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Small footprint full-waveform airborne lidar systems hold large opportunities for improved
forest characterisation. To take advantage of full-waveform information, this paper presents
a new processing method based on the decomposition of waveforms into a sum of parametric
functions. The method consists of an enhanced peak detection algorithm combined with an
advanced echo modelling including Gaussian and generalized Gaussian models. The study
focussed on the qualification of the extracted geometric information. Resulting 3D point
clouds were compared to the point cloud provided by the operator. 40 to 60 % additional
points were detected mainly in the lower part of the canopy and in the low vegetation.
Their contribution to Digital Terrain Models (DTMs), Canopy Height Models (CHMs)
was then analysed. The quality of DTMs and CHM-based heights was assessed using field
measurements on black pine plots under various topographic and stand characteristics.
Results showed only slight improvements, up to 5 cm bias and standard deviation reduction.
However both tree crowns and undergrowth were more densely sampled thanks to the
detection of weak and overlapping echoes, opening up opportunities to study the detailed
structure of forest stands.
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2 A. CHAUVE et al.

1. Introduction

Trends in forest inventory and management go towards the acquisition of
automatic, spatially explicit, and repeatable information on forest structure
and function. During the last decade, airborne laser scanning altimetry or
small-footprint lidar (light detection and ranging) proved to be the most suitable
remote sensing technique to map simultaneously both forest attributes and the
ground topography.

Current systems can record up to six returns by emitted pulse. First intercep-
tions of the signal generating first returns describe the shape of objects on the
earth surface visible from above, and can be used to produce a digital surface
model (DSM). The DSM quality depends mainly on the interpolator used and the
selected grid resolution (Vepakomma et al. 2008). The last returns describe the
furthest surfaces interacting significantly with the laser beam including ground re-
turns. They are individually classified into ground and non-ground categories using
geometrical rules (Sithole and Vosselman 2004, Axelsson 1999) to produce a digital
terrain model (DTM) representing the ground topography. The ground elevation
errors in lidar DTMs are usually less than 30 cm under a forest cover (Hodgson
and Bresnahan 2004, Reutebuch et al. 2003, Ahokas et al. 2003). However, most
of the current algorithms rely on local calibration providing suboptimal results in
heterogeneous terrain. This is explained by errors induced by both a decrease in
the signal to noise ratio of the backscatter and the effect of slope (see Kobler et al.
(2007) for a review on lidar filtering). Improving the precision and accuracy of
DTMs under varying topographical conditions requires the development of robust
methods with low sensitivity to the calibration settings (Bretar and Chehata 2008).

In forested environments, subtracting the DTM from the DSM produces a
canopy height model (CHM) representing the top-of-canopy topography. Such in-
formation has been widely used to extract forest parameters at various scales. Using
very dense lidar sampling, individual tree height can be measured with a root mean
square error (RMSE) of about 1 meter (Persson et al. 2002, Andersen et al. 2001).

At the stand level, mean tree height errors of 2.0m or less were reported (Hollaus
et al. 2006, Naesset 1997). Based on vertical point distribution, additional forest
parameters were also successfully estimated such as crown size, basal area, stem
density, volume, and biomass (see Lim et al. (2003) for review). As for ground
topography, current researches focus on estimating robust or universal lidar indi-
cators of forest parameters (Hopkinson et al. 2006).

Most of the studies have shown that lidar data underestimate total tree heights
(Anderson et al. 2006). These underestimations can be first explained by sampling
problems, a small proportion of laser pulses interacting with the tree apices (Mag-
nussen and Boudewyn 1998). Consequently acquiring very dense point clouds was
recommended to describe the crown characteristics accurately, including
total tree height (Hyyppa et al. 2001). A recent study demonstrated that an other
source of underestimation relies on the fact that laser pulses slightly penetrate
into the foliage before a return could be recorded due to both canopy structural
characteristics and lidar device configuration (Gaveau and Hill 2003).

Recent developments of full-waveform lidar systems provide data allowing more
control and flexibility on point extraction processes, thus improving measurements
reliability. These systems digitize and record the entire backscattered signal of each
emitted pulse (see figure 1). Experimental systems with large footprint developed
by NASA (Blair et al. 1999) have been successfully used in forest environments for
measuring canopy height (Lefsky et al. 1999) or the vertical distribution of canopy
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Processing full-waveform lidar data in an alpine forest 3

material (Dubayah et al. 2000).
In forest environments, new commercial small-footprint full-waveform systems

allow the recording of detailed information about the geometric and physical
properties of the backscattering objects (Reitberger et al. 2006). Processing wave-
forms had already proved efficient in increasing the number of detected targets in
comparison with data provided by multi-echo lidar systems. Furthermore, the
information on how points are extracted in traditional multi-echo lidar
systems is generally not given to users by the data provider (Persson
et al. 2005). This is particularly tricky in complex forested areas where waveforms
can be composed of weak returns from the top of canopy or from the ground, and
also of groups of overlapping echoes originated from distributed backscatters in-
side the different layers of the vegetation. Traditional threshold-based multi-echo
detection algorithms are not suitable to detect or separate such very low peaks or
groups of echoes (see figure 1). Therefore, waveform processing aims at improving
point extraction and recording additional target information from the waveform
shape.

Different methods have been proposed for echo detection (e.g. threshold, zero
crossing, local maxima, see Wagner et al. (2004) for review and discussion). One of
the more efficient and widespread method consists in decomposing the waveform
into a sum of parametric functions, where each function models the contribution
of a target to the backscattered signal (Wagner et al. 2004). It was demonstrated
that lidar waveforms could be generally well modelled by a sum of Gaussian pulses
(Wagner et al. 2006). Non-linear least squares (NLS) methods (Hofton et al. 2000),
Gauss-Newton (Jutzi and Stilla 2005) or maximum likelihood estimation using the
Expectation Maximization (EM) algorithm (Persson et al. 2005) were used to fit
the model to the waveforms. However Gaussian models assume that the pulse has
a Gaussian shape and targets are Gaussian scatterers. The latter assumption is
not always true (Steinvall 2000).

In this paper, we propose a new method to process the waveforms and investigate
the usefulness of non Gaussian parametric models such as generalized Gaussian
model to deal with non Gaussian echoes. Such models are expected to improve the
point extraction process in forested environments. The extracted point clouds are
compared with the point cloud computed from basic signal processing provided
by the lidar operator. Further analyses are conducted to quantify the potential of
such data to derive precise DTM and CHM-based total tree height measurements.

2. Study site and data sets

2.1 Study site

The study area is located in southern French Alps in the neighbourhood of
Digne-les-Bains (Alpes-de-Haute-Provence, 04) in the Haute-Bléone state forest.
This 108 ha protective afforestation is mainly composed of black pine (Pinus nigra
ssp. nigra [Arn.]) originating from the end of the XIXth century. Most of the
stands are even-aged and mature. The study area is part of an Observatory for
Research on the Environment (ORE Draix) monitoring erosion and hydrological
processes in mountainous areas. Elevation ranges from 802 m to 1263 m. The steep
topography has a 53 % mean slope reaching up to 100 % locally. Stand density
varies from low-densities (100 stems/ha) originating from seed cuttings in the
low-lying part of the study site to high densities (more than 750 stems/ha, see
table 1).
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4 A. CHAUVE et al.

2.2 Field data

Field inventory data were collected with a differential GPS and a total station
during December 2007 on circular plots of 9 m (6 plots) and 15 m (10 plots) radius
according to the stand density. Within each plot, the precise tree position, and
the following tree characteristics were measured for all the trees with diameter at
breast height (dbh) greater than 7 cm: dbh, total and timber heights, crown base
height (of lowest living branch of the crown). For two of these plots, the crown
diameters were also measured. To validate lidar derived DTMs, terrain elevation
measurements were collected for four plots characterised by different topographic
conditions. For each plot, 64 to 84 measurements were collected using a sampling
pattern as regular as possible.

The accurate position of plot centres was measured using a Leica total station
within a centimetric precision. The individual tree positions were derived from
distance and angle measurements from the plot centre. Distance measurements
were taken at the tree base using a Vertex III clinometer (Haglöff, Sweden) with
slope compensation. Azimuths were measured with a Suunto compass.

Tree heights and crown base heights were collected with the same clinometer
instrument. Crown diameters were measured from the trunk in the four cardinal
directions using a tape measure. The dbh was measured using a tape measure
within a centimetric precision.

For the purpose of that study, we focused the analysis on 4 plots described by
both vegetation and topographic measurements. These plots are characterised by
different topographic conditions and tree density classes. Table 1 summarizes the
plot characteristics.

2.3 Lidar data sets

The data acquisition was performed in April 2007 using a RIEGL c© LMS-Q560
system. This sensor is a small-footprint airborne laser scanner. Its main technical
characteristics is presented in Wagner et al. (2006). The lidar system operated at
a pulse rate of 111 kHz. The flight height was approximatively 600 m leading to a
footprint size of about 0.25 m. The point density was about 5 pts/m2.

Two different data sets were provided by the lidar operator: georeferenced 3D
point clouds obtained by basic processing (hereafter referred to as BP) and full-
waveform raw data. BP was carried out using RiANALYZE c© Software
(RIEGL c© , Austria) and consists of a simple thresholding method for
the peak detection followed by a Gaussian pulse estimation.

Full-waveform raw data consists of 1D intensity profiles along the line of sight of
the lidar device. The temporal sampling of the system is 1ns. Each return waveform
was made of one or two sequences of 80 samples corresponding to 12 or 24m length
profiles. For each profile, a record of the emitted laser pulse was also provided.

3. Methods

3.1 Waveform processing

The objective of waveform processing is to extract more information on forest
structure from raw lidar data than provided by multi-echo lidar systems or basic
processing methods. To that end, we developed an enhanced peak detection
algorithm to assess the maximum number of relevant echoes in the signal, and
to estimate the parameters of the respective models. This algorithm is an
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Processing full-waveform lidar data in an alpine forest 5

improved version of the method presented in Chauve et al. (2007)
dealing with the so-called “ringing effect” which was not considered
in the first version. This effect is a small secondary maximum after
the emitted pulse due to the hardware waveform recording chain,
and can lead to false peak detection on high reflective surfaces. This
method is hereafter referred to as advanced processing (AP). The
major differences between BP method and our processings (AP) are
the initial peak detection step and the iteration of the procedure to
find very low peaks and/or peaks in groups of overlapping echoes.

Waveforms (see figure 3) are composed of uniformly-spaced samples
{(xi, yi)}i=1,..,n and can be decomposed into a sum of echoes such as

yi = f(xi) =
n∑
j=1

fj(xi) (1)

where n is the number of components and fj the model of the jth echo.
The choice of modelling functions to process the waveforms relies on several

criteria. First, the function parameters have to be related to the shape and the
optical properties of the target. Second, the derivative of the function should have
an explicit formulation, in order to use classical curve-fitting algorithms.

3.1.1 Modelling functions. As waveforms used in this study were collected
with a small-footprint lidar, each laser output pulse shape is assumed to be Gaus-
sian with a specific and calibrated width. The recorded waveforms are therefore
a convolution between this Gaussian distribution and a “surface” function, de-
pending on the hit objects. It was thus demonstrated that more than 98% of the
observed waveforms with the RIEGL system could be correctly fitted with a sum
of Gaussian functions (Wagner et al. 2006). A Gaussian model (hereafter referred
to as GA) can be written as

fj,G(x) = Aj exp

(
−(x− µj)

2

2σ2
j

)
(2)

where Aj is the pulse amplitude, σj its width, and µj the function mode of the jth

echo.
Nevertheless, the backscattered signal is not always Gaussian. Moreover, in com-

plex environments such as forested areas, most of the return waveforms are ac-
tually subject to the mixed effects of geometric (e.g. ground slopes, canopy shapes,
foliage densities) and radiometric object properties (e.g. the reflectances depends
on the species, foliage, branches, ground).

Using more generic models such as the generalized Gaussian model (hereafter
referred to as GG) is expected to improve complex waveforms fitting and model
flattened or peaked echoes.

The GG model has the following analytical expression:

fj,GG(x) = Aj exp

(
−|x− µj|α

2
j

2σ2
j

)
(3)

where Aj is the pulse amplitude, σj its width, µj the function mode and αj the
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6 A. CHAUVE et al.

shape parameter which allows to simulate Gaussian (α =
√

2), flattened (α >
√

2)
or peaked (α <

√
2) pulses.

3.1.2 Enhanced peak detection. The enhanced peak detection is an iterative
process based on a Non-Linear Least Squares (NLS) fitting technique (Levenberg-
Marquardt algorithm) of the chosen parametric model on the waveform (Chauve
et al. 2007). The fitting parameter θ∗ is computed as:

θ∗ = argmin

(
n∑
i=1

(yi − f(xi|θ))2

)
(4)

with the quality of the fit ξ evaluated by

ξ(θ∗) =
1

n− dimθ∗

n∑
i=1

(yi − f(xi|θ∗))2 (5)

The first step of the algorithm is a coarse peak detection, based on zero-crossings
of the signal’s first derivative. It allows to estimate the number and the position
of the echoes in order to initialize the NLS fitting. In a second step, additional
peaks are searched in the difference between modelled and raw signals. If new peaks
are found, the fit is performed again and its quality re-evaluated. The process is
iterated until no further improvement is obtained. The selected solution is the
model providing the minimum value for equation (5).

The main sources of ill detection are: the background noise, and the ring-
ing effect. To take them into account the following rules are applied to the
signal: 1) the noise is thresholded at a mean plus standard deviation level, 2) only
one peak is kept when two very close echoes are detected under the lidar system
resolution, which reduces overfitting that may result from the optimiza-
tion criterion used ξ (see equation 5) and 3) the peaks due to the ringing
effect are removed based on an amplitude ratio criterion.

In the following steps, only the geometric information (e.g. the 3D point cloud)
is used to calculate total tree height based on DTM and CHM which are the most
commonly used models in lidar-based forest inventory.

3.2 Computation of Digital Models

Digital Terrain Model: Processing airborne lidar data to compute DTMs is a
challenging task, especially in case of alpine relief with steep slopes.

The methodology used to compute DTMs has been fully developed in (Bretar
and Chehata 2008). It is based on a two-step process: 1) the computation of an
initial surface using a predictive Kalman filter and 2) the refinement of this surface
using a Markovian regularization.

The first step aims at providing a robust surface containing low spatial frequen-
cies of the terrain while the second step aims at integrating micro relief within the
surface to refine the terrain description. The Kalman filter estimates the terrain
surface by locally analysing the point cloud distribution composed of first and last
echoes in the frame of the local slope. Lidar points considered as ground points (at
a defined height of the initial surface) are then included in the regularization step
to generate a refined DTM.
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Processing full-waveform lidar data in an alpine forest 7

Canopy Height Model: A canopy height model (CHM) was obtained by 1) inter-
polating the first returns into a digital surface model (DSM) and 2) subtracting the
DTM from the DSM. The CHM quality depends mainly on the interpolator used
and the selected grid resolution (Vepakomma et al. 2008). In forested environments
over mountainous terrain, it was suggested that Universal Kriging might be the
most adapted method for deriving DSMs (Lloyd and Atkinson 2002). However
IDW (Inverse Distance Weighted) has also been recommended for lidar data with
a small point spacing under various topographical conditions (Vepakomma et al.
2008, Anderson et al. 2005). IDW also allows faster computation compared with
Kriging methods.

The visual inspection of the point cloud reveals significant disparities in the point
density mostly according to the vegetation structure. Local density is quite constant
on bare earth, increases on the exposed side of the tree crowns and is minimal on the
opposite or shadowed parts of the crowns. As only a small overlap was set between
flight lines, the point density remains largely variable in a given neighbourhood. To
deal with such varying point patterns, different gridding methods (IDW, Universal
Kriging, TIN, neighbourhood statistics using a maximum criterion) were tested.
Results of this preliminary work revealed that combining neighbourhood statistics
(maximum point value within a given cell) with an interpolation based on IDW
for empty cells was best suited for tree height measurements. The latter method
was used to compute the final CHM at 50 cm resolution according to the average
point spacing.

3.3 Statistical analysis

Statistical analyses were performed on four field validation plots having data for
both ground elevation and vegetation structure.

3D point clouds extracted from advanced waveform processing were directly
compared to the one provided by the lidar operator. First the total number of
detected echoes, the ratio of waveforms providing at least one point and the height
histograms of additional points were evaluated. Then, analysis focused on the com-
parison of the detected echoes per waveform having a positive detection in both
advanced and basic processings. In this case, we examined the distribution of addi-
tional AP points relative to the location of both first and last BP points. We also
computed the mean and standard deviation of the elevation difference between AP
and BP first and last echoes.

The quality of the various DTMs was estimated by a direct comparison be-
tween field measured elevations and corresponding cell values. For the CHMs, it
was investigated by comparing height at the tree top positions. The tree height
estimations were computed manually by selecting the higher point within an iden-
tified crown. The resulting heights were compared with their corresponding field
measurements. This manual solution was chosen to avoid possible mismatches due
to crown displacements of occasional slipping trees.

For each case (i.e. DTMs and CHMs) traditional descriptive statistics (minimum,
mean, maximum, standard deviation and root mean square error) were computed
and analysed.
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8 A. CHAUVE et al.

4. Results

4.1 Point extraction

Histogram of the figure 4 shows that the enhanced peak detection method improves
the estimation of the waveforms as the residuals are lower than with a unique coarse
detection. Moreover the generalized Gaussian model produces the lowest residuals
improving complex waveform fitting and successfully modelling flattened or peaked
echoes.

Table 2 shows the results of the point extraction process. The first part of the
table demonstrates that the number of waveforms for which at least one point
is extracted increases by 2 to 10 % using an advanced waveform processing. The
second part shows that, considering the whole contributing waveforms, advanced
waveform processing increases the number of extracted points by 39 to 63%. Results
are of the same order for both GA and GG models.

The position of all the extracted points is then analysed in table 3
and figure 5. Almost the whole BP point cloud is included in the AP
point cloud, except for 1% of unmatched points that were missed by the
advanced processing technique. Therefore in the following lines common
BP and AP points are referred to as BP points, and points detected by
AP but not BP are referred to as additional points. Table 3 shows the
position of the additional points compared to BP points in the wave-
forms. Note that unique echoes such as ground echoes are counted in
both first and last echoes in the table. Results are in the same range for
both GA and GG models. They show that 45 to 62 % of the additional points are
located below the last BP points, with last echo elevation differences ranging from
-0.26 to -0.79 m depending on the plots. Most of the remaining points (27 to 47 %)
are located above the first BP points, with first echo elevation differences ranging
from 0.13 to 0.64m. The maximum differences are obtained for plot 1 characterised
by the highest number of additional points. Such result can be explained by the
presence of multiple weak echoes in both the canopy and the low vegetation that
were not detected using the basic processing technique. The high standard de-
viations obtained for each plot (from 0.96 m to 2.62 m) are due to the
fact that the first echo class includes common BP and AP points (e.g.
first echoes such as ground echoes from unique-echo waveforms with
an almost null difference between AP an BP point elevations) but also
points from multiple-echo waveforms. In this latter case, the difference
in elevation between the highest additional AP point above the first BP
echo can reach a few meters.

Figure 5 shows the height histograms of detected points for two plots with
very different tree densities using both the GA and GG models. The points were
grouped into three categories: the common points between basic and advanced
waveform processing point clouds called BP points (black line), all the additional
points detected by the advanced processing method (which are not in the former
category)(red line), and the additional points which were extracted in waveforms
where no BP echo was found (green line). Note that the total number of AP points
is the sum of the two first categories, the third one being part of the second category.
Figure 5 shows that the newly detected points (red line) are mainly located within
the canopy and in the low vegetation (up to 2.5 m). The points extracted from
newly contributing waveforms (green line) have similar distribution. Globally,
GA and GG models show very similar results except that the GG points
inside the canopy are slightly higher than the GA points for both plots
(this is especially visible for plot 1 on height histograms between 10 and
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15 m). This suggests that GG model is more sensitive to the vegetation structure.

4.2 DTM

The number of lidar points considered as terrain points is greater for all plots
when using the points extracted by the advanced processing method.
The increase is about 5 % for each plot and each model.

Surfaces computed from basic processing, Gaussian model and generalized Gaus-
sian model were then compared with field measurements. Table 4 shows the mean
and the standard deviation of the difference between DTMs and field measure-
ments. First it is noticeable that for all plots, the difference between the two data
sets is not significant (< 0.03 m) with regard to the accuracy of lidar systems
(< 0.15 m on 3D points in altimetry according to lidar manufacturers): the fitted
model has a weak influence on the terrain point extraction.

A positive bias is observed for all plots: DTMs are higher than field measure-
ments by some decimetres. More precisely, the mean and standard deviation of
plot 2 are higher than they are for the other plots. It appears that field measure-
ments of plot 2 are located over a narrow talweg area with irregular relief and low
vegetation which are difficult to retrieve, even after the regularization step.

In the case of regular relief area (plots 1, 3 and 4), the mean over the field
measurement areas is within the accuracy of lidar systems. However, the standard
deviation observed for plot 4 is twice the value of plots 1 and 3. This is attributed
to the higher volume of low vegetation in this plot.

4.3 CHM-derived heights

The quality of the CHM-derived heights was evaluated on the four validation plots
for a total of 75 trees (table 5, figure 6). Results show that all the three CHMs
underestimate the field measured tree heights. Globally the mean underestimation
is slightly reduced when using the AP data. The best results are achieved using
the generalized Gaussian model, providing a mean underestimation of 0.24 m, a
standard deviation of 0.49 m, and a root mean square error of 0.54 m. Compared
with the Gaussian model and basic processing, it improves the mean value of 0.04
to 0.07m respectively. Plot-based comparisons reveal some variability of the results
depending on the stand density and ground topography. The generalized Gaussian
model provides the best results for plots 1 and 2 characterised by the highest tree
densities. These plots are located in different topographical configurations (table 1).
At the opposite, the basic processing works better within plot 4 characterised by a
very low density and a mean slope of 31.36 degrees (table 1). The best results are
obtained for plot 3 characterised by a low stem density and a flat topography. For
this plot, results are very similar whatever the processing method.

5. Discussion

Waveform processing combining enhanced peak detection and advanced echo mod-
elling allowed the extraction of more information compared with signal process-
ing currently proposed by manufacturers. The developed methods increased both
the number of contributing waveforms and the total number of detected echoes
within a given waveform. From the two advanced waveform processing methods
tested, the one using a generalized Gaussian model had the lower residuals. This
highlights that such a model is well adapted to fit complex backscattered signals
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resulting from the structure and the optical properties of vegetated areas. New
waveforms contributed to the final point cloud because they contained very weak
returns whose amplitude was under the detection threshold of the basic processing
method. These new waveforms significantly improve the spatial sampling of dense
plots and enable to better describe the crowns shape through an increased number
of first echoes (figure 7).

Advanced waveform processing also increased the number of detected echoes
(39 to 63 % additional echoes, table 2) due to the higher sensitivity of the peak
detection method. These additional points are mainly located within the canopy
and in the low vegetation. Moreover the positions of the detected first and last
echoes vary compared with those obtained from basic signal processing method.
The average elevation range per waveform is increased due to higher first echoes
(0.13 to 0.64m in average) and a better penetration into the understorey vegetation
towards the ground (-0.26 to -0.78m in average, table 3). These quantitative values
could not be directly correlated with tree height estimations, because these first
and last echoes are rarely located at the top of the canopy or on the ground. Indeed
most waveforms passing through the canopy are totally absorbed before reaching
the ground.

The number of points classified as ground and used to compute DTMs was
increased by 5 % in average using the proposed method. Field validation of the
DTMs reveals very similar results whatever the method. These results are of the
same order than those obtained in other studies (Hollaus et al. 2006, Reutebuch
et al. 2003). A close examination of the results shows that for plots with dense low
vegetation the advanced processing-based DTMs are slightly higher compared to
the ones computed from the basic processing point cloud. As the advanced pro-
cessing allows the extraction of a denser point cloud within the low vegetation,
these results suggest possible classification errors that bring low vegetation points
within the DTM. Such points are very difficult to separate from the ground due
to the combined effects of very low height differences and steep slopes. But slope-
dependent classification errors can also affect the DTM as demonstrated by Hollaus
et al. (2006) over non-forested terrain using traditional multi-echo data. To address
such problems, specific classification algorithms should be developed. The inte-
gration of waveform parameters (amplitude, width and flattening) will probably
improve classification using the generalized Gaussian model. Beyond these consid-
erations, defining the best DTM is tricky because the differences between methods
are under the precision of the georeferencing.

A lot of ecological applications use lidar-derived canopy height models to supply
forest inventory (Naesset et al. 2004). By improving the number of detected echoes
and the quality of the extracted points (tables 2 and 3), full-waveform lidar data is
expected to provide more precise and accurate canopy height models compared with
traditional multi-echo data. Our results showed lower RMSEs than the one reported
in studies using multi-echo data (see Hollaus et al. (2006) for similar environmental
context). Nevertheless using advanced waveform processing barely improves total
tree height compared to more basic waveform processing (table 5) despite 10 to
20 % of additional contributing echoes. This is due to the fact that the newly
detected echoes rarely correspond to the tree apices. Analysing the position of these
points reveals that they are mainly located in the canopy or in the understory
vegetation characterised by low densities that did not reflect enough energy to
be detected using basic processing methods (figure 5). The main improvement of
using advanced waveform processing methods to derive CHMs thus lies on the
description of the crown shape and structure (figure 7). Using point-based CHM
models and additional information provided by the generalized Gaussian model
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(alpha parameter will probably bring further improvements.

6. Conclusion

Enhanced peak detection algorithm combined with an advanced echo modelling
including Gaussian and generalized Gaussian models significantly increases the
number of detected echoes. Point-based and grid-based analyses showed that the
additional points mainly describe the internal crown structure and the low vegeta-
tion stratum. Therefore, while DTM and CHM-based heights are not significantly
improved, the additionally extracted points could be efficiently used to characterise
the detailed vegetation structure such as crown properties and tree regeneration
under the canopy. If the peak detection method is not crucial to compute DTMs,
because they are still limited by errors due to georeferencing, classification, and
interpolation, it showed to be of great interest to better sample tree crowns and
improve RMSEs on height measurements. Moreover the integration of echo shape
parameters of the generalized Gaussian model will provide information on both
shape and optical properties of the targets. Hence valuable information will be
available for driving ground point classification and characterising vegetation type
and structure. But as long as only geometric information is used, advanced pro-
cessing based on Gaussian model is a good compromise. Despite a better fitting
performance, the generalized Gaussian model is slower to compute and generates
noise within the point cloud due to fitting complexity.

Compared with current fitting techniques, the proposed advanced
echo detection method allowed to greatly improve the number of de-
tected echoes within forest canopies. Because a large number of the
additional detected echoes lies within the lower canopy and in the under-
storey, the description of the vegetation vertical structure is expected to
be improved. Such information is crucial to quantify the 3D organisation
of forest covers and to derive information about the forest succession
and the status of regeneration. Compared with traditional multi-echo
derived parameters, advanced processing of full-waveform data will al-
low to extract additional indicators of the vegetation structural charac-
teristics correlated to high level forest products (e.g. volume, biomass,
canopy fuel or carbon content), opening up the possibility to develop
prediction models of forest parameter performing over a large range of
environmental conditions.

-
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Table 1. Characteristics of the validation plots.

Topography Vegetation

Plot
Plot Elevation Slope

Aspect
Mean Height DBH

radius mean±SD mean±SD density mean±SD mean±SD
(m) (m) (%) (stem/ha) (m) (m)

1 15 1163.21 (4.35) 15.35 (7.75) southest 771 14.1(2.7) 0.21 (0.05)
2 15 857.69 (8.20) 33.57 (21.36) southwest 300 7.3(2.54) 0.13 (0.06)
3 15 853.85 (1.43) 6.17 (3.25) south 242 15.1(3.95) 0.28 (0.08)
4 15 862.75 (6.81) 31.36 (18.99) southwest 100 17.7(0.58) 0.27 (0.01)

Page 15 of 26

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

16 REFERENCES

Table 2. Overall statistics on waveforms and point extraction.

Plots 1 2 3 4

Number of contributing waveforms

BP 2447 2809 3274 2859
GA 2673 2865 3351 2921
GG 2672 2865 3353 2921

Point extraction

Nb BP points 2792 3338 3886 3240
Nb GA points 4496 4669 5471 4496
% additional points 61 40 41 39
Nb GG points 4563 4708 5531 4546
% additional points 63 41 42 40
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Table 3. Statistics on additional AP extracted points compared to BP points.

Plots 1 2 3 4

Position of additional points compared to BP points: GA/GG

% above first BP 33/33 31/27 32/28 47/45
% between first and last 5/5 11/11 16/15 8/8
% below last BP 62/61 58/61 52/57 45/47

First and last echoes elevation differences (AP - BP) (m): GA/GG

1st echo (mean) 0.64/0.63 0.14/0.13 0.42/0.41 0.32/0.30
1st echo (SD) 2.62/2.62 0.97/0.96 2.10/2.10 1.53/1.51
last echo (mean) -0.78/-0.79 -0.38/-0.40 -0.44/-0.50 -0.26/-0.23
last echo (SD) 2.58/2.59 1.53/1.51 1.89/2.01 1.71/1.72
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Table 4. Field validation of the derived DTMs (50 cm resolution). Results are the signed differences of

elevation between DTM cell values and field points.

Plots 1 2 3 4

Nb field points 69 84 65 64
BP mean±SD (m) 0.08±0.09 0.37±0.34 0.13±0.18 0.14±0.28
GA mean±SD (m) 0.09±0.10 0.33±0.29 0.11±0.17 0.19±0.32
GG mean±SD (m) 0.10 ±0.10 0.38±0.36 0.12±0.17 0.17±0.29
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Table 5. Statistics of the field versus CHM-based total tree height measurements. Field values are compared

to values extracted from Gaussian model (GA), generalized Gaussian model (GG), and basic processing (BP).

H field H GA H GG H BP (1)-(2) (1)-(3) (1)-(4)
(1) (2) (3) (4)

All plots (N = 75)
Mean 14,49 14,21 14,25 14,18 0,28 0,24 0,31
SD 3,32 3,36 3,35 3,37 0,50 0,49 0,49
RMSE 0,57 0,54 0,58

Plot 1 (N = 41)
Mean 15,31 14,93 15 14,86 0,39 0,32 0,46
SD 1,11 1,2 1,21 1,26 0,54 0,55 0,51
RMSE 0,66 0,63 0,68

Plot 2 (N = 14)
Mean 8,62 8,21 8,25 8,22 0,26 0,22 0,25
SD 1,30 1,74 1,72 1,75 0,46 0,45 0,44
RMSE 0,52 0,48 0,49

Plot 3 (N = 13)
Mean 16,67 16,67 16,65 16,64 0 0,02 0,03
SD 2,2 2,17 2,2 2,19 0,23 0,23 0,22
RMSE 0,22 0,23 0,21

Plot 4 (N = 7)
Mean 17,69 17,5 17,44 17,56 0,19 0,24 0,12
SD 0,58 0,76 0,78 0,83 0,53 0,51 0,60
RMSE 0,53 0,53 0,57
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Figure 1. Principle of lidar acquisition and processings.

Page 20 of 26

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

REFERENCES 21

Figure 2. 3D view of the study site.
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Figure 3. Examples of lidar waveforms showing the recorded backscattered signals for a set of successive
laser pulses.
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Figure 4. Histograms of fitting residuals: Gaussian model and coarse detection in grey, Gaussian model
and enhanced detection in dark grey, generalized Gaussian model and enhanced detection in black.
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Figure 5. Height histograms for plots 1 and 4. Common points computed from basic processing (BP)
and advanced processing (AP) (black line), additional AP points (red line), and points extracted from
waveforms only contributing to AP (green line).
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Figure 6. Scatter plots of the field versus CHM-based tree height for the 75 measured trees.
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Figure 7. Difference in crown representation between basic processing (a) and advanced processing-based
CHM (b). Advanced processing gives rise to an increase in first echo spatial density resulting to an improved
crown description with the removal of some gaps. Circles highlight major improvements.
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