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Abstract

This paper proposes an efficient heuristic algorithm for solving a complex batching and scheduling
problem in a diffusion area of a semiconductor plant. Diffusion is frequently bottleneck in the plant
and also one of the most complex areas in terms of number of machines, constraints to satisfy and
the large number of lots to manage.

The purpose of this study is to investigate an approach to group lots in batches and to schedule
these batches on machines. The problem is modeled through a disjunctive graph formulation. A
constructive algorithm is proposed and improvement procedures based on iterative sampling and
Simulated Annealing are developed. Computational experiments, carried out on actual industrial
problem instances, show the ability of the iterative sampling to significantly improve the initial
solution. The Simulated Annealing enhances the results of the iterative sampling. The constructive
algorithm has been embedded in a software and is currently being used.

Keywords: Batch, Scheduling, Disjunctive graph, Local search, Simulated Annealing, Wafer fabrication.

1 Introduction

Semiconductor wafer fabrication can be described as a multistage process with re-entrant flows. The pro-
cessing is done layer by layer. Each layer requires several steps of processing such as chemical-mechanical
polishing, diffusion, film deposition, photolithography, implant (doping) and etching. For each of the
product types, and depending on the technology, a wafer goes through more than 400 process steps over
a period of a few weeks. Wafer fabrication planning and scheduling is a complex task due to the large
number of products and machines involved. It is further complicated by additional constraints such as
re-entrant flow of operations Kumar [Kum94], setup issues, preventive maintenances, random machine
breakdowns, Ovacik and Uzsoy [OU97], Sze [Sze01], etc. The importance of scheduling on the perfor-
mance of semiconductor wafer fabrication facilities (fabs) is known for many years see Wein [Wei88] and
Sze [VS06].

In this paper, we focus on an important part of the manufacturing process. Among the complex
operations involved in the fabrication of a wafer, the diffusion phase is of critical importance since
the batching decisions that are involved may affect the performance of the entire wafer fab Ibrahim et
al. [ICN+03] and Mönch and Habenicht [MH03]. The processing time of the operations in the diffusion
area can be large (10h) compared to other operations in the fab. Mehta and Uzsoy [MU98] state that
optimizing batching operations results in good performance measures of the whole production process.
Lots regularly arrive in the diffusion area and the diffusion phase is primarily used to alter the type and
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level of conductivity of semiconductor materials.
The purpose of this article is to develop efficient methods to partition lots in batches and to schedule
batches on machines in the diffusion area of a semiconductor plant while taking into account numerous
constraints and optimizing three main production criteria: maximize the number of operations (moves),
maximize the batch sizes and minimizing the total tardiness.

The remaining sections of this paper are organized as follows. In Section 2, we provide some back-
ground on existing related batch and scheduling problems. In Section 3, the problem is stated. We
present in Section 4, a disjunctive graph representation of the problem. The method for computing an
initial solution and improvement procedures based on iterative sampling and Simulated Annealing are
described in Section 5. Experimental results on real problem instances and comparison with a literature
algorithm are given and discussed in Section 6. Section 7 concludes the paper with recommendations for
further research.

2 Previous related work

The operations of batching and scheduling jobs is a common practice in a manufacturing system espe-
cially in semiconductor manufacturing systems, see Mathirajan et al. [MS06a]. For examples reasons for
batching are the reduction of setups, the ability of machines to process several jobs simultaneously, etc.
With the classification given by authors by Mathirajan et al. [MS06a], we notice that there is not much
literature on scheduling batch problems taking into account the re-entrance features of the system as for
example we can name Cigolini et al. [CPPZ02], Mason and Oey [MO03] [OM01]. The work proposed
by Mönch et al. [MFDP+09] presents a scheduling problems in semiconductor manufacturing. Typical
scheduling problems found in semiconductor manufacturing are identified in particular batching prob-
lems.
The problem addressed in this paper deals with:

• Multiple machines at each stage. The authors in Mehta and Uzsoy [MU98] presented a prob-
lem of minimizing total tardiness on a batch processing machine with incompatible job families.
They proposed a dynamic programming to solve the problem. The paper of Balasubramanian et
al. [BMFP04] extends solutions of Mehta and Uzsoy [MU98] to a batching problem with incom-
patible jobs on parallel machines which aims at minimizing weighted total tardiness. The authors
in Kim et al. [KJC10] focused on a problem of scheduling wafer lots on diffusion workstations in a
semiconductor wafer fabrication facility. In their considered diffusion workstation, there are multi-
ple identical machines, and each of them can process a limited number of wafer lots at a time. Their
scheduling problem at the diffusion workstation is a problem of scheduling multiple job families on
identical parallel batch-processing machines.

• Multiple stages. The described problem for the diffusion area takes into account all the different
stages of this area which can reach 4. In the literature, the number of stages does not generally
exceed 2. The author Su [Su03] considered a hybrid two-stage flow shop with a batch processor
in stage 1 and a single processor in stage 2. This is also the case in articles Sun and Min [SM01]
and Sung and Kim [SK03] which consider a batch problem on 2 stages. Oulamara et al. [OFKK09]
studied a two-machine flow shop problem with conventional and batching machines in the first and
second stage, respectively, and arbitrary job compatibilities.

• Multiple criteria. The goal of the paper is to simultaneously optimize three indicators. These indi-
cators are the number of lots going through the line (to maximize), the number of wafer in a batch
(to maximize) and the waiting time of lots (to minimize). Generally, articles in the literature tackled
scheduling batch problems by considering one single indicator to optimize. Uzsoy in [Uzs95] tackled
the problem with the objective of minimizing the completion time of jobs, Hung [Hun98] has an
objective of maximizing the batch processing machine utilization. Perez et al. [PFC05] studied the
problem of minimizing the total weighted tardiness on a single machine and Mathirajan and Sivaku-
mar [MS06b] focused on the minimization of the total weighted tardiness on heterogeneous batch
processing machines under condition of dynamic arrival of jobs, incompatible job families and non-
identical job sizes. Few articles deal with different criteria simultaneously. Pfund et al. [PBF+08]
adapted the Shifting Bottleneck Heuristic to facilitate the multi-criteria optimization of Makespan,
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cycle time and total weighted tardiness using a desirability function.

Furthermore, in our problem, setup times (loading and unloading) are not depending on the sequence
and the complexity is added by the maximum times lags between batching operations.

Our problem is a complex variant of job shop problem. These types of problems can be found in
Mason et al. [MFC02] and Ovacik and Uzsoy [OU97]. These problems are frequently analyzed using a
method known as the shifting bottleneck (SB) procedure see for example Adams et al. [ABZ88]. Sev-
eral aspects, like identifying appropriate sub problem solution procedures can be found in Demirkol and
Uzsoy [DU00] and Uzsoy and Wang [UW00]. In Mason et al. [MFC02], a scheduling problem in semi-
conductor manufacturing close to the one tackled in this paper is solved by a modified SB heuristic. We
propose to model solutions of the considered batching and scheduling problem through a variant of the
disjunctive graph proposed in Mason et al. [MFC02].

3 Problem description

The diffusion area defines a batching and scheduling problem of wafer lots on two types of equipment:
cleaning and furnaces machines. These resources are able to perform several lots simultaneously. Each
lot requires one or more consecutive operations on the equipment and each operation has a recipe (speci-
fication on a process on how it should be executed on a tool; This pertains to requirements of maintaining
proper temperature, pressure, and metal composition, among others) which determines its duration and
the set of machines that are able to process it. On a 24-hour basis, each operation has to be assigned to
an equipment, and included into a batch, i.e. a set of operations of the same recipe that are processed
simultaneously by the equipment. The constraints in the diffusion area are divided into three types:
equipment constraints, process constraints and line management constraints.

3.1 Constraints

Some of these constraints are common to the two types of resources while others are dedicated to furnaces.

3.1.1 Equipment constraints

• Common constraints
Dedicated equipment : Any equipment is able to process a limited set of recipes.
Maximum batch size: Any equipment defines a maximum batch size corresponding to the capacity
of that equipment.
Loading and unloading times: A time may be needed to load and unload a batch on the equipment.
Unavailability periods: The equipment may be unavailable during some periods (defined by time
windows) due to qualification, repair, maintenance etc.
In process jobs: The equipment may be occupied at the beginning of the time horizon by in-process
operations that have to be completed before the equipment becomes available.

• Specific furnace constraints
Minimum time between two batches on an furnace: Furnaces must be inspected after completing
each batch.

3.1.2 Process constraints

• Common constraints
Precedence: Operations must be performed following the manufacturing process of the lot. The
operations of a lot are chained and no operation can start before the end of its predecessor, except
for the first operation of each lot.
Minimum time lag : There is a fixed handling and transport time between every two successive
operations of a lot.
Release dates: They correspond to the arrival times of lots at the cleaning machines and furnaces. A
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lot cannot be scheduled before its release date. Because the diffusion area is a stage of the complex
global production process, release dates are estimated by a simulation tool.
Fixed recipe: Each operation of a lot is associated with a recipe, i.e. the lot should be processed
on resources that are qualified for the corresponding recipe. This implies that all lots in the same
batch must be processed with the same recipe.
Process time: The process time of a batch on an equipment depends on the recipe.
Maximum time lag : A time limit is given for two successive operations x and y of a lot. The
difference between the starting time of y and the completion time of x cannot exceed this limit.
Maximum time lags depend on the operations x and y. They can correspond to the maximum time
limit between cleaning and furnace equipment.

3.1.3 Line management constraints

• Specific furnace constraints
Minimum time between two batches of same recipe: There is a minimum time between the beginning
of two batches of the same recipe on two different furnaces.

3.2 Objective

In semiconductor fabs, several indicators are used to measure the performance. The interested reader
can refer to [MT05] for more details. We describe thereafter the indicators that are relevant in our study.

• Number of moves (to maximize): It corresponds to the number of completed operations on the
planning horizon, which can be compared to the target number fixed by the production managers.

• Batching coefficient (to maximize): Defined on the planning horizon, it is calculated as the number
of moves divided by the sum of the number of batches performed on each machine, times the
maximum capacity of that machine. Note that the denominator is the number of lots that could
be performed if the equipment was loaded up to their maximum capacities.

• X-factor (to minimize): This indicator is used to evaluate the waiting times of lots in the diffusion
area in order to reduce the cycle times. For a given lot, this factor is calculated as the total staying
time of the lot in the diffusion area over its processing time.

These three indicators will be used to evaluate solutions in the fab.
Other indicators could be relevant. Among them, the Work-In-Process (WIP), is defined as the

number of wafers being in the fab at a given period, either in a production state or in a non-production
state (e.g. transport and waiting). The law of Little [Lit61] establishes that if a system is stable and
stationary then the average WIP is proportional to the average cycle time. The throughput is defined as
the outgoing number of wafers of the fab per unit of time. The evolution of the throughput in time makes
it possible to know if the system is stable i.e. to know if there is no accumulation of lots in the fab or if
the system evolves according to forecasts. Glassey and Resende [GR88], observed that there is a relation
between the increasing of the throughput and the output of a fab. The cycle time drastically increases
when throughput is close to the maximal capacity of the fab. Hence for both WIP and throughput
indicators, the X-factor indicator is adequate.

The goal is to optimize the various performance measures, while taking into account the numerous
complex constraints.
The next subsection described the mathematical formulation of the problem.

3.3 Problem formulation

The scheduling problem can be formulated as follows. For sake of clarity, the above-described Unavail-
ability periods, In-process jobs and Minimum distance between batches of the same recipe constraints are
not included. In Section 4, we describe how we tackle these characteristics.

A set of jobs (lots) J = {Ji|i = 1, . . . , n} has to be processed on a horizon T by a set of machines
M = {Mk|k = 1, . . . ,m}. Each job Ji is made of ni operations such that each operation Oij has a
duration pij > 0 and a setMij ⊆M of machines (the furnaces or the cleaning machines) able to process
it. Let Ok = {Oij ∈ O|Mk ∈Mij} denote the set of operations that can be assigned to machine Mk. The
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value of pij and the elements of the set Mij are determined by the recipe of operation Oij denoted ρij .
In general we haveMij ⊂M since each machine cannot be configured for all recipes. Each operation Oij
has to be included in a batch on a resource k ∈Mij . Each machine has a finite capacity Rk which gives
the maximal number of lots in the same batch. On each machine k, Sk denote the setup time needed
before starting a new batch, Dk denote the removal time needed after the completion of a batch and sk
denote the constant setup time needed between two different batches. s0

k denotes the initial setup time
on machine k, depending on the state of the resource at time 0. Two consecutive operations Oij and
Oi(j+1) of the same job are linked by minimal and maximal time lags. Once the batch of Oij is completed
and removed from k, the setup for the batch of Oi(j+1) cannot start before a minimal time lag τmin

ij and
has to start before a maximal time lag τmax

ij . Let O = {Oij |i = 1, . . . , n; j = 1, . . . , ni} denote the set
of all operations. Each job Ji has a relative priority ci (ci < cj means that Ji is more urgent than Jj).
Each job corresponds to a number wi of wafers produced when the job is completed.

Table 1 summarizes the notations used.

Notations Description
J = {Ji|i = 1, . . . , n} Set of jobs (lots)

T Horizon length
M = {Mk|k = 1, . . . ,m} Set of machines

ni Number of operations of lot Ji
O = {Oij |i = 1, . . . n; j = 1, . . . ni} Set of operations

Oij Operation j of lot Ji
pij Duration of operation Oij
Mij Qualified machines to process Oij
Ok Operations that can be processed on the machine Mk

ρij Recipe of Oij
Rk Capacity of machine Mk (batch max. size)
Sk Setup before the operation on machine Mk

Dk Setup after the operation on machine Mk

sk Delay inter batch
s0k Initial setup time

τmin
ij Min. delay between Oij and Oij+1
τmax
ij Max delay between Oij and Oij+1
ci Priority of lot Ji
wi Number of wafers of Ji

B = {Bkq}k∈{1,...,m},q∈{1,...,νk} Batch at position q on machine Mk

νk Number of batches on machine Mk

T = {tij}Oij∈O Set of start times

mij Machine which processes Oij
θi Completion ratio of Oij
BT Batches started before T
Zk Number of qualified recipes on machine Mk

θT Operations started before T
N =

∑n
i=1 ni Total number of operations

Table 1: Summary of notations used to formalize the problem

Finding a feasible solution for the problem lies in making four types of decisions:

D1 - Partition the operations into batches,

D2 - Select a resource to process each batch,

D3 - Order the batches on each resource,

D4 - And assign a start time to each batch.

Decisions D1-D3 can all be represented by a family of batches B = {Bkq}k∈{1,...,m},q∈{1,...,νk} where
Bkq is the batch sequenced at position q on machine Mk. νk ∈ {0, . . . , |Ok|} denote the number of batches
assigned to machine Mk. Decision D4 lead to a family of start times T = {tij}Oij∈O assigned to the
operations. Once a solution {B, T } is determined, we have a machine assignment {mij}Oij∈O where mij

denote the machine Oij is assigned to, i.e. verifying that ∃q ∈ {1, . . . , νk} such that Oij ∈ Bmijq. To
be feasible, a solution {B, T } and its corresponding assignment {mij}Oij∈O have to satisfy the following
constraints. The operations of the same batch must have the same recipe, i.e.

ρij = ρxy ∀B ∈ B,∀Oij , Oxy ∈ B (1)
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Each operation must be assigned to a machine able to process its recipe.

mij ∈Mij ∀Oij ∈ O (2)

The batch capacity cannot be exceeded and each batch includes at least one operation.

1 ≤ |Bkq| ≤ Rk ∀Bqk ∈ B (3)

An operation appears in only one batch, i.e.

B ∩B′ = ∅ B,B′ ∈ B, B 6= B′ (4)

All operations are included in a batch
∪B∈BB = O (5)

The start time of the first operation of each lot cannot exceed the lot release date:

ti1 ≥ ri ∀Ji ∈ J (6)

Each operation Oij , j > 1, cannot start before a minimal time lag after the end of its preceding operation
Oi(j−1), which takes into account of the removal time of the batch of Oi(j−1), the minimal time lag τmin

i(j−1)

and the setup time of batch of Oij :

tij − ti(j−1) ≥ Dmi(j−1) + pi(j−1) + τmin
i(j−1) + Smij

∀i ∈ {1, . . . , n},∀j ∈ {2, . . . , ni} (7)

Each operation Oij , j > 1, has to start before a maximal time lag after the end of its preceding
operation Oi(j−1), which takes account of the removal time of the batch of Oi(j−1), the maximal time lag
τmax
i(j−1) and the setup time of batch of Oij :

tij − ti(j−1) ≤ Dmi(j−1) + pi(j−1) + τmax
i(j−1) + Smij

∀i ∈ {1, . . . , n},∀j ∈ {2, . . . , ni} (8)

The start times of two operations of the same batch must be equal:

tij = txy ∀B ∈ B,∀Oij , Oxy ∈ B (9)

An operation of a batch which is not at the first position on its machine cannot start before the end
of the preceding batch on the machine, plus the necessary removal time of the preceding batch, plus
the minimal setup time on the machine between two batches, plus the necessary setup time for the next
batch.

tij − txy ≥ pxy +Dk + sk + Sk

∀Bkq,q>1 ∈ B,∀Oij ∈ Bkq,∀Oxy ∈ Bk(q−1) (10)

An operation of a batch in the first position on its machine cannot start before the initial setup time
for this batch (we assume S0

k ≤ Sk +Dk + sk,∀Mk ∈M):

tij ≥ s0
mij ∀Oij ∈ O (11)

By definition, a feasible solution includes each operation inside a batch. In our problem, the scheduling
horizon is limited to a scheduling horizon T . Hence only those batches released in the interval [0, T ] must
be taken into account. Several criteria are used to measure the quality of a feasible solution. The number
of moves is the number of wafers produced in [0, T ]:

fmov =
∑
θij∈θ

wiθij (12)
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where θij = 1 when the job is completed before T and θi ∈ [0, 1[ denotes the completion ratio of job i
before time T , otherwise.

θij =

∑
Oij ,tij+pij<=T

pij +
∑

Oij ,tij<T<tij+pij

(T − tij)∑ni
j=1 pij

The batching coefficient is the average ratio of the actual size of each batch divided by its maximal
size. Let BT = {B ∈ B|tij < T, ∀Oij ∈ B} denote the set of batches started before time period T .

Batching coefficient =

∑
k

∑
Bkq∈BT |Bkq|/Rk
|BT |

(13)

fbatch =

∑
k

∑
Bkq∈BT |Bkq|/(Rk + Zk

100 )

|BT |
(14)

where Zk means the total number of qualified recipes on machine Mk.
The weighting of the batching coefficient by the number of qualified recipes on the concerned machine
makes it possible to use the least general-purpose machines initially.

The average X-factor is the average of the X-factor of each job weighted by the job priority. All the
jobs do not have the same priority. Certain jobs are more important than others (important customers,
tests to be carried out quickly, delay to catch up with, etc). Thus, a weight is assigned to the job to
reflect its priority. Let J T = {Ji ∈ J |tini + pini ≤ T} denote the set of jobs completed before T .

X-fac =

∑
Ji∈J T (tini − ri)/pini

|J T |
(15)

fX-fac =

∑
Ji∈J T ci(tini − ri)

|J T |
(16)

The choice made together with the decision makers of the production unit is to combine these different
objectives into a single one by maximizing the following weighted sum:

f = αfmov + βfbatch − γfX-fac (17)

where α, β and γ are adjustable weights allocated to each objective function. The objective functions
have been designed to integrate some requests of managers. In the calculation of fX−fac, the delay of
each lot is multiplied by its priority, in order to accelerate the urgent lots. In the calculation of the total
batching coefficient, the batching coefficient of each equipment is multiplied according to the number of
qualified recipes on this equipment. This leads to choose in priority the machines that are able to process
less recipes, and thus to maintain the availability of the most flexible equipment.
The objective of the problem is to search for a feasible selection {B, T } such that f is maximized. Note
that, given a (feasible) solution {B, T }, f can be computed in O(N) time where N =

∑n
i=1 ni is the total

number of operations.

4 The disjunctive graph representation

The considered problem can be seen as an extension of the job-shop problem and, consequently, the
disjunctive graph model can be used for batching and scheduling problems as proposed by Mason et
al. [MFC02]. In their article, the authors consider a different objective function (total weighted tardiness).
Sequence-dependent setup times and reentrant flows are also considered but there are no maximum time
lags. Unfortunately, these constraints considerably increase the difficulty of the problem Gentner et
al. [GNST04]. Let us explain how the problem is modeled using disjunctive graphs.
We define the disjunctive graph G = (V,C,E) as follows.

• V is a set of nodes where there is one node per operation, denoted Vij , plus a dummy start node
denoted 0.
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• C is the set of conjunctive arcs representing the release dates and minimal and maximal time lags.
There is an arc from node 0 to node Vi1 of each job Ji. There is an arc from Vij to Vi(j+1) and an
arc from Vi(j+1) to Vij , for each consecutive operations Oij and Oi(j+1) of each job Ji.

• E is the set of disjunctive arcs which represent the decisions of the problem. There are two opposite
conjunctive arcs (Vij , Vxv)k and (Vxy, Vij)k for any machine k ∈ M and for any pair of operations
Oij , Oxy ∈ Ok, Oij 6= Oxy. These arcs represent the sequencing or the batching decision concerning
Oij and Oxy on machine k.

Let B denote a partial or complete batching for the problem satisfying at least Constraints (1) through
(4). B is a complete batching if Constraint (5) is also verified, otherwise it is a partial batching. Recall
that B also defines the machine assignment mij , for all Oij ∈ ∪B∈BB. We assume mij = 0 if Oij is not
batched in B, i.e. if Oij 6∈ ∪B∈BB.
B unambiguously defines a selection S as follows. For each distinct operations Oij and Oxy such that

mij = mxy = k 6= 0, select arc (Vxy, Vij)k if Oxy is in a batch sequenced before the batch of Oij , select
arc (Vij , Vxy)k if Oij is in a batch sequenced before the batch of Oxy, and select both arcs (Vij , Vxv)k and
(Vxy, Vij)k if Oij and Oxy are assigned to the same batch.

Once a selection is computed, we define a graph G(S) = (V,C ∪ S) where arcs C ∪ S are valued as
follows (we assume s0

0 = s0 = S0 = D0 = 0):

• Each arc from 0 to the first operation Oi1 is valued by max(ri, S0
mij ), the maximal value between

the release date of job i and the initial setup time for machine mi1.

• Each arc from Vij and Vi(j+1) is valued by Dmij + pij + τmin
ij + Smi(j+1) , the value of the minimal

time lag between Oij and Oi(j+1) plus the setup and removal times linked to the assignment of the
operations.

• Each arc from Oi(j+1) and Oij is valued by −(Dmij + pij + τmax
ij + Smi(j+1)), the (negative) value

of the maximal time lag between Oij and Oi(j+1) plus the necessary setup and removal times.

• Each arc (Vij , Vxv)k is valued either by pij+Dk+sk+Sk if the opposite arc is not selected or by 0 if
the opposite arc is selected. Indeed, in the first case this arc represents the decision to sequence Oxy
after Oij on machine k whereas in the second case, both arcs (Vij , Vxv)k and (Vxv, Vij)k represent
the synchronization of the operations included in the same batch.

We can state that the (partial) solution represented by the (partial) batching B and its selection S is
feasible if and only if longest path problems from node 0 to each node Vij in G(S) have a solution. In
the positive case and if B is complete, a feasible schedule T can be obtained by setting tij to the length
of the longest path from 0 to Vij . Furthermore T is the best schedule compatible with B one can obtain
when the objective is to maximize f .

The problem can be formulated as follows: Find the batching B verifying Constraints (1) through (5)
such that the corresponding selection S is feasible and maximizes f .

As stated in the previous sections, the actual data issued from the fab have other characteristics
that have been tackled, such as in-process jobs and machine down times. We can model easily these
characteristics thanks to the disjunctive graph formulation. They can be both represented by operations
with fixed start times on the involved machine. A start time t can be fixed by linking the node with node
0 by two opposite arcs valued by t and −t. As stated in Section 3, the actual problem also includes an
important line management constraint: a minimum time between the start time of two batches of the
same recipe scheduled on two different batches has to be respected. This can also be tackled through the
disjunctive graph representation. A fictitious machine can be associated to each recipe and disjunctive
arcs linking two operations of the same recipe can be defined. Then, whenever the two operations are
batched on two different machines (furnaces), the disjunctive arc has to be oriented. Once oriented the
arc is valued by the minimum required distance.

5 Solution Methods

We propose a two-phase heuristic method and a metaheuristic to solve the problem. The first phase of
the heuristic is a constructive heuristic based on successive job insertions. The second phase is a local
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search method which aims at improving the initial solution. Both phases are based on the evaluation of
a (complete or partial) selection through longest path calculations. For the metaheuristic, we propose a
Simulated Annealing algorithm.

5.1 Evaluation of a partial or complete batching

Any partial or complete batching B and its selection S can be evaluated through the calculation of start
time tij , equal to the longest path from 0 to Vij in G(S) of each operation Oij . To compute such longest
paths, since the graph includes arcs with negative weights, we use the Bellman-Ford algorithm which
has a O(N |S ∪ C|) time complexity. If the algorithm finds a path of positive length, then the partial or
complete solution is unfeasible. Otherwise the algorithm returns start times tij and the objective function
value f can be determined.

5.2 Computing an initial solution by a priority rule-based constructive heuris-
tic

The initial solution (selection) is computed by a job insertion method. The jobs are first sorted in a list
L according to the order: jobs involving maximal time lags first, then increasing release dates, then job
priority.

The method starts with an empty batching. Then, the jobs are taken in the order given by the
list and inserted one by one in the current batching. The insertion of Ji is made as follows. Let
B = {Bkq}k∈M,q∈1,...,νk denote the current batching including jobs located before Ji in L. For each
operation Oij of Ji and for each resource k ∈ Mij , there are 2νk + 1 insertion positions of Oij in the
batch sequence of machine Mk: indeed, for each batch Bkq, we may insert Oij inside batch Bkq or create a
new batch at any position. Each of these insertion positions is evaluated with the algorithm described in
the previous section and the one that maximizes f is kept to update B. If none of the insertion positions
is feasible for an operation Oij , then all these partial solutions violate a maximal time lag and there exists
insertion positions that violate only maximal time lag between Oi(j−1) and Oij (the last position on each
resource of Mij , for instance). Hence we have to remove Oi(j−1) from B, the previous operation of job
Ji, and insert it at a later insertion position. If this is not feasible, they are not scheduled and delayed
from the list of operations. Note that at most

∑ni
j=1

∑
k∈Mij

2νk + 1 insertion positions are tested per
inserted lot. Thereafter, we will call by Priority-rule Based Insertion Algorithm (PBIA), the algorithm
described above.

5.3 Improving the initial solution by iterative sampling

Iterative random sampling consists in iteratively applying the constructive algorithm presented in Section
5.2 and randomly changing each time the input operation list. Two different iterative sampling methods
are proposed. In the first random sampling method the input list is initialized at each iteration as
a random permutation. We call this algorithm Random Iterative Algorithm by Priority-rule Based
Insertion (RIA-PBIA). In the second random sampling method, the list is changed by making few random
modifications on the sorted list. It consists in dividing the list into intervals and, for each interval, in
making a random modification following a uniform law. We call this algorithm Pseudo-Random Iterative
Algorithm by Priority-rule Based Insertion (PRIA-PBIA).

5.4 Simulated Annealing

Simulated annealing (SA) belongs to the class of randomized local search algorithms and has been devel-
oped by [KGV83] to handle hard combinatorial problems. The use of simulated annealing supposes the
definition of neighborhood. The neighborhood we consider is defined by the following moves:

1. ”Batch move”. A batch is moved randomly (both equipment and position can change).

2. ”Operation move”. An operation is moved randomly in an existing batch or a new batch is created
(both equipment and position can change).
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3. ”Operation switch”. Two batches with the same recipe are randomly selected. Then two randomly
selected operations are switched.

In our implementation, 50% of the considered moves are batch moves, 25% are operation moves and
25% are operation switches. According to randomly generated moves, we proceed as follows. All random
selections are made according to the uniform law. If a move is impossible due to a violation of a con-
straint, we restore the previous solution and try another move. Each neighbor solution is evaluated by
means of the longest path computations presented in Section 5.1.

The algorithm starts with an initial solution s0 and then tries to find better solutions by searching in its
neighborhood (obtained by the moves described above), and applying a stochastic acceptance criterion.
When a neighbor (a solution s) of the current solution is selected we compare the difference ∆f =
f(s)− f(s0). If the difference ∆f is negative, the neighbor replaces the current solution. Otherwise, the
neighbor is accepted with a probability based upon the Boltzmann distribution Paccept(∆f) ≈ exp(−∆f

kT )
where k is a constant and the temperature T is a control parameter. This temperature is gradually
lowered following a geometrical law function g(T ) : g(T ) = αT with α < 1.

6 Computational experiments

We coded the proposed algorithms in Java and we tested them on a 1 GigaOctet RAM and 3.4 gigahertz
processor computer. We conducted two types of experiment tests: the first type of tests is conducted
on actual fab data and compared to the constructive initial solution obtained by PBIA solutions, with
pseudo and random lists and the Simulated Annealing (SA) solutions. In the second type of tests, we
compared the proposed heuristic PBIA to an algorithm for scheduling jobs on parallel batch processors
with incompatible job families and unequal ready times problem proposed by Mönch et al. [MBFP05] as
it is close to the one tackled in this paper.

6.1 Experimental tests on actual fab data

These tests have been performed on actual instances issued for two months of production. There are 700
jobs yielding a total number of 1400 operations with about 50 different recipes to schedule on 70 furnaces
and 12 cleaning machines. Each furnace has a capacity of 4 or 6 lots and each cleaning machine of 2 or 4
lots. The time needed to load and unload a batch varies between 10 and 30 minutes. The minimum and
maximum time lags varie from 10 minutes to 4 hours. The target time horizon is 24 hours. The weights of
the components of the objective function have been computed both to normalize the different indicators
and to take account of the user preferences. For the experiments, we selected α = 601, β = 1500001,
γ = 41.

The number of replications is 5 for the simulated annealing and 20 for the pseudo and random lists.
The computational time of the simulated annealing for one instance does not exceed 5 minutes and the
constructive heuristic and the random and pseudo lists is limited to 1 minute. The percentage is calcu-
lated on the average relative improvement brought on the considered method over the reference solution
obtained by the constructive heuristic (initial), i.e. Method solution−Initial list

Initial solution

From Table 2 and Table 3, we displayed the objective function solution values (note), the number
of moves (fmov), the batching coefficient (fbatch) and the X-factor (fX−fac) obtained from the three
methods: Simulated Annealing (SA), Pseudo (PRIA-PBIA) and Random (RIA-PBIA) algorithms on the
basis of solutions obtained by PBIA (Initial). It is important to note that the Simulated Annealing starts
from the best solution of (PRIA-PBIA) and (RIA-PBIA).

We can notice that on average we improve solutions with the simulated annealing algorithm on the
two considered months. An improvement of 47,05% on the number of moves fmov is noticed (resp. 6,6%
for the second month), the batching coefficient fbatch of 33,04% (resp. 4,15% for the second month),
the fX−fac increases by 41% (resp. is improved of 4,07% for the second month) and the objective value
(note) is improved of 11,13% for the first month (resp. 12,61% for the second month).
We improve on average initial solutions with PRIA-PBIA (Pseudo-Random) of 38,32% on the number of
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moves (resp. slightly deteriorated of 0,95% on second month), the batching coefficient of 28,23% (resp.
0,70% on the second month) and X-factor increases of 47,07% (resp. improved of 0,26% on the second
month) and the objective function slightly decreases of 1,71% (resp. 1,42% on the second month).
For the Random solutions (RIA-PBIA), the number of moves is improved of 37,26% (resp. decreased of
2,05% on the second month), the batching coefficient is improved of 29,96% (resp. 1,17% on the second
month), the X-factor is deteriorated of 48,93% (resp. 1,16% on the second month) and the note slightly
decreased of 3,86% (resp. 6,30% on the second month).
In the Pseudo and random cases, we can notice that some indicators are sometimes slightly deteriorated
(more in the case of Random lists) due to the fact we have a larger search space when using random lists
than pseudo-random lists and then there is a capability of reaching better solutions but also worse see
Table 4.
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Table 2: Results on instances issued of the first month of the fab
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Table 3: Results on instances issued of the second month of the fab

One objective of this study was to develop and propose an efficient scheduler algorithm to support
fabrication operators and improve the principal indicators in the diffusion area. Our proposed algorithm
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Table 4: Standart deviation values on the first and second month

(PBIA) has been implemented in this area and is actually running. We summarize some results obtained
after the algorithm has been implemented. The comparison is done before and after using our algorithm.
For confidential reasons, we are not allowed to describe the real values of the fab. This is why, with
the agreement of the staff, we give results on equipment Type 1 and Type 2. They are respectively
clean equipment and furnace equipment. Two indicators are presented: the X-factor and the batching
coefficient.
For the first month, the X-factor on the Type 1 equipment (resp. the Type 2 equipment) is improved
of 26% (resp. 17% for the Type 2 equipment). The batching coefficient is also improved by 20% for the
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Oxidation and 29% for the Deposition equipment. For the second month, the X-factor is improved by
36% for the Type 1 and 23% for the Type 2 equipment. On the other hand, the batching coefficient is
deteriorated by 6% for the Oxidation equipment and an improvement of 2% is noticed on the Deposition
equipment. Substantial productivity improvements have been achieved in the diffusion area of the plant
thanks to Priority-based Insertion algorithm (PBIA).

6.2 Experimental tests on data issued from Mönch et al. [MBFP05]

We want to compare our algorithm (PBIA) to an algorithm proposed in the literature for a close problem.
We decided to compare it to a scheduling of jobs on parallel machines with incompatible job families and
unequal ready times Mönch et al. [MBFP05].

We show through experimental tests that the constructive heuristic PBIA we designed for the spe-
cific problem of batching and scheduling in a diffusion area can be easily adapted to solve the problem
described by Mönch et al. [MBFP05]. Furthermore, our proposed heuristic outperforms the heuristic de-
scribed in their article on some instances for the problem of minimizing Total Weighted Tardiness (TWT).

The aim of the problem tackled in Mönch et al. [MBFP05] consists in scheduling of parallel batch
processing machines with incompatible job families and unequal ready times of jobs to minimize TWT
include:

• Jobs of the same family have the same processing time.

• All the batch processing machines are identical in nature.

• Once a machine is started, it cannot be interrupted, i.e. no preemption is allowed.

To solve this NP-hard problem the authors proposed two different decomposition approaches. The first
approach constructs fixed batches, then assigns these batches to the machines using a genetic algorithm
(GA), and at last, sequences batches on each machine. The second approach first assigns jobs to machine
using a GA, then constructs the batches on each machine for the jobs assigned to it and at last, sequences
these batches. In conclusion, among the tested algorithms, the authors proved on their tests that the
algorithm GA 2 BATC-II which is in the second type of approach provides in average better results.
As the authors used a genetic algorithm, the Table 5 summarized the different parameters used in their
algorithm (see Mönch et al. [MBFP05]).

Parameter Value

Population 200
Crossover probability 0.80
Mutation probability 0.01

Replacement probability 0.60
Diversity 0.03

Number of generations 1000

Table 5: Parameter settings GA for approach 2 Mönch et al. [MBFP05]

After taking the 162-instances (randomly generated) from the authors, we have conducted experiment
tests on the same computer as one described in the subsection 6.1.
Let us recall that in this subsection the objective function is the TWT and the goal is to compare the
TWT obtained from our proposed heuristic (PBIA) to algorithm GA 2 BATC-II proposed in Mönch et
al. [MBFP05].
As it is known, the input of our proposed algorithm is a list. Then, to give a list to PBIA, we retain the
best one list between two considered lists as follows. The first list is ordered by increasing order of due
date and the second one is ordered by decreasing order of the priority of jobs. As the evaluation of a list
does not require much time (less than 3 minutes), for each of the two lists we calculate the TWT and
we retained the minimum one. With the solution obtained by the minimum one, we apply local search
improvement (see Subsection 5.3). We have reported in Table 6 the assessment of this comparison.

From Table 6, we notice that on average as well as for the case of m = 3, m = 4 and m = 5, our heuris-
tic (PBIA)is better in terms of objective function and computational times. In the considered article, the
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Compare GA 2 BATC II PBIA number of times we outperform their algorithm
Objective function Time Objective function Time

Machines
m=3 412,231 34210 411,149 218 29
m=4 300,137 28241 278,088 168 43
m=5 230,616 19198 206,133 149 46

Batch size
B=4 389,084 17303 367,578 140 59
B=8 239,572 37129 229,336 216 59

Table 6: Comparison between our proposed algorithm and one of the best algorithm in Mönch et
al. [MBFP05]

authors in one of the phase of their algorithm used genetic procedure. In general, this requires relative
long computation times. The proposed constructive heuristic requires low computing time in comparison
to GA 2 BATC-II. On 162 tested instances, PBIA outperforms GA 2 BATC-II on 118 instances in less
than 200 seconds. Furthermore, with batch size of 4, PBIA outperforms 59 times on 81 and on batch
size of 8, we outperformed 59 times on 81.

We have used a heuristic which was not originally designed for the problem of minimization of TWT
on parallel batch machines with incompatible job families and unequal ready times of jobs. The results
of the tests showed that our heuristic outperformed in the majority of the cases the GA 2 BATC-II: we
had better objective function values and less computation times.

7 Concluding remarks

We proposed a model and a method based on a disjunctive graph for batching and scheduling problem
in a semiconductor manufacturing factory while taking into account complex constraints and optimizing
multiple measures. A constructive algorithm has been proposed to solve the problem, local search im-
provements based on the disjunctive graph representation have been defined and a simulated annealing
algorithm has been developed. The computational tests made on real instances of the factory plant
showed that we obtain quality solutions in fast calculation times. For the industry, very substantial
productivity improvements have been achieved in the diffusion area and also on the overall fab thanks to
the use of the proposed algorithm named Priority rule-Based constructive algorithm (PBIA).
With adjustments, the Priority-rule Based Insertion Algorithm (PBIA) has been embedded in a software
used by the industry. The use of a disjunctive graph brings significant improvements for interactive
scheduling at the fab level. A prototype software gives the graphical user interface of the software.
It includes the off-line batching and scheduling phase and also an interactive module that allows the
decision-makers to make modifications and to test options directly on the proposed plan.

Regarding, the simulated annealing algorithm, the procedures significantly improve the different cri-
teria (number of moves, batching coefficient and X-factor) in comparison with a local search method.
We also compared our algorithm to an algorithm designed for a problem of scheduling of jobs on parallel
batch machines with incompatible job families and unequal ready times Mönch et al. [MBFP05] as it is
close to the one tackled in this article. The computational tests showed that for more than half of the
instances our heuristic called Priority-rule Based Insertion (PBIA) outperforms the algorithm proposed
by Mönch et al. [MBFP05].

This research can be extended in many ways. Other types of moves such as the simultaneous move
of two jobs linked by a maximum time lag should be tested. The maximal time lags are currently
hard constraints. However in practice some of them can be relaxed and treated as soft constraints or
objectives. Another important issue can be in a multicriteria analysis study. Computing several Pareto
optimal solutions are useful particularly when the situation frequently changes as it is usually the case of
semiconductor manufacturing.
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