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Abstract 
Some work has been carried out on the effect of calcium carbonate on cement paste, but there 
is no general agreement on the relative effects of different amounts of calcium carbonate on 
cement paste properties. The objective of the present work is to assess the effect of various 
amounts of calcium carbonate on the hydration of tricalcium silicate in order to explain the 
physico-chemical changes occurring during Portland cement hydration. It is shown that 
calcium carbonate has an accelerating effect on C3S and cement hydration and leads to the 
precipitation of some calcium carbosilicate hydrate. 

KKeeyywwoorrddss::  
Calcium carbonate; Calorimetry; Carbosilicate; Cement; Hydration; Infrared 
spectroscopy; Microstructure; Strength 

I. Introduction 
For a long time, ground limestone has been considered as an inert filler. However, recent 
studies carried out in the 1980s have pointed out the following phenomena:  

 calcium carboaluminate hydrates precipitate during the hydration of cements 
containing ground limestone [1-7], 

 during the formation of ettringite, sulfate ions can be replaced by carbonate ions 
without modifying the sequences of the reaction [8-11], 

 there is an interaction between calcium silicate (alite) and calcium carbonate; the 
latter accelerates the hydration of C3S and modifies the Ca/Si ratio of C-S-H [12-
14]. 

As the interactions of ground limestone and C3A are well documented, we have, in the present 
paper, focused our attention on the reactions which occur during the hydration of C3S in the 
presence of calcium carbonate. The behaviour of blended Portland cements containing up to 
50% ground limestone has also been investigated. 
                                                        
 
 
 
 
* Corresponding author: jean.pera@insa-lyon.fr
 

mailto:jean.pera@insa-lyon.fr


Cement and Concrete Composites, 1999, 21(2), 99-105, doi:10.1016/S0958-9465(98)00020-1 
 

2 

II. Experimental 
IIII..11..  MMaatteerriiaallss  

II.1.1. Calcium carbonate (CaCO3) 

The calcite studied was derived from marble and was very pure (98.6% CaCO3). Its specific 
gravity was 2.75. 
It was ground to get the following characteristics: 

 100% particle below 20 µm, 

 average diameter DsO = 2.5 µm, 

 35% particles below 1 µm. 

For this product, the Blaine specific surface area was 680m2kg-1 and the BET specific surface 
area was 3600 m2kg-1 

Calcium silicate (C3S) 
Calcium silicate was synthesized by reacting a well mixed stoichiometric blend mixture of 
pure calcium carbonate and reactive silica. The blend was wetted and pellets prepared. The 
temperature program was as follows: 

 20-700°C: 20°C min-1 

 700-1000°C: 15°C min-1 

temperature maintained at 1000°C for 40 min. 

 1000-1450°C: 8°C min-1 

 1450-1600°C: 5°C min-1 

temperature maintained at 1600°C for 120 min.  
The residual lime (CaO) was measured by hydrochloric acid titration of a solution containing 
250 mg C3S and 100 mL ethyleneglycol, shaken at 70°C for 30 min. The calcination was 
considered good as the free CaO content was less than 2%. A well-crystallized triclinic C3S was 
then obtained and ground in a laboratory ball-mill. Its particle size distribution was 
characterized by: 

 100% particles below 80 µm 

 D50 = 15 µm 

 30% particles below 10 µm 

II.1.2. Ordinary Portland Cement (OPC) 
The cement used in the present study was a CPA CEM I 52.5 according to the European 
prestandard ENV 197-1 for common cements. Its Bogue potential composition was C3S = 
67.9%; C2S = 4.8%; C3A = 10.4%; C4AF = 9.3%. Its Blaine and BET specific surface areas were 
364 m2kg-1 and 1400 m2kg-1, respectively. The average value of the particle size distribution 
was D50 = 16 µm. 

IIII..22..  MMeetthhooddss  uusseedd  ffoorr  iinnvveessttiiggaattiioonn  

Isothermal calorimetry was used to study the interactions between C3S (or OPC) and CaCO3. 
C3S (or OPC) was mixed with CaCO3 in the weight ratio 1:1. The mixture (300 mg) was then 
hydrated in presence of the same quantity of water (300 mg). The total heat developed during 
the reaction was recorded. The length of the experiment was 15 h.  
The morphology of these hardened pastes was investigated by means of scanning electron 
microscopy (SEM), and the hydrates formed were identified, using infrared spectrometry 
(IRS), X-ray diffraction (XRD) and differential thermal analysis (DTA). 
Pastes of pure C3S (or OPC) and CaCO3 were prepared at equivalent consistency. The water to 
solid ratios are shown in Table 1. 
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From Table 1, it is clear that the presence of CaCO3 has a plasticizing effect on the paste: the 
higher the CaCO3 content, the lower the amount of mixing water. Minicylinders of paste were 
cast (φ = 20 mm, h = 40 mm), demoulded after 2 days of hydration, and kept at 20°C and 
relative humidity 95% until mechanical testing, which occurred after 7, 28 and 60 days of age. 

III. Results and discussion 
IIIIII..11..  RReeaaccttiioonnss  bbeettwweeeenn  CC33SS  aanndd  CCaaCCOO3  3

III.1.1. Isothermal calorimetry 
The isothermal calorimetry curves showing the rate of heat development of 300 mg C3S and 
(150 mg C3S+150 mg CaCO3) during hydration, up to 15 h, are given in Figure 1. The values 
recorded for the blend (C3S+CaCO3) were always higher than those of hydrated C3S. 
The total heat resulting from pure C3S hydration was 145 joules, whilst that of the mixture 
(50% C3S+50% CaCO3) reached 260 joules. These results are in good agreement with those 
obtained by Ramachandran [14]. They indicate that CaCO3 cannot be considered as an inert 
addition towards C3S hydration. 

III.1.2. SEM examination 

As shown in Figure 2, the pastes presented about the same texture after 7 days of hydration; 
namely platlets of calcium hydroxide and fibrils of C-S-H. After 60 days of hydration, the 
morphology of the pastes is different, as presented in Figure 3. In pure C3S, platlets of calcium 
hydroxide and C-S-H type II are present according to Taylor [15]. In 'C3S+CaCO3' paste, 
granules of C-S-H are formed. 

III.1.2. Infrared spectrometry 
The IR spectra of hydrated C3S at different ages are shown in Figure 4. Those of the 
‘C3S+CaCO3’ paste are shown in Figure 5. The wavenumbers present in each product hydrated 
either for one day or 28 days are reported in Table 2. The vibrations associated with each 
wavenumber are also presented in Table 2. 
In hydrated C3S, all the Si-O-Si stretching bands were reorganized between 1 and 28 days. The 
structure of tobermorite gel was reached [16], as shown by the emboldened wavenumbers. 
In the blend ‘C3S+CaCO3,’ the characteristic bands of the CO3 ion appeared. Some SiO4 bands 
were shifted after one day of hydration, demonstrating the accelerating effect of CaCO3 on C3S 
hydration. Those results were also obtained using the diffuse reflectance method, as shown in 
Figure 6. 
The results of XRD investigations are given in Figure 7, after 60 days of hydration. The 
following conclusions can be drawn from these analyses: 

 calcium hydroxide is present in all compositions; 

 the intensity of the C3S peak decreases when the amount of CaCO3 increases such 
that in the blend containing 50% CaCO3, these peaks have almost disappeared; 

 the intensity of the peak at 2θ = 14.9° increases with the CaCO3 content and is 
due to the formation of some hydrated carbosilicate. 

The consumption of CaCO3 was studied by means of DTA. The area of the decomposition peak 
of CaCO3 decreased with the hydration time and the temperature corresponding to the 
maximum of this peak shifted towards smaller values as shown in Figure 8. Such results were 
previously observed by Henning [6] in the case of precipitation of carbonate hydrates. 

III.1.4. Compressive strength of pastes 
The compressive strength of the different pastes is presented in Figure 9. The presence of 
CaCO3 at levels higher than 30% has a beneficial effect on the strength, whatever the 
hydration time may be. 
It is possible to compute the K(t) value for each paste using Feret’s formula: 
 

R(t) = K(t)(Vs/Vt)
2 
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where R(t) is the strength after t days of hydration, K(t) is the coefficient of reactivity of the 
binder, Vs, is the volume of binder, and Vt, the sum of the following three volumes: binder, 
water and entrained air. In the present study, the volume of air was measured at 1.5-1.6%. 
Table 3 shows the K(7) and K(60) values obtained for the different pastes. After 7 days 
hydration, all blended pastes develop higher K(7) values than pure C3S which proves that 
CaCO3 reacts chemically. After 60 days hydration, only pastes containing more than 30% 
CaCO3, develop higher K(60) values. 

IIIIII..22..  RReeaaccttiioonnss  bbeettwweeeenn  OOPPCC  aanndd  CCaaCCOO3  3

III.2.1. Isothermal calorimetry 
Figure 10 shows that the same type of curve is observed with OPC and pure C3S. The heat 
produced by the reaction between 50% OPC and 50% CaCO3 is about double that issued from 
plain OPC hydration. 

III.2.2. Hydrates formed 

As shown by XRD (Figure 11) carboaluminate and carbosilicate have been precipitated after 
60 days of hydration. 
The presence of calcium carboaluminate hydrate was also observed by infrared spectrometry 
(bands at 3670 and 3530 cm-1). IR spectroscopy also pointed out differences in AFm and AFt 

phases (Figure 12). In the paste containing pure OPC, both monosulphate (bands at 100 and 
1170 cm-1) and ettringite (band at 1120 cm-1) are present. In the paste containing 50% CaCO3, 
monosulphate almost disappeared and the band at 1120 cm-1 was reinforced, so some SO4 ions 
in ettringite were probably replaced by CO3 ions. The band assigned to the ν3 SiO4, vibration 
at 970 cm-1 was also slightly modified and that of carbonate at 875 cm-1 amplified. 

III.2.3. Compressive strength of pastes 
The compressive strength of pastes is presented in Figure 13. The strength is maintained or 
even increased in pastes containing 10% CaCO3. Lower strengths are obtained with higher 
CaCO3 levels. These results mean that the development of strength is not similar in C3S and 
OPC pastes containing CaCO3. In OPC, interactions occur between C3A and CaCO3, leading to 
the production of calcium carboaluminate hydrate and the modification of ettringite, whereas 
in blended C3S pastes, only calcium carbosilicate hydrate is obtained. 
Nevertheless, the level of strength remains acceptable for a 50% level of OPC substitution: it is 
81% that of OPC alone. This result proves that chemical reactions occur, but in a smaller 
extent than in C3S pastes and more CaCO3, remains as an inert filler. 

IV. Conclusion 
As shown by isothermal calorimetry, more total heat is developed in C3S or cement containing 
up to 50% calcium carbonate than in the absence of CaCO3 under comparable conditions 
signifying the accelerating effect of CaCO3. Hydration of C3S in the presence of CaCO3, results 
in the production of some calcium carbosilicate hydrate and good mechanical performance for 
amounts of CaCO3 higher than 30%. 
In cement paste, calcium carbonate modifies the AFm and AFt phases, and produces calcium 
carbosilicate and carboaluminate hydrates but does not lead to the same strength 
development as in C3S paste. 
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FFiigguurree  11::  IIssootthheerrmmaall  ccaalloorriimmeettrryy  ddaattaa::  CC33SS  aanndd  CC33SS  ++  CCaaCCOO33..  

 

FFiigguurree  22::  SSEEMM  mmiiccrrooggrraapphhss  aafftteerr  77  ddaayyss  ooff  hhyyddrraattiioonn..  
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FFiigguurree  33::  SSEEMM  mmiiccrrooggrraapphhss  aafftteerr  6600  ddaayyss  ooff  hhyyddrraattiioonn..  

 

FFiigguurree  44::  IInnffrraarreedd  ssppeeccttrraa  ooff  hhyyddrraatteedd  CC33SS..  

 

FFiigguurree  55::  IInnffrraarreedd  ssppeeccttrraa  ooff  hhyyddrraatteedd  ((CC33SS++CCaaCCOO33))..  
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FFiigguurree  66::  IIRR  ssppeeccttrraa  oobbttaaiinneedd  ffrroomm  tthhee  ddiiffffuussee--rreefflleeccttaannccee  mmeetthhoodd..  

 

FFiigguurree  77::  XXRRDD  ppaatttteerrnnss  ooff  tthhee  ddiiffffeerreenntt  ppaasstteess  aafftteerr  6600  ddaayyss  ooff  hhyyddrraattiioonn..  

 

FFiigguurree  88::  EEvvoolluuttiioonn  ooff  tthhee  aarreeaa  aanndd  tthhee  tteemmppeerraattuurree  ooff  CCaaCCOO33  ddeeccaarrbboonnaattiioonn..  
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FFiigguurree  99::  IInnfflluueennccee  ooff  CCaaCCOO33  oonn  tthhee  ccoommpprreessssiivvee  ssttrreennggtthh  ooff  ppaasstteess..  

 

FFiigguurree  1100::  IIssootthheerrmmaall  ccaalloorriimmeettrryy  ccuurrvveess::  OOPPCC  aanndd  OOPPCC++CCaaCCOO33..  

 

FFiigguurree  1111::  XXRRDD  ssppeeccttrruumm  ooff  hhyyddrraatteedd  ppaassttee  ((OOPPCC//CCaaCCOO33  ==  11))..  

  

 

FFiigguurree  1122::  MMooddiiffiiccaattiioonn  ooff  AAFFmm  aanndd  AAfftt  pphhaasseess  iinn  tthhee  ppaassttee  ccoonnttaaiinniinngg  5500%%  OOPPCC  aanndd  5500%%  CCaaCC0033  aafftteerr  6600  ddaayyss  ooff  
hhyyddrraattiioonn..  
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FFiigguurree  1133::  CCoommpprreessssiivvee  ssttrreennggtthh  ooff  cceemmeenntt  ppaasstteess  ccoonnttaaiinniinngg  ddiiffffeerreenntt  aammoouunnttss  ooff  CCaaCCOO33..  

Tables 

TTaabbllee  11::  WWaatteerr  ttoo  ssoolliidd  rraattiiooss  ooff  ppaasstteess  

CC33SS  ((wwtt%%))  110000  9900  8800  7700  6600  5500  

CCaaCCOO33  ((wwtt%%))  00  1100  2200  3300  4400  5500  

WW//SS  SS==  CC33SS  ++  CCaaCCOO33 00..3355  00..3344  00..3333  00..3322  00..3311  00..33  

OOPPCC  ((wwtt%%))  110000  9900  8800  7700  6600  5500  

CCaaCCOO33  ((wwtt%%))  00  1100  2200  3300  4400  5500  

WW//SS  SS==  OOPPCC  ++  CCaaCCOO33 00..2288  00..2288  00..2277  00..2266  00..2255  00..2244  

TTaabbllee  22::  IInnffrraarreedd  rreessuullttss  ooff  hhyyddrraatteedd  CC33SS  aanndd  ((CC33SS++CCaaCCOO33))  

CC33SS  CC33SS  ++  CCaaCCOO33

WWaavveennuummbbeerr  ((ccmm-1-1))  VViibbrraattiioonn  WWaavveennuummbbeerr  ((ccmm-1-1))  VViibbrraattiioonn  

11  ddaayy  2288  ddaayyss    11  ddaayy  2288  ddaayyss    

11663355  11663300  νν22  HH22OO  11663355  11663355  νν22  HH22OO  

11448800  11445500  νν33  CCOO33 11443377  11443377  νν33  CCOO33

993388  996600  νν33  SSiiOO44 11116611  11116611  νν11  CCOO33

990055    νν33  SSiiOO44 995544  996633  νν33  SSiiOO44

888822  888822  νν33  SSiiOO44 887766  887766  νν22  CCOO33

885555  885555  νν33  SSiiOO44 884499    νν33  SSiiOO44

666600  666655  νν44  SSiiOO44 771122  771122  νν44  CCOO33

  664400  νν44  SSiiOO44 666600  666600  νν44  SSiiOO44

551188    νν44  SSiiOO44 550066  448866  νν44  SSiiOO44

445500  445500  νν22  SSiiOO44 445522  446622  νν22  SSiiOO44
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TTaabbllee  33::  RReeaaccttiivviittyy  ooff  tthhee  ddiiffffeerreenntt  bbiinnddeerrss  

CC33SS    110000  9900  8800  7700  6600  5500  

CCaaCCOO33  ((wwtt%%))  00  1100  2200  3300  4400  5500  

KK((77))  110000  110077  112299  117799  116644  115577  

KK((6600))  222255  112255  113300  330000  337755  441100  
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