×—), solid pressure gradient −∂x̃′ ep1

(—◦—), Coulomb friction sxy∂ỹ′ ep1tanϕ (—•—), collisional pressure gradient −∂x̃′ epc (—N—), collisional shear

stress ∂x̃′ [2Re−1

c ∂x̃′ eu1] + ∂ỹ′ [Re−1

c (∂ỹ′eu1 + ∂x̃′ev1)] (—△—), fluid pressure gradient −Dec1/c∂x̃′ ep0(– – –), and

drag force
p

De ho/(Ar1 d1) eK1/c[eu0 − eu1] (——–). Shaded areas correspond to the constant velocity regime.

drag to a lesser extent) counteracts the movement (figure 5.7c). In contrast, the move-

ment in water is mainly driven by momentum advection (and fluid pressure gradient to

a lesser extent), while drag counteracts the movement (figure 5.7d). The deceleration

phase starts when solid pressure gradient is not large enough against Coulomb friction

in air (figure 5.7c), and when advection is not large enough against drag in water (figure

5.7d). In both cases of air and water, the granular motion ends in a static state because

of Coulomb friction.

An important issue of the model that deserves a further analysis is the turbulence

of the fluid phase, as in both cases of air and water drag forces coupled with the wall

fluid viscous effects counteract the solid movement (figures 5.6e and 5.6f ), so that near

wall viscous effects seem to be important. Figure 5.8 shows a sensitivity analysis of the

results for the smallest particles considered comparing simulations with and without

fluid turbulence. It is observed that the front speed increases considerably if the fluid
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Figure 5.8. Results of uF /
√

g′xo as a function of ho/xo, for set 3 (△) and set 6 (◦) of table 3.1. White and gray
marks are numerical results with and without fluid turbulence, respectively, and black marks are experimental
measurements. The dashed lines were obtained by multiplying the results curve without fluid and particles
collisions (——–) by the factor indicated.

turbulence is not considered, with an increase in speed, calculated as (u′′
F − uF )/uF

with u′′
F being the front speed without turbulence, of about 32% in the case of air and

of about 100% in the case of water (figure 5.8). This sensitivity analysis shows that

apart from representing accurately the interaction mechanisms between the phases, the

dynamic of each phase has to be properly described.

5.2. Results of the three-species model equations

In this section, the three-species approach (4.6) - (4.8) is used to study the dynamics

of dense heterogeneous granular flows and their associated segregation effects.

5.2.1. Validation of the model equations

To validate the new constitutive relation (2.38) that describes the interactions be-

tween solid constituents in a dense regime, we first conducted numerical experiments for

the collapse and spreading of a granular column composed by two solid species, named

1 and 2, with equal material density and diameter (γ1 = γ2 and d1 = d2) in a viscous

fluid. In this condition, the three-species flow dynamics is identical to the monosized

counterpart (i.e., two-phase flows). We carried out these numerical experiments with

the larger particles in air (experiment A1.1 of table 2), for which the fluid effects are less

important, and we varied the relative solid fractions between (X1,X2) = (0%,100%),

(25%,75%) and (50%,50%). The results of this analysis are presented in figure 5.9 that

also shows a comparison with the experimental measurements. Figures 5.9 (a,b) show

frames of the dimensionless solid pressure for the case of (25%, 75%), called p̃1 and p̃2,
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Figure 5.9. Results of granular column collapse and spreading in air with grains size of 3 mm and columns with
ho/xo=3. The numerical experiments were carried out by varying the proportions of the same solid constituent

between (0%,100%), (25%,75%) and (50%,50%). (a-d) Numerical results of experiment (25%,75%) at et=1.3,
in which results for the constituent 1 (X1=25%) and 2 (X2=75%) are shown in the left and right panels,
respectively. (a-b) Contour graphs of the dimensionless solid pressures ep1 and ep2, and experimental (——) and

computed c−1
R eH

0
(c1(ex, ey) + c2(ex, ey))dey (– – –) free surface of the granular flow. (c-d) Spatial variation of the

magnitude (contour) and direction (arrows) of the solid velocities eu 1 and eu 2. (e) Time series of the total solid

pressure at the left bottom corner of the column epb = ep1
b + ep2

b (gray lines) and the column height at the left
top yt/ho (black lines), and (f ) comparison between measured (◦) and simulated time series of (xF − xo)/ho

for (0%,100%) (——), (25% ,75% )(− · − ·) and (50% ,50% ) (– – –).

and a comparison between measured and simulated free surface of the granular flow,

where the simulated free surface is defined as c−1
∫ eH

0
(c1(x̃, ỹ) + c2(x̃, ỹ))dỹ. Figures

5.9 (c,d) show contour graphs of the dimensionless solid velocities, called ũ 1 and ũ 2,

and figure 5.9 (e) compares time series of the total solid pressure at the left bottom

corner of the column, p̃b = p̃1

b + p̃2

b, and the column height at the left top, yt/ho,

while figure 5.9f compares time series of the dimensionless front position, (xF −xo)/ho.

Figure 5.9 validates the solid interaction closure (2.38), as the three-constituent simu-

lations give the same numerical results as for the case of a single constituent (figures
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5.9e and 5.9f ). In particular, the numerical solution shows that the total solid pres-

sure is partitioned accordingly to the relative solid fraction of each component (figures

5.9a and 5.9b), and is equal to the simulated solid pressure for one solid constituent

(figure 5.9e). Furthermore, in the three-constituent simulations, both solid components

have the same solid velocity (figures 5.9c and 5.9d) and front speed (figure 5.9f ), thus

preserving the mixture force balance independent of the fractions of the components.

Before validating the constitutive relation (2.38) for the case of binary mixtures of

small and large grains, it is necessary to analyse the parameter σ > 0 introduced in

the empirical function η(σ) of (2.53) in order to address the kinetic sieving of small

grains. As in the previous section, the front speed in the constant velocity regime,

uF = max(dxF /dt), is used as a control parameter in the following analysis. A sensitivity

analysis of the front speed depending on σ is presented in figure 5.10a, which shows

the ratio between simulated and measured front speed, us
F/um

F , for experiments A1.4

and B1.1 of table 3.3. It is observed that the simulated front speed is smaller than

the experimental measurements when σ=0, and approaches to those measurements

when σ increases (figure 5.10a). The effect of σ is explained by the expansion of the

granular network induced by the particle segregation. This is shown in figures 5.10 (b,d)

by comparing the measured (figure 5.10b) and simulated deposits of A1.4 in cases of

σ=1.4 (figure 5.10c) and σ=0.0 (figure 5.10d). Percolation of the small grains induces

the segregation of the large particles at the top of the flow (figures 5.10b and 5.10c),

which in turns decreases the mixture concentration (see figure 2.2) and increases the

mixture volume. This volumetric expansion is then reflected in the front speed, as the

kinetic energy is proportional to both the solid concentration and square velocity, so

that by conservation of energy a decrease in solid concentration is compensated with

an increase in speed.

Using σ=1.4 in (2.53) to model the kinetic sieving of small grains, the four sets of

experiments summarised in table 3.2 were simulated and the results for ho/xo=3 are

presented in Figure 5.11. A good agreement between simulated and measured front

speed is observed (figure 5.11a), preserving the same experimental tendency of the

front speed depending on the initial relative solid concentration of small grains (the

experimental tendency is represented by the dashed lines of figures 5.11b and 5.11c),

thus validating the system of governing equations (4.6)-(4.8) for heterogeneous granular

flows of binary mixtures of small and large spherical particles in a viscous fluid.
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ỹ

(d)

 

0.3

0.2

0.1

0.0

 

0.3

0.2

0.1

0.0

Figure 5.10. (a) Ratio between simulated and measured front speed, us
F /um

F , as a function of σ for experiments
A1.4 (•) and B1.1 (�) of table 3.3 and ho/xo=2. (b) Image of the experimental deposit of A1.4. (c-d) Contour
graph of the solid concentration of small particles, c1, for simulated deposits of A1.4 with σ=1.4 (c) and σ=0.0
(d). White dashed line marks the separation between the layer with small and large grains at the bottom of the
deposit and the layer rich in large grains at the surface (in where c1 <0.1), and the black dashed line represents
the free surface of the deposit.

5.2.2. On the dynamics of dense heterogeneous granular flows

In order to verify that the results obtained from experiments with ho/xo=3 (figures

5.11b and 5.11c) are independent of the initial column aspect ratio, we repeated each set

of experiments with columns of ho/xo=2,3,4,6,8. For comparison of the results, we used

he = he(tanϕ, ho/xo) of (5.2), introduced in § 5.1.2 to subtract the effects of tan ϕ and

ho/xo. Figure 5.12 shows the Froude number, Fr, as a function of the initial volume

fraction of small grains for the four sets of experiments of table 3.2. For the case of

experiments in air (experiments A1 and B1 in figure 5.12), the front speed increases

when the initial volume fraction of small grains increases until ∼ 27% (figure 5.12), which

according to (2.50) corresponds to the optimal or maximum packing concentration of

the mixture. As discussed in the previous section, this behaviour is caused by the

particle segregation that increases the solid mixture volume, and it is more important
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Figure 5.11. (a) Simulated, fus
F , versus modelled, fum

F , dimensionless front speed for the four sets of experiments
of table 3.2 with ho/xo=3 and σ=1.4. (b-c) fuF as a function of the initial volume fraction of small grains for
sets A1 (△) and A2 (�) (b), and B1 (◦) and B2 (∇) (c). White and black marks are experimental and numerical
results, respectively. The experimental tendency is represented by the dashed line.

for binary mixtures with d1/d2=0.07<0.15 (experiments A1 in figure 5.12a) than for

binary mixtures with d1/d2=0.22 (experiments B1 in figure 5.12b).

When repeating the same experiments in water (curves A2 and B2 in figure 5.12), the

increment in front speed due to particle segregation is damped, and the maximum of

the front speed is shifted toward the left-hand side of the figure, for which the relative

concentration of small grains is smaller (see experiments A2 in figure 5.12a). These new

behaviours can be attributed to the nature of the ambient fluid, and are explained by the

competition between particle segregation and ambient fluid effects. In fact, the front

speed decreases when the particle diameter decreases, and this effect is enhanced in
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Figure 5.12. Froude number Fr = uF /
√

2g′he as a function of the initial volume fraction of small grains
for sets A1 (in air, △) and A2 (in water, �) (a), and B1 (in air, ◦) and B2 (in water, ∇) (b) of table 3.2.
White marks are experimental measurements with ho/xo=2,3,4,6,8; and black marks are simulation results
with ho/xo=6 and σ=1.4. The experimental tendency is represented by the dashed line.

water (see figure 5.5). This is illustrated in figure 5.13 that presents a comparison of the

results for experiments in air (A1.4, left panels of figure 5.13) and in water (A2.4, right

panels of figure 5.13). Figures 5.13 (a,b) show the experimental image of the granular

flow and figures 5.13 (c,d) show the contour graph of the total solid concentration,

while figures 5.13 (e,f ) show the dimensionless horizontal fluid velocity and drag force

profiles in the front area. It is observed that although in both cases drag forces coupled

with wall fluid viscous effects counteract the movement of the solids (see arrows in

figures 5.13e and 5.13f ), the ambient fluid effects are more important in water than in

air (compare arrows in figure 5.13e with arrows in figure 5.13f ). Furthermore, figures

5.13 (a,d) show that, in general, there is a good agreement between the experimental

and numerical morphologies of the granular flow. Discrepancies are observed, however,

in case of ambient water for which experimentally is observed that the particles that
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Figure 5.13. Results for experiments A1.4 at et =1.9 (in air, left panels) and A2.4 at et =2.9 (in water, right
panels). (a,b) Experimental image. (c,d) Contour graph of the total solid concentration, c1 + c2, and the
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De ho/(Arα dα) eKα/c[eu0 − euα] (→), profiles in the front area.

are in suspension at the top of the granular flow are concentrated in eddies (figure

5.13b), whereas numerically is obtained a smooth region with low concentration of

particles (figure 5.13d). This is because the experimental image corresponds to just one

realization and the results of the model equations correspond to an average over many

realizations (Reynolds (1895) average equations).



Chapter 6

Discussion and conclusions

In this thesis, a theoretical framework based on the mixture theory was developed to

study a dense granular flow composed by several solid constituents and a Newtonian

ambient fluid. These fully coupled equations have four important characteristics: (i) they

consider the compressible nature of a granular flow, (ii) they are able to dynamically

create interfaces, (iii) they consider the coupled dynamics between the drag forces and

the turbulence of the ambient fluid, and (iv) they consider the feedback that exists

between the particle-size distribution and the dynamics of the flow. This continuum

framework may be useful to study the large scale dynamics of granular flows such as

geophysical flows, which are dense heterogeneous granular flows that are characterized

by unsteady and non uniform flow conditions.

6.1. On the role of the ambient fluid on granular flows

The particular dynamics of the collapse and spreading of a two-dimensional granular

column in air or water was successfully solved for a wide range of column aspect ratios,

ho/xo ∈ [1, 16]. A key feature of the governing equations is the representation of the

rate-independent quasi-static part of constituent stresses of the solid particles defined

by (2.19) and (2.20), which induces the fall of the particles while the flow is not packed,

and creates static and dynamic regions during the granular column collapse because

of the Mohr-Coulomb condition (figure 5.2). Moreover, the inherent non-hydrostatic

feature of the governing equations allows the handling of the reported problem in the

shallow water equations for high aspect ratios (e.g. Larrieu et al. 2006).

By introducing he = he(tan ϕ, ho/xo) from numerical experiments without fluid and

particles collisions (figure 5.4b), the effects of tan ϕ and ho/xo were subtracted, allowing

the analysis of the role of the ambient fluid on gravitational granular flow dynamics.

Buoyancy is the direct and simplest consequence of the presence of an ambient fluid;

however, experimental measurements cannot be explained if the hydrodynamic fluid

pressure and drag interactions are not included in the analysis. In fact, fluid pressure

gradient and drag interaction terms in (4.4) are coupled and act on the granular flow

dynamics. This is shown in figure 5.5 (b), in which the best fit for the experimental

measurements was found with a combination of De and Ar1, which are dimensionless
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numbers that weight the fluid pressure gradient and the drag terms in (4.4) at the lab-

oratory scale considered. The magnitude of the fluid pressure fluctuations at the flow

front is described by De, while the magnitude of the momentum transfer by drag inter-

actions is described by Ar1. The combination of both dimensionless numbers determines

the dominant terms that describe the force balance during the constant front velocity

regime. In air, the dominant dynamical balance results from solid pressure gradient and

Coulomb friction (figure 5.7c), because the hydrodynamic fluid pressure that results

from volume interchanges and momentum transfer by drag interactions, is not large

enough to support the reduced weight of the solid particles (figure 5.6c). In contrast, in

the case of water in which the fluid pressure fluctuations are larger, the local behaviour

change to a dense suspension for the smaller particles (d1 equal to 0.2 and 0.7 mm),

because the increase of momentum transfer by drag interactions results in an increase

of the hydrodynamic fluid pressure that finally support the reduced weight of the solid

particles (figure 5.6d), thus resulting in the dominant dynamical balance described by

advection and drag forces (figure 5.7d). Furthermore, in cases of both air and water

drag forces coupled with the wall fluid viscous effects counteract the solid movement

(figures 5.6e and 5.6f ); in this context, fluid turbulence is particularly important and

has to be considered in the analysis (figure 5.8), that is, the problem is taken back to

fluid turbulence, which is a fundamental issue in fluid mechanics.

As the interaction mechanisms cannot be restricted to buoyancy or volume ex-

changes, arguments of low fluid density (Campbell 2006) or constant solid bulk density

(Hutter et al. 2005) are not enough to neglect the ambient fluid effects. For instance,

consider the case of a dense granular flow, for which particles collisions can be ignored,

immersed in a real fluid with very low material density (dry dense granular flows), the

equations of motion for the solid phase (2.27) reduce to

∂ρ1u1i

∂t
+

∂(ρ1u1ju1i)

∂xj

= ρ1

gi

g
− ∂p1

∂xi

+ sij
∂p1

∂xj

tan ϕ. (6.1)

Some features of dry dense granular flows can be deduced from these equations.

First, the motion depends neither on the fluid phase nor on the solid particle diameter.

Second, dry dense granular flows do not reach a uniform steady state flow regime. If

this is the case, the left hand side terms of (6.1) as well as the horizontal pressure

gradient are zero, resulting in the pressure distribution of the static case. If there is

motion, the only way to balance gravity and pressure forces is by flow acceleration.

As a consequence, to explain the widely reported uniform steady state flow regime

of dry dense granular flows found in different experimental configurations (e.g. GDR

MiDi 2004; Forterre & Pouliquen 2008), an additional sink of momentum has to be

considered. Although particles collisions may provide the sink of momentum required
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to balance gravity and pressure forces, the uniform steady state flow regime for dry

dense granular flows can also be explained by drag forces that transfer momentum from

solid to fluid phases. This transfer indirectly allows the fluid turbulence to contribute

in the solid phase force balance, as fluid turbulence decreases the fluid velocity, thus

increasing drag forces that finally counteract the gravity in the solid phase force balance.

Furthermore, analyses made by Cassar et al. (2005) and Forterre & Pouliquen (2008),

without invoking explicitly the ambient fluid effects, indirectly consider drag forces on

the falling time scale of the particles used to derive friction laws for uniform steady

avalanches. That is, even with ambient air, the fluid effects that are commonly ignored

could become strong enough to explain, for instance, the uniform steady state flow

regime.

We conclude that the effects of the ambient fluid on the dynamics of granular flows

cannot be neglected. This means that in order to properly describe the granular flow

dynamics, a two-phase approach has to be used. This is because conceptually the effects

of the ambient fluid represent an interaction force in the solid phase momentum equa-

tions, so that they cannot be incorporated in the stress tensor of the solid phase. The

advantage of separating solid and fluid phases is that when studying the solid phase,

the set of material properties that control the flow behaviour can be identified, thus

enabling to look for a general constitutive law to represent the stress tensor of the solid

phase for any granular flow regime.

6.2. On the dynamics of dense heterogeneous granular flows

Once the ambient fluid effects were identified, we analysed the dynamics of dense

heterogeneous granular flows. In particular, we proposed a new constitutive relation

(2.38) that describes the interaction mechanisms between the solid species in a dense

regime. Our results suggest that the model equations include the essential features

that describe the dynamics of dense heterogenous granular flows (figure 5.11). The key

feature of the model equations is the new constitutive relation of (2.38), which correctly

represents the interactions between solid species in a dense regime, since one species can

be split into two sub-constituents and the resulting dynamics is independent of that

subdivision (figure 5.9). With this new constitutive relation, the effect of difference

in diameter between two solid constituents is only taken into account in the model

through the interactions with the ambient fluid (2.39); however, the dynamics of dense

heterogeneous granular flows is incomplete unless the kinetic sieving of small grains is

included (figure 5.10a). For doing this, the empirical function of (2.53) was introduced

to represent the fact that under a critical value of the mixture concentration, only

small particles fall down while large particles remain packed (Savage & Lun 1988). The
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direct effect of (2.53) was the segregation of the constituents (compare figures 5.10c and

5.10d), which can be explained using the squeeze expulsion mechanism described by

Savage & Lun (1988) and later by Pouliquen & Vallance (1999) and Gray & Thornton

(2005). This squeeze mechanism is based on the fact that percolation of small grains

produces force imbalances at the base of the flow, thus forcing the large particles to move

upward and leading to vertical segregation. This squeeze expulsion mechanism was a

natural result of the model (figure 5.10c), which validates the experimental hypothesis

of (2.53), since both front speed and final deposit fit relatively well with the laboratory

measurements (figures 5.10 and 5.11).

An important consequence of the segregation of the granular flow is the increase

of the solids mixture volume because of the decrease of the mixture concentration

(see figure 2.2), which is then reflected in an increase in both the runout distance

and the front speed (figure 5.10). The increase in front speed is explained in terms of

the kinetic energy of the flow, which is proportional to both solid concentration and

square velocity, then a decrease in solid concentration is compensated with an increase

in speed (see curves A1 and B1 of figure 5.12). This increase in flow mobility when

adding a small amount of small grains has been reported in experiments (Roche et al.

2005; Phillips et al. 2006) and in soft particle discrete element numerical simulations

(Linares-Gerrero et al. 2007), but using as a control parameter the ratio of the runout

distance to the fall height. In these studies the increase of mobility has been attributed

to a thin layer of small particles that may change the frictional dynamics at the base

of the flow (Phillips et al. 2006; Linares-Gerrero et al. 2007); however, the results of

figure 5.10 suggest that the volumetric expansion of the flow caused by the particle

segregation is enough to explain the enhanced mobility. This segregation effect may be

in contradiction with Phillips et al. (2006) who found that a deposit of a granular flow

with high mobility appears to have less segregation than a deposit of a flow with low

mobility; however, they agree with us in the fact that the maximum flow mobility is

obtained for initial mixture concentrations close to the maximum packing concentration

(∼ 27% of fraction of small grains, see curves A1 and B1 of figure 5.12), for which the

increase in mixture volume due to segregation is greater (see figure 2.2). This is also in

agreement with Roche et al. (2005) and Linares-Gerrero et al. (2007) who showed that

the runout distance is greater for initial mixture concentrations close to the optimal

packing. Then, although the increase in front speed may be the result of both the

expansion of the granular flow and the lubrication at the base of the flow, the expansion

of the flow due to particle segregation appears to be the main mechanism that explains

this behaviour. So far, this volumetric expansion of the flow due to particle segregation

has not been investigated before and further experimental analysis is required to validate

our hypothesis.
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Furthermore, we showed that because of the ambient fluid effects, small grains are

more resistant to flow than large grains, so that the front speed decreases when the

grain size decreases, and this behaviour is even more pronounced in water compared

to the case in air (see figure 5.5). In the context of the three-species granular flows

analysed here, these ambient fluid effects allow to explain the results of figure 5.12,

which shows that the increase in flow speed due to the volumetric expansion is damped

in water compared to the case in air (compare experiments A1 and A2 in figure 5.12a).

As discussed, this occurred because the drag forces coupled with the wall fluid viscous

effects counteract the movement of the solid particles (figures 5.13e and 5.13f ). There-

fore, although a mixture of small and large grains may segregate and the front speed

may increase, drag forces counteract the movement of the solids, thus competing with

segregation. In this context, it would be interesting to investigate if such a relation is

encountered in geophysical flows such as landslides and debris avalanches.



Appendix: Numerical scheme

Each of the governing equations can be written in the general convection-diffusion

transport equation with source terms:

∂ρφ

∂t
+

∂(ρujφ)

∂xj
=

∂

∂xj

(
Γ

∂φ

∂xj

)
+ S, (A.1)

where ρ is the density, φ is the dependent variable, Γ is the diffusion coefficient, and

S is the source term. The particular representation of each term in the context of the

governing equations (2.45)-(2.46) and (2.47)-(2.49) is listed in table A.4.

Following Patankar (1980), each governing equation was discretised using both the

hybrid scheme (Patankar 1980, pp. 88–90) and the linearisation procedure for the source

terms (Patankar 1980, pp. 48–49). The final two-dimensional discretisation equation is

written generically as

aP φP = aEφE + aWφW + aNφN + aSφS + b,

aE = ‖−Fe, De − Fe/2, 0‖, aW = ‖Fw, Dw + Fw/2, 0‖,
aN = ‖−Fn, Dn − Fn/2, 0‖, aS = ‖Fs, Ds + Fs/2, 0‖,
aP = aE + aW + aN + aS + ao

P − SP ∆x∆y + (Fe − Fw) + (Fn − Fs),

ao
P = ρo

P ∆x∆y/∆t, b = SC∆x∆y + ao
P φo

P ,

(A.2)

where the sub-index with the upper-case letter k = E, W, N, S refers to the quantities

evaluated at the node east, west, north, south of the central node P ; the sub-index with

the lower-case letter l = e, w, n, s refers to the quantities evaluated on the face east,

west, north, south of the control volume P ; the upper-index ()o refers to the value of the

quantities evaluated in the previous time step;‖ ‖ stands for the largest of the quantities

within it; SC and SP arise from the linearization of the source term S = SP φP + SC ;

and the convective, Fl, and diffusive, Dl, fluxes are

Fe = (ρu)e∆y, Fw = (ρu)w∆y, Fn = (ρu)n∆x, Fs = (ρu)s∆x,

De = Γe∆y/∆x, Dw = Γw∆y/∆x, Dn = Γn∆x/∆y, Ds = Γs∆x/∆y.
(A.3)

Note that the source terms of the discretised momentum equations (2.47) and (2.48)

contain the pressure that is unknown (table A.4), so that the mass continuity equations

have to be included in order to close the system of equations. For doing this, we followed

the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm

explained in detail in Chapter 6 of Patankar (1980). In this methodology, the pressure

and velocities are written as

p = p∗ + p′, u = u∗ + u′, v = v∗ + v′, (A.4)
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Equation ρ φ Γ S

(2.45) ρ0 k µT /σk µT (∂xj
u0i + ∂xi

u0j)∂xj
u0i +

PN

β=1
Kβ|u 0 − u β |2 − ρ0ǫ

(2.46) ρ0 ǫ µT /σǫ c1ǫǫ/k[µT (∂xj
u0i + ∂xi

u0j)∂xj
u0i +

PN

β=1
Kβ |u 0 − u β |2] − c2ǫρ0ǫ

2/k
(2.47) γα cα - -

(2.48) ρ0 u0i µ0 + µT ρ0gi − c0∂xi
p0 −

PN

β=1
Kβ(u0i − uβi)

(2.49) ρα uαi - ραgi − ∂pα/∂xi + sαij∂pα/∂xj tanϕα + m̂αi

Table A.4. Particular representation of the density, ρ, the dependent variable, φ, the diffusion coefficient, Γ,
and the source term, S, for each equation.

where ()∗ denotes guessed values (or values of the previous iteration) and ()′ denotes

correction values. Using p∗, the velocities u∗ and v∗ are obtained by solving the momen-

tum equations. Then, the correction for the pressure p′ is obtained from the pressure-

correction equation given by (Patankar 1980, pp. 124–126),

aP p′P = aEp′E + aW p′W + aNp′N + aSp′S + b,

aE = ρede∆y, aW = ρwdw∆y, aN = ρndn∆x, aS = ρsds∆x,

de = ∆y/au
e , dw = ∆y/au

w, dn = ∆x/av
n, ds = ∆x/av

s ,

aP = aE + aW + aN + aS,

b = (ρo
P − ρP )∆x∆y/∆t + (Fw − Fe) + (Fs − Fn),

(A.5)

where au
e , a

u
w and av

n, av
s are the corresponding coefficients that comes from the u and

v momentum equation that are discretised in the east, west, and north, south faces of

the control volume for the pressure equation. Finally, the corrections for the velocities,

u′ and v′, are computed with (Patankar 1980, pp. 124–126)

u′
e = de(p

′
P − p′E), u′

w = dw(p′W − p′E), v′
n = dn(p′P − p′N ), v′

s = ds(p
′
S − p′P ). (A.6)

Note also that this procedure is applied to each constituent separately, and in the

case of the solids momentum equations (2.48), the inclusion of the solid pressure closure

(2.28) implies that the pressure-correction equation is applied only at points where the

flow is packed, that is, at points in which the flow is incompressible.

Finally, it is important to mention that for solving the convection-diffusion equa-

tion two kinds of boundary conditions can be chosen: a given boundary value or a

given boundary flux. As the momentum equations are a particular case of this general

equation, the same boundary condition treatment applies to them as well. The only

difference is that for the pressure-correction equation an additional condition at the

boundary has to be given, which could be the pressure at the boundary (and the nor-

mal velocity is then unknown) or the normal velocity at the boundary (and the pressure

is then unknown) (Patankar 1980, pp. 129–130).
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Continuum equations for studying the dynamics of dense heterogeneous granular flows

Carolina MERUANE

Summary

Most dense grains flows in nature,  such as debris  avalanches,  pyroclastic  flows, and subaquatic 
avalanches,  involve a wide range of different solid constituents that are immersed in an ambient 
fluid. In order to obtain a good representation of these flows, the interaction mechanisms among the 
different  constituents  of  the  mixture  should be  considered.  In  this  research,  it  was  developed a 
theoretical  framework  based  on  the  mixture  theory  for  representing  the  dynamics  of  a  dense 
heterogeneous granular flow composed by a number of solid species with different properties, and 
immersed in a Newtonian ambient fluid. These fully coupled equations were solved numerically and 
validated  by  comparing  the  numerical  results  with  experimental  measurements  of  gravitational 
granular flows, triggered by the collapse of two-dimensional granular columns in ambient air  or 
water. This theory was then used to investigate the ambient fluid effects on homogeneous granular 
flow dynamics, and the segregation effects on the dynamics of binary mixtures of small and large 
spherical particles of equal mass density. Our results suggest that the model equations include the 
essential features that describe the dynamics of dense heterogeneous granular flows. In particular, it 
is shown that segregation of the granular material increases the front speed because of the volumetric 
expansion of the flow. This increase in flow speed is damped by the ambient fluid, and this behavior 
is more pronounced in water compared to the case in air. It is concluded that a realistic model of 
dense  heterogeneous  granular  flows  should  consider  at  least  three  constituents:  large  and small 
grains, and the ambient fluid. 



Equations continues pour l’étude de la dynamique des
 écoulements granulaires denses hétérogènes

Carolina MERUANE

Résumé

La plupart des écoulements granulaires denses dans la nature, tels que les avalanches de débris, les 
écoulements pyroclastiques et les avalanches sous-marines, sont constitués d’un large éventail de 
différents composants solides immergés dans un environnement fluide. Afin d’obtenir une bonne 
représentation de la dynamique de ces écoulements,  il  est nécessaire d’examiner les mécanismes 
d'interaction entre les différents composants du mélange. Dans ce travail, nous avons développé un 
cadre théorique basé sur la théorie de mélange afin de représenter la dynamique d'un écoulement 
dense de matériau granulaire hétérogène composé d’un certain nombre d’espèces solides avec des 
propriétés différentes, et immergé dans un environnement fluide Newtonien. Le système d’équations 
obtenu a été validé en comparant les résultats numériques avec des mesures expérimentales obtenues 
pour des écoulements gravitaires de matériaux granulaires, générés par l'effondrement d'une colonne 
de grains en deux dimensions, en utilisant de l'air ou de l'eau comme  milieu fluide. Cette théorie a 
ensuite été utilisée pour étudier les effets du fluide ambiant sur la dynamique des écoulements de 
matériaux  granulaires  homogènes,  ainsi  que  les  effets  de  la  ségrégation  sur  la  dynamique  des 
écoulements granulaires de mélanges binaires constitués de petites et grandes particules sphériques 
d’égale  densité.  Nos  résultats  suggèrent  que  les  équations  reproduisent  les  caractéristiques 
essentielles de la dynamique des écoulements granulaires denses hétérogènes. En particulier, nous 
démontrons que la ségrégation des matériaux granulaires augmente la vitesse du front en raison de la 
dilatation  de  l’écoulement.  Cette  augmentation  de  la  vitesse  d’écoulement  est  amortie  par 
l’environnement  fluide,  et  ce  comportement  est  plus  marqué  dans  l’eau  que  dans  l’air.  Nous 
concluons qu’un modèle réaliste pour des écoulements granulaires hétérogènes doit considérer au 
moins trois éléments: des grains de petite et de grande taille et un environnement fluide.
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