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    Abstract—This work aimed to validate the Advanced Integral Equation Model (AIEM) through different correlation length 

parameterizations using radar imagery for field-scale studies in a semi-arid environment. The study compared backscattering 

coefficients simulated from the AIEM and retrieved from SAR imagery of a study site in Sardinia. Two treatments for correlation 

length were adopted: in situ measurements and empirically based correlation length estimation. The results showed an overestimation 

of backscattering coefficients of 2.5 dB with an RMSE of 3.1 dB for HH and VV polarizations and an underestimation of 27.7 dB and 

an RMSE of 31.0 dB for HV polarization from the AIEM parameterized by in situ measurements. When using the AIEM with 

empirical correlation length, a bias of less than 1.0 dB was found with an RMSE of 1.7 dB for HH and VV polarizations and an 

overestimation of 1.1 dB and an RMSE of 5.1 dB for HV polarization. Better results were obtained with surface soil moisture (SSM) 

measured at 10 cm than at 5 cm. Promising soil moisture data retrieval from SAR imagery is expected from using the empirical 

correlation length-parameterized AIEM for field-scale purposes in semi-arid environments. 

 

Index Terms—Correlation length, Soil moisture, SAR images, C-band, AIEM model, Semi-arid environment 

 

I. INTRODUCTION 

urface soil moisture (SSM) distribution plays an important 

role in agricultural management tasks, such as irrigation 

modeling, at the field scale. Radar remote sensing has been 

used for retrieving and mapping SSM for decades. Various 

models have been developed for this purpose, ranging from 

site-dependent empirical models rooted in extensive databases 

[1-4] to semi-empirical models [5-9] to site-independent 

theoretical backscatter models [10-14]. For bare soil studies, 

the Integral Equation Model (IEM) is one the most widely 

used analytical physical backscatter models thanks to its large 

roughness validity domain and several further developments, 

such as the AIEM (Advanced IEM). Numerical models are 

also used, such as the Kirchhoff Approximation (KA) and the 

Numerical Maxwell Model of 3-D Simulations (NMM3D) 

[14, 15]. Few applications are reported for the AIEM [12, 16, 

17].  

    Theoretical models require accurate surface roughness 

parameterization, which is labor-intensive for field 

measurements and is problematic when, for example, 

estimating correlation length. A semi-empirical calibration for 

the IEM based on a large in situ database was introduced [18-

21] and extended to cross-polarization in Baghdadi et al. [22]. 

This approach relates the empirical correlation length to 

incidence angle, polarization, radar frequency and standard 

deviation of surface height (RMS height), restricting the 

surface roughness parameter to RMS height only. Good 

agreement has been found between simulated backscatter and 

SAR images for incidence angles between ca. 20°-50° for C-

band signal. 

This work aimed to validate the AIEM model for use in a 

field-scale operational approach in development through the 

CLIMB project [23]. An introduction of the study site and a 

database description are given in Section II, followed by a 

description of the backscatter model in Section III. The AIEM 

is evaluated in Section IV. The findings and results are 

discussed and conclusions are offered in the last section. 

II. STUDY SITE AND DATASET 

A. Azienda San Michele 

  The Campidano Plain is the agricultural heartland of 

Sardinia and is located in the southern part of the island. The 

study site, Azienda San Michele (Figure 1), has a total area of 

435 hectares and is located on the east edge of the Campidano 

Plain between the villages Ussana and Donori, with central 

coordinates of 39°25’N, 9°06’E. The Azienda is one of the 

research-based farms operated by the Agricultural Research 

Center of Sardinia, the AGRIS (Agenzia per la ricerca in 

agricoltura). Several reference fields of the experimental farm 

ranging from 1.7 to 4.4 hectares were kept in bare conditions 

for a two-month period (May – June in both 2008 and 2009).  

 

 
Figure 1 Land-use map of selected reference fields of Azienda San Michele in 

UTM coordinate system zone 32N (indicating field boundaries, corner 

reflectors, bare fields and tested crop fields, e.g., bean, wheat and canola 
fields). 

S 
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B. Radar Data 

  A total of 13 dual-polarization ASAR APS images and 11 

Radarsat-2 Fine-Quad-Polarization images, including both 

ascending and descending modes, were acquired over the 

campaign periods (Table 1). ASAR images covering a swath 

width of up to 100 km were normalized to a spatial resolution 

of approximately 30 m. Radarsat-2 images covering a swath 

width of approximately 25 km were normalized to a spatial 

resolution of approximately 12.5 m. The radiometric precision 

is within 0.5 dB in both sensors [24]. An average weekly 

coverage was guaranteed during the campaign period over the 

study site.  

 
TABLE 1  RADAR IMAGERY COLLECTION. 

Date  
(YYMMDD) 

Sensor Incidence  
angle (°) 

Polarizations 

080503 ASAR 23 HH, VV 

080522 ASAR 23 HH, VV 

080524 Radarsat-2 22 HH,VV, HV, VH 

080527 Radarsat-2 21 HH,VV, HV, VH 

080528 ASAR 19 HH, VV 

080531 ASAR 29 HH, VV 

080606 ASAR 41 HH, VV 

080613 Radarsat-2 27 HH,VV, HV, VH 

080616 ASAR 23 HH, VV 

080617 Radarsat-2 22 HH,VV, HV, VH 

080624 Radarsat-2 28 HH,VV, HV, VH 

090421 ASAR 19 HH, VV 

090425 Radarsat-2 22 HH,VV, HV, VH 

090427 ASAR 23 HH, VV 

090428 Radarsat-2 21 HH,VV, HV, VH 

090504 ASAR 29 HH, VV 

090513 ASAR 19 HH, VV 

090516 ASAR 29 HH, VV 

090519 Radarsat-2 22 HH,VV, HV, VH 

090522 Radarsat-2 21 HH,VV, HV, VH 

090523 ASAR 23 HH, VV 

090601 ASAR 23 HH, VV 

090612 Radarsat-2 22 HH,VV, HV, VH 

090615 Radarsat-2 21 HH,VV, HV, VH 

 

C. Field Data 

  Extensive field measurements were collected from 3
rd

 May to 

25
th

 June 2008 and from 21
st
 April to 16

th
 June 2009. The SSM 

was measured by an FDR (frequency domain reflectometer) at 

depths of 5 cm and 10 cm (Figure 2) and the gravimetric 

method was adopted as a reference. The values at each depth 

were averaged for each reference field to a single 

representative value for the reference field at the 

corresponding depth. The SSM measurements were taken each 

day in accordance with the satellite pass. Surface roughness 

was measured using the close-range photogrammetric 

technique with a Rollei 7 camera for each sample point on 

bare fields [25]. Digital surface models (DSMs) were derived 

from pairs of photos, where each photo covered a surface area 

of 1 m by 1 m. The RMS height was calculated from the 

DSM. Both exponential and Gaussian semivariogram 

functions were used in ArcGIS 9.x for correlation estimation 

from point data of stereo image pairs [26, 27]. Values from 

different sample points (SPs) were averaged to generate a 

single representation of each study field. Table 2 demonstrates 

the minimum and maximum values of field-averaged SSM, 

RMS height (s) and Gaussian correlation length (l). The SSM 

at both depths ranged from extremely dry (~3.0 vol. %) to 

nearly 30 vol. % during the campaign periods. On average, the 

SSM at a 10 cm depth was 5.9 vol. % higher than the 

measurement at a 5 cm depth. Tables 3 and 4 showed the in-

field variability, i.e., the variability between SPs within a field, 

of these parameters for two sampling dates: 6
th

 June 2008 (a 

wetter period) and 15
th

 June 2009 (a drier period). Note that: 

1) between different reference fields within the experimental 

farm, the field-averaged SSM can reach a difference higher 

than 10.0 vol. % and 2) the SSM-values of different sample 

points showed low variations (standard deviation lower than 4 

vol. % for all reference fields).  

 

 
Figure 2 Comparison of SSM at 5 cm and 10 cm depths in 2008 and 2009 

showing an RMSE of 4.3 vol. % and a bias of 5.9 vol. %.  

TABLE 2  IN-SITU GEOPHYSICAL CHARACTERISTICS AND MEASURED DATES 

(YYMMDD). 

 SSM_5 cm 
(vol. %) 

SSM_10 cm 
(vol. %) 

s (cm) l (cm) 

Min. 

Date 

1.3 

090513 

3.1 

090615 

1.7 

090516 

15.3 

090513 

Max. 

Date 

25.6 

080606 

29.2 

090427 

3.2 

080617 

28.2 

080503 

 

TABLE 3  IN-FIELD VARIABILITY OF SURFACE GEOPHYSICAL PARAMETERS FOR 

6TH
 JUNE 2008 (MEAN VALUE±STANDARD DEVIATION). 

Field SSM_5 cm 

(vol. %) 

SSM_10 cm 

(vol. %) 

s (cm) l (cm) 

F11 25.6±2.1 25.5±2.8 1.6±0.2 20.3±4.9 

F21 11.3±2.5 17.8±2.5 2.0±0.4 17.6±4.8 

F31 6.9±0.9 8.3±1.5 1.9±0.1 26.8±14.3 

 
TABLE 4  IN-FIELD VARIABILITY OF SURFACE GEOPHYSICAL PARAMETERS FOR 

15TH
 JUNE 2009 (MEAN VALUE±STANDARD DEVIATION). 

Field SSM_5 cm 
(vol. %) 

SSM_10 cm 
(vol. %) 

s (cm) l (cm) 

F11 10.6±5.3 21.3±4.1 2.1±0.2 20.3±5.2 

F21 3.0±1.5 13.5±6.3 1.7±0.3 18.0±5.2 

F32 2.6±1.0 3.2±1.2 1.6±0.1 16.0±1.0 
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III. AIEM 

  The IEM was developed and introduced by Fung et al. [28, 

29]. The IEM has been well described (e.g., [18, 30]) and the 

equations are not reprinted here. The IEM is a widely used 

analytical physical model and is known for its comprehensive 

validity under roughness conditions. Wu and Chen [11] 

updated and improved the IEM by replacing Fresnel reflection 

coefficients with a transition function that considers both 

surface roughness and permittivity. Because both the 

estimation and sensitivity analysis of the surface roughness 

information in the backscatter model can be problematic, 

especially concerning the correlation length l, roughness 

parameters must be treated carefully. Brogioni et al. [16] 

assessed the AIEM validity for roughness parameterization 

resulting in a slight extension from the IEM validity [31]. 

They found that valid RMS heights and correlation lengths 

range from ~0.77 to 11.1 cm and ~0.11 to 110 cm, 

respectively, for the C-band signal of the AIEM.  

  Baghdadi et al. [19, 22] proposed replacing l with a fitting 

parameter "Lopt" with a Gaussian function for the IEM. The 

Lopt depends on a given radar wavelength, incidence angle θ, 

RMS height s and polarization. The empirical correlation 

length Lopt is expressed as in equations 1-3 for the C-band: 

 

)1()23.1(sin006.3162.0),,( 494.1 sHHsLopt

   

)2()19.0(sin134.0281.1),,( 59.1 sVVsLopt

 

)3()1543.0(sin2289.19157.0),,( 3139.0 sHVsLopt

   

 

Note that s is described in cm and θ is described in degrees. 

Good results were found in [18, 19, 22], where simulated 

backscattering coefficients and those retrieved from SAR 

agreed well for soil moistures between 5% and 47%. 

Equations 1-3 will be applied in this study to measurements 

collected in a semi-arid environment that is drier than that of 

the study sites in [18, 19, 22]. 

IV. MODEL VALIDATION 

The empirical correlation length is calculated from the in 

situ RMS height and incidence angle in accordance with the 

polarization (equations 1-3). The Lopt values were lower in 

the HV than the HH and VV polarizations. The comparison 

between in situ l and Lopt showed RMSEs of approximately 7 

cm and 12 cm for the co-polarizations (HH and VV) and the 

cross-polarization, respectively (Figure 3). Moreover, l was 

larger than Lopt by approximately 2 cm, 1 cm and 11 cm for 

the HH, VV and HV polarizations, respectively.  

Figure 4 showed a comparison between the backscattering 

coefficients retrieved from SAR and those simulated from the 

AIEM, with different ranges of the incidence angle. The 

simulations were conducted based on SSM_5 cm and SSM_10 

cm. The empirical correlation length was also calculated 

according to equations 1-3. Figures 4a, 4b and 4c were plotted 

from in situ experiments Gaussian correlation length and 

SSM_10 cm for the HH, VV and HV polarizations, 

respectively and were used to exemplify the backscatter 

simulations from the in situ measurements. Similarly, for the 

HH, VV and HV polarizations, Figures 4d, 4e and 4f were 

plotted simulations from the empirical correlation length and 

the SSM at 5 cm, while Figures 4g, 4h and 4i were plotted 

simulations from the empirical correlation length and the SSM 

at 10 cm. Note that only 33 samples were available for cross-

polarization from Radarsat-2 data against 70 samples for HH 

and VV. 

 

 
Figure 3 Comparison of empirical correlation length Lopt for the HH, HV and 

VV polarizations and in situ correlation length l in cm. Each dot represents a 

correlation value for one reference field and one image acquisition date. 

 

For in situ correlation length l, the backscattering 

coefficients generated from SSM_10 cm fit the HH and VV 

polarizations better than did those from SSM_5 cm. For the 

HV polarization, the selections of l at 5 cm or 10 cm provided 

similar simulations. By comparing the backscattering 

coefficients simulated from SSM_5 cm and those retrieved 

from the SAR imagery, large underestimations of over 14.0 

dB and RMSEs over 27.0 dB were found for both the HH and 

VV polarizations for the Gaussian correlation function. For 

HV polarization, an underestimation of 31.0 dB and an RMSE 

exceeding 33.0 dB were observed. Figures 4 a-c showed that 

the AIEM simulated from SSM_10 cm results in an 

overestimation of approximately 2.5 dB and an RMSE of 

approximately 3.1 dB for the HH and VV polarizations, a 

major improvement. However, a significantly large 

underestimation of over 27.7 dB and an RMSE of 31.0 dB 

were found again for the HV polarization. 

For the empirical correlation length Lopt, a comparison 

between figures 4 d-f and 4 g-i showed clear improvement in 

both RMSEs and bias for the simulations from the SSM_10 

cm depth over those from SSM_5 cm. Overestimations of 

approximately 2.7 dB, 2.1 dB and 2.2 dB and RMSEs of 

approximately 3.1 dB, 2.7 dB and 6.0 dB were found for the 

AIEM simulations from SSM_5 cm for the HH, VV and HV 

polarizations, respectively. For the simulations from SSM_10 

cm, the biases were restricted to no more than 1.1 dB and the 

RMSEs were reduced to 1.6 dB, 1.8 dB and 5.1 dB for the 

HH, VV and HV polarizations, respectively.  

The effect of incidence angle on the performance of the 

AIEM model was not analyzed because the available samples 

were acquired mainly with incidence angles between 20° and 

30°. The few samples with incidence angles of less than 20° or 

greater than 30° were not sufficient to analyze the influence of 
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the incidence angle on the quality of the AIEM simulations. 
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Figure 4 Comparison between backscattering coefficients estimated from 

the AIEM model and those calculated from the SAR images for the HH, 

VV and HV polarizations: s and l using in situ SSM_10 cm (a, b, c); s and 

Lopt using in situ SSM_5 cm (equation 1) (d, e, f); and s and Lopt 

(equation 1) using in situ SSM_10 cm (g, h, i). Each dot represents a 

correlation value for one reference field and one image acquisition date. 

Bias is defined as AIEM-SAR values. 

 

The better performances of the AIEM based on the SSM at 

a 10 cm depth could be due to the significant penetration of 

the radar wave in this semi-arid environment, i.e., the radar 

signal is more sensitive to deep layers in dry soil. 

For a more detailed study of the model performance at 

different depths, the dataset was separated into two parts: (1) 

samples with SSM_5 cm < 10 vol. % and (2) samples with 

SSM_5 cm > 10 vol. %, independent of the SSM at 10 cm. For 

SSM_5 cm < 10 vol. %, the difference between the AIEM 

with Lopt and SAR data (bias) decreased from +2.3 dB 

(SSM_5 cm) to -0.5 dB (SSM_10 cm) for HH, from +1.80 dB 

(SSM_5 cm) to +0.7 dB (SSM_10 cm) for VV and from -5.4 

dB (SSM_5 cm) to -1.1 dB (SSM_10 cm) for HV. For SSM_5 

cm > 10%, the bias decreased from +3.4 dB (SSM_5 cm) to 

+0.3 dB (SSM_10 cm) for HH and from +2.7 dB (SSM_5 cm) 

to +1.5 dB (SSM_10 cm) for VV. The statistics for HV were 

not calculated because only 10 samples were available for 

SSM_5 cm > 10%. 

In the totality of samples with all polarizations, the statistics 

showed that the difference between the AIEM with Lopt and 

the SAR data decreased from +0.7 dB (SSM_5 cm) to -0.2 dB 

(SSM_10 cm) for SSM_5 cm < 10 vol. % and from +3.3 dB 

(SSM_5 cm) to +1.8 dB (SSM_10 cm) for SSM_5 cm > 10 

vol. %. The RMSE decreased from 3.7 dB (SSM_5 cm) to 2.4 

dB (SSM_10 cm) for SSM_5 cm < 10 vol. % and from 3.7 dB 

(SSM_5 cm) to 3.2 dB (SSM_10 cm) for SSM_5 cm > 10 vol. 

%.  

V.  DISCUSSION AND CONCLUSIONS 

 This study confirmed the applicability of Lopt in the 

AIEM model. Moreover, these results showed that the use of 

Lopt ensures better agreement between the AIEM model and 

the SAR data when using a dataset acquired in a semi-arid 

environment with an SSM_10 cm between 3.1 vol. % and 29.2 

vol. %. The RMSE was lower for the HH and VV 

polarizations than for the HV polarizations. However, these 

results were obtained with fewer samples for HV (33 points 

for HV and 70 points for HH and VV). This approach can help 

to minimize the uncertainties introduced by correlation length 

measurement. Comparably, Huang et al. [14] reported a 

promising confidence level of approximately 2.0 dB in bias 

for the AIEM performance in a total of 34 samples, while this 

study showed a bias within 1.0 dB for HH and VV 

polarizations from 70 samples and a bias of 1.1 dB for HV 

polarization from 33 samples. Additional theoretical models 

may need to be considered to assess the empirical correlation 

length. 

The empirical correlation length solves the scale effect on 

the parameterizing correlation length. When accurate 

inversions of both RMS height and SSM from remote sensing-

based approaches are available, such as when using full 

polarimetric SAR [34], the AIEM coupled with Lopt can be 

used as an operational approach. Promising soil moisture data 

retrieval from SAR imagery is expected from the use of 
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empirical correlation length-parameterized AIEM for field-

scale purposes in semi-arid environments. 
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