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Abstract 16 

 17 

The data available in the literature concerning wood cutting forces permit to build models or 18 

to simulate the main wood machining processes (milling, sawing, peeling etc.). This approach 19 

contributes to a better understanding of formation of wood surfaces and chips and the data 20 

may be helpful to optimize cutting geometry, reduce tool wear, improve tool material, and to 21 

size tool-machines. 22 

The models may also be useful for industrial application in two ways: (1) providing 23 

data to optimise the settings for a given operation (batch approach) and (2) building predictive 24 

models that could be the basis of an online control systems for the machining processes 25 

(interactive approach). A prerequisite for this is that numerous machining tests on different 26 

wood materials are performed based on experiences with different kind of tools and 27 

experimental devices. With potential industrial applications in focus, the emphasis of this 28 

review was on the wood peeling process, which is a very demanding special case of wood 29 

cutting. Though not so many industrial machines are equipped with expensive force sensors, 30 

there is a lot of high quality information available about cutting forces which may be useful to 31 

improve the scientific or technologic knowledge in wood machining. Alternative parameters, 32 

such as vibration or sound measurements, appear to be promising substitutes in the praxis, 33 

particularly to feed online control systems of any wood cutting process. 34 
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Introduction  40 

Why to measure cutting forces? 41 

In the course of cutting process analysis, very often cutting forces are chosen as the main 42 

output for physical description of the process. The other possibilities – like vibration, sound, 43 

temperature, cutting power, deformation, surface quality and chip quality measurements – are 44 

usually neglected. The main reason: measurement of cutting force is a powerful tool allowing 45 

to build physico-mechanical cutting models for a better understanding of the phenomena 46 

observed during cutting. These models permit to design or optimise processes, machines, 47 

tools and wood preparation. 48 

 Cutting models have been first developed on scientific basis in order to describe the 49 

formation and typology of chips related to given cutting forces levels (Kivimaa 1950; Franz 50 

1958). The model of Merchant (1945), written for orthogonal cutting of metal, was adapted to 51 

wood by McKenzie (1960). 52 

 Other models aiming at the analysis of the wood-tool interaction during machining, 53 

were focusing more particularly on the influence of the cutting geometry (clearance and rake 54 

angles), wood characteristics (species, density, moisture content, and temperature), and 55 

processing parameters (cutting speed, depth of cut) on the level and stability of cutting forces 56 

(Kivimaa 1950; McKenzie 1960). 57 

 Some authors preferred a mechanical approach based on the cutting forces and 58 

evaluated the stress fields induced by the cutting process into the wood and into the tool, 59 

considering the friction on the surface between the wood and tool. The resultant cutting forces 60 

were divided into two categories: (1) forces exerted by the rake face and (2) forces exerted by 61 
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the clearance face of the tool (Thibaut 1988). When introducing the tool deflection (Decès-62 

Petit 1996), the assessment of the cutting plan displacements became possible. 63 

 Some models have been elaborated to predict cutting forces, to understand the 64 

mechanical behaviour of the materials tested (McKenzie 1962; Eyma et al. 2004) and other to 65 

characterise the machinability of different wood materials (see Kivimaa et al. as quoted by 66 

Scholtz and Troeger 2005). Another important target of these models was a diminishing 67 

expensive experimentation efforts under consideration of all parameters of processing and 68 

materials. 69 

Cutting forces have been frequently measured to size motors for machine tools to 70 

decrease energy consumption and to optimise processing parameters – such as cutting speed 71 

(Liska 1950; Sinn et al. 2005) –, depth of cut (Axelsson et al.1993), feed rate (Ko et al. 1999) 72 

and upward/downward milling (Palmqvist 2003; Goli et al. 2003). The cutting forces have 73 

also been used to optimise the tool geometry, e.g. rake, wedge and clearance angles, tool edge 74 

direction (Woodson and Koch 1970; McKenzie and Karpovich 1975; Komatsu 1976; Stewart 75 

1977; Komatsu 1993; Boucher et al. 2004), and the tool head design (e.g. the chip space, 76 

Heisel et al. 2004; Heisel et al. 2007). 77 

Cutting forces have often been measured to compare the cutting properties of different 78 

tool materials, e.g. steel, carbide, diamonds, thermal treated tools, and coated tools (Stewart 79 

1991; Darmawan et al. 2008). Also the machined wood was in focus considering the grain 80 

orientation and the structure (Axelsson 1994; Cyra and Tanaka 1999; Goli et al.2003), the 81 

heterogeneity (Mothe 1988), the moisture content (Kivimaa 1950), the temperature of 82 

steamed or frozen wood (Marchal et al. 1993, Lundberg and Axelsson 1993), the mature or 83 

the juvenile wood (Gonçalves and Néri 2005), the tension or the normal wood (Vazquez-Cooz 84 

and Meyer 2006), and the type of wood based materials. In the latter case, often modified 85 

MDF (Kowaluk et al.2004) or not modified MDF (Ko et al. 1999) was investigated. 86 
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The avoidance of dust and noise, and the improvement of the productivity (reduction 87 

the tool changing time, increase of the cutting speed, of the feed rate and of the cutting depth 88 

for a given surface quality) were also frequently in focus. Important results were obtained 89 

with this regards concerning predicting the tool edge wear (Fischer 1999; Fischer 2004), 90 

online controlling the wear (Huang, Y.-S 1994; Cyra and Tanaka 1999), predicting the chip 91 

geometry and fragmentation (Franz 1958), and online monitoring the wood surface quality 92 

(Cyra and Tanaka 1999; Palmqvist and Johansson 1999; McKenzie et al. 2001). 93 

 In some specific cases, the measurements of cutting forces helped to quantify the 94 

efficiency of auxiliary devices used to assist the cutting processes – e.g. ultrasonic-assisted 95 

cutting (Sinn et al. 2004) – or to improve the use of a pressure bar (Mothe and Marchal 2001). 96 

How to measure cutting forces? 97 

Two main approaches are known to measure cutting forces.  98 

(1) Direct measurements by sensors directly placed on the tool or in strategic points on the 99 

frame. Strain gauges and piezo electric sensors are common. Strain gauges technology is 100 

cheap but not always efficient. Dynamometers, specifically designed for measuring cutting 101 

forces of wood, have some drawbacks especially for trials involving very small forces, which 102 

is quite often the case in wood machining. Sometimes, the ground noise and the signal cannot 103 

be differentiated. Such devices need a very meticulous set-up including an important 104 

management of wiring. Nevertheless, they are highly sensitivity to temperature and moisture. 105 

Another limiting factor is their low stiffness because they are based on deformation 106 

measurements. Piezo electric sensors are more expensive and much stiffer. They are reliable 107 

on several decades of forces values, are easy to maintain, and, – despite a drift of about 0.01 108 

N/s in case of static test – are well adapted for dynamic and semi-static mechanical 109 

measurements. 110 
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(2) Indirect measurement are also available, which are based on non-contact displacement 111 

sensors with eddy current technology to measure distances, displacements. The forces are 112 

then computed via an inverse function of transfer (Costes 2007). 113 

Which cutting force components to consider? 114 

When measuring cutting forces, for the case of orthogonal cutting, the resultant force is 115 

usually decomposed in two ways: (1) in two orthogonal components: parallel and normal 116 

forces (Figure 1) and (2) in two facial components: rake and clearance forces (Figure 2). 117 

The first decomposition seems often suitable from the technological point of view. 118 

The parallel force gives information on the torque and consequently the energy consumption. 119 

The normal force describes the plunging or cutting refusal tendency as well as the tool wear 120 

(Palmqvist 2003). The thickness of the damaged layer arisen during planing is also described 121 

(Hernandez and Rojas 2002). Force variations are linked up with the roughness of the wood 122 

surface. 123 

The second decomposition makes it possible to propose a model directly linking the 124 

facial component forces to mechanical characteristics of wood. Such a model is much more 125 

powerful than the first one for the physical understanding of the underlying phenomenon, and 126 

at the same time, it is of some interest for optimising cutting geometry. On the other hand, 127 

two main hypotheses are necessary to use such a facial decomposition: (1) The sharpness of 128 

the tool is very good, i.e. the radius of the tool tip is low enough to neglect the “front” forces 129 

on the tool tip compared to the two facial components. (2) There is only Coulomb friction 130 

between tool and wood. 131 

Franz (1958) and Kivimaa (1950) and many other authors favoured obviously the first 132 

approach. Few authors adopted the second way: Dippon et al. (1999) for orthogonal cutting of 133 

MDF, Thibaut (1988) and Thibaut and Beauchêne (2004) for the study of 0/90° cutting mode 134 

on green wood (peeling or slicing). Fischer (2004) mixed the two approaches in order to 135 
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describe the phenomena at the mesoscopic scale just behind the cutting edge and, considering 136 

the forces under and above the cutting line. This author proposed a global approach of wood 137 

machining with specific trajectories of the tools into wood materials when milling, sawing or 138 

drilling. 139 

From the basic to the industrial praxis 140 

Measurement of cutting forces during wood machining is nowadays easy to realise at 141 

laboratory scale and physical models of cutting can be constructed which are capable of 142 

simulating the process. Different authors developed specific devices. These are necessary: (1) 143 

In the case of a batch processing for the prediction of machinability of some given wood 144 

materials and/or setting-up of specific machining operation. (2) In the case of an interactive 145 

processing to build a predictive model, then a monitoring system based on measurement of 146 

forces. These can be applied to adjust online process parameters (the cutting speed and/or the 147 

cutting geometry) based either on an open loop (help to the decision system for operators) or 148 

on a closed loop (adaptive control) control. 149 

Nevertheless, in this last case, cutting forces do not always appear to be the most 150 

suitable inputs because of the specific and very expensive design of the machine-tools. 151 

Moreover, the integration of gauges in the internal structure of a device often reduces a 152 

machine’s rigidity. Substitute outputs for control purposes must then be found. 153 

To illustrate all these aspects, this paper is focused on the peeling process because it is 154 

an industrial process following a fundamental cutting mode (0°/90°). A direct transfer of the 155 

results from the laboratory scale to the industrial one is possible. 156 

The peeling process requires keeping very accurate settings all along the machining 157 

operation. Actually, the cutting forces being the lowest among all wood processes (mode 158 

0°/90°, green wood), the tool balance is very sensitive to any change – even minor – of 159 

settings and of wood properties. Critical cutting plan displacements easily occur inducing 160 
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veneer thickness variation because of the high transverse deformability of green and often 161 

heated wood blocks stressed by the knife. Moreover, the action of the pressure bar modifies 162 

forces equilibrium and its settings interlink with the knife’s settings. In peeling process the 163 

final product (the veneer) being the chip, a carefully setting of all parameters is very 164 

important in order to obtain both a good quality chip and machined surface, but also to reach 165 

as fast as possible the steady state and to keep it. 166 

Model of cutting forces to simulate the process 167 

Mechanics of peeling process 168 

Thibaut (1988) and Thibaut (1995) proposed a system of mechanistic models for describing 169 

the basic processes in rotary veneer cutting. The experimental analyses were performed by a 170 

microlathe (Figure 3). This device permitted to record cutting forces and to visualise the 171 

lateral section of the piece of wood during the process (Butaud et al. 1995). The models of 172 

Thibaut explained and reproduced most of the experimental observations resulting from 173 

numerous peeling trials of various species like chestnut (Movassaghi 1985; Thibaut 1988), 174 

Douglas-fir (Movassaghi 1985; Mothe 1988), oaks (Marchal 1989), beech, walnut and poplar 175 

(Deces-Petit 1996), numerous tropical woods (Thibaut 1988; Beauchêne 1996). 176 

The main experimental observations may be summarised as follows after the analysis of 177 

the forces exerted by the tool (the resultant rake force Fa, the resultant clearance force Fd) and 178 

by the pressure bar (Fb), and also considering their respective tangential (or parallel) and 179 

radial (or normal) components X and Y (Figure 2):  180 

The chip flows above the rake face of the tool via a shearing deformation along a nearly 181 

radial plane (zone 2 in Figure 4), and does not show any shortening as compared to cutting 182 

length, which is in strong disagreement with classical metal machining experiments and 183 

theories like that of Merchant. 184 
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The compression and rubbing action of the pressure bar – most of the experiments were 185 

performed with a nosebar; the action of a round bar would be slightly different – and the 186 

clearance face of the tool result in radial compressive stresses which can reach very high 187 

values (crushing of the cells – zones 1 in Figure 4) near the contact zone, and remain in the 188 

elastic domain farther from the tool (zone 4 in Figure 4). 189 

The radial wood displacement at the tip level leads to unexpected changes of the final 190 

thickness of the veneer due to this compression state (Figure 5). 191 

In front of the tool tip, the radial tensile stresses resulting from both tool and bar actions 192 

may lead to lathe checks (in mode I), particularly for thick veneer and dense wood (zones 3 in 193 

Figure 4, Figure 6a). 194 

For lower thickness and softer wood, the tangential compression at the tool edge level 195 

may lead to discontinuous cutting with alternation of wood compression and relaxation in 196 

front of the tool tip. This behaviour is often called the Horner effect (Figure 6b). 197 

Simulation of the peeling process 198 

The models of Thibaut were embedded into a software for simulating the rotary cutting of a 199 

heterogeneous wood (Mothe et al.1997). The simulation works on a radial basis: starting from 200 

the initial conditions (tool edge tangential to the surface, veneer thickness = 0), the cutting 201 

forces are computed for each rotation at the same angular position (Figure 7), as the tool 202 

moves radially inwards. The radial wood displacement induced by the cutting forces is 203 

therefore computed, allowing predicting the actual veneer thickness at each turn. 204 

It was assumed that wood properties remain constant – at least in a short distance – in 205 

both tangential and longitudinal directions and vary only along the radius. Beauchêne and 206 

Thibaut (1996) showed that most of the mechanical properties of wet wood depend strongly 207 

on the wood density and temperature for tropical homogeneous species. The stress-strain 208 

curves in radial compression, in radial tension, and in radial/tangential shear are all supposed 209 



 9

to be predictable at a given temperature through the wood density profile from the tip of the 210 

pressure bar to the inner core. 211 

Force on the pressure bar (Fb) 212 

The radial component of Fb, Yb, is related to the depth of wood crushed by the pressure bar 213 

which is the difference between the actual veneer thickness Ev and the horizontal gap Ch. The 214 

radial displacement is absorbed by the whole block of wood from the upper side of the veneer 215 

to the peeling lathe spindle (not considering the bolt bending). 216 

The radial force may be computed with an iterative procedure: For increasing values 217 

of the load, the stress distribution is estimated along a plane uniformly loaded with the 218 

formula of Timoshenko and Goodier (1951). The radial displacements of elementary portions 219 

of wood are summed along the radius to compute the total wood displacement: The process is 220 

repeated until the total displacement is close enough to the bar penetration Ev - Ch. 221 

Finally, an experimental model based on the pressure bar settings and the friction 222 

coefficient is applied for estimating the orientation angle of Fb and therefore the tangential 223 

component Xb. Assuming that the compression load is identical on both the front and back 224 

faces of the pressure bar, the total force is redistributed on both faces proportionally to the 225 

respective lengths of contact, which are computed geometrically. 226 

Force on the tool clearance face (Fd) 227 

The clearance force Fd depends mainly on the amount and stiffness of wood crushed by the 228 

clearance face. The depth and length of contact are computed geometrically based on the 229 

actual veneer thickness, the peeling radius, and the clearance angle. The radial component is 230 

then calculated by the same iterative procedure as for the pressure bar force. 231 

However, experimental results show that Fd remains rather high even if the clearance 232 

angle is large enough to minimise the contact. This can be explained by the crushing of cells 233 

rolling back the tool edge and rubbing the clearance face on a short distance. This second 234 



 10

contribution to the radial component of Fd can be estimated by the product of the contact 235 

length (supposed to be constant) and the stress generated by the cells crushing (supposed to be 236 

equal to the end of the elastic phase of the stress-strain curve in radial compression). 237 

With the radial component of the clearance force being known, the angle of inclination 238 

of Fd (given by the friction coefficient between wet wood and metal) can be used to compute 239 

the tangential component of the clearance force. 240 

Force on the tool rake face (Fa) 241 

The rake force Fa increases quite linearly with wood density and veneer thickness. It depends 242 

mainly on the intensity of the stresses and their distribution along the main shearing plane. 243 

In absence of a pressure bar, the radial force may be estimated by integrating along 244 

the stresses along the shear plane (supposedly radial). Considering that the wedge angle is 245 

usually close to 20°, the maximal shear deformation near the tool tip may be assumed to be 246 

constant (around 35%) whatever the lathe settings are. An exponential decreasing function is 247 

then used to describe the stress distribution and to compute the radial component of Fa. 248 

In the presence of a pressure bar, the forces on both the back and front faces of the 249 

bar have to be considered. The radial component of the back face force contributes positively 250 

to the rake force, the veneer being compressed between the back face of the bar and the rake 251 

face of the tool (this force is null if the angle between the cutting plan and the back face is 252 

above 90°). On the other hand, the front face force contributes negatively by reducing the 253 

stresses along the shearing plane. 254 

Radial wood displacements due to the cutting forces 255 

The radial forces on the tool and the pressure bar lead to radial displacement of the wood 256 

block. As a main consequence, the veneer thickness (Ev) may be slightly different from the 257 

expected thickness. 258 
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The actual thickness depends on the current radial displacement and on the 259 

displacement resulted from the previous revolution. Assuming that the previous displacement 260 

and the cutting forces are known, the new displacements generated at the tool tip level by the 261 

radial components of the shearing force, the tool clearance force and the front face of the 262 

pressure bar force
 
have to be computed. The force on the back face of the nosebar is assumed 263 

have no effect because it is equilibrated by the face force of the tool rake. In each case, this 264 

task is performed by summing along the radius the displacements of elementary layers of 265 

wood in accordance with the relationships between tension and compression stress-strain. 266 

Main calculation loop 267 

Considering that the cutting forces are needed for estimating the veneer thickness and that the 268 

thickness depends on the cutting forces, an iterative procedure has to be applied. The 269 

convergence is usually reached after less than five iterations for heterogeneous woods except 270 

when the properties change abruptly (e.g. near an annual ring limit) or when the pressure bar 271 

(being misplaced) leads the tool to plunge and rise alternately. 272 

Veneer quality 273 

The three main defects of a rotary cut veneer linked to the cutting process are lathe checks, 274 

roughness due to the Horner effect, and thickness variations. Only the last one has been 275 

actually predicted by the simulator, even if lathe checks and Horner effect could be predicted 276 

easily through cutting forces and tensile properties of wood. 277 

For heterogeneous wood species, the continuous changes in wood density tend to 278 

make worse these defects. The most unfavourable case occurs when the wood density near the 279 

pressure bar and near the tool are strongly different, as shown for the two main cases in figure 280 

6 frequently occurring  when peeling softwoods. 281 

A virtual simulation of the peeling process is nowadays available to predict cutting 282 

forces, and consequently the adapted settings for given wood species. However, this model 283 
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can be improved with better modelling of wet wood mechanical behaviour. With a view to 284 

deliver a more general model of the chip formation during peeling at the mesoscopic scale, 285 

Bonin (2006) attempted to implement a thermo-mechanical simulation of metal turning 286 

(Cordebois 1994; Ali, F. 2001) to wood peeling. An adaptation of the thermo mechanic model 287 

of Oxley (1989) has been tested based on a law of wood orthotropy (called the Bauschinger 288 

effect; asymmetry of the mechanical behaviour in compression and tension) and considering 289 

the deformation speed. This approach was unsuccessful because all the analytical models of 290 

the chip formation for metals are based on laws describing elastoplastic behaviour at high 291 

deformations. After having performed a great number of mechanical tests on beech green 292 

wood in transverse directions, Bonin (2006) concluded that hyperelasticity and 293 

compressibility of green wood like elastomers (Laraba-Abbes 1998) caused the differences. 294 

Bonin (2006) also built a new model relying on simplified assumptions (e.g. neglecting the 295 

increase of temperature during chip formation and the orthotropy in the transverse plan) based 296 

on thirty micropeeling tests. In this model, the slope of the cutting zone was in agreement 297 

with the experiments. Furthermore, forces occurring on the rake face of the tool were 298 

correctly predicted: for more than 95% of the predicted forces, the gap between experimented 299 

and predicted results was less than 20%. 300 

Dynamometric approach for optimising the process 301 

From this comprehensive description of the veneering process, several practical rules can be 302 

highlighted which are directly applicable to industrial processes. Just considering the two 303 

decompositions of Fc, the resultant cutting force exerted by the tool, the 4 components provide 304 

useful practical information on the process in progress:  305 

(1) Xc: its mean value determines the lathe motor torque value. It must be as small as 306 

possible. Standard variation of Xc is linked to the amplitude and possibly the frequency of 307 

lathe checking. 308 
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(2) Yc is linked to the tool tip position: a negative value expresses a cutting refusal 309 

tendency when a positive one indicates a tool plunging tendency. In the normal case, the best 310 

settings are obtained when the tool dives a little (low positive Yc value); the cutting plan is 311 

then slightly lower than the theoretical one. As can be seen in Figure 8, a very small change 312 

on clearance angle can then induce huge effect upon the tool equilibrium, especially for very 313 

small veneer thicknesses (Marchal and Negri 1997). 314 

(3) The ratio Fa/Fd describes the tool balance and also the wear pattern. In the normal 315 

case, Fa/Fd is in the range of 2 to 3. Fa and Fd, are computed as illustrated in Figure 2. These 316 

two forces are, respectively, a function of the veneer thickness and of the clearance angle. It is 317 

quite easy to act on the clearance angle to reach the right ratio. This ratio must be as 318 

insensitive as possible to cutting speed variation. There are for a given wood species two 319 

domains: one for low cutting speed and one for high cutting speed. At high speed, the 320 

clearance angle should be increased in order to avoid the huge increase of Fd (Figure 9 in the 321 

case of walnut) due to the “Maxwell effect” and then to maintain the good balance of the tool. 322 

Cutting speed and clearance angle are interlinked settings. Remark to the Maxwell effect: 323 

Under high deformation speeds, free water contained in cells being only parthly evacuated 324 

from the maximum stress area, the free water still remaining induces an apparent increase in 325 

rigidity through Young’s modulus because of its incompressibility (Costes and Larricq 2002). 326 

(4) All the mean values and the variation of forces must be maintained at a level as low as 327 

possible in order to improve tool-life (minimizing the wear of the tool and machine fatigue). 328 

Considering also the pressure bar, (1) The ratio Yb/Fa can be used to survey the pressure 329 

bar efficiency for reducing lathe checking (Thibaut 1988). (2) The sum Xc+Xb should be 330 

minimized to decrease the power consumption and (3) the sum Yc + Yb should be minimized 331 

to decrease the flexion of the wood block at the end of the process. 332 
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These measurements and calculation are very useful for the process optimisation at the 333 

laboratory scale. However, there are not yet industrial machines equipped with force sensors 334 

which make possible the application of this knowledge neither for basic optimisation nor for 335 

online control of the process (Lemaster et al.2000a). Nevertheless, for high value added 336 

products, the process could be feasible.  337 

Cutting forces and alternative outputs to develop interactive processing 338 

Power consumption 339 

Some alternative inputs were also investigated. The nearest measurement to forces is probably 340 

power consumption. Despite the fact that it is quite easy to implement directly a spindle to 341 

measure the power consumed by the cut, this information is significantly less pertinent. 342 

According to Lemaster et al. (2000a), this measurement integrates both the cutting forces and 343 

the dynamic aspects of the machine. 344 

Artificial vision 345 

Operators on CNC often characterise the status of the process by visual inspection. Many 346 

defects of the machined surface or tool wear can be seen directly. Unfortunately, according to 347 

Januten (2002), direct methods to measure tool wear (also including computer vision) have 348 

not yet proven to be very attractive economically and technically. Lemaster and Stewart 349 

(2005) have developed a software able to distinguish different random defects from an optical 350 

profilometer signal. The algorithm proposed is based on fuzzy logic and Wavelets. This 351 

approach seems very promising, but it is still not yet fully developed. 352 

Acoustic emission 353 

Several authors also applied acoustic emission (AE) as input data. AE is the stress waves (low 354 

energy and very high frequency i.e. from 100 kHz up to 1000 kHz) produced by the sudden 355 

internal stress redistribution of a material caused by changes in its internal structure (crack 356 

opening or growing, fibre breakage, etc.). Lemaster et al. (1982), Lemaster and Kato (1991), 357 
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and Murase et al. (2004) proved the great potential of this technique to monitor wood cutting 358 

processes. According to the accepted indicators (Root Mean Square - RMS, count rate, 359 

cumulative count rate, etc.), AE is sensitive to the chip formation mechanism (shearing plan, 360 

sliding areas, cracks, splits etc.). However, Lemaster et al. (2000a) underlined the limitation 361 

of this technique which is the high sensitivity to background noise due to the device 362 

components such as roller bearings. Adding the high damping character of wood materials, it 363 

is necessary to place sensors very closed to the cutting area, which is often not applicable in 364 

industry. 365 

Sound and vibrations 366 

Experienced operators are very sensitive to sound or vibrations emitted by the process of 367 

milling or sawing (Marchal et al. 2000). Only a few works were carried out with acoustic or 368 

vibratory sensors as sources of information for wood machining. Nagatomi et al. (1999) found 369 

a high correlation between probability of sound pressure level (SPL) larger than a suitable 370 

threshold and surface roughness of peeled veneers of sugi. However, this relation was 371 

obtained within a very large domain of frequencies (some Hz to 100 kHz) which is not 372 

congruent with the operator’s ability with an audible range from 20 Hz to 20 kHz. In 373 

numerous other works based on AE or SPL measurements to build an online control system 374 

(Tanaka et al. 1997; Nagatomi et al.1993; Murase and Harada 1995), the threshold value 375 

determination has never been clearly explained. This value is always more or less linked to 376 

experimental settings applied (device, wood species, cutting conditions, moisture content, 377 

etc.) which is not enough flexible to meet industrial requirements. Iskra and Tanaka (2006) 378 

used dynamical thresholds to analyse (one-third octave band analysis) both SPL and sound 379 

intensity during routing of Japanese beech. This constituted a great improvement of the 380 

approach previously described because the criterion was polyvalent and consequently better 381 

adapted to industrial environment constraint. 382 
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Iskra and Tanaka (2005) obtained a significant and high correlation coefficient 383 

between surface roughness and sound intensity allowing them to adapt feed rate during 384 

routing with regard to the value of sample grain angle. However, the frequency band selected 385 

for computation was probably only optimal for the experimental setup considered. Lemaster 386 

et al. (2000b) used accelerometers and obtained similar results for tool wear monitoring 387 

during routing. Instead of a global RMS value (computed on a large frequencies domain), the 388 

authors proposed power spectrum density (PSD) as criterion to determine the most promising 389 

band for computation. The great potential of spectral analysis was confirmed by Denaud et al. 390 

(2005). During peeling, the authors identified a peak on fast Fourier transform (FFT) spectra 391 

(obtained from both microphone and accelerometers as indicated in Figure 10). It corresponds 392 

to the vibratory signature of the average lathe check frequency of the veneer. This 393 

phenomenon is almost periodic for homogeneous species. However, the peak detection would 394 

be only possible by characterising the mechanical behaviour of the lathe which is a delicate 395 

and an expensive operation. To bypass this difficulty, Denaud et al. (2007a) developed a 396 

method to identify the signature of lathe checks on the temporal signal emitted from the same 397 

sensors. This needs only a local RMS averaging via a peak detection algorithm which did not 398 

require any threshold (see Figure 11). This approach seemed very promising to get check 399 

distributions along the veneer, however, its efficiency for slightly checked veneers was not 400 

characterised. 401 

To sum up, vibration or sound measurements seem to be the most promising ways to 402 

substitute measurements of cutting forces in a search for an online control system of a cutting 403 

process. However, there are some ambiguities concerning a threshold, a correlation 404 

coefficient, a frequency band domain or a peak on a spectral analysis. Hitherto, empirical and 405 

preliminary limits are set with this regard. 406 
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As a response, Denaud et al. (2007b) initiated new experiments. These authors tried to 407 

avoid any check formation and estimated PSD from a “reference cutting trail” under 408 

conditions of a high pressure rate of the pressure bar (20% of the veneer thickness here). In 409 

this manner, they took account of the dynamical behaviour of their device. Such settings 410 

produced inevitably unacceptable variations of the veneer thickness which, however, did not 411 

affect notably the PSD. 412 

The ratio between measured and reference signal helped avoid natural frequencies of 413 

the lathe. By this way, the default signature characterisation was greatly simplified as shown 414 

in Figure 12 for the same domain of frequencies. The highest peak was at 152 Hz which 415 

corresponds to an average distance of almost 3.3 mm between two consecutive checks. 416 

Moreover, according to the results of Denaud et al. (2007b), this approach is also suitable for 417 

relatively low pressure rates. In the end, this could lead to an online control of the pressure 418 

rate of the pressure bar which is always a compromise to obtain a veneer with small lathe 419 

checks and constant thickness. 420 

Conclusion 421 

For a long time, cutting force measurement has been the only successful and most powerful 422 

measurement for producing output data for advanced analytical research on wood machining 423 

processes. It is still matchless and helps improve knowledge about wood surface formation 424 

and tool wear. Its main asset is that it takes into consideration the contact between tool and 425 

wood and thus enables computation of the strains inside the wood pieces, the wood chips, and 426 

the tools. However, cheaper sensors with more operating comfort are needed in the industrial 427 

praxis. Against this background, accelerometers and microphones, which can be integrated 428 

easily into the machine, are promising sensors for the near future. On the other hand, the 429 

signal treatment is more difficult in the case of these sensors. 430 



 18

Measuring wood cutting forces makes a sense definitively for basic research. The 431 

same is true in industrial applications, particularly in batch processes. In such cases, 432 

preliminary tests on specific machining benches are necessary in order to optimise cutting 433 

geometry and any other cutting parameters, before launching a new production. 434 
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Figure 1 Orthogonal decomposition of the cutting force (in Woodson and Koch, 1970) 
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Figure 2: Cutting and pressure bar forces in peeling processes. (a) orthogonal and facial 

components of  the resultant cutting forces Fc (b) orthogonal components of the resultant 

pressure force Fb (in Butaud et al 1995) 
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Figure 3 The instrumented microlathe in ENSAM 
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Figure 4 Basic processes in veneer cutting (in Beauchêne 1996)  
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Figure 5 Consequence of the radial displacement of wood on veneer thickness at the tip level 

due to the cutting forces. 
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Figure 6 Specific problems encountered with heterogeneous species. (a) Ring limit crossing 

the veneer: the high density near the tool increases the risk of lath checks since the low 

density near the pressure bar prevents it to counteract. (b) Early wood/late wood transition: 

the soft wood around the tool is crushed at the tool tip and torn by the friction on the tool 

faces; the bar force is increased by dense wood and tends to reduce the veneer thickness by 

moving the cutting plane above the tool. 
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Figure 7  Work of the peeling simulator. The forces and wood displacements are computed at 

each turn at the same radial position. The wood density profile is the basis for predicting the 

mechanical properties along the radius. 
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Figure 8 Experimentaly obtained diagrams. Influence of the clearance angle į on the 

orthogonal cutting forces distribution (Marchal and Negri 1997) in the case of peeling thin 

veneers (evergreen oak; nominal thickness = 0.6 mm; cutting speed = 2 mm/s) 
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Figure 9 Evolution of the two facial components of the resultant cutting force with the cutting 

speed (Decès-Petit 1996). (Walnut; nominal thickness =1 mm; clearance angle = 0°) 
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Figure 10 Lathe check signature (spectrum from knife accelerometer in tangential direction 

(AXc). The signature (circled) is mainly visible for the higher thickness, only very small lathe 

check occurring when peeling in 1 mm (grey line). Poplar, without the pressure bar, Vc = 

0.5m/s, well honed tool, clearance angle null, thickness of 1 mm: soft-checked veneer / 

thickness of 3 mm: hard-checked veneer) 
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Figure 11: Original, preset, and peak detected from the microphone signal for a 3 mm thick 

beech veneer (Denaud et al 2007 a) 
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Figure 12 PSD ratio for microphone, AXc and AYc accelerometers (respectively in the 

tangential and radial direction) between 3 mm. Poplar veneer without pressure bar and 

reference signal. 


