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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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ABSTRACT

Comprehensive terminology is essential for a community to de-
scribe, exchange, and retrieve data. In multiple domain, the ex-
plosion of text data produced has reached a level for which auto-
matic terminology extraction and enrichment is mandatory. Auto-
matic Term Extraction (or Recognition) methods use natural lan-
guage processing to do so. Methods featuring linguistic and statis-
tical aspects as often proposed in the literature, solve some prob-
lems related to term extraction as low frequency, complexity of
the multi-word term extraction, human effort to validate candidate
terms. In contrast, we present two new measures for extracting and
ranking muli-word terms from domain-specific corpora, covering
the all mentioned problems. In addition we demonstrate how the
use of the Web to evaluate the significance of a multi-word term
candidate, helps us to outperform precision results obtain on the
biomedical GENIA corpus with previous reported measures such
as C-value.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining; I.2.7 [Natural Lan-

guage Processing]: Text analysis

Keywords

BioNLP, Text Mining, Web Mining, Automatic Term Extraction

1. INTRODUCTION
The amount of textual documents available on the web is always

growing. Nowadays, analysis on such data for finding interesting
knowledge is still a challenge. It is even more true when concepts
or terms are domain-based (clinical trial description, adverse event
report, electronic health records, customer complaint emails or en-
gineers’ repair notes [10]) as it needs more complex approaches
for efficiency purpose. Recently, in the Natural Language Process-
ing community, the automatic extraction of representative patterns
from plain texts has been addressed to identify terms or expressions
from a given corpus such as the Automatic Term Extraction (ATE),
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or Automatic Term Recognition methods. The associated applica-
tions are lexicon update, domain ontology construction, summa-
rization. Term extraction methods usually involves two main steps.
The first step extracts candidates by unithood calculation to qual-
ify a string as a valid term. The second step verifies them through
termhood measures to validate their domain specificity. Formally,
unithood refers to the degree of strength or stability of syntag-
matic combinations and collocations, and termhood is defined as
the degree that a linguistic unit is related to domain-specific con-
cepts [12]. Such terms may be: (i) single-word terms (usually sim-
ple to extract), or (ii) multi-word terms (hard to extract). In this
paper, we focus on mutli-word term extraction.

There are some known issues with ATE such as: (i) extraction of
non valid terms (noise) or missing of relevant terms with low fre-
quency (silence), (ii) extraction of multi-word terms that inevitably
have complex and various structures, (iii) human effort spent for
validating the candidate terms, which is usually manually performed
[5], (iv) application to large-scale corpora. In response to the above
problems, we propose two new measures, the first one called LIDF-

value, which is statistic- and linguistic-based measure, which deals
with first, second and last previously mentioned issues. And the
second one called WAHI, which is a web-based measure which
deals with the three firsts issues. The novelty of the LIDF-value

measure is an enhance consideration of term unithood, by com-
puting a degree of quality for term unithood. The novelty of the
WAHI measure is to be web-based which has never been applied
within ATE approaches. In this paper, we compare the quality of
the proposed methods with the most used baseline measures de-
spite the difficulty in comparing the ATE measures due to the size
of the used corpora, due to the absence of libraries implementing
methodologies proposed before. We demonstrate that the use of
these two measures improves the automatic extraction of domain-
specific terms from text collections that do not offer reliable fre-
quency statistical evidence.

The rest of the paper is organized as follow: We discuss related
work in Section 2. The two new measures are described in Sec-
tion 3. Evaluation of our approach is presented in Section 4 fol-
lowed with conclusions in Section 5.

2. RELATED WORK
Several recent studies focused on multi-word (n-grams) and single-

word (unigrams) term extraction; existing term extraction techniques
can be divided in four broad categories: (i) linguistic, (ii) statisti-

cal, (iii) machine learning, and (iv) hybrid. All of these techniques
are enclosed in text mining approaches. Existing web techniques
have not been applied to ATE, but as we will see, such techniques
can be adapted for such purpose.
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2.1 Text Mining approaches
Linguistic approaches: Linguistic approaches attempt to re-

cover terms thanks to the formation of syntactic patterns. The
main idea is to build rules in order to describe naming structures
for different classes using orthographic, lexical, or morphosyntac-
tic characteristics, for instance [8]. As explained in [14], the main
approach is to (typically manually) develop rules that describe com-
mon naming structures for certain term classes using either ortho-
graphic or lexical clues, or more complex morpho-syntactic fea-
tures.

Statistical methods: The statistical techniques chiefly rely on
external evidence presented through surrounding (contextual) in-
formation. Statistical approaches mainly address the recognition
of general terms [21]. The most basic measure is frequency. For
instances, term frequency (tf) counts the frequency of a term in
the corpus; document frequency (df) counts the number of doc-
uments where term occurs; average term frequency (atf), which
is tf

df
. A comparable research topic, called Automatic Keyword

Extraction (AKE), identifies the processes of extracting the most
relevant words or phrases in a document. AKE measures are of-
ten use for automatic indexing. Keywords, which we define as
a sequence of one or more words, provide a compact representa-
tion of a document content. IN previous publications, we demon-
strated that AKE measures can be adapted for term extraction from
a corpus and obtained significant results [15] [16]. We have taken
two popular AKE measures, Okapi BM25 and TF-IDF (also called
weighting measures) to extract biomedical terms. One might also
mention residual inverse document frequency (RIDF), which com-
pares df to another model of chance where terms with a particular
term frequency are distributed randomly throughout the collection.
In addition, Chi-square [17] computes how selectively words and
phrases co-occur within the same sentences as a particular subset
of frequent terms in the document text, it is applied to determine
the bias of word co-occurrences in the document text which is then
used to rank words and phrases as keywords of the document. Fi-
nally, RAKE [20] hypotheses that keywords usually consist of mul-
tiple words and usually do not contain punctuation or stop words
and uses the information of word co-occurrences to determine the
keywords.determine the keywords.

Machine Learning: Machine Learning systems are usually de-
signed for a specific class of entities and integrate term recognition
and term classification. Machine Learning systems use training
data to learn useful features for term recognition and classification,
but the existence of reliable training resources is one of the main
problems as they are not widely available. Some proposed ATE
approach uses machine learning [6] [23] [18]. Although machine
learning may also generate noise and silence, it facilitates the use
of a number of TCs and their features, but the main challenge is to
select a set of discriminating features that can be used for accurate
recognition (and classification) of term instances.

Hybrid methods: Several approaches combine different meth-
ods (typically linguistic and statistical) for term extraction. Glos-

sEx [13] is a method that considers the probability of the word in
a domain corpus divided by the probability of the same word in a
general corpus, moreover, the importance of the word is increased
according to its frequency in the domain corpus. Weirdness [1]
considers that the distribution of words in a specific domain corpus
is different from the word distribution in a general corpus. C/NC-

value [7], combines statistical and linguistic information for the
extraction of multi-word and nested terms, it the most well known
in the literature. While most studies address specific types of enti-
ties, C/NC-value is a domain-independent method. It was also used
for recognizing terms from biomedical literature [9] [15]. In [24],

authors show that C-value has the best results compared to other
measures cited above. Another measure is F-TFIDF-C [16] that
combines an ATE measure (C-value) and an AKE measure (TF-

IDF) to extract terms obtaining better results than C-value. Also,
the C-value measure was also applied to many different languages
besides English, such as Japanese, Serbian, Slovenian, Polish, Chi-
nese [11], Spanish [2], Arabic, and French [15]. That is why we
take C-value and F-TFIDF-C as baselines for comparison in our
experiments.

2.2 Web Mining approaches
Different web mining studies focus on semantic similarity, se-

mantic relatedness. It means to quantify the degree in which some
words are related, considering not only similarity but any possi-
ble semantic relationship among them. The word association mea-
sures can be divided in three categories [3]: (i) Co-occurrence mea-

sures that rely on co-occurrence frequencies of both words in a
corpus, (ii) Distributional similarity-based measures that charac-
terize a word by the distribution of other words around it, and (iii)
Knowledge-based measures that use knowledge-sources like the-
sauri, semantic networks, or taxonomies. In this paper, we focus on
co-occurrence measures, because our goal is to extract multi-word
terms and we suggest to compute a degree of association between
words composing a term. Word association measures are used in
several domains like ecology, psychology, medicine, and language
processing and recently studied in [19] [22], such as Dice, Jaccard,
Overlap, Cosine. Another measure to compute the association be-
tween words using web search engines results is the Normalized
Google Distance [4], which relies on the number of times words co-
occur in the document indexed by an information retrieval system.
In this study, we compare our results obtained with our web-based
measure with basic measures (Dice, Jaccard, Overlap, Cosine).

3. OUR APPROACH

3.1 A new ranking measure based on linguis-
tic and statistical information

3.1.1 Linguistic-based measure

The objective of this measure is to give a higher importance to
the term unithood than the measures cited in the state-of-the-art,
in order to detect terms that have low frequency. Part-of-Speech
(POS) tagging is the process of assigning each word in a text to
its grammatical category (e.g., noun, adjective). This process is
performed based on the definition of the word or on the context
which it appears in.

As previously cited work, we suppose terms of a domain have
similar syntactic structure. Therefore, we build a list of the most
common linguistic patterns according the syntactic structure of tech-
nical terms present in a dictionary, in our case, UMLS1, which is a
set of references biomedical terminologies. We do part-of-speech
tagging of the domain dictionary using the Stanford CoreNLP API
(POS tagging)2, then compute the frequency of syntactic structures.
We then choose the 200 highest frequencies to build the list of pat-
terns and we compute the following weight: the probability a candi-
date term may have of being a domain term if its syntactic structure
appears in the linguistic pattern list . The number of terms used to
build these lists of patterns was 2 300 000. Table 1 illustrates the
computation of the linguistic pattern probability.

1http://www.nlm.nih.gov/research/umls
2http://nlp.stanford.edu/software/corenlp.

shtml
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Pattern Frequency Probability

NN IN JJ NN IN JJ NN 3006 3006/4113 = 0.73
NN CD NN NN NN 1107 1107/4113 = 0.27

4113 1.00

Table 1: Example of pattern construction (where NN is a noun,

IN a preposition or subordinating conjunction, JJ an adjective,

and CD a cardinal number)

3.1.2 Statistical-based measure

The objective of our measure called LIDF-value (Linguisitic pat-

terns, IDF, and C-value information) is to compute the termhood
for each term, using the probability calculated previously, also
with the idf , and the C-value of each term. The inverse document
frequency (idf) is a measure of whether the term is common or rare
across all documents. It is obtained by dividing the total number of
documents by the number of documents containing the term, and
then taking the logarithm of that quotient. The probability and the
idf improve the extraction of terms with low frequency. In addi-
tion, the C-value measure is based on term frequency of terms. The
aim of the C-value is to improve the extraction of nested terms,
i.e., this criteria favors a candidate term that not appears often in
a longer term. For instance, in a specialized corpus (Ophthalmol-
ogy), the Ananiadou et al. [7] found the irrelevant term soft contact

while the frequent and longer term soft contact lens is relevant.
We combined these different statistical information (i.e., probability

of linguisitic patterns, C-value, idf ) to propose a global ranking
measure called LIDF-value (formula 1). A represents multi-word
term; P(ALP ) is the probability of A which has the same linguis-
tic structure of linguistic pattern LP , it means the weight of the
linguistic pattern LP computed in Subsection 3.1.1.

LIDF -value(A) = P(ALP )× idf(A)× C-value(A) (1)

So, to compute LIDF-value we execute three step:
(1) Part-of-Speech tagging: we apply part-of-speech to the whole

corpus, after we take the lemma of each word.
(2) Candidate terms extraction: before applying any measures

we filter out the content of our input corpus using patterns
previously computed. We select only the terms which syn-
tactic structure is in the patterns list.

(3) Ranking of candidate terms: finally we compute the value
of LIDF-value for each term.

In order to improve the ranking, we propose, in the following
subsection, to take into account web information to highlight rele-
vant terms.

3.2 A new Web ranking measure
Previous studies of web mining approaches query the Web via

search engines to measure association of words. This enables to
measure the association of words composing a term (e.g., ’soft’,
’contact’, and ’lens’ that compose the relevant term ’soft contact
lens’). To measure this association, our web-mining approach takes
into account the number of pages provided by search engines (i.e.,
number of hits). Our Web-based measure has for objective to re-
rank the list obtained previously with the LIDF-value measure. We
will show that it enables improving the precision of the k first
terms extracted (see Section 4) and that it is specially appropriated
for multi-word term extraction. The Dice’s coefficient used in our
approach computes some kind of relationship between two words
called a co-occurrence. This measure is defined by the following

formula:

D(x, y) =
2× P (x, y)

P (x) + P (y)
(2)

Formula 2 leads directly to formula 3.3 The nb function used
in formula 3 represents the number of pages provided by search
engines (i.e., Yahoo and Bing). With this measure, we compute a
strict dependence (i.e., neighboring words by using the operator ’
" ’ of search engines). For instance, x might represent the word
’soft’ and y the word ’contact’ in order to calculate the association
measure of ’soft contact’ term.

Dice(x, y) =
2× nb(“x y”)

nb(x) + nb(y)
(3)

In a natural way, we extend this approach to n elements as fol-
lows:

Dice(a1, ..., an) =
n× nb(“a1 ... an”)

nb(a1) + ...+ nb(an)
(4)

This measure enables to calculate a score for all multi-word terms,
such as ’soft contact lens’.

Moreover, we associate Dice criteria with another association
measure called WebR (see formula 5 and [16]). This one takes
only into account the number of web pages containing all the words
of the terms by using operators " " and AND.

WebR(A) =
nb(“A”)

nb(A)
(5)

Where A = multi-word term, ai ∈ A and ai = {noun, adjective,
foreign word}.

For the example of term ’soft contact lens’, the numerator cor-
responds to the number of web pages with the query "soft contact

lens", and for the denominator we consider the query soft AND

contact AND lens.
Finally the global ranking approach combining Dice and WebR

is given by WAHI measure (Web Association based on Hits Information):

WAHI(A) =
n× nb(“A”)

nX

i=1

nb(ai)

×
nb(“A”)

nb(A)
(6)

We will show that open-domain (general) resources, such as web,
can be exploited to support domain-specific term extraction. Thus,
they can be used to compensate for the unavailability of domain-
specific resources.

4. EXPERIMENTS AND RESULTS

4.1 Data, Protocol, and Validation
We use GENIA4 corpus, which is made up of the 2 000 titles and

abstracts of journal articles that have been taken from the Medline
database, with more than 400 000 words. GENIA corpus contains
linguistic expressions referring to entities of interest in molecular
biology such as proteins, genes and cells. The GENIA technical
term annotation covers the identification of physical biological enti-
ties as well as other important terms. Whereas the Medline indexes
broad range of academic articles covering the general or specific
domains of life sciences, GENIA is intended to cover a smaller

3by writing P (x) = nb(x)
nb_total

, P (y) = nb(y)
nb_total

, P (x, y) =
nb(x,y)
nb_total

4http://www.nactem.ac.uk/genia/
genia-corpus/term-corpus
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subject domain: biological reactions concerning transcription fac-
tors in human blood cells. Then in order to automatically validate
and to cover medical terms, we create a dictionary that contains ev-
ery term of UMLS as well as all the GENIA technical term. We
can now evaluate precision with a proper reference for valid terms.

4.2 Results
Results are evaluated in terms of precision obtained over the top

k terms (P@k) for the two measures presented in previous section.
The following sections show part of the experiment results done for
multi-word terms and considering the top k extracted terms. In the
following, we keep only the first 1000 extracted terms.

4.2.1 LIDF-value results

Table 2 compares the results of C-value, F-TFIDF-C, with our
new measure LIDF-value. Best precision results were obtained
with LIDF-value whatever k. This table proves that LIDF-value

is better than the baseline measures with a gain in precision that
reaches 11% for the first hundred extracted multi-word terms. This
result is particularly positive because it is often more interesting to
extract multi-word terms because is quite complex.

C-value F -TFIDF -C LIDF-value

P@100 0.730 0.770 0.840

P@200 0.715 0.725 0.790

P@300 0.730 0.723 0.780

P@400 0.697 0.705 0.757

P@500 0.674 0.694 0.752

P@600 0.670 0.687 0.765

P@700 0.661 0.686 0.761

P@800 0.644 0.669 0.755

P@900 0.641 0.649 0.757

P@1000 0.635 0.637 0.746

P@2000 0.601 0.582 0.708

P@5000 0.530 0.513 0.625

P@10000 0.459 0.439 0.574

P@20000 0.382 0.335 0.416

Table 2: Precision comparison with baseline measures

4.2.2 Web Mining results

Our web mining approach is applied at the end of the process,
with only the first 1 000 terms extracted during the previous lin-
guistic and statistic measures. The main reason for this limitation
is the limited number of automatic queries one can make to search
engines. At this step, the objective is to re-rank the 1 000 terms
trying to improve the precision by intervals. Each measure listed in
Table 3 and Table 4 shows the precision obtained after re-ranking.
We experimented WAHI with Yahoo and Bing search engines. Ta-
ble 3 and Table 4 prove that WAHI (either using Yahoo or Bing)
is well adapted for ATE and this measure obtains better precision
results than the baselines measures for word association.

4.2.3 Summary

LIDF-value obtains the best precision results for multi-word term
extraction and for each index term extraction (n-gram) and for in-
tervals. Table 5 presents the precision comparison of our two mea-
sures. In terms of overall precision, our results produce consistent
results from GENIA corpus. WAHI based on Yahoo obtains best
precision (i.e., 90%) for the first P@100. In comparison WAHI

based on Bing obtains a precision of 80%. For the other interval,
Table 5 shows that in general WAHI based on Bing has the best
results. That is very encouraging, because it helps to alleviate the

WAHI Dice Jaccard Cosine Overlap

P@100 0.900 0.720 0.720 0.76 0.730
P@200 0.800 0.775 0.770 0.740 0.765
P@300 0.800 0.783 0.780 0.767 0.753
P@400 0.800 0.770 0.765 0.770 0.740
P@500 0.820 0.764 0.754 0.762 0.738
P@600 0.767 0.748 0.740 0.765 0.748
P@700 0.786 0.747 0.744 0.747 0.757
P@800 0.775 0.752 0.7463 0.740 0.760
P@900 0.756 0.749 0.747 0.749 0.747
P@1000 0.746 0.746 0.746 0.746 0.746

Table 3: Precision comparison of WAHI with YAHOO and word

association measures

WAHI Dice Jaccard Cosine Overlap

P@100 0.800 0.740 0.730 0.680 0.650
P@200 0.800 0.775 0.775 0.735 0.705
P@300 0.800 0.770 0.763 0.740 0.713
P@400 0.800 0.765 0.765 0.752 0.712
P@500 0.800 0.760 0.762 0.758 0.726
P@600 0.817 0.753 0.752 0.753 0.743
P@700 0.814 0.7514 0.751 0.733 0.749
P@800 0.775 0.745 0.747 0.741 0.754
P@900 0.778 0.747 0.748 0.742 0.748

P@1000 0.746 0.746 0.746 0.746 0.746

Table 4: Precision comparison of WAHI with BING and word

association measures

manual validation of candidate terms. The performance of WAHI

depends of search engine because the associated are different. Then
the number of hits returned by these will be different for each case.
Moreover, Table 5 highlights that re-ranking with WAHI enables to
increase the precision of LIDF-value. The purpose for which this
web-mining measure was created, has been reached.

LIDF -value WAHI WAHI

(Bing) (Y ahoo)

P@100 0.840 0.800 0.900

P@200 0.790 0.800 0.800

P@300 0.780 0.800 0.800

P@400 0.757 0.800 0.800

P@500 0.752 0.800 0.820

P@600 0.765 0.817 0.767
P@700 0.761 0.814 0.786
P@800 0.755 0.775 0.775

P@900 0.757 0.778 0.756
P@1000 0.746 0.746 0.746

Table 5: Precision comparison LIDF-value and WAHI

5. CONCLUSIONS AND FUTURE WORK
The paper presents two measures for automatic multi-word term

extraction. The first one, a linguistic- and statistic- measure, LIDF-

value, improves precision of automatic term extraction in compar-
ison with the most popular term extraction measure. Our approach
overcomes the lack of frequency information with the values of
linguistic pattern probability and idf. The second one is a web-
based measure. This measure called WAHI takes as input the list of
terms obtained with LIDF-value. WAHI enables to reduce the huge
human effort for validating candidate terms. Our experiments re-

IDEAS14 268



veal that LIDF-value outperforms a state-of-the-art reference mea-
sures for extracting terms in the biomedical domain, at least on
the GENIA corpus. We experimentally show LIDF-value returns
best results in comparison with baseline measures (i.e. C-value

and F-TFIDF-C) performing as well for index term extraction (n-
gram). Moreover our experimental evaluations reveal that WAHI

improves the results given with LIDF-value. A future extension
of this work consists in using the Web to extract more terms than
those extracted. Moreover, we project to test this general approach
on other domains, such as ecology and agronomy. Finally we plan
to experiment our proposals on French and Spanish corpora as well
as on other English corpora.
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