Distances between classes of sphere-valued Sobolev maps

Haim Brezis, Petru Mironescu, Itai Shafrir

To cite this version:

Haim Brezis, Petru Mironescu, Itai Shafrir. Distances between classes of sphere-valued Sobolev maps. submitted to Comptes Rendus Mathématiques. 2016. <hal-01308505>

HAL Id: hal-01308505
https://hal.archives-ouvertes.fr/hal-01308505

Submitted on 27 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distances between classes of sphere-valued Sobolev maps

Haim Brezis* \quad Petru Mironescu ${ }^{\dagger} \quad$ Itai Shafrir ${ }^{\ddagger}$

April 23rd 2016

Abstract

We introduce an equivalence relation on $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$ involving the topological degree, and we evaluate the distances (in the usual sense and in the Hausdorff sense) between the equivalence classes. In some special cases we even obtain exact formulas. Next we discuss related issues for $W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right)$.

Résumé

Distances entre classes d'applications de Sobolev à valeurs dans une sphère

On introduit une relation d'équivalence sur $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$ liée au degré topologique et on présente des estimées pour les distances (au sens usuel et au sens de Hausdorff) entre les classes d'équivalence. Dans certains cas particuliers il s'agit même de formules exactes. On considère ensuite des questions semblables pour $W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right)$.

1 Introduction

We report on two recent works [4] and [5] concerning distances between classes of Sobolev maps taking their values in \mathbb{S}^{N}, in two different settings. In the first part we deal with distances in $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)([5])$. The classes in this case correspond to the equivalence relation $f \sim g$ if and only if $\operatorname{deg} f=\operatorname{deg} g$. As we will recall below, the topological degree makes sense not only for continuous maps, but also for VMO-maps, and in particular for maps in $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$ with $s p \geq N$. In the second part we consider distances between classes of $W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right)$, where Ω is a smooth bounded simply connected domain in $\mathbb{R}^{N}, N \geq 2$ and $p \in[1,2)$. In contrast with the first setting, the decomposition into classes is not due to the nontrivial topology of the domain (\mathbb{S}^{N} in the first setting) but instead it is related to the location and topological degree of the singularities of the maps in each class. More precisely, the classes are defined according to an equivalence relation: $u \sim v$ if and only if there exists $\varphi \in W^{1,1}(\Omega ; \mathbb{R})$ such that $u=e^{\imath \varphi} v$. This definition is analogous to the one used in the first part when $N=1$, see Remark 1 below. This

[^0]is an indication of a deep connection between the two parts. Actually, we are going to see (in Remark 5) that the results concerning $W^{1,1}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ in Section 2 can be viewed as special cases of analogous results about $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ in Section 3.

2 Distances between homotopy classes of $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$

The first author and L. Nirenberg [6] developed a concept of topological degree for map in $\operatorname{VMO}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right), N \geq 1$, which applies in particular to the (integer or fractional) Sobolev spaces $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$ with

$$
\begin{equation*}
s>0,1 \leq p<\infty \text { and } s p \geq N . \tag{1}
\end{equation*}
$$

We will make assumption (1) throughout this section. We define an equivalence relation on $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$ by $f \sim g$ if and only if $\operatorname{deg} f=\operatorname{deg} g$. It is known that the homotopy classes of $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$ are precisely the equivalence classes for the relation $f \sim g$ and are given by

$$
\begin{equation*}
\mathscr{E}_{d}:=\left\{f \in W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right) ; \operatorname{deg} f=d\right\} \text { where } d \in \mathbb{Z} ; \tag{2}
\end{equation*}
$$

these classes depend not only on d, but also on s and p, but in order to keep notation simple we do not mention the dependence on s and p.

Remark 1 When $N=1$ there is an alternative description of the equivalence relation $f \sim g$. Given $f, g \in W^{s, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ we have (see [2])

$$
\begin{equation*}
f \sim g \text { if and only if } f=e^{\imath \varphi} g \text { for some } \varphi \in W^{s, p}\left(\mathbb{S}^{1} ; \mathbb{R}\right) . \tag{3}
\end{equation*}
$$

Therefore, it makes sense to denote also $\mathscr{E}_{d}=\mathscr{E}(f)$ when $\operatorname{deg} f=d$. We shall use this notation in Remark 2 below.

Our purpose is to investigate the usual distance and the Hausdorff distance (in $W^{s, p}$) between the classes \mathscr{E}_{d}. For that matter we introduce the $W^{s, p}$-distance between two maps $f, g \in W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$ by

$$
\begin{equation*}
d_{W^{s, p}}(f, g):=|f-g|_{W^{s, p}}, \tag{4}
\end{equation*}
$$

where for $h \in W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{R}^{N+1}\right)$ we let

$$
|h|_{W^{s, p}}:=\left\|h-f_{\mathbb{S}^{N}} h\right\|_{W^{s, p}},
$$

and $\left\|\|_{W^{s, p}}\right.$ is any one of the standard norms on $W^{s, p}$. Let $d_{1} \neq d_{2}$ and define the following two quantities:

$$
\begin{equation*}
\operatorname{dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right):=\inf _{f \in \mathscr{E}_{d_{1}}} \inf _{g \in \mathscr{E}_{d_{2}}} d_{W^{s, p}}(f, g), \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right):=\sup _{f \in \mathscr{E}_{d_{1}}} \inf _{g \in \mathscr{C}_{d_{2}}} d_{W^{s, p}}(f, g) \tag{6}
\end{equation*}
$$

It is conceivable that

$$
\begin{equation*}
\operatorname{Dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)=\operatorname{Dist}_{W^{s, p}}\left(\mathscr{E}_{d_{2}}, \mathscr{E}_{d_{1}}\right), \forall d_{1}, d_{2} \in \mathbb{Z} \tag{7}
\end{equation*}
$$

but we have not been able to prove this equality (see Open Problem 1 below). Therefore we consider also the symmetric version of (6), which is nothing but the Hausdorff distance between the two classes:

$$
\begin{equation*}
H-\operatorname{dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)=\max \left\{\operatorname{Dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right), \operatorname{Dist}_{W^{s, p}}\left(\mathscr{E}_{d_{2}}, \mathscr{E}_{d_{1}}\right)\right\} \tag{8}
\end{equation*}
$$

The usual distance $\operatorname{dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)$ in certain (non-fractional) Sobolev spaces was investigated in works by J. Rubinstein and I. Shafrir [8], when $s=1, p \geq N=1$, and S. Levi and I. Shafrir [7], when $s=1, p \geq N \geq 2$. In particular, they obtained exact formulas for the distance (see [8, Remark 2.1], [7, Theorem 3.4]) and tackled the question whether this distance is achieved (see [8, Theorem 1], [7, Theorem 3.4]).

We pay special attention to the case where $N=1$ and $s=1$. In this case, we have several sharp results when we take

$$
\begin{equation*}
d_{W^{1, p}}(f, g)=|f-g|_{W^{1, p}}:=\left(\int_{\mathbb{S}^{1}}|\dot{f}-\dot{g}|^{p}\right)^{1 / p} \tag{9}
\end{equation*}
$$

The following result was obtained in [8] (see also [5]).

$$
\begin{align*}
\operatorname{dist}_{W^{1, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right) & =\inf _{f \in \mathscr{E}_{d_{1}}} \inf _{g \in \mathscr{E}_{d_{2}}} d_{W^{1, p}}(f, g) \\
& =\left(\frac{2}{\pi}\right)_{h \in \mathscr{E}_{d_{1}-d_{2}}}\left(\int_{\mathbb{S}^{1}}|\dot{h}|^{p}\right)^{1 / p} \tag{10}\\
& =2^{(1 / p)+1} \pi^{(1 / p)-1}\left|d_{1}-d_{2}\right| .
\end{align*}
$$

In particular,

$$
\begin{equation*}
\operatorname{dist}_{W^{1,1}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)=4\left|d_{1}-d_{2}\right| \tag{11}
\end{equation*}
$$

It is natural to ask whether, given $d_{1} \neq d_{2}$, the infimum in (10) is achieved. The answer is given by the following result, proved in [8] when $p=2$.

Theorem 2.1 Let $N=1$. Let $d_{1}, d_{2} \in \mathbb{Z}, d_{1} \neq d_{2}$.

1. When $p=1$, the infimum in (10) is always achieved.
2. When $1<p<2$, the infimum in (10) is achieved if and only if $d_{2}=-d_{1}$.
3. When $p \geq 2$, the infimum in (10) is not achieved.

For $s=1, N \geq 2, p \geq N$, and for the semi-norm $|f-g|_{W^{1, p}}=\|\nabla f-\nabla g\|_{L^{p}}$, the exact value of the $W^{1, p}$ distance dist ${ }_{W^{1, p}}$ between the classes $\mathscr{E}_{d_{1}}$ and $\mathscr{E}_{d_{2}}, d_{1} \neq d_{2}$, has been computed by S . Levi and I. Shafrir [7]. By contrast with (10) this distance does not depend on d_{1} and d_{2}, but only on p (and N).

We now turn to the case $s \neq 1$ and $N \geq 1$. Here, we will only obtain the order of magnitude of the distances dist ${ }_{W} s, p$, and thus our results are not sensitive to the choice of a specific distance among various equivalent ones. When $0<s<1$ a standard distance is associated with the Gagliardo $W^{s, p}$ semi-norm

$$
\begin{equation*}
d_{W^{s, p}}(f, g):=\left(\int_{\mathbb{S}^{N}} \int_{\mathbb{S}^{N}} \frac{|[f(x)-g(x)]-[f(y)-g(y)]|^{p}}{|x-y|^{N+s p}} d x d y\right)^{1 / p} . \tag{12}
\end{equation*}
$$

We start with dist ${ }_{W} s, p$.

Theorem 2.2 We have

1. If $N \geq 1$ and $1<p<\infty$, then

$$
\begin{equation*}
\operatorname{dist}_{W^{N / p, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)=0, \forall d_{1}, d_{2} \in \mathbb{Z} \tag{13}
\end{equation*}
$$

2. If $N=1, s>0,1 \leq p<\infty$ and $s p>1$, then

$$
\begin{equation*}
C_{s, p}^{\prime}\left|d_{1}-d_{2}\right|^{s} \leq \operatorname{dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right) \leq C_{s, p}\left|d_{1}-d_{2}\right|^{s} \tag{14}
\end{equation*}
$$

3. If $N \geq 2,[1<p<\infty$ and $s>N / p]$ or [$p=1$ and $s \geq N]$, then

$$
\begin{equation*}
C_{s, p, N}^{\prime} \leq \operatorname{dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right) \leq C_{s, p, N}, \forall d_{1}, d_{2} \in \mathbb{Z} \text { such that } d_{1} \neq d_{2} \tag{15}
\end{equation*}
$$

In the above, C, C^{\prime} are positive constants independent of d_{1}, d_{2}.
We now turn to Dist $_{W^{s, p}}$.

Theorem 2.3 We have

1. If $N=1, s=1$ and $p=1$, then

$$
\begin{equation*}
\operatorname{Dist}_{W^{1,1}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)=2 \pi\left|d_{1}-d_{2}\right|, \forall d_{1}, d_{2} \in \mathbb{Z} \tag{16}
\end{equation*}
$$

2. If $N \geq 1$ and $1 \leq p<\infty$, then

$$
\begin{equation*}
\operatorname{Dist}_{W^{N / p, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right) \leq C_{p, N}\left|d_{1}-d_{2}\right|^{1 / p}, \forall d_{1}, d_{2} \in \mathbb{Z} \tag{17}
\end{equation*}
$$

3. If $N \geq 1$ and $s p>N$, then
$\operatorname{Dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)=\infty, \forall d_{1}, d_{2} \in \mathbb{Z}$ such that $d_{1} \neq d_{2}$.

The detailed proofs appeared in [5]. We call the attention of the reader to a new idea which yields inequality " \geq " in (16) in a "more uniform" way; this will become clear in Remark 5 below.

Remark 2 For later use it is convenient to reformulate (11) and (16) as follows. Assume $N=$ $1, s=1$ and $p=1$. Then $\forall f, g \in W^{1,1}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ we have

$$
\begin{equation*}
\operatorname{dist}_{W^{1,1}}(\mathscr{E}(f), \mathscr{E}(g))=4|\operatorname{deg}(f \bar{g})| \tag{19}
\end{equation*}
$$

and
$\operatorname{Dist}_{W^{1,1}}(\mathscr{E}(f), \mathscr{E}(g))=2 \pi|\operatorname{deg}(f \bar{g})|$.
In particular, $\forall f \in W^{1,1}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ we have
$4|\operatorname{deg} f| \leq \operatorname{dist}_{W^{1,1}}\left(f, \mathscr{E}_{0}\right) \leq 2 \pi|\operatorname{deg} f|$.
Moreover the constants 4 and 2π in (21) are optimal.
Here are two natural questions that we could not solve.

Open Problem 1 Is it true that for every $d_{1}, d_{2} \in \mathbb{Z}, N \geq 1, s>0,1 \leq p<\infty$,

$$
\begin{equation*}
\operatorname{Dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)=\operatorname{Dist}_{W^{s, p}}\left(\mathscr{E}_{d_{2}}, \mathscr{E}_{d_{1}}\right) ? \tag{22}
\end{equation*}
$$

Or even better:
Does Dist $_{W, p}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)$ depend only on $\left|d_{1}-d_{2}\right|($ and $s, p, N) ?$
There are several cases where we have an explicit formula for $\operatorname{Dist}_{W^{s}, p}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)$ and in all such cases (23) holds. We may also ask questions similar to (23) for $\operatorname{dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)$ and for H - $\operatorname{dist}_{W^{s, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)$ (assuming the answer to (23) is negative). A striking special case still open when $N=1$ is: does dist $W_{W^{2,1}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right)$ depend only on $\left|d_{1}-d_{2}\right|$?

Open Problem 2 Is it true that for every $N \geq 1$ and every $1 \leq p<\infty$, there exists some $C_{p, N}^{\prime}>0$ such that

$$
\begin{equation*}
H-\operatorname{dist}_{W^{N / p, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right) \geq C_{p, N}^{\prime}\left|d_{1}-d_{2}\right|^{1 / p}, \forall d_{1}, d_{2} \in \mathbb{Z} ? \tag{24}
\end{equation*}
$$

Even better, do we have

$$
\begin{equation*}
\operatorname{Dist}_{W^{N / p, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right) \geq C_{p, N}^{\prime}\left|d_{1}-d_{2}\right|^{1 / p}, \forall d_{1}, d_{2} \in \mathbb{Z} ? \tag{25}
\end{equation*}
$$

Some partial answers to these open problems are presented in [5].

3 Distances between classes in $W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right)$

Let Ω be a smooth bounded domain in $\mathbb{R}^{N}, N \geq 2$. In order to simplify the presentation we assume throughout that Ω is simply connected; however many of the results remain valid without this assumption (see, e.g., Remark 5 below). In this section we decompose $W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right)$ into equivalence classes and study their distances. We start with the case $p=1$ and recall two basic "negative" facts originally discovered by F. Bethuel and X. Zheng [1] (see also [2] for an updated and more detailed presentation).

Fact 1. Maps u of the form $u=e^{\imath \varphi}$ with $\varphi \in W^{1,1}(\Omega ; \mathbb{R})$ belong to $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$. However they do not exhaust $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$: there exist maps in $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ which cannot be written as $u=e^{\imath \varphi}$ for some $\varphi \in W^{1,1}(\Omega ; \mathbb{R})$. We set

$$
\begin{equation*}
X=\left\{u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right) ; u=e^{\imath \varphi} \text { for some } \varphi \in W^{1,1}(\Omega ; \mathbb{R})\right\} . \tag{26}
\end{equation*}
$$

Fact 2. Maps in $C^{\infty}\left(\bar{\Omega} ; \mathbb{S}^{1}\right)$ are not dense in $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$. In fact (see e.g. [2]) we have

$$
\begin{equation*}
X={\overline{C^{\infty}\left(\bar{\Omega} ; \mathbb{S}^{1}\right)}}^{W^{1,1}} \tag{27}
\end{equation*}
$$

We now introduce an equivalence relation in $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$:
$u \sim v$ if and only if $u=e^{\imath \varphi} v$ for some $\varphi \in W^{1,1}(\Omega ; \mathbb{R})$.
We denote by $\mathscr{E}(u)$ the equivalence class of an element $u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$. In particular, if $u=1$ then $\mathscr{E}(u)=X$.

A useful device for constructing maps in the same equivalence class is the following (see [4]). Let $T \in \operatorname{Lip}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ be a map of degree one. Then

$$
\begin{equation*}
T \circ u \sim u \quad \forall u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right) . \tag{29}
\end{equation*}
$$

To each $u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ we associate a number $\Sigma(u) \geq 0$ defined by

$$
\begin{equation*}
\Sigma(u)=\inf _{v \in \mathscr{E}(u)} \int_{\Omega}|\nabla v| . \tag{30}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\Sigma(u)=\inf _{\psi \in W^{1,1}(\Omega ; \mathbb{R})} \int_{\Omega}|u \wedge \nabla u-\nabla \psi| . \tag{31}
\end{equation*}
$$

This follows from the identities

$$
\begin{align*}
(u v) \wedge \nabla(u v) & =u \wedge \nabla u+v \wedge \nabla v & \forall u, v \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right), \tag{32}\\
e^{\imath \varphi} \wedge \nabla\left(e^{\imath \varphi}\right) & =\nabla \varphi & \forall \varphi \in W^{1,1}(\Omega ; \mathbb{R}), \tag{33}\\
\bar{u} \wedge \nabla \bar{u} & =-u \wedge \nabla u & \forall u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right) .
\end{align*}
$$

The quantity $\Sigma(u)$ was originally introduced in [3] when $N=2$. It plays an extremely important role in many questions involving $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ (see [2]). In some sense it measures how much a given $u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ "deviates" from X. By (30) we have, $u \sim v \Longrightarrow \Sigma(u)=\Sigma(v)$. Moreover we have (see [2]):

$$
\begin{equation*}
u \sim 1 \Longleftrightarrow \Sigma(u)=0, \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma(u \bar{v}) \geq|\Sigma(u)-\Sigma(v)| \quad \forall u, v \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right) . \tag{36}
\end{equation*}
$$

Given $u_{0}, v_{0} \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ such that u_{0} is not equivalent to v_{0}, it is of interest to consider the distance of u_{0} to $\mathscr{E}\left(v_{0}\right)$ defined by

$$
d_{W^{1,1}}\left(u_{0}, \mathscr{E}\left(v_{0}\right)\right)=\inf _{v \sim v_{0}} \int_{\Omega}\left|\nabla u_{0}-\nabla v\right|
$$

and define, analogously to (5)-(6),

$$
\begin{align*}
\operatorname{dist}_{W^{1,1}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}\left(v_{0}\right)\right): & =\inf _{u \sim u_{0}} d_{W^{1,1}}\left(u, \mathscr{E}\left(v_{0}\right)\right) \\
& =\inf _{u \sim u_{0}} \inf _{v \sim v_{0}} \int_{\Omega}|\nabla(u-v)|, \tag{37}\\
\operatorname{Dist}_{W^{1,1}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}\left(v_{0}\right)\right): & =\sup _{u \sim u_{0}} d_{W^{1,1}}\left(u, \mathscr{E}\left(v_{0}\right)\right) \\
& =\sup _{u \sim u_{0}} \inf _{v \sim v_{0}} \int_{\Omega}|\nabla(u-v)| . \tag{38}
\end{align*}
$$

The next theorem provides explicit formulas for these two quantities.
Theorem 3.1 For every $u_{0}, v_{0} \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ we have

$$
\begin{equation*}
\operatorname{dist}_{W^{1,1}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}\left(v_{0}\right)\right)=\frac{2}{\pi} \Sigma\left(u_{0} \bar{v}_{0}\right) \tag{39}
\end{equation*}
$$

and
$\operatorname{Dist}_{W^{1,1}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}\left(v_{0}\right)\right)=\Sigma\left(u_{0} \bar{v}_{0}\right)$.

The two assertions in Theorem 3.1 look very simple but the proofs are quite tricky (see [4]). Note in particular that it follows from (40) that Dist $_{W^{1,1}}$ is symmetric, which is not clear from its definition (compare with Open Problem 1).

Remark 3 There is an alternative point of view on the equivalence relation $u \sim v$ using the Jacobian of u. For every $u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ consider the antisymmetric matrix with coefficients in \mathscr{D}^{\prime} defined by

$$
J u:=\frac{1}{2}\left[\frac{\partial}{\partial x_{i}}\left(u \wedge \frac{\partial u}{\partial x_{j}}\right)-\frac{\partial}{\partial x_{j}}\left(u \wedge \frac{\partial u}{\partial x_{i}}\right)\right] .
$$

One can show (see [2]) that $\forall u, v \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$,

$$
\begin{equation*}
u \sim v \text { if and only if } J(u \bar{v})=J u-J v=0 . \tag{41}
\end{equation*}
$$

Remark 4 In order to have a feeling for the equivalence relation $u \sim v$ it is instructive to understand what it means, when $N=2$ and Ω is simply connected, for $u, v \in \mathscr{R}$ where

$$
\mathscr{R}=\left\{u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right) ; u \text { is smooth except at a finite number of points }\right\} .
$$

The class \mathscr{R} plays an important role since it is dense in $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ (see [1, 2]). If $u \in \mathscr{R}$ then $J u=\pi \sum k_{j} \delta_{a_{j}}$ where a_{j} are the singular points of u and $k_{j}=\operatorname{deg}\left(u, a_{j}\right)$. In particular, when $u, v \in \mathscr{R}$, then $u \sim v$ if and only if u and v have the same singularities and the same degree for each singularity.

A special case of interest is the distance of a given $u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ to the class $\mathscr{E}(1)=X=$ $\overline{C^{\infty}\left(\bar{\Omega} ; \mathbb{S}^{1}\right)}{ }^{W^{1,1}}$ (see (26)-(27)) that we denote for convenience

$$
\begin{equation*}
d(u, X)=d_{W^{1,1}}(u, X)=\inf \left\{\int_{\Omega}\left|\nabla u-\nabla\left(e^{\tau \varphi}\right)\right| ; \varphi \in W^{1,1}(\Omega ; \mathbb{R})\right\} . \tag{42}
\end{equation*}
$$

An immediate consequence of Theorem 3.1 is that for every $u \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ we have

$$
\begin{equation*}
\frac{2}{\pi} \Sigma(u) \leq d(u, X) \leq \Sigma(u), \tag{43}
\end{equation*}
$$

and the bounds are optimal in the sense that

$$
\begin{equation*}
\sup _{\Sigma(u)>0} \frac{d(u, X)}{\Sigma(u)}=1, \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{\Sigma(u)>0} \frac{d(u, X)}{\Sigma(u)}=\frac{2}{\pi} . \tag{45}
\end{equation*}
$$

The proof of (40) actually provides an explicit recipe for constructing "maximizing sequences" for Dist $_{W^{1,1}}$. In order to describe it we first introduce, for each $n \geq 3$, a map $T_{n} \in \operatorname{Lip}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ with $\operatorname{deg} T_{n}=1$ by $T_{n}\left(e^{l \theta}\right)=e^{\imath \tau_{n}(\theta)}$, with τ_{n} defined on $[0,2 \pi]$ by setting $\tau_{n}(0)=0$ and

$$
\tau_{n}^{\prime}(\theta)=\left\{\begin{array}{ll}
n, & \left.\theta \in\left[2 j \pi / n^{2}\right),(2 j+1) \pi / n^{2}\right] \tag{46}\\
-(n-2), & \left.\theta \in\left((2 j+1) \pi / n^{2}\right),(2 j+2) \pi / n^{2}\right]
\end{array}, j=0,1, \ldots, n^{2}-1 .\right.
$$

A basic ingredient in the proof of (40) in Theorem 3.1 is the following

Theorem 3.2 For every $u_{0}, v_{0} \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ such that $u_{0} \nsucc v_{0}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{d_{W^{1,1}}\left(T_{n} \circ u_{0}, \mathscr{E}\left(v_{0}\right)\right)}{\sum\left(u_{0} \bar{v}_{0}\right)}=1 \tag{47}
\end{equation*}
$$

and the limit is uniform over all such u_{0} and v_{0}.
From (29) it is clear that Theorem 3.2 implies inequality " \geq " in (40). The inequality " \leq " in (40) is an immediate consequence of the following result established in [4]:

$$
\begin{equation*}
d_{W^{1,1}}\left(u, \mathscr{E}\left(v_{0}\right)\right) \leq \Sigma\left(u_{0} \bar{v}_{0}\right), \quad \forall u_{0}, v_{0} \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right), \forall u \in \mathscr{E}\left(u_{0}\right) . \tag{48}
\end{equation*}
$$

We now discuss briefly the proof of Theorem 3.2. Inequality " \leq " in (47) is a consequence of (48). The heart of the proof of inequality " \geq " in (47) is the next lemma.

Lemma 3.3 For each $\delta>0$ there exists $n_{1}=n_{1}(\delta)$ such that for every $u, v \in W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$ and $n \geq n_{1}$ there holds

$$
\int_{\Omega}\left|\nabla\left(T_{n} \circ u\right)-\nabla v\right| \geq(1-\delta) \Sigma(u \bar{v}) .
$$

Remark 5 Note the similarity between the definitions of $f \sim g$ in $W^{s, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ (see (3)) and $u \sim v$ in $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)($ see (28)) and also the analogy between (19)-(20) and Theorem 3.1 where $|\operatorname{deg} f|$ plays a role similar to $\Sigma(u)$. In fact, the analogy goes beyond the formal resemblance of the formulas. In the above we could replace Ω by a manifold \mathscr{M} (with or without boundary, simply connected or not). Theorem 3.1 holds as is and this is the case also for Theorem 3.2 and Lemma 3.3. Choosing $\mathscr{M}=\mathbb{S}^{1}$ one sees easily that $\Sigma(u)=2 \pi|\operatorname{deg} u|$, for all $u \in W^{1,1}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$. Indeed, denoting $k=\operatorname{deg} u$, we have on the one hand, for $w(z)=z^{k}, \int_{\mathbb{S}^{1}}|\dot{w}|=\int_{\mathbb{S}^{1}}|w \wedge \dot{w}|=2 \pi|k|$, and on the other hand, for all $v \in \mathscr{E}(u)$,

$$
\int_{\mathbb{S}^{1}}|\dot{v}|=\int_{\mathbb{S}^{1}}|v \wedge \dot{v}| \geq\left|\int_{\mathbb{S}^{1}} v \wedge \dot{v}\right|=2 \pi|k| .
$$

Hence some results from Section 2 about $W^{1,1}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ become special cases of Theorem 3.1. It is interesting to write explicitly the statement of Theorem 3.2 for the special case $\Omega=\mathbb{S}^{1}$. It improves upon [5, Lemma 3.1] by providing a "more uniform" estimate:
For all $f, g \in W^{1,1}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ with $\operatorname{deg} f \neq \operatorname{deg} g$ we have

$$
\lim _{n \rightarrow \infty} \frac{d_{W^{1,1}}\left(T_{n} \circ f, \mathscr{E}(g)\right)}{2 \pi|\operatorname{deg} f-\operatorname{deg} g|}=1
$$

and the limit is uniform over all such f and g.
There are many challenging open problems concerning the question whether the supremum and the infimum in various formulas above are achieved. Here are some brief comments, restricted to the case $N=2$; we refer to [2, 4] for further discussions.
(i) The question whether the infimum in (30) is achieved is extensively studied in [2]. The answer is delicate and depends heavily on Ω and u.
(ii) Concerning the infimum in (42) the answer is positive when Ω is the unit disc and $u(x)=\frac{x}{|x|}$, and in some other cases satisfying $d(u, X)=(2 / \pi) \Sigma(u)$ (see [4]). In general the question is widely open.
(iii) Concerning the infimum in (45), the answer seems to depend on the shape of Ω. We know that when Ω is the unit disc, the infimum in (45) is achieved by $u(x)=\frac{x}{|x|}$. On the other hand, it seems plausible that if Ω is the interior of a non circular ellipse, then the infimum in (45) is not achieved.
(iv) The question whether the supremum in (44) is achieved is widely open. We suspect that the supremum in (44) is achieved in every domain, but we do not know any domain in which the supremum is achieved.

Finally, we turn to the classes in $W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right), 1<p<2$, defined in the same way as in the $W^{1,1}$-case. The distances between the classes are defined analogously to (37)-(38) by

$$
\begin{equation*}
\operatorname{dist}_{W^{1, p}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}\left(v_{0}\right)\right):=\inf _{u \sim u_{0}} \inf _{v \sim v_{0}}\|\nabla(u-v)\|_{L^{p}(\Omega)} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Dist}_{W^{1, p}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}\left(v_{0}\right)\right):=\sup _{u \sim u_{0}} \inf _{v \sim v_{0}}\|\nabla(u-v)\|_{L^{p}(\Omega)} . \tag{50}
\end{equation*}
$$

We first establish a lower bound for dist $_{W^{1, p}}$:
Proposition 3.1 For every $u_{0}, v_{0} \in W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right)$ we have

$$
\begin{equation*}
\operatorname{dist}_{W^{1, p}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}\left(v_{0}\right)\right) \geq\left(\frac{2}{\pi}\right)_{w \sim u_{0} \bar{v}_{0}}\|\nabla w\|_{L^{p}(\Omega)} . \tag{51}
\end{equation*}
$$

Remark 6 For $p>1$ the infimum on the R.H.S. of (51) is actually a minimum, see [2].
We do not know whether the lower bound in (51) is optimal:
Open Problem 3 Is there equality in (51) for every $u_{0}, v_{0} \in W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right)$?
We suspect that the answer might be negative in general. We are able to prove that the answer is positive in the case of the distance to smooth maps:

Theorem 3.4 For every $u_{0} \in W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right), p \in(1,2)$, we have

$$
\begin{equation*}
\operatorname{dist}_{W^{1, p}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}(1)\right)=\left(\frac{2}{\pi}\right)_{w \sim u_{0} \bar{v}_{0}}\|\nabla w\|_{L^{p}(\Omega)} . \tag{52}
\end{equation*}
$$

By analogy with item 3 in Theorem 2.3 we have the following result:
Theorem 3.5 For every $u_{0}, v_{0} \in W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right)$ such that $u_{0} \nsucc v_{0}$ we have

$$
\begin{equation*}
\operatorname{Dist}_{W^{1, p}}\left(\mathscr{E}\left(u_{0}\right), \mathscr{E}\left(v_{0}\right)\right)=\infty . \tag{53}
\end{equation*}
$$

The detailed proofs of the results on $W^{1, p}\left(\Omega ; \mathbb{S}^{1}\right), p \in[1,2)$, will appear in [4].
Acknowledgments. The first author (HB) was partially supported by NSF grant DMS1207793. The second author (PM) was partially supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The third author (IS) was supported by the Israel Science Foundation (Grant No. 999/13).

References

[1] F. Bethuel and X.M. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80 (1988), 60-75.
[2] H. Brezis and P. Mironescu, Sobolev maps with values into the circle, Birkhäuser (in preparation).
[3] H. Brezis, P. Mironescu and A. Ponce, $W^{1,1}$-maps with values into \mathbb{S}^{1}, in Geometric analysis of PDE and several complex variables, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005, 69-100.
[4] H. Brezis, P. Mironescu and I. Shafrir, Distances between classes in $W^{1,1}\left(\Omega ; \mathbb{S}^{1}\right)$, in preparation.
[5] H. Brezis, P. Mironescu and I. Shafrir, Distances between homotopy classes of $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$, to appear in ESAIM COCV, < hal-01257581>.
[6] H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.), 1 (1995), 197-263.
[7] S. Levi and I. Shafrir, On the distance between homotopy classes of maps between spheres, J. Fixed Point Theory Appl., 15 (2014), 501-518.
[8] J. Rubinstein and I. Shafrir, The distance between homotopy classes of \mathbb{S}^{1}-valued maps in multiply connected domains, Israel J. Math., 160 (2007), 41-59.

[^0]: *Department of Mathematics, Rutgers University, USA \& Department of Mathematics, Technion-I.I.T., 32000 Haifa, Israel. Email address: brezis@math.rutgers.edu
 †Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France. Email address: mironescu@math.univ-lyon1.fr
 ${ }^{\ddagger}$ Department of Mathematics, Technion-I.I.T., 32000 Haifa, Israel. Email address: shafrir@math.technion.ac.il Keywords. Circle-valued maps, Sobolev spaces, homotopy classes
 2002 AMS classification subject. 46E35

