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Résumé
Ce papier présente une approche permettant d’utiliser
plusieurs bases de données annotées avec différents en-
sembles d’étiquettes pour améliorer la précision d’un clas-
sifieur entrainé sur une tâche de segmentation sémantique
de scènes extérieures. Dans ce contexte, la base de don-
nées KITTI nous fournit un cas d’utilisation particulière-
ment pertinent : des sous-ensembles distincts de cette base
ont été annotés par plusieurs équipes en utilisant des éti-
quettes différentes pour chaque sous-ensemble. Notre mé-
thode permet d’entraîner un réseau de neurones convolu-
tionnel (CNN) en utilisant plusieurs bases de données avec
des étiquettes possiblement incohérentes. Nous présentons
une fonction de perte sélective pour entrainer ce réseau
et plusieurs approches de fusion permettant d’exploiter les
corrélations entre les différents ensembles d’étiquettes. Le
réseau utilise ainsi toutes les données disponibles pour
améliorer les performances de classification sur chaque
ensemble. Les expériences faites sur les différents sous-
ensembles de la base de données KITTI montrent comment
chaque proposition contribue à améliorer le classifieur.

Mots Clef
Deep Learning, Réseaux de neurones de convolution, Seg-
mentation sémantique.

Abstract
In this work, we present an approach that leverages mul-
tiple datasets annotated using different classes (different
labelsets) to improve the classification accuracy on each
individual dataset. We focus on semantic full scene labeling
of outdoor scenes. To achieve our goal, we use the KITTI
dataset as it illustrates very well the focus of our paper :
it has been sparsely labeled by multiple research groups
over the past few years but the semantics and the granula-
rity of the labels differ from one set to another. We propose
a method to train deep convolutional networks using mul-
tiple datasets with potentially inconsistent labelsets and a
selective loss function to train it with all the available labe-
led data while being reliant to inconsistent labelings. Ex-
periments done on all the KITTI dataset’s labeled subsets

show that our approach consistently improves the classifi-
cation accuracy by exploiting the correlations across data-
sets both at the feature level and at the label level.

Keywords
Deep Learning, Convolutional neural network, semantic la-
belling, inconsistent labelling.

1 Introduction
Semantic scene parsing (a.k.a. semantic full scene labeling)
from RGB images aims at segmenting an image into se-
mantically meaningful regions, i.e. to provide a semantic
class label for each pixel of an image — see Table 2 for
examples of labels in an outdoor context. Semantic scene
parsing is useful for a wide range of applications, for ins-
tance autonomous vehicles, automatic understanding and
indexing of video databases, etc.
Most semantic scene parsing methods use supervised ma-
chine learning algorithms and thus rely on densely labeled
(manually annotated) training sets which are very tedious
to obtain. Only a small amount of training data is currently
available for this task, which makes this problem stand out
from other problems in vision (as for instance object recog-
nition and localization). This is a particularly stringent pro-
blem for the currently most performing family of models in
computer vision, namely deep networks, which are particu-
larly needy in terms of training data. In the case of depth
images, data-augmentation using artificially-created trai-
ning data has been employed successfully for segmentation
problems [1, 2]. However, the high variations of content
in fully textured images make this solution at the moment
very difficult to use for RGB images.
Most datasets for scene parsing contain only several hun-
dreds of images, some of them only several dozen [3, 4, 5,
6, 7, 8, 9, 10, 11]. Combining these datasets is a non-trivial
task as target classes are often tailored to a custom applica-
tion. For example, one might be interested in specific types
of vegetation like trees, bushes and grass, or types of ob-
jects such as graffiti or billboard while other applications
do not require discriminating between these types. In this
work, we present a solution to this problem by learning a



joint prediction model on a dataset composed of different
and inconsistently labeled subsets.
The contributions of this paper are threefold : (i) we pro-
pose a deep network capable of processing features and la-
bels (as input) from several different datasets and provi-
ding predictions for each of these datasets. Early layers are
shared over datasets, whereas later layers are separated ;
(ii) we show that shared parameters can lead to significant
improvements of performance even if the semantic mea-
nings of the different labelsets are different ; (iii) our expe-
riments done on 7 annotated subsets of the KITTI dataset
[12, 13] show that the label definitions, albeit inconsistent,
are highly correlated, and that the proposed networks are
able to capture and exploit these correlations.

2 Related Works
In this section, first, we discuss the state of the art on se-
mantic scene parsing, then, we focus on feature and know-
ledge transfer methods, especially in the context of deep
networks. Finally, we report several specific issues related
to the KITTI benchmark which sparked wide interest and
for which a limited range of methods has been proposed,
especially in scene parsing.

2.1 Semantic Segmentation
Whereas the methods used for low level segmentation are
diverse, high level semantic segmentation is dominated
by machine learning, which can be explained by the high
intra-class variances of this task. Learning methods range
from random forests, to Support Vector Machines and deep
networks. In [14] for instance, a structured-output version
of random forests is proposed, where each leaf node pre-
dicts labels for every single pixel of an input patch, and
predictions are integrated over patches using voting. Deep
neural networks have also been used in wide range of
works [15, 16, 17].
Over years, segmentation algorithms (semantic or not)
have often been regularized through probabilistic graphi-
cal models like Markov Random Fields or Conditional
Random Fields (CRF). Inference in these models requires
to solve combinatorial problems which are often non-
submodular and intractable. These methods have also been
combined with machine learning, in particular deep net-
works [15]. Regrouping pixels into larger structures, like
super-pixels, is also a frequently used technique [18, 15].
Auto-context models [19] are a different way to include
structural information, which is computationally less ex-
pensive. They are defined by cascades of predictors, each
one improving on the result of the previous. These models
have also been adapted for scene parsing. In [16], simi-
larly to recurrent networks for sequence classification, the
same network is applied multiple times to outputs of dif-
ferent stages. In [17], a context learner is trained to pre-
dict context for a subsequent refinement learner. Both net-
works are trained on segmentation maps, but the refine-
ment learner is trained to cope with noisy segmentations

as context input. In [20], scene parsing from depth images
using auto-context is formulated as a graphical model and
solved through message-passing.
Recent methods try to tackle the problem in a weakly su-
pervised setting alleviating the problem on manual anno-
tations [21, 22]. Instead of requiring pixelwise ground-
truth, they integrate imagewise information, or pointwise
groundtruth which can be easily provided. They are usually
strongly regularized through priors like objectness [21] or
classification performance based on the full image [22].
Segmentation methods specifically developed for the
KITTI dataset are described in subsection 2.3.

2.2 Transferability

Lots of recent papers [23, 24, 25, 26, 27] proposed methods
to solve the problem of the transferability of deep features.
Since CNN require a lot of labeled data to provide very
good features, the trend consists in exploiting features lear-
ned on one big dataset and in adapting them to other data-
sets and other tasks [26]. For example, in an extensive ana-
lysis about deep feature transfer, Yosinski et al. [26] show
that it is better to transfer lower layers features learned
on a different (and maybe distant) task than using random
weights. These transfered features improve generalization
performance even after fine-tuning on a new task. Hinton
et al. [25] propose another way to transfer (or distill) know-
ledge from one big network to a small one. The idea is for
the small network to learn both the outputs (soft targets) of
the big network as well as the correct labels of the data. Ac-
counting for the soft labels from the other network helps in
learning the correlation between the labels. Furthermore,
the authors showed that this distillation works well even
when the transfer set that is used to train the final small
model lacks any samples of one or more of the classes.
When the dataset used to learn the first (source) network
is different from the dataset used to fine-tune the final (tar-
get) network, it can be interesting to force the target and
source features to be similar. This is the idea of Ganin and
Lempitsky [23] who learn features that are invariant with
respect to the shift between the source and target domains.
Their solution consists in learning a domain classifier that
tries to discriminate the two domains and to reverse the gra-
dient during the backpropagation in order to learn features
that cannot help in discriminating the domains. Very re-
cently, Tzeng et al. [24] merge the two previous ideas (soft
labels and domain confusion) into a framework that allows
to transfer network knowledge across domains and tasks.
Still in the context of domain adaptation, Zhang et al. [27]
propose to match the source and target marginal distribu-
tions of features as well as the source and target conditional
distributions of the labels associated to the features. There-
fore, while learning the target network, they minimize both
the marginal and conditional empirical Maximum Mean
Discrepancy (MMD) between the source and target distri-
butions. The domain adaptation problem is a bit different
from our current problem, where we have a single dataset



partially labeled by different authors, with different and in-
consistent labelings. Nevertheless, we can report three im-
portant points from the papers listed above : i) increasing
the data helps generalization ; ii) fine-tuning for each spe-
cific task improves the classification and iii) exploiting the
correlations between the labels also helps the classification.
These observations guide the proposed approach.

2.3 The KITTI dataset
The KITTI Vision benchmark suite [12, 13] contains out-
door scene videos acquired on roads around the city of
Karlsruhe, in rural areas and on highways. This very rich
dataset was obtained using high-resolution color and grays-
cale video cameras in addition to depth information acqui-
red using a Velodyne laser scanner and a GPS localization
system. Many research teams work on this dataset since
its release in 2013 tackling computer vision tasks such
as visual odometry, 3D object detection and 3D tracking
[5, 6, 7, 8, 9, 10, 11].
To tackle these tasks, several research teams have labe-
led some parts of the original video dataset, independently
from the other teams, which means that some of the frames
were labeled by more than one team, the ground truth seg-
mentation quality varies, and the semantics and the granu-
larity of the labels often differs. However, all the existing
labels could be useful to tackle the scene labeling problem.
Among the works listed, semantic segmentation is the final
goal only for [7] and [11]. In [7] the authors jointly learn
how to perform pixel classification and how to predict the
depth of pixels. The depth classifier only predicts the li-
kelihood of a pixel to be at any canonical depth (binary
problem) and the join classifier is based on the multi-class
boosted classifier suggested in [28]. In [11] the authors use
a random forest (RF) classifier to classify segments of an
image for different scales and sets of features (including
depth information). Next they train another RF classifier on
the segments with overlapping coverage to fuse, in a late
fusion scheme, the unimodal classification results. Lastly
they apply a CRF on the obtained results to enforce spacial
consistency. None of the the 7 methods cited used deep
learning to tackle the semantic segmentation step.
The aim of this paper is to show how to use inconsistent
labeled in correlated data to improve the classification re-
sults. Meanwhile other papers use different features, such
as color and depth, or color and temporal features, here we
only use as input the simplest features available in KITTI :
the RGB channels. Because of the use of different features
(and of different tasks), that does not make sense to com-
pare our classification accuracy results to the ones obtained
for same individual subsets. They are however further dis-
cussed in the experiment part for sake of completeness.

3 Proposed Approach
Problem statement. Given a set of images to label,
which are drawn from a set of K different datasets, the
pairs of input patches xki and output labels yki are grouped

into sets Dk = {xki , yki }, where k=1 . . .K and i indexes
pixels. The label spaces are different over the different da-
tasets, therefore each yki can take values in space Lk.
Our goal is to learn a nonlinear mapping y = θ(x,Θ)
with parameters Θ which minimizes a chosen risk
R[θ(x,Θ)6=y]. The mapping θ is represented as a convolu-
tional neural network, where each layer itself is a nonlinear
mapping fl(Wlhl−1 + bl) where hl is the lth hidden re-
presentation, Wl and bl are the weights and bias of the lth

layer and fl(.) is the activation function of the lth layer.
We propose to minimize the empirical risk, then
R[θ(x,Θ)6=y] = 1

N

∑N
k=1 J(x, y,Θ), where N is the

number of training samples and J is the loss function for
each individual sample. We also propose to use the cross
entropy loss J(x, y,Θ) = −

∑
j 1y=j log θ(x,Θ)j , where

θ(x,Θ)j is the network output for class j.

Limitations of separate training. Considering K dif-
ferent datasets, the classical baseline approach is to train
K separate mappings (models) θk, each defined on its own
label set Lk. Unfortunately this basic approach (illustrated
in Figure 1a) presents several shortcomings :
(i) Each mapping θk is trained on its own datasetDk, requi-
ring a minimization over a separate sets of parameters Θk.
In the chosen deep convolutional implementation the para-
meters Θk={Wl,bl}Ll=1 including all convolution filters
and the weights of all fully connected layers, which are ge-
nerally large sets (< 2 millions parameters). Learning such
a large amount of parameters from limited (and generally
small) amounts of training data is very challenging.
(ii) Relationships between label spaces are not modeled,
which further limits the power of the trained models.

Joint feature training with selective loss. We propose
to tackle shortcoming (i) by exploiting the hierarchical na-
ture of deep models. It is well known that, on most classical
problems in computer vision, supervised training leads to a
rising complexity of features over layers. Meanwhile early
layers extract low level features, which exhibit strong inde-
pendence of training input distribution and even task, later
layers extract features which are more and more specific to
the problem at hand [29].
We also propose to train a single deep network on the union
of all individual datasets. Our network will share the para-
meters of its earlier layers for all datasets (to reduce over-
fitting), whereas the later layers will be duplicated for each
dataset. This joint training approach is illustrated in Fi-
gure 1b. There is one output unit per label in the union of
all label sets Lk, which means that the output layer is able
to provide predictions for each of the handled datasets. In a
traditional multi-class setting involving a probabilistic loss
function such as the cross-entropy, the network output oj
is computed using a soft-max function in the last layer.
Classically, this can be seen as minimizing the negative
log-likelihood (NLL) of the ground truth classes. However,
with K different datasets, this choice is counter-productive
as it also maximizes the NLL of all other classes, inclu-
ding classes that are not used in the training set. This will
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FIGURE 1 – On top, the schema of the network used for our experiment. (a),(b),(c) and (d) show our different strategies.
(a), named No Fusion is our baseline and consists of learning one network per dataset. (b), named Joint training, consists
of learning only one network using all datasets with our selective loss function. (c) and (d), respectively Joint training with
shared context and Joint training with individual context add a Multi-Layer Perceptron at the output the network (b) (already
learned) and fine tune it. The objective is that the added MLP takes into account the correlation between labels learned by
(b). The difference between (c) and (d) is that (c) learns all dataset simultaneously likewise the Joint training strategy when
(d) fine tunes the networks with only one dataset.

lead to problems when there exists a correlation between
labels across different datasets. As concrete example, in the
KITTI dataset (see Table 2 where all labels are reported)
the class Tree of the dataset from He et al. [5] is likely to
be correlated with the class Vegetation from the dataset la-
beled by Kundu et al [6]. In our model, the normalization
of the output probabilities is achieved using a dataset-wise
soft-max : for each label j from dataset k,

f(j, θ(x,Θ)) =
eθ(x,Θ)j∑

j′∈Lk

eθ(x,Θ)j′
(1)

In practice, the datasetwise soft-max is combined with a
selective cross-entropy loss function as follows :

J ′(k, x, y,Θ) = −θ(x,Θ)y + log(
∑
j∈Lk

eθ(x,Θ)j ) (2)

Gradients are null for parameters involving output units
corresponding to labels from datasets l with l 6= k. This
is equivalent to using separate output layers for each data-
set and intermediate layers with shared parameters over the
different datasets.

Modeling correlations between labelsets. Shortco-
ming (ii) is partly addressed by the joint feature training,
as correlations between labels across datasets can be lear-
ned by the shared layers in the network. On the other hand,
we will show that explicitly modeling these correlations
further improves the discriminative power of the classifier.
To take into account the correlation between labelsets,
we concatenate the outputs of the different networks
θk(x,Θ). We then feed the concatenation into a dataset-
wise log-soft-max (see Eq. 1) followed by some additional

Authors Train Validation Test Total
He et al. [5] 32 7 12 51

Kundu et al. [6] 28 7 12 50
Ladicky et al. [7] 24 6 30 60

Ros et al. [8] 80 20 46 146
Sengupta et al. [9] 36 9 25 70

Xu et al. [10] 56 14 37 107
Zhang et al. [11] 112 28 112 252

Total 368 91 277 736

TABLE 1 – Number of images from the original KITTI da-
taset annotated by different research teams over the past 2
years. When available, we use the train/test split proposed
in the corresponding publication.

fully-connected layers. After pre-training each individual
θk(x,Θ), new mappings θ′k(x,Θ) are trained, where each
θ′k combines the inputs from all θk, k = {1 . . .K}. In an
end-to-end training setting, parameters of the full model
are trained jointly (see Figure 1d).
We do not try to estimate from which dataset an input
sample actually originated. Unlike transfer learning tasks,
no shift is supposed in the input distributions of the dif-
ferent datasets, the difference being in the ground truth la-
bels. Existing shifts in the input distributions can still be
learned by the network, however.

4 Experimental Results
4.1 Training details
All experiments are done with the Torch7 [30] framework
and training was operated on consumer GPUs. We used a



FIGURE 2 – Row-normalized confusion matrices for the
No Fusion (left) and for the Joint training with individual
context (center) learning strategies. The last matrix (right)
highlights the differences between the two confusion ma-
trices : blue (resp. blue) cells are for value that decrease
(resp. increase) with joint training ; the darker the color the
higher the variation. The 68 rows/columns correspond to
the 68 labels shown in Table 2.

network architecture inspired by Farabet et al.[15] for out-
door scene labeling and improved with the recent advances
in deep neural network research. Our network is composed
by 3 convolutional layers followed by 2 fully-connected li-
near layers. The network is illustrated in Figure 1. The first
two convolutional layers are composed by a bank of 7×7
filters followed by ReLU [31] units, 2×2 maximum pooling
and batch normalization [32] units. The last convolutional
layer is a simple filter bank followed by a ReLU unit, a
batch normalization unit and dropout [33] with a drop fac-
tor of 30%. The first fully connected linear layer is then
followed by a ReLU unit and the last layer is followed by
our datasetwise softmax unit. We used this network to the
our approach to obtain the results shown in lines 3 and 4 of
Table 3 (illustrated in Figure 1c and 1d). Additional fully
connected layers are added followed by a ReLU unit (and
the datasetwise softmax unit for the output layer) and batch
normalization units. To train the network, RGB images are
transformed into YUV space. A training input example is
composed of a patch xi of size 46×46 cropped from the
original image and centered around a pixel i, the dataset
k from which the example comes from, and the label yki
corresponding to pixel i. Stochastic gradient descent with
a mini-batch of size 128 was used to update the parameters.
We used early stopping on a validation set in order to stop
the training step before overfitting.

4.2 Dataset details
In addition to the information provided in Section 2.3 about
the KITTI dataset, we now provide precise information
about the labeled data. This is summarized in Table 1. The
dataset has been partially labeled by seven research groups
resulting in 736 labeled images that are split into : a train
set, a validation set and a test set. When the information
was given by the author, we used the same train/test set as
them. Note that Xu et al. [10] provide a complete hierar-
chy of very detailed labels, but we only used the highest
level of the hierarchy to obtain a labeling more compa-
tible (in terms of granularity) with the labels from the other
research teams. Also note that the KITTI dataset contains

over 40000 frames (180GB of raw videos) but in this work
we only rely on the labeled data. We then sample on ave-
rage 390.000 patches in each video frame (depending on
its size). This results into a dataset of about 280 million
patches suitable to train a deep learning architecture.
As mentioned in Section 2.3, the different labels provided
by the different teams are not always consistent. As illus-
trated in Table 2, we can see that the granularity and the
semantics of the labels may be very different from one
labeling to another. For example, Ladicky et al. separate
the Trees from the Grass. However, this might correspond
to the Vegetation labels in the subset from Xu et al. but
might also correspond (in the case of Grass) to the labels
Ground. He et al. [5] have not used the labels Pole, Sign
or Fence used in most other labelings. These labels are li-
kely to overlap with the label Building of He et al. but then,
this Building class cannot be consistent anymore with the
other labelings that contain the label Building in other sub-
sets. Some groups have used the label Bike and some others
have used the label Cyclist. Those two labels are likely to
overlap but in one case a team has focused on the entire
entity "cyclist on a bike" whereas another has only focused
on the bike device. These inconsistencies made the KITTI
dataset a good candidate to test the proposed method.

4.3 Joint training

Table 3 shows the accuracy obtained for all our training
strategies. We report the global accuracy and the ave-
rage accuracy. Global is the number of correctly classi-
fied pixels over the total number of pixels (also called re-
call or pixel accuracy) and the Average is the average of
this recall per class (also called the class accuracy). Note
that the last column (Total) of the Table 3 gives the global
and average accuracies for all sub datasets together so that
the totals take into account the relative number of labeled
pixels in each sub-dataset instead of being the average of
all elements in the line.
The first learning strategy implemented consists in lear-
ning one network per dataset with the architecture des-
cribed in Section 4 and illustrated in Figure 1.a. This is
our baseline. The results for this strategy are shown in the
first line (No Fusion) of Table 3. Note that the state-of-
the-art results for each of those sub datasets are (respecti-
vely for global and average accuracies) : (92.77, 68.65) for
He et al. [5] ; (97.20, non reported) for Kundu et al. [6] ;
(82.4, 72.2) for Ladicky et. al. [7] ; (51.2, 61.6) for Ros et
al. [8] ; (90.9, 92.10) for Sengupta et al. [9] ; (non repor-
ted, 61.6) for Xu et al. [10] ; and (89.3, 65.4) for Zhang
et al. [11]. These results are often much better (except for
Ros et al.) than those reported in Table 3. This can be ob-
viously explained by the fact that : [6, 9, 7, 8] only show
results computed from a subset of their labels (e.g. the la-
bel pedestrian is ignored in [9, 7, 8]) ; the features used by
all methods are richer (e.g. depth and time) as discussed
in Section 2.3 ; and the proposed methods always combine
multiple classifiers tuned on one particular sub-dataset.



He	  et	  al.	   Road	   Building	   Sky	   Tree	   Sidewalk	   Car	   Pedestrian	   Bicyclist	   	  	   	  	   	  	   Vegeta;onMisc	  
Kundu	  et	  al.	  	   Road	   Building	   Sky	   Vegeta;on	   Sidewalk	   Car	   Pedestrian	   Cyclist	   Pole	   Sign	   Fence	   	  	  
Ladicky	  et	  al.	   Road	   Building	   Sky	   Tree	   Sidewalk	   Car	   Pedestrian	   Bike	   Column	   Sign	   Fence	   Grass	  
Ros	  et	  al.	   Road	   Building	   Sky	   Vegeta;on	   Sidewalk	   Car	   Pedestrian	   Cyclist	   Pole	   Sign	   Fence	   	  	  
Sengupta	  et	  al.	   Road	   Building	   Sky	   Veg.	   Pavement	   Car	   Pedestrian	   	  	   Poles	   Signage	   Fence	   	  	  
Xu	  et	  al.	   Ground	   Infrastructure	   Sky	   Vegeta;on	   	  	   Movable	   	  	   	  	   	  	   	  	   	  	   	  	  
Zhang	  et	  al.	   Road	   Building	   Sky	   Vegeta;on	   Sidewalk	   Car	   Pedestrian	   Cyclist	   	  	   Signage	   Fence	   	  	  

TABLE 2 – The 68 labels (with the original colors) used by the different authors to annotate their subset of the KITTI
benchmark.

FIGURE 3 – Empirical Label correlation matrix. Each line
corresponds to the average of the class probabilities predic-
ted by the network for a given target class (among the 68
labels given in Table 2). Darker cells indicate higher proba-
bilities. Non-diagonal red cells correspond to labels highly
correlated with the target (main diagonal) label. Some en-
tries (rows) have a no value due to the absence of example
in the test set.

The second alternative strategy (Joint Training) consists
in learning one single network (illustrated in Figure 1b)
with all the datasets using the selective loss function de-
tailed in Section 3. The second line of Table 3 shows that
this strategy gives better results than our baseline (in total
+1.81 for the pixel accuracy and +3.85 for the class ac-
curacy). This result was expected since the amount of data
used clearly increases from the No Fusion network (with
a maximum of 112 training images for the subset labeled
by Zhang et al.) to the Joint training strategy which uses
368 training images. This data augmentation leads to a bet-
ter generalization and so to better classification accuracies.
These results show that the selective loss function allows
to successfully take into account the inconsistent labels.

4.4 Correlation rates between labelsets
When the Joint training network is trained, the correlation
rates between labels of each sub dataset can be computed
from the output probability vector of the datasetwise soft-
max units. We computed a label correlation matrix, shown
in Figure 3, by averaging the predictions made by the net-
work for each target class label (from one of the 7 possible
labelings). The (full) diagonal of the matrix gives the corre-
lation rates between the expected target labels. In each line,

the other non-zero values correspond to the labels correla-
ted with the target label yki . Please note that this is different
from a confusion matrix since each line shows the ave-
rage of the output probabilities and not the predictions. We
can also see that a diagonal is visible in each block of the
matrix (corresponding to the correlations between two dif-
ferent labelings) for the first 5 labels of each dataset. This
means that, as expected, these first 5 labels are all correla-
ted (for example, the label Road from He et al. is correlated
with the label Road from Kundu et al. with the Road from
Ladicky et al. etc.). A second observation is that the cor-
relation matrix is not symmetric. For example, the classes
Building, Poles, Signage and Fence from Sengupta et al.
have (as already discussed in Section 4.2) a high correla-
tion with the class Infrastructure from Xu et al., meaning
that these classes overlap. On the contrary, the class Infra-
structure from Xu et al. has a very high correlation with the
class Building from Sengupta et al. and a limited one with
the classes Poles, Signage and Fence. This is due to the tar-
get distributions. The Building class from Sengupta et al. is
more represented than the three other classes so Infrastruc-
ture from Xu et al. is more correlated to Building. If these
observations mostly confirm the expectations we discussed
in Section 4.2, they show that our method can also be used
to automatically discover correlations between labels.

4.5 Improvement from correlation modeling
The correlations studied in Section 4.4 not only help us
to retrieve the hierarchical dependencies between all the
labels but it can also improve the prediction accuracies.
Using our method, the network can correct possible errors
if another prediction correlated to the target one is more
confident. These correlations are taken into account by ad-
ding a Multi-Layer Perceptron (MLP) after the output of
the original network and by fine tuning the entire network
with this added MLP.
The Joint training with shared context strategy, illustrated
in 1c, consists in learning all datasets together with our se-
lective loss-function (as for the Joint training). This third
approach improves pixel accuracy (global) but not class ac-
curacy (average), compared to Joint training (see Table 3
line 3 vs line 2). As the stochastic gradient descent opti-
mizes the pixel accuracy (global) this leads to an overfit-
ting. Indeed, an increase in global, together with a decrease
in average can be a sign that the network starts to over-
specialize : it strongly learns the distribution of classes to
the detriment of learning the appearance of each class.



Results with all classes available in the ground truth
He Kundu Ladicky Ros Sengupta Xu Zhang Total

No Fusion Global 74.67 72.48 72.94 76.96 78.71 86.97 84.98 80.94 -
Average 58.56 56.04 43.16 48.76 71.26 83.11 57.39 57.14 -

Joint training Global 78.68 77.20 75.86 78.22 81.48 88.02 86.89 82.75 (+1.81)
Average 64.41 60.61 46.52 52.06 75.64 85.14 60.54 60.99 (+3.85)

Joint training Global 78.61 77.76 76.00 78.40 81.97 88.43 87.54 83.16 (+2.22)
with shared context Average 62.87 59.13 45.22 51.16 75.55 84.94 59.75 60.03 (+2.89)
Joint training with Global 79.31 77.53 76.81 78.41 80.98 88.35 86.76 83.19 (+2.25)
individual context Average 64.15 59.77 47.92 52.35 77.19 85.09 59.84 61.24 (+4.10)

TABLE 3 – Pixel (Global) and Class (Average) accuracy results for the 7 used sub-datasets with 4 different training strate-
gies : NF=No Fusion (see Fig. 1a) ; JT= Joint training (see Fig. 1b) ; JTSC=Joint training with shared context (see Fig. 1c) ;
JTIC=Joint training with individual context (see Fig. 1d). Best results are highlighted in bold.

(a) (b) (c) 

(d) (e) (f) 

FIGURE 4 – Example of pixel classification results given by the JTIC strategy (see Figure 3). (a) is the ground truth from the
Ros et al. labelset. (b) is the result obtained with our strategy for the same labelset and (c) is the result obtained for the Kundu
et al. labelset. (d) is a ground truth image from He et al.. (e) is the result obtained for the same labelset and (f) is the result
obtained for the Xu et al. labelset.

The Joint training with individual context (JTIC), illustra-
ted in 1d, is based on the same approach as the Joint Trai-
ning (JT) with shared context, but instead of learning all da-
tasets together with the selective loss function the datasets
are here learned one by one (by fine-tuning one network
per dataset). The shortcoming of the JT approach is that
when all datasets are learned together the features are ge-
neral. By fine-tuning with only one dataset, we specialized
the features for this datasets. The results from Table 3 line
4 show that in average this approach outperforms the other
ones. Both the global and the average measures increase
compared to Joint training, suggesting that this approach
is more robust that the Joint training with shared context.

The confusion matrices computed from our baseline stra-
tegy next from the JTIC are shown in Figure 2. In order to
better visualize the improvement, the matrix on the right
shows the difference between the JTIC confusion matrix
and the baseline one. Negative values are displayed in blue
and positive values in red. As expected the majority of
non-diagonal values are negative while the diagonal values
are positive. This demonstrates that errors (non-diagonal)
made by the first network were reduced by better (i.e. cor-
rect) predictions (diagonal) with JTIC. Looking more into
the details, we can see what errors are corrected by JTIC.
In most datasets, an important amount of cars were labeled
as buildings by the baseline, meanwhile now they are pro-

perly labeled with our JTIC approach. To a lesser extent,
the same is also observed for sidewalks and grounds.

5 Conclusion
This paper proposed and evaluated different strategies to
take into account inconsistent labels in correlated data to
improve outdoor full scene labeling. The proposed me-
thods have been applied to the particular case of the KITTI
dataset using only the RGB color features and labeled
data of this dataset. To tackle the full scene labeling pro-
blem, one could rely on much more detailed features such
as depth information, temporal information and the huge
amount of unlabeled data available for this dataset. This
constitute our future work. The main contribution of this
paper is to propose a Joint training with individual context
approach that allows to : leverage multiple datasets anno-
tated using different classes (different labelsets) ; and im-
prove the accuracy of the classification on each individual
dataset. Experimental results show a clear improvement in
terms of classification accuracy when multiple datasets are
fused and further improvement when the last layers of the
network are computed datasetwise.
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