A modelling framework for designing and assessing multi-functional agricultural landscapes with scenario analysis.
Pierre Chopin, Jean-Marc Blazy, Loic Guinde, Jacques Wery, Thierry Doré

To cite this version:

HAL Id: hal-01357196
https://hal-agroparistech.archives-ouvertes.fr/hal-01357196
Submitted on 29 Aug 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A modeling framework for designing and assessing multi-functional agricultural landscapes with scenario analysis

Pierre CHOPIN* 1, Jean-Marc BLAZY 1, Loïc Guindé 1, Jacques Wery 2, Thierry DORÉ 3,4
1 INRA, UR1321, ASTRO Agrosystèmes tropicaux, F97170 Petit-Bourg, Guadeloupe
2 Montpellier Sup Agro UMR System 2 place Viala, 24060 Montpellier, France
3 AgroParisTech, UMR 211 Agronomie, F-78850 Thiverval-Grignon, France
4 INRA, UMR 211 Agronomie, F-78850 Thiverval-Grignon, France

Introduction

In order to ascertain whether a combination of levers of change of local agriculture can drive agriculture towards sustainability, we designed a modeling framework, to explore successive steps of scenario development and assessment with indicators. To this end we introduce an approach based on several types of scenarios.

Objective:

Obtaining multi-functional landscapes with several levers tested in a logical order to improve the overall response of agriculture to sustainability issues during one or several time steps, we design a modeling framework, to explore successive steps of scenario development and assessment with indicators. To this end we introduce an approach based on several types of scenarios. For adopting such framework, a regional optimization model coupled to regional indicators are needed for the sustainability assessment.

Material & method

We used the MOSAICA model (Chopin et al., 2015) to design and assess agricultural landscapes in Guadeloupe (French island in the Caribbean). MOSAICA is a bioeconomic model that simulate farmer’s decision process in term of cropping system allocation to plots through an optimization of the sum of farmers’ individual utilities.

The model can be used to assess the potential of landscape to fulfill sustainability objectives by optimizing other functions (e.g. maximizing food crops production).

The model is used for all the steps of the framework described here. Relevant levers that could improve the response to sustainability issues while preventing from negative impacts are combined in a “Go sustainable scenario”

Results

The exploratory scenario designed to respond to the energy self-sufficiency issue tested the implementation of a biomass plant production. It increased the production of energy without adverse effects on other issues. This lever was combined to other relevant levers (new horticulture cropping systems, an increase of workforce at regional scale) in a “Go sustainable scenario”.

The Go sustainable scenario increased the overall sustainability of agricultural landscapes with the development of energy crops all over Guadeloupe and organic horticulture next to rivers

Discussion

The modeling framework guides the use of the regional model that could be used in other regions to help identify the most appropriate levers to increase the response of agriculture to sustainable development.

This holistic approach provides analysis of changes that occur at the regional, the farm and the field scale, and can highlight the evolution of externalities of cropping system mosaics in a quantitative and spatially explicit way.