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Error estimate for a �nite volume sheme in a geometrial

multi-sale domain.

Marie-Claude Viallon

Université de Lyon, UMR CNRS 5208, Université Jean Monnet, Institut Camille Jordan.

Abstrat. We study a �nite volume sheme, introdued in a previous paper [36℄, to solve

an ellipti linear partial di�erential equation in a rod struture. The rod-struture is two-

dimensional (2D) and onsists of a entral node and several outgoing branhes. The branhes

are assumed to be one-dimensional (1D). So the domain is partially 1D, and partially 2D. We all

suh a struture a geometrial multi-sale domain. We establish a disrete Poinaré inequality in

terms of a spei� H1
norm de�ned on this geometrial multi-sale 1D-2D domain, that is valid

for funtions that satisfy a Dirihlet ondition on the boundary of the 1D part of the domain

and a Neumann ondition on the boundary of the 2D part of the domain. We derive an L2
error

estimate between the solution of the equation and its numerial �nite volume approximation.

Résumé. Nous étudions un shéma de type volumes �nis, introduit dans un préédent artile

[36℄, pour résoudre une équation aux dérivées partielles elliptique linéaire dans une struture-

tube. La struture-tube est bi-dimensionnelle (2D) et onstituée d'un noeud d'où partent plu-

sieurs branhes. Les branhes sont supposées uni-dimensionnelles (1D). Le domaine sur lequel

l'équation est posée est ainsi 1D en partie, et 2D en partie. Il sera quali�é de géométrique-

ment multi-éhelle. Nous établissons une inégalité de Poinaré disrète exprimée en fontion

d'une norme H1
spéi�que dé�nie sur e domaine 1D-2D géométriquement multi-éhelle, qui

est valable pour des fontions satisfaisant une ondition aux limites de Dirihlet sur la frontière

de la partie 1D du domaine et une ondition de Neumann sur la frontière de la partie 2D du

domaine. Nous établissons une majoration d'erreur en norme L2
entre la solution de l'équation

et son approximation par le shéma volumes �nis.

Mathematis Subjet Classi�ation : 35J25, 74S10, 65N12, 65N15,65N08

Mots lés : �nite volume sheme, ellipti problem, disrete Poinaré inequality, error estimate,

multi-sale domain

1 Introdution

This paper is onerned with a �nite volume sheme for a geometrial multi-sale domain.

We obtain a spei� disrete Poinaré inequality for that type of struture. This inequality is

then used to improve from O(
√
h) to O(h) a �rst error estimate obtained in [36℄ for a simple

model problem.

The plan is as follows. In Subsetion 1.1, we present the bakground in whih the dimensionally-

heterogeneous modelling takes plae. Then, in Subsetion 1.2, we desribe in detail the geome-

trial multi-sale 1D-2D domain on whih our problem is set (see Figure 1). The parameter ε is
related to the width of the branhes. In the following subsetion we de�ne our model problem
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(1). Then in Subsetion 1.4, the main result of the paper, that is error estimates in spei�

H1
and L2

norms using the �nite volume sheme introdued in [36℄, is disussed. These results

improve a previous estimate that is reminded in Subsetion 1.5. Subsetion 1.6 is devoted to the

review of di�erent ways to state interfae onditions between domains of di�erent dimensions,

Subsetion 1.7 to the review of disrete Poinaré inequalities, espeially for funtions that vanish

only on a part of the boundary. In Subsetion 1.8, from a numerial standpoint, we ompare

the dimension redution of the domain to the use of non-mathing grids, taking a row of big

ells. Then some remarks on the domain deomposition approah end Setion 1. In Setion 2,

we present our hybrid sheme to solve (1). We prove that the sheme gives a unique disrete

solution. In Setion 3, following [19℄, we de�ne a H1
disrete norm and we establish a disrete

Poinaré inequality. Last in Setion 4, we derive the error estimates previously announed in

Subsetion 1.4.

1.1 The dimensionally-heterogeneous modelling

This paper deals with the resolution of a model problem set in a �nite rod struture. A

�nite rod struture is a onneted �nite union of ylinders (retangles in the two-dimensional

ase). Arterial trees in the ardiovasular system, systems of pipes in industrial installations,

or anal systems, are lassial examples of rod strutures. Sine the diret numerial solution

of partial di�erential equations in suh domains implies high omputational osts, we use an

alternative approah : we redue the osts by onsidering the rods as one-dimensional domains,

yet keeping the juntions as two or three-dimensional domains. This therefore leads to work in

a geometrial multi-sale domain (a single numerial model with di�erent spae sales). The

usefulness of the oupling of models of di�erent dimensions has been shown for instane in

[23, 22, 6, 41, 9℄. The main appliation area is omputational hemodynamis. Dimensionally-

heterogeneous modelling has been applied to desribe the relationship between the loal blood

�ow patterns and the global hemodynami environments for instane in [22, 41, 9℄. In [38℄, the

authors present a model where a 1D desription of the irle of Willis (erebral vasulature)

is oupled to a fully three-dimensional (3D) model of a arotid artery. The 3D model is well

suited for investigating the e�ets of the geometry on the blood �ow on a spae sale of a few

entimeters. By exploiting the ylindrial geometry of vessels, it is possible to resort to 1D

models, by reduing the spae dependene to the vessel's axial oordinate only. The 1D models

are onvenient when the interest is in obtaining the pressure dynamis in a large part of the

vasular tree at a reasonable omputational ost. This geometrial multi-sale approah has

been proposed in [23℄, some di�ulties arising from the oupling have been disussed in [24℄. In

[38℄, the authors point out that their approah an be extended to hydrauli networks featuring

pipes. Rather, in [33℄, the authors deal with dimensionally-heterogeneous hydrauli networks.

Yet, the oupling of partial di�erential equations is of inreasing importane for industrial ap-

pliations, and namely the geometrial multi-sale problems. Suh a oupling arises for instane

in the simulation of the �ow in the primary oolant iruit of a pressurized water reator in a

nulear power plant : one may use a 1D ode to deal with the pipes and a 3D ode to model

the reators. In [2℄ and [10℄, the authors foused on a oupling ondition at the interfae among

domains that all have the same geometrial dimension. Though, the oupling of 1D and 2D

CFD odes is disussed in [28℄, where the oupling of the 1D isentropi Euler system to the 2D

one is onsidered : an assoiated 1D Riemann problem is solved at the interfae between the

two systems. This work has been extended reently in [16℄ to the oupling of a density-based

3D Euler ode to a 1D version of the ode (for instane, an appliation is the simulation of
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diesel injetors).

However, in this paper, we solve a model problem in a simple 2D rod struture. We do not

onsider a realisti model suh as desribed above. It is a �rst step. Extensions to more realisti

problems are possible.

1.2 Desription of the geometrial multi-sale 1D-2D domain

Before introduing the 1D-2D domain on whih our model problem is set, let us look at

the following example of �nite rod strutures. It onsists of one node and n branhes. This

onstrution is done in [36℄ and is disussed below.

Let ej = [O,Oj], j = 1, ..., n, be n losed segments in IR2
, having a ommon end point

denoted by O, with length lj = OOj, j = 1, ..., n.
Let (x, y) denote the oordinates in the anonial basis of IR2

, and (xej , yej) denote the loal
oordinates assoiated with the segment ej , j = 1, ..., n. This loal system is orthonormal and

suh that xej
is the oordinate in the diretion ej.

Let ε > 0. Let θ1, ..., θn be positive numbers independent of ε.
Let Bε

j = {(x, y) | xej ∈ (0, lj), yej ∈ (−εθj
2
,
εθj
2
)}, and β̂ε

j = {(x, y) | xej = lj , yej ∈
(−εθj

2
,
εθj
2
)}.

Let ω0 be a bounded domain in IR2
with smooth boundary ontaining O (see [36℄). Let

ωε
0 = {(x, y) | (x,y)−O

ε
∈ ω0}. We assume that Bε

j \ωε
0 ∩Bε

i \ωε
0 = ∅, i 6= j. The domain ωε

0 (see

the dotted line in Figure 1 (a)) is added in order to smooth the boundary of the �nal struture

by removing the orners.

Let Ωε = ∪n
j=1B

ε
j ∪ ωε

0. The domain Ωε is thus the 1/ε− homotheti ontration of a �xed

domain Ω, as depited in Figure 1(a) with n = 5. The thikness of the branhes is the ratio of

the diameter to the height, and is proportional to ε.
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Figure 1 � (a) The initial domain Ωε and (b) The geometrial multi-sale domain Dε.

Now, let us desribe the 1D-2D domain under onsideration. Let δ > 0, suh that δ <
min {lj, j = 1, ..., n} and suh that ωε

0 is in the ball of enter O and radius δ.
Denote B′ε

j = Bε
j ∩ {(x, y) | xej ∈ (0, δ)}, j = 1, ..., n. Denote Ω′

ε = ∪n
j=1B

′ε
j ∪ ωε

0. So Ω′
ε is

a trunated part of the initial domain Ωε.
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Let Sj = {(x, y) | yej = 0, xej ∈ (δ, lj)}, j = 1, ..., n, be segments suh that Sj ⊂ ej .

We denote γ′
j = {(x, y) | xej = δ, yej ∈ (−εθj

2
,
εθj
2
)}, j = 1, ..., n, the interfaes between Ω′

ε

and Ωε \ Ω′
ε. (For the sake of simpliity, we do not make the dependene on ε of γ′

j.)

Let us de�ne Dε = Ω′
ε ∪

(
∪n
j=1Sj

)
. The set Dε is what we all a geometrial multi-sale

domain. We assume that ωε
0 \ ∪n

j=1B
ε
j is not too large. More preisely, we assume that m(Ω′

ε)
is of the same magnitude as m(∪n

j=1B
′ε
j), so as to have m(Ω′

ε) = O(εδ), where m is the 2D

Lebesgue measure.

In this paper, we onsider both the ase of a geometrial multi-sale domain where ε and δ
are �xed, and the ase where ε tends to zero and δ depends on ε. The two studies are made at

the same time, and Theorem 8 and Theorem 11 are stated in Setion 4 related to eah ase.

1.3 The model problem

The boundary value problem in the domain Dε, that we onsider in this paper, is the

following : 



v′′j (x
ej ) = fj(x

ej ), xej ∈ (δ, lj), j = 1, ..., n (a)
vj(lj) = 0, j = 1, ..., n
△u(x, y) = 0, (x, y) ∈ Ω′

ε (b)
∂u

∂n
(x, y) = 0, (x, y) ∈ ∂Ω′

ε\(∪n
j=1 γ′

j)

u(x, y) = vj(δ), (x, y) ∈ γ′
j, j = 1, ..., n

v′j(δ) =
1

θjε

∫

γ′
j

∂u

∂n
dγ, j = 1, ..., n (c)

(1)

We assume that the funtions fj are independent of ε and vanish in some neighborhood of

Oj, j = 1, ..., n. For the sake of simpliity, as in [36℄, the right-hand side is taken equal to zero

in Ω′
ε, but this ondition ould be relaxed. However, it is well known that the error estimates

for the onvergene rate of the numerial methods require some regularity of the exat solution.

So we assume that the right-hand side is suh that u ∈ C2(Ω′
ε) and vj ∈ C2([δ, lj]), j = 1, ..., n.

More preisely, we de�ne a global solution ud
of (1) by letting

ud(x, y) =

{
u(x, y) if (x, y) ∈ Ω′

ε

vj(x
ej ) if (x, y) ∈ Bε

j , x
ej ∈ (δ, lj), j = 1, ..., n

(2)

The solution ud
is de�ned in Ωε but ud(x, y) does not depend on yej when (x, y) ∈ Bε

j \ B′ε
j .

De�ning the solution on Ωε will allow us to use a standard L2
norm in a 2D domain to write

the error estimate of Theorem 8.

Problem (1) has been introdued in [36℄ in the framework of the method of asymptoti

partial domain deomposition (MAPDD) (see [35℄). The following lemma has been proved in

[37℄ (see estimate (6)) and [36℄

Lemma 1 For any J > 0, there is M , independent of ε, suh that if δ = Mε|lnε|, then

‖uε − ud‖H1(Ωε) = O(εJ),
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where uε is the solution of the following ellipti linear model equation





△uε = f, in Ωε

uε = 0, on β̂ε
j , j = 1, ..., n

∂uε

∂n
= 0, on ∂Ωε\(∪n

j=1 β̂ε
j )

(3)

where f is a smooth funtion de�ned in Ωε suh that f(x, y) = fj(x
ej ), if (x, y) ∈ Bε

j \B′ε
j , j =

1, ..., n, and f(x, y) = 0 if (x, y) ∈ Ω′
ε.

There exists a funtion uε ∈ C2(Ωε) solution of (3), if f is su�iently smooth [27℄. It is proved

in [36℄ that the following estimates hold

Lemma 2 If δ is of order εlnε then

‖v′j‖∞ = O(1) and ‖v′′j ‖∞ = O(1), j = 1, ..., n, ‖∇u‖∞ = O(1), ‖∇2u‖∞ = O

(
1

ε

)

These bounds will be useful to prove the error estimate of Theorem 11.

1.4 Comments on the numerial approximation and the error esti-

mate

An hybrid (in the sense that it solves a problem in a geometrial multi-sale domain) �nite

volume sheme is proposed in [36℄ to solve (1). To onstrut the sheme, the methodology whih

was proposed in [45℄ is �rst explained. In [45℄, the authors give a numerial methodology to

address the solution of the 3D Navier-Stokes equations and its oupling with some 1D models

(see [6℄,[7℄,[33℄,[32℄ also). To follow this path to solve (1), let us remark that (1) an be rewritten






v′′j (x
ej ) = fj(x

ej ), xej ∈ (δ, lj), j = 1, ..., n
vj(lj) = 0, j = 1, ..., n
vj(δ) = αj , (x, y) ∈ γ′

j, j = 1, ..., n
v′j(δ) = βj

(4)





△u(x, y) = 0, (x, y) ∈ Ω′
ε

∂u

∂n
(x, y) = 0, (x, y) ∈ ∂Ω′

ε\(∪n
j=1 γ′

j)

u(x, y) = αj, (x, y) ∈ γ′
j, j = 1, ..., n

1

θjε

∫

γ′
j

∂u

∂n
dγ = βj

(5)

The basi idea in [45℄ is to onsider the numerial resolution of the 2D problem (5) on one

hand, and of the 1D problems (4) on the other hand, as blak-boxes whih reeive the input

data (αj , j = 1, ..., n) and give bak (βj , j = 1, ..., n) as output data. A system in the interfae

unknowns (αj, βj, j = 1, ..., n) is obtained, whih is solved by an iterative method. This teh-

nique, whih is a domain deomposition approah, will not be dealt with here. Instead, in the

present paper, a diret method is used, and (4) and (5) are not understood as blak-boxes but

related by (1-) (reminded below for easy referene and guidane) :

v′j(δ) =
1

θjε

∫

γ′
j

∂u

∂n
dγ, j = 1, ..., n (6)
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Here, βj, j = 1, ..., n, are no longer unknowns and only the interfae unknowns αj , j = 1, ..., n,
are kept. We use �nite volume shemes to approah (4'), (5'), and (6), where (4') (resp. (5'))

is the system (4) (resp. (5)) with its last equation removed. The unknowns orresponding with

αj , j = 1, ..., n, are vj,0, j = 1, ..., n, in the resulting sheme that is realled in (11) in Subsetion

2.2.

The aim of the present paper is to reonsider this sheme to solve (1), and in partiular to

improve the order of onvergene obtained in [36℄. In [36℄, we get an error estimate of order√
h, where h is the size of the mesh. In Theorem 8 below we get a better estimate O(h). This

is one of the main results of the paper. Here ε and δ are �xed given parameters and we don't

have to express the bound with respet to these parameters.

However, in addition, (4')-(5')-(6) may also be used to solve (3). In view of Lemma 1, (1) is

a reasonable approximation for (3) if ε is small and δ of order εlnε. So, a numerial approxima-

tion of the solution of (1) is also a numerial approximation of the solution of (3). In Setion

4, an error estimate between the solution of (3) and its numerial approximation is obtained in

Theorem 11 in onjuntion with Theorem 8. Sine both h and ε tend to zero in this ase, the

error estimate is also expressed in terms of ε. Note that a �nite element implementation of (3)

is studied in [21℄ with n = 1, and an error estimate is obtained.

We obtain a better error estimate than in [36℄ beause (1) is really onsidered as a geo-

metrial multi-sale problem. We de�ne disrete L2
and H1

norms for funtions on Dε. A H1

disrete norm has been introdued in [42℄, in the ase of a struture with a single branh. Here,

we propose a generalization to strutures with n branhes. It involves the onvex ombination

of the values of the funtions on both sides of eah interfae γ′
j , j = 1, ..., n. To the best of

our knowledge, there is no error estimate in the literature when using a geometrial multi-sale

�nite volume sheme. Moreover, the problem (1) is suh that Neumann boundary onditions are

imposed on the 2D part of the domain, and Dirihlet boundary onditions are imposed on the

boundary of the 1D part of the domain. As no lassial Poinaré inequality is diretly appliable

on an issue of this nature, it has been neessary to establish a disrete Poinaré inequality inDε.

1.5 About the estimate in [36℄

We reall here how the estimate O(
√
h) is obtained in [36℄. Let vj , ṽj, ũj, j=1,...,n, be the

solutions of the following independent sub-problems, some of them being 1D, and the other

being 2D

{
v′′j = fj , on Sj

vj(δ) = 0

{
ṽ′′j = 0, on Sj

ṽj(δ) = 1





△ũj = 0, on Ω′
ε

ũj|γ′
j
= 1,

ũj|γ′
k
= 0, if k 6= j, k = 1, ..., n

(7)

The solution of (1) an then be written

{
vj = vj + αj ṽj , j = 1, ..., n
u =

∑n
j=1 αj ũj

(8)
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The auxiliary variables αj , j = 1, ..., n, are then de�ned by

1

θjε

n∑

k=1

αk

∫

γ′
j

∂ũk

∂n
dγ − αj ṽ

′
j(δ) = v′j(δ), j = 1, ..., n (9)

so that the interfae onditions (1-) are satis�ed.

We remark that αj = uj|γ′
j
= vj(δ), j=1,...,n, are the values of the solution on the interfaes

γ′
j. Thanks to the linearity of (1), the problem has been ompletely split in [36℄. The authors

�rst derived the errors for eah linear sub-problems (7) separately by using lassial tehniques

for �nite volume shemes, on one hand on the domains Sj , j = 1, ..., n, and on the other hand

on the domain Ω′
ε. They then dedued the error on the reonstruted solution (8). This is not

optimal beause the approximation of αj, j = 1, ..., n, is not. Ultimately, under the assumptions

of Lemma 1 and Lemma 2, they get an error estimate O

(√
hδ

ε

)
+O(εJ) between the solution

of (3) and its approximation. To ontrol the errors on the interfaes, the authors need to assume

that

h | lnε |
ε

tends to zero when h and ε tend to zero, and some regularity for the mesh.

The error estimate for (1) is not learly given in [36℄. However, the approximation of (1) is a

neessary step to get the one of (3), then it is easy to dedue from [36℄ an error estimate O(
√
h)

between the solution of (1) and its approximation (in this ase ε and δ are �xed onstants).

The estimate is obtained under some regularity for the mesh.

So the present ase is quite di�erent sine we do not need to estimate the error between

αj , j = 1, ..., n, and their approximations.

1.6 Some remarks about the interfae onditions

In the present work, the interfae onditions on γ′
j, j = 1, ..., n, in (1) are those indued by

the MAPDD (see [35℄). But the appliation of this method to omplex problems (for instane

evolution problems) is not yet available. Often the geometrial multi-sale modelling is ahieved

with the sope of delimiting the omputational domain at hand in order to redue the om-

putational osts (see the referenes below). Firstly, the loation of the interfaes is arbitrary.

Seondly, it is di�ult to determine whih onditions may be assumed on the interfaes. In [30℄,

the authors propose di�erent arti�ial boundary onditions to preserve the well posedness of

the Navier-Stokes problem. In [22℄, in the area of omputational hemodynamis, the authors

have treated the oupling of 3D models based on the Navier-Stokes equations with redued 1D

models, and the ontinuity of the ross setional area is presribed : numerial spurious re�e-

tions at the oupling interfaes are observed. However, the area of the vessel at both sides may

di�er from eah other (when using elasti models), whih led the authors in [41℄ to relax this

ondition, and to formulate in [6℄ an extended variational priniple for problems where �elds

an beome disontinuous at the oupling interfaes. The in�uene of the proposed interfae

onditions on the amplitude of the spurious re�etions is studied in [34℄. In [6℄, the authors

point out that no reliable solutions must be expeted in the regions near the oupling inter-

faes. In [28℄, the oupling of the 1D and the 2D (3D in [16℄) Euler systems is done by de�ning

7



admissible oupling boundary, whih yields a onservative admissible interfae model.

1.7 About Poinaré inequalities

Error estimates for numerial methods are obtained thanks to funtional analysis tools,

suh as disrete Sobolev inequalities. Conerning the �nite volume framework, and the two-

dimensional ase, a �rst disrete Poinaré inequality for pieewise onstant funtions has been

ahieved for Dirihlet boundary onditions in [14℄, following [29℄, in a polygonal onvex do-

main. In [19℄, the authors generalize this inequality in a polygonal domain. Disrete Sobolev

inequalities (estimating the Lp
norm) are presented in [19, 13, 17, 18℄. In [19℄ and [25℄, the

authors establish a "mean Poinaré" (Poinaré-Wirtinger) inequality (estimating the L2
norm)

for Neumann boundary onditions in a polygonal domain. A disrete "mean Poinaré" inequa-

lity (estimating the Lp
norm) is obtained in [26℄ and [12℄ on Voronoi �nite volume meshes. A

Sobolev-Poinaré inequality (embedding of W 1,q
into Lp

) was stated using a proof based on the

spae of funtions of bounded variation in [20℄ and [5℄ (also in [18℄ for the zero boundary value

ase). The previous results were mostly presented in the framework of admissible meshes whih

satisfy the following orthogonality property : there exists a point assoiated with eah element

of the mesh suh that the straight line onneting these points for two neighboring ells is ortho-

gonal to the ommon side of these two ells (see the de�nition in [19℄ and (10) below), but more

general meshes are possible (see [19℄). In [43℄ the author presents both disrete Poinaré and

"mean Poinaré" inequalities for funtions de�ned on a mesh where the orthogonality property

is not neessarily satis�ed (other referenes in the �nite element framework are given therein),

as well as in [4℄ and [31℄ in the disrete duality �nite volume ontext. Previously a disrete

Poinaré inequality on non-mathing grids has been established in [11℄. In all the papers listed

above dealing with nononforming meshes, it is neessary to de�ne a spei� H1
norm that is

appropriate for the mesh.

In the present work, we use an admissible mesh in Ω′
ε, but the global mesh of Dε is in

some ways "nononforming". We atually de�ne a spei� H1
norm for funtions de�ned on

Dε (see Subsetion 1.4). In (1), we impose zero boundary value on the 1D part of the domain

and there is a Neumann boundary ondition on the 2D part of the domain, so we need to state

�rst a disrete "mean boundary Poinaré" inequality (inequality that involves a mean value

on a part of the boundary), and then to dedue a Poinaré inequality for funtions with zero

value on a part of the boundary. Suh an inequality is obtained in [19, 43℄, and in [5℄ for a

onvex domain. A disrete Sobolev-Poinaré inequality (estimating the Lp
norm) is established

for funtions with nonzero boundary values in [3℄. But, these results annot be applied to a

dimensionally-heterogeneous domain. In Setion 3, we follow the proof in [19℄, evaluating pre-

isely the onstant bounds as in [43℄, to get the suitable disrete Poinaré inequality that is

used in Setion 4 to dedue the L2
error estimates.

1.8 To hoose a oarse grid instead of reduing the dimension ?

From the numerial standpoint, one may wonder why not to keep a fully 2D (or 3D in

the general ase) domain, and hoose a oarse grid made of retangular ells (or retangular

parallelepiped) in areas where the alulation of the solution does not require a great auray,
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rather than to redue the dimension. This falls within the lassial problems arising in domain

deomposition : what are the interfae onditions on the non-mathing grids ? There is a wide

literature on this topi, and even, more spei�ally, using �nite volume shemes (see for instane

[1, 40, 11℄). A omparison between an hybrid sheme used on a dimensionally-heterogeneous

(1D-2D) domain and the so-alled TPFA sheme (de�ned in [19℄) used on a full 2D non mat-

hing �nite volume mesh, solving the Poisson equation in a rod struture with a single node

and a single branh, an be found in [42℄. The branh is of thikness ε, and meshed with a

row of retangular ells ε high by h wide, where h is the size of the mesh of the remaining

part of the domain (orresponding to the node). The a priori estimate on the error whih is

ahieved in [42℄ for the TPFA sheme, following [11℄, depends on ε for several reasons : the size
of the global mesh depends on the size of the retangles, the sum of the length of the atypial

edges is equal to ε, and the seond derivative of the solution is of the order 1/ε (see Lemma

2). Under the assumption that h < ε, the most signi�ant term is O(
√
ε), and it is impossible

to get a bound with respet to h. Quite the ontrary, the error estimate obtained in [42℄ for

the hybrid sheme an be expressed as a funtion of h (this result is generalized in this paper,

see Theorem 8 and Theorem 11), as well as a funtion of ε. This is a main advantage of the

geometrial multi-sale domain. Though, the numerial experiments in [42℄ show that the two

shemes provide similar performanes. On the other hand, a disrete Poinaré inequality for

non-mathing grids is obtained, for instane in [11℄, under the assumption of quasi-uniformness

of the mesh. A disrete Poinaré inequality is used in [42℄ whih does not require any restritive

assumption on the mesh. The proof of this inequality is not given in [42℄, it is a partiular ase

of the one that is provided in the present paper (see Lemma 7).

1.9 The domain deomposition approah

In [6℄, the authors introdue a speialized voabulary to name the sheme that disretizes

(4')-(5')-(6) : the monolithi sheme. Alternately, a deoupled numerial sheme may be devised

in ase of working with stand-alone 1D and 2D (or 3D) odes, suh as blak boxes. In this ase

we an split the omputations by performing iterations between the 1D and 2D (or 3D) sub-

problems. In [6℄, the authors alled theses shemes : the segregated oupling shemes. Due to the

heterogeneous feature of the geometrial multi-sale problems, the monolithi sheme gives a

linear system that is ill onditioned. For this reason, many authors adopt an iterative approah

by solving separately the sub-problems. For instane, the tehnique presented in [32℄ and [33℄

an be understood as a domain deomposition approah where the partitioning takes plae at

the oupling interfaes among models of di�erent dimensions. This allows to parallelize the

omputations into the sub-domains. However, this splitting strategy, in whih the sub-models

are solved separately and iteratively, will not be overed here. The monolithi sheme is hereby

explored.

2 Numerial sheme

2.1 The mesh

Let us de�ne a mesh of the intervals (δ, lj) on the axis Oxej , j = 1, ..., n. For eah value of

j, we hoose Nj ∈ IN∗, and Nj + 1 distint and inreasing values x
ej
i+1/2, i = 0, ..., Nj, suh that

9



x
ej
1/2 = δ, x

ej
Nj+1/2 = lj . Denote I

ej
i = (x

ej
i−1/2, x

ej
i+1/2), and h

ej
i = x

ej
i+1/2 − x

ej
i−1/2, i = 1, . . . , Nj.

Set hej = max{hej
i , i = 1, ..., Nj} the size of the mesh of the interval (δ, lj).

Then we hoose Nj points x
ej
i , i = 1, ..., Nj, suh that x

ej
i ∈ I

ej
i . Set x

ej
0 = δ, x

ej
Nj+1 = lj, and

h
ej
i+1/2 = x

ej
i+1 − x

ej
i , i = 0, ..., Nj.

Let us onstrut an admissible mesh over Ω′
ε denoted by T . We assume in the following that

Ω′
ε is polygonal. We remind (see the de�nition in [19℄) that suh a mesh onsists in a family

of open polygonal onvex subsets K of Ω′
ε (with positive measures) alled ontrol volumes, a

family of edges σ (with stritly positive measures) of the ontrol volumes denoted by E , and a

family of points xK hosen in eah ontrol volume K denoted by P. The mesh T satis�es the

following properties

1) The losure of the union of all the ontrol volumes is Ω′
ε.

2) For any K ∈ T , there is a subset EK of E suh that ∂K =
⋃

σ∈EK

σ, and
⋃

K∈T

EK = E .

3) For any (K,L) ∈ T 2, K 6= L, one of three following assertions holds :
either K ∩ L = ∅, or K ∩ L is a ommon vertex of K and L,

or K ∩ L = σ, σ being a ommon edge of K and L denoted by σK/L.
4) The family P = (xK)K∈T is suh that for any K ∈ T , xK ∈ K.
For any (K,L) ∈ T 2, K 6= L, it is assumed that xK 6= xL and that the straight line going

through xK and xL is orthogonal to σK/L.
5) For any σ ∈ E , if σ ⊂ ∂Ω′

ε, σ ∈ EK and xK /∈ σ, the orthogonal
projetion of xK on the straight line ontaining the edge σ, belongs to σ.

(10)

Let Eint = {σ ∈ E , σ 6⊂ ∂Ω′
ε}.

For any (K,L) ∈ T 2, K 6= L, if σ = σK/L, let dσ be the distane between xK and xL. For any

K ∈ T , if σ ∈ EK and if σ ⊂ ∂Ω′
ε, let dσ be the distane between xK and σ.

We assume that for any σ ∈ E , dσ 6= 0.
For any K ∈ T , let m(K) be the area of K. For any σ ∈ E , let m(σ) be the length of σ. Let
h0 be the size of the mesh T , h0 = max{diam(K), K ∈ T }, where diam is the abbreviation for

diameter.

We denote by T S the global 1D-2D mesh of Dε. Let h be the size of the 1D-2D mesh of

Dε : h = max{h0, h
ej , j = 1, ..., n}.

2.2 The hybrid sheme

The sheme is obtained by integrating v′′j = fj on eah ell I
ej
i , i = 1, ..., Nj, and △u = 0

over eah ontrol volume K ∈ T . The numerial �ux Fj,i+1/2 is an approximation of v′j(x
ej
i+1/2)

of �nite di�erene type ; vj,i is an approximation of vj(x
ej
i ), i = 0, ..., Nj + 1. The �ux FK,σ

through the edge σ of the ell K is approximated by a di�erential quotient. Last uK is an

approximation of u(xK), K ∈ T . See [36℄ for details.

10








Fj,i+1/2 − Fj,i−1/2 = h
ej
i f

ej
i , i = 1, ..., Nj, j = 1, ..., n (a)

Fj,i+1/2 =
vj,i+1 − vj,i

h
ej
i+1/2

, i = 0, . . . , Nj, j = 1, ..., n

f
ej
i =

1

h
ej
i

∫ x
ej
i+1/2

x
ej
i−1/2

fj(x)dx, i = 1, . . . , Nj, j = 1, ..., n

vj,Nj+1 = 0, j = 1, ..., n∑

σ∈EK

FK,σ = 0, ∀K ∈ T (b)

FK,σ =





m(σ)
dσ

(uL − uK) , ∀σ ∈ Eint , if σ = σK/L
m(σ)
dσ

(vj,0 − uK) , ∀σ ⊂ γ′
j , σ ∈ EK , j = 1, ..., n

0 , ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j)

vj,1 − vj,0

h
ej
1/2

=
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(vj,0 − uK), j = 1, ..., n (c)

(11)

Let us notie that vj,0 is a onvex ombination of the approximated values of the solution

on eah side of γ′
j, j = 1, ..., n, sine

vj,0 =


 vj,1
h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
uK




 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

(12)

For the sake of simpliity, in (11) and (12), the summation is done for σ ⊂ γ′
j, and for eah

of them, K is the ontrol volume suh that σ ∈ EK .
The approximate solution of (1) is de�ned by

ud
T (x, y) =

{
uT (x, y) , (x, y) ∈ Ω′

ε

vjT (x
ej ) , (x, y) ∈ Bε

j , x
ej ∈ (δ, lj), j = 1, ..., n

with

{
uT (x, y) = uK , (x, y) ∈ K,K ∈ T
vjT (x

ej ) = vji, x
ej ∈ (x

ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

(13)

2.3 Existene and uniqueness of the �nite volume approximation

The sheme (11) leads to a linear system of the form AU = B in whih U is the unknown,

where

UT = ({{vji, i = 1, ..., Nj}, j = 1, ..., n}, {uK, K ∈ T }).

Lemma 3 There is a unique solution ({{vji, i = 1, ..., Nj}, j = 1, ..., n}, {uK, K ∈ T }) to equa-

tions (11).

Proof. We assume that B = 0. Let us prove that U = 0. We multiply (11a) by vj,i and sum

over i, then multiply by θjε and sum over j. We multiply (11b) by uK and sum over K. We obtain

n∑

j=1

θjε

Nj∑

i=1

(F j
i+1/2 − F j

i−1/2)vj,i +
∑

K∈T

∑

σ∈EK

FK,σuK = 0
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Reordering the seond summation over the set of edges, we get that

n∑

j=1

θjε




Nj∑

i=1

F j
i+1/2vj,i −

Nj−1∑

i=0

F j
i+1/2vj,i+1


+

∑

σ∈Eint
σ=σK|L

FK,σ(uK−uL)+
n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
(vj,0−uK)uK = 0

On the other hand, the de�nition of the numerial �uxes leads to

n∑

j=1

θjε




Nj∑

i=1

−(vj,i+1 − vj,i)
2

h
ej
i+1/2

− vj,1 − vj,0
h
ej
1/2

vj,1


−

∑

σ∈Eint
σ=σK|L

m(σ)

dσ
(uK−uL)

2+
n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
(vj,0−uK)uK = 0

Multiplying (11) by θjεvj,0, summing over j, and adding to the above equality, we get

n∑

j=1

θjε




Nj∑

i=1

−(vj,i+1 − vj,i)
2

h
ej
i+1/2

− (vj,1 − vj,0)
2

h
ej
1/2


−

∑

σ∈Eint
σ=σK|L

m(σ)

dσ
(uK−uL)

2−
n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
(vj,0−uK)

2 = 0

Hene, all the omponents of U are equal, and sine vj,Nj+1 = 0, j = 1, ..., n, we have U = 0.

Remark 4 The previous line reads −‖sdT ‖21,T = 0 where ‖.‖1,T is de�ned below (see De�nition

5), and sdT is a funtion onstant over eah ontrol volume of the mesh T S whih oinides

with ud
T . The proof of the existene and uniqueness of the solution of (11) is also done in [36℄

using another method.

3 The disrete Poinaré inequality

The proof of an L2
error estimate requires a disrete Poinaré inequality. We remind that

Dε = Ω′
ε ∪
(
∪n
j=1Sj

)
. We introdue the spae of pieewise onstant funtions assoiated with

the 1D-2D mesh of Dε, and a disrete H1
norm for this spae. The disrete Poinaré inequality,

that is established in Lemma 7, is expressed in terms of this disrete H1
norm.

De�nition 5 a) We de�ne X(T ) the set of funtions from Ω′
ε to R whih are onstant over

eah ontrol volume of T .

b) We de�ne X(T S) the set of funtions from Dε to R whih are onstant over eah ontrol

volume of T S.
) Let w ∈ X(T S), suh that

w(x, y) =

{
wK , (x, y) ∈ K,K ∈ T
wj,i, (x, y) ∈ Sj, x

ej ∈ (x
ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

We de�ne and we denote

(i) ‖w‖2,T =



∑

K∈T

m(K)w2
K +

n∑

j=1

θjε

Nj∑

i=1

h
ej
i w

2
j,i




1/2

(ii) ‖w‖1,T ,∗ =

(
∑

σ∈Eint
m(σ)dσ

(
Dσw

dσ

)2
)1/2

(de�ned also for w ∈ X(T ))
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(iii) ‖w‖1,T =

(
∑

σ∈Eint,σ⊂(∪n
j=1

γ′
j)
m(σ)dσ

(
Dσw

dσ

)2

+
∑n

j=1 θjε
∑Nj

i=0

(wj,i+1 − wj,i)
2

h
ej
i+1/2

)1/2

where Dσw =

{
| wK − wL |, σ ∈ Eint, σ = σK|L

| wK − wj,0 |, σ ⊂ γ′
j, σ ∈ EK , j = 1, ..., n

wj,Nj+1 = 0, j = 1, ..., n,

and wj,0 =


wj,1

h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
wK




 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

.

Remark 6 The funtions ‖.‖2,T and ‖.‖1,T are norms, and ‖.‖1,T ,∗ is semi-norm, on X(T S).
On the other hand, we an explain ‖w‖2,T and ‖w‖1,T as lassial disrete norms of a funtion

w̃ de�ned a.e. on Ωε and suh that w̃|Dε = w. Let us de�ne w̃ by

w̃(x, y) =

{
wK , (x, y) ∈ K,K ∈ T
wj,i, (x, y) ∈ Bε

j , x
ej ∈ (x

ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

then we have ‖w‖2,T = ‖w̃‖L2(Ωε). We an onsider a mesh of Ωε inluding T and a row of

retangular ells ε high by h wide on Bε
j \B′ε

j , j = 1, ..., n. The funtion w̃ is pieewise onstant

on this mesh, and ‖w‖1,T is equal to a 2D lassial disrete H1
norm of w̃ on this mesh.

Lemma 7 Let w ∈ X(T S), there is a onstant c independent of h suh that

‖w‖22,T ≤ c‖w‖21,T

Proof. Let w ∈ X(T S) suh that

w(x, y) =

{
wK , (x, y) ∈ K,K ∈ T
wj,i, (x, y) ∈ Sj, x

ej ∈ (x
ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

We let wj,Nj+1 = 0, j = 1, ..., n, and

wj,0 =



wj,1

h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
wK







 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

Noting that

‖w‖22,T = ‖w‖2L2(Ω′
ε)
+

n∑

j=1

θjε

Nj∑

i=1

h
ej
i w

2
j,i ≤ ‖w‖2L2(Ω′

ε)
+

n∑

j=1

θjε(lj − δ)

Nj∑

i=0

(wj,i+1 − wj,i)
2

h
ej
i+1/2

sine

|wj,i| ≤
Nj∑

i=0

|wj,i − wj,i+1| ≤




Nj∑

i=0

(wj,i+1 − wj,i)
2

h
ej
i+1/2




1/2


Nj∑

i=0

h
ej
i+1/2




1/2

we dedue that

‖w‖22,T ≤ ‖w‖2L2(Ω′
ε)
+ (lmax − δ)‖w‖21,T (14)
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where lmax = max{lj, j = 1, ..., n}.

Though, proving Lemma 7 amounts to proving the existene of a onstant c independent of
h suh that

‖w‖2L2(Ω′
ε)
≤ c‖w‖21,T .

Now, we follow the path of Lemma 10.2 in [19℄ to prove a "disrete mean Poinaré inequa-

lity". The authors assume that the domain, in whih the problem is set, is an open bounded poly-

gonal onneted subset of R
2
: Ω′

ε satis�es this requirement allowing the results to be used. Then,

following the proof in [19℄, there is a �nite number of disjoint onvex polygonal sets, denoted

by {Ω1, ...,Ωp}, suh that Ω
′

ε = ∪p
i=1Ωi. Here, it makes sense to assume that Ω1 = B′ε

1 beause

B′ε
1 is onvex, and γ′

1 ⊂ ∂Ω1 is loated on the interfae. Let Iij = Ωi ∩ Ωj , i 6= j, i, j ∈ {1, ..., p}
as in [19℄. Let us remember that only the set of index suh that m(Iij) > 0 is onsidered.

Now, let us de�ne the stritly positives quantities µ and λ :

min

{
m(Iij)

ε
, i, j ∈ {1, ..., p}

}
= µ min

{
m(Ωi)

m(Ω′
ε)
, i ∈ {1, ..., p}

}
= λ (15)

Why to introdue ε above to de�ne µ ? The domain Ωε has been onstruted so that the width

of eah branh is the image of a given segment obtained by a 1/ε−homotheti ontration. In-

deed, the thikness of Ω1 is equal to θ1ε. That is the reason why we do not assume that m(Iij)
is greater than a stritly positive onstant (as in [19℄), but rather that the ratio m(Iij)ε

−1
is so.

Now, we ontinue as in [19℄, de�ning m1(w) the mean value of w over Ω1, and mΩ′
ε
(w) the

mean value of w over Ω′
ε, that is

m1(w) =
1

m(Ω1)

∫

Ω1

w(x, y)dxdy, mΩ′
ε
(w) =

1

m(Ω′
ε)

∫

Ω′
ε

w(x, y)dxdy.

Sine

‖w‖2L2(Ω′
ε)
≤ 3‖w −mΩ′

ε
(w)‖2L2(Ω′

ε)
+ 3m(Ω′

ε)|mΩ′
ε
(w)−m1(w)|2 + 3m(Ω′

ε)m1(w)
2

(16)

proving Lemma 7 amounts atually to proving the existene of three onstants c1, c2, c3, inde-
pendent of h suh that

a) ‖w−mΩ′
ε
(w)‖2L2(Ω′

ε)
≤ c1‖w‖21,T b) |mΩ′

ε
(w)−m1(w)|2 ≤ c2‖w‖21,T ) m1(w)

2 ≤ c3‖w‖21,T
(17)

The proof of Lemma 10.2 in [19℄ gives the existene of c1, c2, only depending on Ω′
ε, suh that

‖w −mΩ′
ε
(w)‖2L2(Ω′

ε)
≤ c1‖w‖21,T ,∗ |mΩ′

ε
(w)−m1(w)|2 ≤ c2‖w‖21,T ,∗

The proof of (17a) and (17b) follows sine ‖w‖21,T ,∗ ≤ ‖w‖21,T .

Let us prove (17). We onsider now the seond step of Lemma 10.2 in [19℄, alled "estimate

with respet to the mean value on a part of the boundary", for a onvex domain. This result is

extended in Lemma 7.2 in [43℄ to the ase of meshes where the orthogonality property (10-4) is

not satis�ed. Similarly, Lemma 2.7.2 in [44℄ gives a result for funtions whih are null on a part
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of the boundary, this proof is an alternative to the seond step of Lemma 10.2 in [19℄ and it is

easily applied in the urrent ontext. That is why we follow now the proof in [44℄, taking Ω1 for

the onvex domain and γ′
1 ⊂ ∂Ω1 for the part of the boundary with a null Dirihlet ondition.

Of ourse, the funtion w is not null on γ′
1. It is the di�erene between the result obtained

in [19℄ or [44℄, and Lemma 7. Introduing ‖w‖21,T instead of ‖w‖21,T ∗ allows to overome this

di�ulty.

As in [44℄, we begin the proof of (17) by hoosing a vetor b1, suh that, for eah point in

Ω1, eah line de�ned by this point and b1 intersets γ′
1. We take b1 = e1. We need here only

one vetor, while the author need a family of vetors in [44℄. Now, we adapt this proof to our

geometrial multi-sale domain.

For all (x, y) ∈ Ω1, D((x, y), e1) designates the semi-line de�ned by its origin (x, y) and the

vetor e1 ; let P (x, y) = γ′
1 ∩D((x, y), e1).

For σ ∈ E , χσ is a funtion from R
2×R

2
to {0, 1} suh that χσ(r, z) is equal to 1 if σ∩ [r, z] 6= ∅

and equal to 0 otherwise.

Let K ∈ T suh that K ∩ Ω1 6= ∅. Then we have for a.e. (x, y) ∈ K ∩ Ω1 :

| wK |≤
∑

σ∈Eint ,σ⊂γ′
1

(Dσw) χσ((x, y), P (x, y)) +
N1∑

i=0

| w1,i − w1,i+1 |

sine w1,N1+1 = 0. This requirement is essential to ensure the inequality above. Let us remark

that there is σ ⊂ γ′
1 suh that P (x, y) ∈ σ, then Dσw = |wL − w1,0| for some L (see De�nition

5) suh that σ ∈ EL. The use of w1,0 allows to get out of Ω′
ε and join the boundary of the 1D

domain S1.

By the Cauhy Shwarz inequality, we have

w2
K≤



∑

σ∈Eint
σ⊂γ′

1

(Dσw)
2

dσcσ
χσ((x, y), P (x, y))+

N1∑

i=0

(w1,i − w1,i+1)
2

he1
i+1/2






∑

σ∈Eint
σ⊂γ′

1

dσcσ χσ((x, y), P (x, y))+

N1∑

i=0

h
ej
i+1/2




(18)

where cσ =| e1 · nσ |.
Sine e1 is the axis of the �rst branh (where Ω1 is found), we have

∑

σ∈Eint ,σ⊂γ′
1

dσcσ χσ((x, y), P (x, y)) ≤ δ

Integrating (18) over K ∩ Ω1 and summing over all K ∈ T suh that K ∩ Ω1 6= ∅ yields

∑

K∈T

w2
K m(K∩Ω1) ≤ l1



∑

σ∈Eint
σ⊂γ′

1

(Dσw)
2

dσcσ

(∫

Ω1

χσ((x, y), P (x, y))dxdy

)
+m(Ω1)

N1∑

i=0

(w1,i − w1,i+1)
2

he1
i+1/2




(19)

Sine, following [19℄, we have

∫

Ω1

χσ((x, y), P (x, y))dxdy ≤ δm(σ)cσ
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then (19) implies that

‖w‖2L2(Ω1)
≤ lmax


δ

∑

σ∈Eint,σ⊂γ′
1

m(σ)dσ

(
Dσw

dσ

)2

+m(Ω1)

N1∑

i=0

(w1,i − w1,i+1)
2

he1
i+1/2




≤ lmaxδ




∑

σ∈Eint ,σ⊂γ′
1

m(σ)dσ

(
Dσw

dσ

)2

+ θ1 ε

N1∑

i=0

(w1,i − w1,i+1)
2

he1
i+1/2




≤ lmaxδ‖w‖21,T
As we have

m1(w)
2 ≤ 1

m(Ω1)
‖w‖2L2(Ω1)

≤ lmaxδ

m(Ω1)
‖w‖21,T

this proves (17).

With (14) and (16), we dedue that there is a onstant c depending only on Dε suh that

‖w‖22,T ≤ c‖w‖21,T , so Lemma 7 is proved . This lemma is used to state Theorem 8 and Theorem

11 below. Theorem 8 gives an error estimate for (1) assuming ε and δ are �xed. Theorem 11

relates to (3) assuming ε tends to zero.

If we are just interested in the resolution of (1) then a more preise de�nition of the onstant

c does not matter. To get the estimate of Theorem 8 it is enough to know that c depends only
on Dε.

The estimate of Theorem 11 requires preise informations on the dependene of c1, c2, c3
with respet to ε and δ. Evaluating the onstants from the proof of Lemma 10.2 in [19℄, one

has

c1 = O

(
diam(Ω′

ε)
4m(Ωk)

m(Ωi)2
+

diam(Ω′
ε)diam(Ωi)

2m(Ωk)

m(Iij)m(Ωi)
+

diam(Ω′
ε)

4

m(Ωi)
, i, j, k ∈ {1, ..., p}

)

c2 = O

(
diam(Ω′

ε)
4

m(Ωi)2
+

diam(Ω′
ε)diam(Ωi)

2

m(Iij)m(Ωi)
, i, j ∈ {1, ..., p}

)

(20)

We remind that we assume in this ase that δ is of order εlnε. With (15), we dedue that

c1 = O

(
diam(Ω′

ε)
4

m(Ω′
ε)

+
diam(Ω′

ε)
3

ε

)
= O

(
δ3

ε

)
c2 = O

(
diam(Ω′

ε)
4

m(Ω′
ε)

2
+

diam(Ω′
ε)

3

ε m(Ω′
ε)

)
= O

(
δ2

ε2

)

(21)

Last we have

c3 =
lmaxδ

m(Ω1)
= O

(
1

ε

)
(22)

And then, we see from (14), (16) and (17) that there is a onstant c, namely

c = 3(c1 +m(Ω′
ε)c2 +m(Ω′

ε)c3) + lmax − δ
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suh that

‖w‖22,T ≤ c‖w‖21,T
Moreover, we onlude with (21) and (22) that

c = O

(
δ3

ε

)
+O(δ) +O(1) = O(1)

when ε tends to zero, assuming that δ is of order εln(ε). So, also in this ase, the onstant c in
Lemma 7 depends neither on h nor on ε.

4 The error estimate

The error estimate between the solution of (1) and its �nite volume approximation, whih

is obtained in [36℄, uses the linearity of the problem to prevent the oupling between its 1D

and its 2D parts. So in [36℄, a standard H1
norm on the 1D domains Sj , j = 1, ..., n, and a

standard H1
norm on the 2D domain Ω′

ε are used. The disadvantage of this method is that the

errors between the values αj, j = 1, ..., n, of the solution on the interfaes between the domains

of di�erent dimensions and the approximate values vj,0, play an important role in alulating

the global error. And these errors are not optimized (see Subsetion 1.6).

To overome this di�ulty, we use here the spei� disrete H1
norm de�ned in the pre-

vious setion on Dε. Using (12), the approximate values vj,0, j = 1, ..., n, of the solution on

the interfaes are related to (onvex ombinations of) the other unknowns : the approximate

values of the solution on both sides of the interfaes between the 1D parts and the 2D part.

So vj,0, j = 1, ..., n, may be removed from the sheme (11) by expressing vj,0 in terms of vj,1
and uK suh that there is σ ∈ EK , σ ⊂ γ′

j, aording to (12). In the same way, ‖w‖1,T may be

rewritten without wj,0, j = 1, ..., n, in De�nition 5. The global error eT is de�ned just below,

an estimate of ‖eT ‖1,T is obtained without using any estimate on | αj − vj,0 |, j = 1, ..., n, that
allows to improve the result obtained in [36℄.

We remind that the solution of (1) is assumed to be regular, that means that u ∈ C2(Ω′
ε)

and vj ∈ C2([δ, lj ]), j = 1, ..., n.

We state below the main result of the paper.

Theorem 8 If ud
T is the �nite volume approximation of (1) de�ned by (13), if ud

is the solution

of (1) de�ned by (2) and is assumed to be regular, and if eT ∈ X(T S) is de�ned by

eT (x, y) =

{
eK = u(xK)− uK , (x, y) ∈ K,K ∈ T
ej,i = vj(x

ej
i )− vj,i, (x, y) ∈ Sj , x

ej ∈ (x
ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

and if we let

ej,0 =


 ej,1
h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
eK




 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

ej,Nj+1 = 0, j = 1, ..., n
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then, there are two onstants c1 and c2 depending only on ud
and Dε suh that

‖eT ‖1,T ≤ c1h (23)

and

‖ud − ud
T ‖L2(Ωε) ≤ c2h (24)

with h the size of the mesh of Dε.

Proof.

We prove an estimate for ‖eT ‖1,T , and onlude thanks to the Poinaré inequality. This

proof is not lassial beause of the interfae terms relating to the onsisteny error on the

di�usion �ux when σ ⊂ γ′
j, j = 1, ..., n.

We onsider �rst the ontinuous problem (1) . We integrate (1a) over eah 1D ell and (1b)

over eah K ∈ T . We obtain






F j,i+1/2 − F j,i−1/2 = h
ej
i f

ej
i , i = 1, ..., Nj, j = 1, ..., n

F j,i+1/2 = v′j(x
ej
i+1/2), i = 0, . . . , Nj , j = 1, ..., n∑

σ∈EK

FK,σ = 0, ∀K ∈ T

FK,σ =
∫
σ

∂u
∂n
dγ, ∀σ ∈ EK

(25)

We de�ne 




F ∗
j,i+1/2 =

vj(x
ej
i+1)− vj(x

ej
i )

h
ej
i+1/2

, i = 1, . . . , Nj, j = 1, ..., n

F ∗
j,1/2 =

vj(x
ej
1 )− u∗

j(δ)

h
ej
1/2

, j = 1, ..., n

(26)

with

u∗
j(δ)=


vj(x

ej
1 )

h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
u(xK)




 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

, j = 1, ..., n (27)

In the same spirit, we introdue

F ∗
K,σ =





m(σ)
dσ

(u(xL)− u(xK)) , ∀σ ∈ Eint , if σ = σK/L
m(σ)
dσ

(u∗
j(δ)− u(xK)) , ∀σ ⊂ γ′

j , σ ∈ EK , j = 1, ..., n

0 , ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j)

(28)

The onsisteny errors are de�ned by

{
Rj,i+1/2 = F ∗

j,i+1/2 − F j,i+1/2, i = 0, ..., Nj, j = 1, ..., n

RK,σ = 1
m(σ)

(F ∗
K,σ − FK,σ), ∀σ ∈ EK , ∀K ∈ T (29)

We have 



Rj,i+1/2 = O(h‖v′′j ‖∞), i = 1, ..., Nj, j = 1, ..., n
RK,σ = O(h‖∇2u‖∞), ∀σ ∈ EK ∩ Eint, ∀K ∈ T
RK,σ = 0, ∀σ ∈ EK , ∀σ ⊂ ∂Ω′

ε\(∪n
j=1γ

′
j), ∀K ∈ T

(30)
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Now, in order to deal with the onsisteny errors at the interfaes, we de�ne the following

quantities for all j = 1, ..., n and σ ∈ EK , σ ⊂ γ′
j






R∗
j,1/2 =

vj(δ)− u∗
j(δ)

h
ej
1/2

, R∇
j,1/2 =

vj(x
ej
1 )− vj(δ)

h
ej
1/2

− v′j(δ)

R∗
K,σ =

u∗
j(δ)− vj(δ)

dσ
, R∇

K,σ =
vj(δ)− u(xK)

dσ
− 1

m(σ)

∫

σ

∂u

∂n
dγ

(31)

We have for all j = 1, ..., n and σ ∈ EK , σ ⊂ γ′
j

R∇
j,1/2 = O(h‖v′′j ‖∞), R∇

K,σ = O(h‖∇2u‖∞)
(32)

We let for all j = 1, ..., n and σ ∈ EK , σ ⊂ γ′
j

Rj,1/2 = R∗
j,1/2 +R∇

j,1/2, RK,σ = R∗
K,σ +R∇

K,σ (33)

Now, we prove the following intermediate lemma

Lemma 9

∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ − θjεRj,1/2 = 0, j = 1, ..., n

Proof.

The summation above is done for σ ⊂ γ′
j, and for eah of them, K is the ontrol volume

suh that σ ∈ EK (as in (11) and (12)). We have

∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ − θjεRj,1/2

=
∑

σ∈EK ,σ⊂γ′
j

(
m(σ)

dσ
(u∗

j(δ)− u(xK))−
∫

σ

∂u

∂n
dγ

)
− θjε

(
vj(x

ej
1 )− u∗

j(δ)

h
ej
1/2

− v′j(δ)

)

= u∗
j(δ)θjε



 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ



− θjε



vj(x

ej
1 )

h
ej
1/2

+
1

θjε

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
u(xK)


+ θjεv

′
j(δ)−

∑

σ⊂γ′
j

∫

σ

∂u

∂n
dγ

We onlude with (1) and (27) that

∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ − θjεRj,1/2 = 0, j = 1, ..., n

Now to ontinue the proof of Theorem 8, we substrat the equations of (11) and (25) one by

one, and obtain





F j,i+1/2 − Fj,i+1/2 − (F j,i−1/2 − Fj,i−1/2) = 0, i = 1, ..., Nj , j = 1, ..., n∑

σ∈EK

(FK,σ − FK,σ) = 0, ∀K ∈ T (34)

Then we introdue the onsisteny errors. With (29) we get





F ∗
j,i+1/2 − Fj,i+1/2 − (F ∗

j,i−1/2 − Fj,i−1/2)− (Rj,i+1/2 − Rj,i−1/2) = 0, i = 1, ..., Nj, j = 1, ..., n∑

σ∈EK

(F ∗
K,σ − FK,σ)−

∑

σ∈EK

m(σ)RK,σ = 0, ∀K ∈ T

(35)
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We remark that ej,0 = u∗
j(δ)− vj,0 (the de�nition of vj,0 is given in (12)).

Sine ej,Nj+1 = 0, j = 1, ..., n, we thus have






F ∗
j,i+1/2 − Fj,i+1/2 =

ej,i+1 − ej,i

h
ej
i+1/2

, i = 1, . . . , Nj, j = 1, ..., n

F ∗
j,1/2 − Fj,1/2 =

ej,1 − ej,0
h
ej
1/2

, i = 1, . . . , Nj , j = 1, ..., n

F ∗
K,σ − FK,σ =





m(σ)
dσ

(eL − eK) , ∀σ ∈ Eint , if σ = σK/L
m(σ)
dσ

(ej,0 − eK) , ∀σ ⊂ γ′
j , σ ∈ EK , j = 1, ..., n

0 , ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j)

Using the above expressions in (35), we get






ej,i+1 − ej,i
h
ej
i+1/2

− ej,i − ej,i−1

h
ej
i−1/2

= Rj,i+1/2 − Rj,i−1/2, i = 1, . . . , Nj, j = 1, ..., n (a)

∑

σ∈EK∩Eint

m(σ)

dσ
(eL − eK) +

∑

σ∈EK

n∑

j=1

∑

σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK) =

∑

σ∈EK

m(σ)RK,σ, ∀K ∈ T (b)

(36)

Multiplying (36a) by ej,i, summing over i, we obtain

−
Nj∑

i=1

(ej,i+1 − ej,i)
2

h
ej
i+1/2

− ej,1 − ej,0
h
ej
1/2

ej,1 =

Nj∑

i=1

Rj,i+1/2(ej,i − ej,i+1)− Rj,1/2ej,1, , j = 1, ..., n (37)

Multiplying (36b) by eK , summing over K, we obtain

−
∑

σ∈Eint ,σ=σK/L

m(σ)

dσ
(eL − eK)

2 +

n∑

j=1

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK)eK

=
∑

σ∈Eint,σ=σK/L
m(σ)RK,σ(eK − eL) +

n∑

j=1

∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σeK

(38)

The right summations (in eah member) are done for σ ⊂ γ′
j, and for eah of them, K is the

ontrol volume suh that σ ∈ EK (as in (11) and (12)). We multiply (37) by θjε, sum over j,
and add (38). Then we onsider the two quantities with terms on the interfaes. The �rst one,

depending on ej,0, may be rewritten

−θjε
ej,1 − ej,0

h
ej
1/2

ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK)eK

= −θjε
(ej,1 − ej,0)

2

h
ej
1/2

−
∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK)

2
(39)

beause

ej,1 − ej,0
h
ej
1/2

=
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK), j = 1, ..., n (40)
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The seond one, depending on Rj,1/2 and RK,σ with σ ∈ EK , σ ⊂ γ′
j, an be written thanks to

Lemma 9,

−θjεRj,1/2ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σeK = −θjεRj,1/2(ej,1 − ej,0) +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ(eK − ej,0)

(41)

then we use (40) again, whih implies that

− θjεR
∗
j,1/2(ej,1 − ej,0) +

∑

σ∈EK ,σ⊂γ′
j

m(σ)R∗
K,σ(eK − ej,0)

= (u∗
j(δ)− vj(δ))


θjε

ej,1 − ej,0
h
ej
1/2

+
∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(eK − ej,0)




= 0

and allows to simplify (41) in the following way

−θjεRj,1/2ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σeK = −θjεR
∇
j,1/2(ej,1 − ej,0) +

∑

σ∈EK ,σ⊂γ′
j

m(σ)R∇
K,σ(eK − ej,0)

(42)

So multiplying (37) by θjε, summing over j, adding (38), using (39) and (42), we get

−
n∑

j=1

θjε




Nj∑

i=1

(ej,i+1 − ej,i)
2

h
ej
i+1/2

+
(ej,1 − ej,0)

2

h
ej
1/2



−
∑

σ∈Eint
σ=σK/L

m(σ)

dσ
(eL − eK)

2 −
n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
(ej,0 − eK)

2

=

n∑

j=1

θjε

Nj∑

i=1

Rj,i+1/2(ej,i − ej,i+1)−
n∑

j=1

θjεR
∇
j,1/2(ej,1 − ej,0) +

∑

σ∈Eint
σ=σK/L

m(σ)RK,σ(eK − eL)

+

n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)R∇
K,σ(eK − ej,0)

(43)

We reognize −‖eT ‖21,T in the left member of (43). We then apply Cauhy-Shwarz inequality.

This gives
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‖eT ‖1,T

≤




n∑

j=1

θjε

Nj∑

i=1

R2
j,i+1/2h

ej
i+1/2 +

n∑

j=1

θjε(R
∇
j,1/2)

2h
ej
1/2 +

∑

σ∈Eint,σ=σK/L

m(σ)dσR
2
K,σ

+
n∑

j=1

∑

σ∈EK ,σ⊂γ′
j

m(σ)dσ(R
∇
K,σ)

2




1/2

≤ h O (‖v′′‖∞ + ‖∇2u‖∞)




n∑

j=1

θjε

Nj∑

i=0

h
ej
i+1/2 +

∑

σ∈Eint

m(σ)dσ +

n∑

j=1

∑

σ⊂γ′
j

m(σ)dσ




1/2

≤ h O (‖v′′‖∞ + ‖∇2u‖∞)

(
n∑

j=1

θjε(lj − δ) + 2m(Ω′
ε)

)1/2

(44)

Sine the solution is regular, the seond derivatives of the solution are bounded. We onlude

that there is a onstant c1 depending only on ud
and Dε suh that

‖eT ‖1,T ≤ c1h

With the Poinaré inequality (Lemma 7), this yields

‖eT ‖2,T ≤
√
cc1h (45)

Let ûT be a funtion de�ned for a.e. (x, y) ∈ Ωε by

ûT (x, y) =

{
u(xK), (x, y) ∈ K,K ∈ T
vj(x

ej
i ), (x, y) ∈ Bε

j , x
ej ∈ (x

ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

(46)

We have

‖ud − ud
T ‖L2(Ωε) ≤ ‖ud − ûT ‖L2(Ωε) + ‖eT ‖2,T (47)

and

‖ud − ûT ‖L2(Ωε) ≤ h O (‖v′‖∞ + ‖∇u‖∞)

(
n∑

j=1

θjε(lj − δ) +m(Ω′
ε)

)1/2

(48)

Using (47), sine the solution is regular, the estimates (45) and (48) yield (24). This ends the

proof of Theorem 8.

Remark 10 It is also possible to prove the estimates of Theorem 8 under the weaker assump-

tion u ∈ H2(Ω′
ε), vj ∈ H2((δ, lj)), j = 1, ..., n. Taylor expansions with integral errors should be

used to bound the onsisteny errors. The bounds (30) and (32) (resp. (44)) should involve the

L2
-norm of the seond derivatives in some part of the orresponding ontrol volumes (resp. in

Ω′
ε and (δ, lj)), and (23) should still be true (see [19℄).

Now, Theorem 8 yields the following estimate about the solution of (3).
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Theorem 11 Let ud
T be the �nite volume approximation of (1) de�ned by (13). For any J > 0,

there is M independent of ε, suh that if δ = Mε|lnε|, if the solution of (3) is assumed to be

regular, then we have

‖uε − ud
T ‖L2(Ωε) = O

(
h√
ε

)
+O(εJ)

Proof. Using Lemma 2 we dedue in this ase from (44) that

‖eT ‖1,T = h O

(
1

ε

)
O(

√
ε) = O

(
h√
ε

)

With Lemma 7, this yields

‖eT ‖2,T = O

(
h√
ε

)
(49)

We dedue from (48) that

‖ud − ûT ‖L2(Ωε) = h O(1)O(
√
ε)

so this term is negligible ompared with (49) if ε is small, and (47) yields

‖ud − ud
T ‖L2(Ωε) = O

(
h√
ε

)
(50)

We end the proof by applying Lemma 1.

Remark 12 If ε is �xed and small so that O(εJ) is negligible, then ‖uε − ud
T ‖L2(Ωε) = O(h),

that improves the onvergene order O(
√
h) in terms of the size of the mesh that we get in [36℄

for (3) (See Subsetion 1.5).

Moreover, it is reasonable to expet that the mesh of Ω′
ε is not exessively oarse near the

interfaes. So the assumption h < θminε, θmin = min{θj, j = 1, ..., n} is not restritive, espeially
sine h is intended to be small. That is why it is worth highlighting that

Lemma 13 Under the assumptions of Theorem 11, if there is a onstant c suh that h < c ε
then

‖uε − ud
T ‖L2(Ωε) = O(

√
ε) (51)

So the onvergene order in terms of ε is the same as the one we obtained in [36℄ using

another kind of proof. If we look at the numerial experiments in [36℄, the onvergene order

in terms of ε seems to be optimal.

Remark 14 It is possible to onsider that ud
is de�ned on a domain Ωε with regular boundary

and that ud
T is de�ned on a polygonal domain Ω

ε,poly
⊂ Ωε. This would inrease the number of

possible regular solutions of (1). In this ase, the results of Theorem 8, Theorem 11, Remark

12 and Lemma 13 are still valid in L2(Ω
ε,poly

).
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The hybrid sheme has been used to solve the Poisson equation in [36℄. The numerial

experiments have shown that the numerial onvergene order of the hybrid sheme seems to

be greater than one. So the theoretial onvergene order O(h), in terms of the size of the

mesh, that we obtained in the present paper, seems not yet optimal. However, we also observe

a di�erene between the numerial and the theoretial onvergene order for other shemes for

instane the TPFA sheme (de�ned in [19℄, see [15℄).

5 Conlusion

In this paper, we study a �nite volume sheme to solve a linear model problem on a geome-

trial multi-sale 1D-2D domain (one node and n outgoing branhes). This ould ontribute to

the simulation of problems set in rod strutures, suh as arterial trees for example. Indeed this

study an be generalized to solve more realisti problems (the heat equation will be addressed

in a forthoming paper) whih are possibly set in a 3D rod-struture. We explain what are the

advantages to work on a dimensionally-heterogeneous domain rather than keep a 2D domain

and onsider non-mathing grids. We de�ne a spei� H1
disrete norm for the funtions de�-

ned on suh a domain, whih involves the onvex ombinations of the values of the funtions

on both sides of the interfaes between the 1D part and the 2D part. We establish a Poinaré

inequality that yields a L2
error estimate (24). If the thikness of the branhes, that is propor-

tional to ε, is �xed, then this estimate an be read in terms of the size of the mesh h (order of

onvergene 1). If not, this estimate is rewritten (51) and it an be read in terms of ε (order of
onvergene 1/2). Indeed, the onvergene aording to the thikness of the branhes may also

be onsidered when applying the Method of Asymptoti Partial Domain Deomposition, sine

then the thikness of the branhes is intended to tend to zero. To the best of our knowledge,

we prove here the �rst error estimate using a �nite volume sheme in a geometrial multi-sale

domain.
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