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(a) Original (b) Seam carving (c) Scaling (d) Ours (e) Dominant color (f) Distance

Figure 1: Our result is generated by first carving out 104 vertical seams from the original image (500× 333) and then scaling to 280.

Abstract

We present a novel method for content-aware image resizing based
on optimization of a well-defined image distance function, which
preserves both the important regions and the global visual effect
(the background or other decorative objects) of an image. The
method operates by joint use of seam carving and image scaling.
The principle behind our method is the use of a bidirectional sim-
ilarity function of image Euclidean distance (IMED), while co-
operating with a dominant color descriptor (DCD) similarity and
seam energy variation. The function is suitable for the quantitative
evaluation of the resizing result and the determination of the best
seam carving number. Different from the previous simplex-mode
approaches, our method takes the advantages of both discrete and
continuous methods. The technique is useful in image resizing for
both reduction/retargeting and enlarging. We also show that this
approach can be extended to indirect image resizing.
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1 Introduction

With the rapid growth of display device diversity and versatility to-
day, new demands are made of the digital media. Adaptive resizing
of images is one of the most useful techniques in relevant areas.
For example, images can be changed to different sizes or aspect ra-
tios for displaying on devices with various screen resolutions. De-
signers can provide different previews for photos on a website. A
feasible resizing algorithm should be able to preserve the important
content in an image as well as the global visual effect.

Seam carving, which can change the size of an image by gracefully
carving out or inserting pixels at different locations, is an efficient

technique for content-aware image resizing. A seam is constructed
by searching for a connected path of pixels crossing the image from
top to bottom, or left to right. Backward energy [Avidan and Shamir
2007] or forward energy [Rubinstein et al. 2008] is used to evaluate
the importance of a pixel. The main drawback is the frequently-
occurred damage of local structure or global visual effect. For ex-
ample in Figure 1, the boundaries of the balloons are damaged in
the seam carving result. In Figure 2, the Eiffel Tower which is visu-
ally important for the image in Figure 2(a) is excessively removed
in Figure 2(b). The reason is due to the energy-based strategy of
the algorithm. This algorithm always removes the seams contain-
ing or inserting low energy until the desired image size is achieved,
without considering the real visual effect.

Simple methods such as scaling and cropping also have clear draw-
backs. Scaling the image in horizontal or vertical direction can
be performed in real-time using interpolation and will preserve the
global visual effects. However, scaling causes obvious distortion if
the aspect ratio is different between the input and the output. The
second approach is to crop the output to a window of the input im-
age. This method will discard too much information of interest if
the output resolution is significantly lower than the input resolution.

In this paper, we propose a new content-aware image resizing al-
gorithm, which can resize an image by performing seam carving
and scaling coherently. We define an image distance measure for
quantifying the quality of a resizing result. The measure is useful
for two purposes: (1) As an objective function within an optimiza-
tion process to generate a well-resized image; (2) to quantitatively
compare and evaluate resized images generated by different meth-
ods. The function is formulated as a combination of patch-based
bidirectional image Euclidean distance (IMED) [Wang et al. 2005],
image dominant color (DCD) [Manjunath et al. 2002] similarity and
seam energy variation. Non-uniform saliency can also be incorpo-
rated into our optimization process if desired. We also compare our
results with the multiple operators in [Rubinstein et al. 2009] which
combines seam carving, scaling and cropping.

Our optimized content-aware image resizing algorithm starts from
the seam carving operation on the original image. After each seam
is removed, we directly scale the current image to the target size
and compute the distance to the original image. The resized im-
age with the minimum distance is the final result. Combining seam
carving with scaling can protect the global visual effect and some
local structures of the original image, especially when the output
resolution is much lower than the input one. The quality of the re-



(a) Original image

(b) Seam carving

(c) Our result

(d) Scaling (e) Interactive resizing

Figure 2: Comparison of different image resizing methods. We
resize the image in (a) from 375× 500 to 375× 250. Results show
that our approach preserves the global visual effect of the original
image and results a better picture than the other methods. For the
image in (c), the carved out horizontal seam number is NSC H =
112. In (e), we manually set NSC H = 125.

sized image is assured by optimizing the image distance function.
For image enlarging, we propose an automatic seam selection algo-
rithm to replace the manual method in [Avidan and Shamir 2007].
Rather than manually specifying the number of seams to be dupli-
cated, our algorithm can automatically find the feasible seams to
insert into the output image. We then show results of applying pro-
posed distance measure for indirect image resizing.

Our distance measure function only takes a few parameters which
can be fixed for most examples without visible influence to the re-
sult quality. To summarize, our main contributions are as follows:

∙ An image distance measure between an image and its resized
variations.

∙ A content-aware image resizing algorithm which optimizes
this measure.

∙ Applications of this approach in indirect image resizing.

2 Related Work

Image resizing has appeared in many applications for displaying
different resolutions and aspect ratios. Traditional methods work
by uniformly resizing the image to a target size without consider-
ing the image content. These methods equally propagate the dis-
tortion throughout the entire image and noticeably squeeze promi-
nent objects. To overcome this shortcoming, many approaches at-
tempt to remove the unimportant information from the image pe-
riphery [Chen et al. 2003; Liu et al. 2003; Suh et al. 2003; Santella
et al. 2006]. Another way is to use a face detector [Viola and Jones
2004] and a saliency measure [Itti et al. 1998; DeCarlo and Santella
2002; Walthera and Koch 2006]. The image is cropped to fit the
target aspect ratio and then uniformly resized by traditional inter-

polation. More sophisticated cropping approaches usually require
human intervention to create an optimal window for the most ap-
propriate portion of the scene. These methods work well for some
special applications such as surveillance [El-Alfy et al. 2007], but
tend to fail in general photo editing applications. Besides, promi-
nent objects may be removed by cropping methods especially when
the output resolution is significantly lower than the input resolution.

Recently, seam carving methods (denoted by SC in following sec-
tions) have been proposed to retain important contents while reduc-
ing or removing other image areas [Avidan and Shamir 2007; Ru-
binstein et al. 2008]. These techniques reduce or expand uniform
regions scattered throughout the image, by removing or duplicating
monotonic pixel-wide low-energy seams. SC produces impressive
results, but may deform important content, especially structural ob-
jects, when the homogeneous information in the required spatial
direction runs out. Moreover, the visual effect coming from global
composition of the image may also be damaged in the output, be-
cause such techniques only preserve the ”important” objects. As
shown in Figure 2, our algorithm successfully balances the sky, the
Eiffel Tower and the garden in the result.

When one operator does not perform well, it is natural to extend it
to a multi-operator. Rubinstein et al. [2009] presented an image re-
sizing algorithm to combine different operators in an optimal man-
ner. Bi-cubic scaling, cropping and seam carving are used together
in the process. They propose Bi-Directional Warping (BDW) as a
similarity measure between images to compare and evaluate the re-
sizing results. This measure is based on a non-symmetric variant of
Dynamic Time Warping (DTW).

Continuous resizing methods have been demonstrated by using im-
age warping. To minimize the resulting distortion, the local regions
are squeezed or stretched by globally optimizing warping functions.
The earlier work of Gal et al. [2006] warped an image according
to the user specifications, preserving the shape of masked regions.
Wolf et al. [2007] automatically transformed an existing video to
fit the dimensions of an arbitrary display based on local importance
detectors. Zhang et al. [2008] employed shrinkability maps and
random walk model to accelerate the scaling process and decrease
the storage requirements. Wang et al. [2008] present a ”scale-and-
stretch” warping method. The method iteratively updates a warped
image that matches optimal local scaling factors. However, since
the distortion is distributed in all spatial directions, some objects
may be excessively distorted, damaging the global spatial structure
of the original image.

Patch-based methods are also presented for image retargeting or
image summarization. Cho et al. [2008] chose patch arrangements
that fit well together to change the size of an image. The main
drawback of this method is that it cannot preserve the completeness
of the image. Pritch et al. [2009] represented operations such as
image retargeting, object removal, or object rearrangement as an
optimal graph labeling and used graph cut to solve this problem.

3 Image Distance Function

Our approach for content-aware image resizing is to remove par-
tial pixels with SC and homogeneously scale the others. There-
fore, the question is how to choose the appropriate ratio between
SC and scaling, which is controlled by the seam carving number
(NSC V , NSC H). Here we design an image distance measure to
evaluate the resized images using different SC numbers. The image
with the minimum distance to the original image is the final result.

We address the content-aware image resizing process as an opti-
mization problem. Given an original image I , our goal is to calcu-
late a new image T with user-specified size, minimizing the follow-



ing distance function:

d(I, T ) =
dIE(I, T )

sDCD(I, T ) ⋅ (1.0 + sE(I, T ) ⋅ �)
(1)

where dIE represents a patch-based bidirectional distance between
I and T (here we use IMED), (sDCD ∈ [0, 1]) is the similarity
of the two dominant color descriptors (DCD), (sE ∈ [0, 1]) is a
special seam-energy based factor which is used in our algorithm
to revise the distance of the resized image, (� ∈ [0, 1]) is a user-
specified coefficient. We will describe the distance function in de-
tail in the following sub-sections.

3.1 Bidirectional Image Euclidean Distance

We define the following distance function:

dIE =

dIE complete(I,T )
︷ ︸︸ ︷

1

NI

∑

P⊂I

min
Q⊂T

D(P,Q)+

dIE coℎere(I,T )
︷ ︸︸ ︷

1

NT

∑

Q⊂T

min
P⊂I

D(Q,P ) (2)

Specifically, for every patch Q ⊂ T our algorithm searches for the
most similar patch P ⊂ I , and measures their distance D(, ), and
vice-versa. The patches are taken around every pixel and their sizes
are set to be (20× 20) in all our experiments. Similar bidirectional
distance functions are presented in [Simakov et al. 2008] and [Wei
et al. 2008], the two terms dIE complete and dIE coℎere both have
important complementary roles. In their methods, the SSD (Sum
of Squared Distances) is used as the distance measure for D(, ).
However, sometimes SSD are not appropriate for measuring image
distances, as information about spatial relationships cannot be re-
flected by SSD [Wang et al. 2005], especially when scaling is used
to resize the image. In our algorithm, we use IMED as the measure-
ment of patch distance.

IMED considers the spatial relationship between the pixels of dif-
ferent images and is therefore robust enough to withstand small per-
turbations. The previous IMED methods such as [Wang et al. 2005]
and [Li and Lu 2009] define distance functions to compare images
with fixed sizes. Here we modify this method to better compare
images of arbitrary sizes and to be integrated in our image distance
function. An image patch of size n×m can be written as a vector
P = {p1, p2, . . . pnm} according to the color value of each pixel.
The IMED D(P,Q) in Eq. (2) between two image patches P and
Q with size n×m is then defined as:

D(P,Q) =

√
√
√
⎷

nm∑

i=1

nm∑

j=1

gij(pi − qi)(pj − qj) (3)

where gij is the metric coefficient indicating the spatial relationship
between pixels pi ∈ P and qj ∈ Q. The definition of gij is given
by

gij = f(dsij) =
1

2��2
exp

(

−
(dsij)

2

2�2

)

where dsij is the spatial distance between pi and qj on the image
lattice, and � is the width parameter (� = 1.0 in our experiments).
Using a different approach to previous methods [Wang et al. 2005;
Li and Lu 2009], we divide the horizontal/vertical coordinate of a
pixel by the width/height of the image so as to compare images with
different sizes. Thus, if pi is at location (k, l) and qj is at location
(k′, l′), then dsij is

d
s
ij =

√

(k − k′)2 + (l − l′)2

Since IMED considers the spatial relationship between pixels, it
is relatively insensitive to small spatial deformations. In our cur-
rent implementation, the patch distance is measured in YIQ color
space and normalized by the patch size. To accelerate the com-
putation speed, for dIE complete we do not calculate distances of
patches around every pixel. Instead we just uniformly sprinkle
some overlapping patches on the original image (as illustrated in
Figure 3(b), P1, P2 are two patches) and use the average distance
of these patches as the dIE complete value.

(a) Original image (b) Sprinkling patches

(c) SC (d) Scaling (e) Ours

Figure 3: IMED uses discrete pathes. The optimized seam number
is (NSC V = 158, NSC H = 95).

3.2 Dominant Color Similarity

The similarity of the dominant color descriptors (DCD) between the
original image and the resized image is also an important term in
our image distance function. A set of dominant colors in a region of
interest or in the whole image provides a compact description that
is easy to index [Manjunath et al. 2001]. It has been widely used in
content-based image retrieval. A DCD specifies a small number of
dominant color values and their statistical properties: distribution
and variance [Manjunath et al. 2002]. The structure of a DCD, F ,
is defined as

F = {pi, ci, vi, s}, i = 1, 2, . . . , NDCD (4)

where NDCD is the number of dominant colors (NDCD = 16 in
our experiments), s is the spatial coherency value that represents
the overall spatial homogeneity of the dominant colors, pi is the
percentage of pixels in the image corresponding to the ith dominant
color, vi is a vector representing the ith dominant color, and the ci
is the variation of the dominant color values of the pixels around vi.
In our algorithm, s is omitted.

We adapt the Euclidean distance in [Min and Cheng 2009] to cal-
culate the similarity of two DCDs:

sDCD = 1.0−
1

N

√
√
√
⎷

N∑

i=1

[(p1i − p2i)2 + (c1i − c2i)2 + ∥v1i − v2i∥2]

where N = max(N1, N2) if N1 is not equal to N2. Note that
if sDCD = 0, we set the image distance d to be a pre-defined
maximum value. The value of c and v is both normalized to [0, 1]
so that the similarity value will also be in [0, 1] domain.



(a) Original image (b) SC (c) Scaling (d) Without DCD (e) Ours with DCD (f) DCD of (e)

Figure 4: The effect of DCD. The image in (d) (NSC V = 157, sDCD = 0.77) is generated only using IMED. We can see that the image in
(e) (NSC V = 122, sDCD = 0.82) which integrates DCD preserves the global visual effect better. Note that we do not use sE here.

(a) Original image (b) SC (c) [Wang et al. 2008] (d) Ours without revision (e) Ours

Figure 5: Distance measure revision. Our method generates similar result (NSC V = 96) as [Wang et al. 2008] for preserving the edge
continuity of the Eiffel Tower, while causing less distortion to other objects. Compared with the image in (d) (NSC V = 116), adding revision
term better preserves the object boundaries.

Dominant color examples are shown in Figure 1(e) and Figure 4(f).
We can see that our method can exactly extract the dominant col-
ors of the images. In Figure 4, we see the importance of the DCD
term. In this example, we omit the measured distance revision term
(sE = 0.0). We can see that the algorithm cannot obtain a good re-
sult by comparing only the IMED. DCD not only contains the color
value information, but also the percentage of pixels in the image
corresponding to each dominant color. Both of them will play im-
portant roles when DCD distance is calculated, which is why it can
detect the fine changes that occur while gradually resizing an im-
age. We can see that DCD helps to achieve a nice balance between
the flower and the leaf in Figure 4.

3.3 Distance Measure Revision

Since we use a scaling operation to protect the global visual effect
and some local structures, this will increase the patch-based bidi-
rectional distance more quickly than using pure SC [Simakov et al.
2008]. Due to similar reason, IMED can also be affected in partic-
ular for images with strong structured parts. To solve this problem,
as shown in Eq. (1) we use an additional term sE to revise the dis-
tance. Without losing generality, suppose we narrow an image from
n×m to n′×m, the current carved out seam number during the op-
timization process is NSC V = t, then the revision term is defined
as

sE =

n∑

i=1

E(i)−
t∑

i=1

E(i)

n∑

i=1

E(i)
(5)

where E(i) is the energy of the ith seam. Intuitively, this term
can approximately estimate how much damage the SC process will
cause to the global visual effect or the local structures if we continue
to use SC to narrow the current image to the target size. sE also
describes the energy variation during the SC process. We use a
small � = 0.2 in Eq. (1) so that it acts a soft constrain to IMED

and DCD similarity terms. In fact, for most examples we can just
ignore this revision term. Note that it can be used when only one
direction of the image is going to be resized.

4 Optimized Image Resizing

In this section, we describe our SC-Scaling-Combined optimized
image resizing algorithm in detail. The image distance function in
Eq. (1) is integrated into the optimization process of the algorithm.

4.1 Image Reduction/Retargeting

Image reduction/retargeting generalizes aspect ratio change in one
or two dimensions so that an image I of size n×m will be changed
to size n′ ×m′, and for the time being, we assume that n′

⩽ n and
m′

⩽ m, where n−n′ = c, m−m′ = r. The goal of our algorithm
is to find the feasible SC numbers in both vertical and horizontal
directions, where 0 ⩽ NSC V ⩽ c and 0 ⩽ NSC H ⩽ r). Namely,
to obtain a resized image of best visual effect, we need to find out
how many width/height ratios should be first reduced by SC and
how many others then by scaling. The result is achieved with an
optimization process by evaluating the image distance function of
Eq. (1). Our image reduction/retargeting algorithm is summarized
as follows:

1. Start the resizing process with SC process. After each seam
removal operation, scale the image directly to the target size
and calculate the image distance to the original image, us-
ing the distance function Eq. (1). Record the seam number
(NSC V , NSC H) of the current step.

2. The resized image which has the minimum distance to the
original image is the final result. At the same time, we also
know the optimized seam number for obtaining best visual
effect.



(a) Original image (b) [Avidan and Shamir 2007] (k = 40) (c) Scaling (d) Ours (NSC V = 37)

Figure 6: Image enlarging. The original image is enlarged from 220 × 300 to 440 × 300. We first indicate k = 40 as the probable seam
number. Then our algorithm automatically finds that the first 37 seams are the best choice to be duplicated in the original image.

Note that we follow the same SC method presented in [Avidan and
Shamir 2007] and [Rubinstein et al. 2008]. Forward energy [Ru-
binstein et al. 2008] is employed in all our experiments.

4.2 Image Enlarging

With the SC method, to enlarge an image, we need to perform an
”inversion” of image reduction, and insert new ”artificial” seams
into the image [Avidan and Shamir 2007]. To be effective, it is
important to balance between the original image content and the
artificially inserted parts. Therefore, to enlarge the image by k,
the SC method finds the first k seams for removal, and duplicates
them in the output. Unfortunately, this approach would probably
produce potential artifacts because the seams may contain non-
homogeneous pixels and destroy the object shape. For excessive
image enlarging (greater than 50%), the method in [Avidan and
Shamir 2007] breaks the process into several steps but still cannot
essentially solve the problem. In our method, we use a new ap-
proach to find the appropriate seams which can be inserted into the
output image.

Without losing generality, assume we want to enlarge an image
from n × m to (n + l) × m. As suggested also by [Avidan and
Shamir 2007], we indicate a probable seam number k at first. Here
k is the forecast to the probable number of ”homogeneous” seams in
the image. Then we use the optimized image retargeting algorithm
to resize the image to (n − k) × m and find the optimal NSC V

value in the domain of [0, k] using our distance measure. Finally,
we only duplicate the first NSC V seams image to get the enlarged
result. This method is more effective and accurate than setting the
seam numbers manually (Figure 6).

5 Results and Discussions

We have implemented and tested our image resizing system on a
PC with Duo CPU 2.33GHz, 2GB RAM.

Image Resizing / Retargeting. In Figure 1-4, Figure 6-9 and
Figure 11, we compare our image resizing results with those of SC
and scaling. It is shown that our algorithm generates better results
by taking the advantages of both seam carving and scaling. Our
bidirectional image distance measure is a patch-based method, for
each patch in the original/resized image we calculate its distance
to the patches in the resized/original image and save the minimum
value. We use a new IMED rather than SSD to calculate the patch-
patch distance. If SSD is used, apparently for the pure SC result,
many or some of the patch-patch distances will be zero, so in most
cases it will introduce a biased preference for seam carving. A key
advantage of IMED is its relative insensitivity to small perturba-
tion [Wang et al. 2005]. It is feasible here for our algorithm to

(a) Original image

(b) SC (c) Scaling

(d) Cropping (e) Ours

Figure 7: Optimal order retargeting. The original image is resized
from (500 × 500) to (300 × 260). For our algorithm, (NSCV

=
118, NSCH

= 124).

evaluate the scaling-enhanced result. IMED adds global informa-
tion to the patch-patch comparison and is more robust than SSD
(only calculates the local pixel-pixel distance) in many cases.

Figure 10 shows results of our gradual resizing algorithm and the
corresponding distance d(I, T ) of Eq. (1). In the first few images,
T1, . . . , T5, the loss of visual information is gradual, accompanied
by a slow increase in the distance measure d(I, T ). Starting from
T6, there is a sharp increase in d(I, T ), and the resizing operation
almost changes to pure scaling. This may suggest an automatic way
to identify a good stopping point in the resize reduction [Simakov
et al. 2008].

As shown in Figure 5, using the revision term can obtain a better
result. This term partly reflects how much damage SC has caused
to the image. The user could simply adjust the weight value to
increase or decrease the effect of the revision term to the distance
measure. However, sE itself is not practical for optimized resizing
when scaling should be used. In our algorithm, sE is a monotonic
decreasing function. If only sE is used, the only way to stop SC is
by manually setting a threshold. Apparently this approach cannot
obtain an optimized result. As shown in Figure 6, using sE with
a manually set threshold cannot obtain a good result. The user has
to adjust the threshold value many times to determine which result
is better, while our algorithm can automatically find the optimized
seam number. In fact in our further experiments, we find that using
the max operator in Eq. (2) has a similar effect on the results.

In Figure 3 and Figure 7, we show that our algorithm is feasible for
resizing both the width and height of the image, especially when the
resizing proportions are different (Figure 7). Our method finds the



(a) Original image (b) Seam carving (c) Scaling (d) Our result

Figure 8: Comparison of our results with seam carving and scaling. For each example, from left to right, the image distances, DCD similarity
and optimized seam carving numbers (denoted as (d, sDCD, NSC V )) are listed beneath. Rope skipping: (42.27, 0.75,−), (57.13, 0.74,−),
(42.27, 0.75, 192). Secret #5: (105.44, 0.80,−), (126.13, 0.95,−), (75.47, 0.85, 168). Face: (158.97, 0.69,−), (126.24, 0.75,−),
(119.51, 0.75, 53).

(a) Original image (b) Seam carving (c) Scaling (d) Our result

Figure 9: Comparison of our results with seam carving and scaling. The objects in the rectangles are well protected in our re-
sults. For each example, from left to right, the image distances, DCD similarity and optimized seam carving numbers (denoted as
(d, sDCD, NSC V )) are listed behind. Boy: (74.62, 0.69,−), (78.99, 0.72,−), (46.83, 0.79, 128). Road Sign: (86.70, 0.66,−),
(106.06, 0.68,−), (85.07, 0.68, 86).
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Figure 10: Gradual image resizing. Results of our algorithm for gradually decreasing targeting size, with distance values d(I, T ) given by
Eq. (1). Note that when the target size is very small, our algorithm can automatically choose to use more scaling than seam carving.

(a) Original image (b) Seam carving (c) Warping (d) SSD (e) Ours

Figure 11: Comparison of our results with those of seam carving, the optimized warping method [Wang et al. 2008] and our framework
using SSD [Simakov et al. 2008]. The results of [Wang et al. 2008] and our method tend to be smoother than those of seam carving.

(a) Original image (b) Seam carving (c) Scaling (d) Cropping (e) Warping (f) Ours

Figure 12: Retargeting with saliency map. Our result keeps more information of the whole image. Warping is non-homogeneous scaling
from [Zhang et al. 2008].

(a) Original image (b) Indirect seam carving (c) [Wang et al. 2008] (d) Ours (indirect) (e) Ours (direct)

Figure 13: Indirect image resizing with our algorithm. In (d), the original image is resized from 500 × 368 to 320 × 368 by two normal
resizing steps and one direct scaling step.



(a) Original image (b) Seam carving (c) Scaling (d) Cropping (e) Multi-operator (f) Ours

Figure 14: Comparison of our results with those of seam carving, scaling, cropping and multi-operator [Rubinstein et al. 2009] (combining
seam carving and scaling).

(a) Original image (b) Seam carving (c) Scaling (d) Cropping (e) Multi-operator (f) Ours

Figure 15: Comparison of our results with those of seam carving, scaling, cropping and multi-operator [Rubinstein et al. 2009] (combining
seam carving, scaling and cropping).

best result by starting from the optimal seams-order operation [Avi-
dan and Shamir 2007] and directly performing 2D scaling after each
optimal seam (horizontal or vertical, according to the seam energy)
is removed. In Figure 8, we show the efficiency of our algorithm.
For the ”Rope skipping” example, seam carving can result in the
best resizing. Here our algorithm also detected this character (with
minimum distance to the original image) and the result image was
exactly the same. For the ”Secret #5” example, our algorithm pre-
serves both the words and the notebook joint which are both partly
damaged in the seam carving result. For the ”Face” example, re-
sults show that we can use scaling alone to obtain a relatively good
result, but our algorithm still optimally removes some seams in or-
der to use less scaling operations to avoid distorting the prominent
”Face” object. In Figure 9, we can see that our results outperform
the SC and scaling methods by preserving both the local shape of
the objects and the dominance of the prominent objects in the re-
sized images.

Our algorithm takes the advantages of both the discrete SC and
the continuous global scaling methods. Compared with the op-
timized warping methods such as [Zhang et al. 2008] and [Wang
et al. 2008], our method is better at preserving the global visual ef-
fect and relative spatial aspect among the local objects. At the same
time, the warping methods can avoid the SC-caused greediness ef-
fects [Wang et al. 2008] and protect well the aspect ratio of separate
objects which are labeled by the importance map. In Figure 11, we
compare our results with those of SC [Rubinstein et al. 2008] and
optimized warping [Wang et al. 2008]. For SC results, notice the
discontinuities in the buildings and bridge arches, which are due to
the pixels being excessively removed. Compared with optimized
warping, our method can preserve the spatial proportions of the ob-
jects better. As shown in the ”Buildings” example, our image suc-
cessfully avoided the slope distortion problem found in warping’s
result. In the ”St Angelo Castle” example, our method maintains
the relative aspect ratio between the castle and the bridge. The cas-

tle which is important in the original image is too small in warping’s
result. However, the aspect ratio of the bridge itself is protected
in warping’s image whilst our algorithm cannot preserve the ratio.
Compared with the results using Simokov et al. [2008]’s SSD-based
measure, our algorithm better preserves the object boundaries.

Another limitation of our algorithm is that the computation time is
relatively long. However, as [Simakov et al. 2008], the computa-
tionally heavy nearest-neighbor search may be significantly made
faster by using the location obtained from the previous evaluation
step to constrain the search. We can also first do the optimization
process at a lower resolution and predict the probable seam number
range in the original resolution, or just manually limit the search-
ing range of the seam number. Our algorithm could also be made
more rapid by using an optimization scheme such as gradient de-
scent [Snyman 2005]. Gradient descent might get stuck in local
minima but may be good enough for some examples. The current
implementation in C++ takes around 40-180 seconds to resize a
500× 500 image to half size.

Our algorithm also supports other energy functions including
saliency maps. In Figure 12, we used the algorithm of [Walthera
and Koch 2006] to generate a saliency map. We can also see that
our result strikes the best balance among all the objects in the im-
age. In our result, the small wood house is bigger than the others
but deform the girl’s shape.

The order of SC and scaling is fixed in our algorithm. We do so
because the structural objects in an image are more prominent than
homogeneous ones. Starting with SC can preserve the shape of
the dominant objects. Of course, switching the order of resizing
operators may generate better results than current ones, it will be
an important research direction in our future work.



(a) Original image (b) Multi-operator (c) Ours

Figure 16: Result of 2D retargeting. The multi-operator result (combining seam carving and scaling) is generated by applying Simakov et
al. [2008]’s SSD-based image distance measure.

Indirect Resizing. We can protect the aspect ratio of a promi-
nent object in an original image by using interactively an indirect
resizing method [Wang et al. 2008]. As shown in Figure 13, we
first narrowed the original image from 500× 368 to the target size
320× 368 (NSCV

= 51) using our resizing algorithm. The width-
height proportion of the car was changed. Then we enlarged the
image to 320 × 440 (NSCH

= 15) and the height 440 was manu-
ally chosen. In this step, the more homogeneous sky was enlarged
more than the car. Finally, we directly scaled the image back to
320 × 368 to get the final result, and this will partly fix the width-
height proportion change of the car appears in the direct resizing
result (Figure 13(e)). Compared with the results of indirect SC and
[Wang et al. 2008], our method better preserves the dominant status
of the car.

Multi-operator retargeting (MOR). In Rubinstein et al. [2009],
a multi-operator media retargeting method is presented. The algo-
rithm also integrates SC and scaling together to resize an image.
BDW is employed to compare the similarity between the result and
the original image. In Figure 14, we can see that our result is vi-
sually similar to the result of MOR, which computes the optimal
mixed sequences using SC and scaling. In Figure 15, the MOR re-
sult outperforms ours due to the employment of one extra operator
(cropping). We can see that sometimes the cropping operator is im-
portant for preserving the prominent objects. We compare the 2D
retargeting results of different methods in Figure 16. In this exam-
ple, our IMED-based measure is directly applied to find the best
result, while the BDW in [Rubinstein et al. 2009] cannot. The run-
ning time will be dramatically increased if the two-dimension BDW
is used. We can also see that our measure is better in preserving the
aspect ratio of some objects, for example the keyboard in Figure 16.
Furthermore, the DCD term in our algorithm is useful in balancing
the prominent objects and the global visual effect in an image (as
shown in Figure 4). This is more flexible than the pure patch-based
BDW for some examples.

6 Conclusion and Future Work

We presented a novel technique for content-aware image resizing.
Seam carving and homogeneous scaling were integrated together
to form a hybrid system (combining discrete and continuous meth-
ods). A well defined image distance measure was used to opti-
mize the resizing process. The measure was formulated as a dis-
tance which integrated bidirectional IMED, DCD similarity and an
additional seam energy-based coefficient together. We described
a principle approach to reduction/retargeting and enlarging of im-
ages. Furthermore, we demonstrated applications of our technique
in indirect image resizing.

In addition to the arbitrary resizing of images, our method has po-
tential use in video resizing. It would be necessary to consider con-
tinuity between adjacent frames, especially when there are substan-
tial differences in their contents. In our technique we use domi-

nant colors to evaluate the change of the global visual appearance.
One potential solution is to keep colors that do not appear much
in the image, so that small objects do not disappear. Currently the
small but important objects could be protected by seam carving if
they have high energy. Preservation of the aspect ratios and sizes
of prominent objects in our framework is also a challenging prob-
lem. We also plan to extend our image distance measure to other
applications, such as automatic cropping, texture synthesis and im-
age retrieval. Nevertheless, integration of more operators such as
cropping and non-homogeneous warping into the resizing process
is another interesting research direction.
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A Dominant Color Extraction

We propose a novel method to efficiently extract the DCD of an
image. A clustering algorithm is used to extract the dominant colors
from the color histogram of the image. The steps are summarized
as follows:

1. Transfer an image in RGB to an YIQ color space.

2. Build a histogram, {Hist(Y, I,Q), 0 ⩽ Y ⩽ LY , 0 ⩽ I ⩽

LI , and 0 ⩽ Q ⩽ LQ} in a 3-D (Y, I,Q) space, with LY

bins along the Y direction, LI bins along the I direction, and
LQ bins along the Q direction. We set LY = LI = LQ = 16
in our experiments.

3. Choose the NDCD bins with the largest number of pixels. Set
the average color of each bins indexi as the initial dominant
colors vi.

4. Use generalized Lloyed algorithm for color clustering. This
problem is formulated as minimizing the distortion Di in each
cluster i

Di =
n∑

j=1

w(j)∥indexj − vi∥ indexj ∈ Ci

where n is the number of histogram bins in the cluster, vi is
the centroid of cluster Ci, indexj is color vector at bin, w(j)
is perceptual weight for bin j. We simply set w(j) = 1 in our
experiments except when an importance map is used (w(j) is
the importance value).

5. For each selected cluster i(i = 1, 2, . . . , NDCD), calculate
the centroid vi from the formula

vi =

∑

j

indexj ⋅Nj

∑

j

Nj

where indexj is the average color vector of bin j in the YIQ
color space, and Nj is the number of pixels at bin j. The
percentage pi is calculated as

pi =

∑
Nj

NIM

where NIM is the total number of pixels. Moreover, we set ci
as the standard variance of each cluster.

6. Based on each cluster in descending order of the number of
cluster, fill in the DCD structure of Equation (4) with pi, ci,
and vi.


