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I. Industrial context 
 

In the semiconductor industry, and more specifically at STMicroelectronics, the forward 
move to reduce the critical dimensions in the semiconductor devices is accompanied by the 
introduction of new integration ways (3D integration) and the use of new brittle materials, 
such as low-k oxides. These materials are required to enhance the insulating capabilities of the 
dielectric layers, but they weaken the mechanical structure of the pads.  

During the manufacturing of an integrated circuit, parametric tests such as the Electrical 
Wafer Sort (EWS) and assemblies like the wire bonding are performed on the pads at the end 
of the front end process. The EWS, also known as probing, is required to check the electrical 
functionality of the die at the wafer level. It consists in carrying out a contact between a stiff 
probe and the aluminium bond pad. The assemblies are required to connect the die to the outer 
part before the packaging steps. The wire bonding, which is currently the most common way 
to achieve the electrical connection, is facing an evolution due to the increasing cost of gold. 
Thus, there is an interest in moving toward copper wires to achieve the bonding. However, the 
use of copper raises several questions due to the increase of the bonding process parameters 
necessary to weld the wire to the pad. 

As a consequence, during these manufacturing steps, the pad and the interconnections 
below undergo heterogeneous stresses, which can lead to failures (cracks in the oxide during 
probing and peeling during the wire pull tests following the bonding). These failures induce 
electrical issues such as shorts circuits. Hence, the integrity of the bond pad becomes a major 
concern for technology integration and yield loss.  

 
Thus, the main objectives of this work are to control the tests and process parameters in 

relation with the optimization of the pad architectures. To that purpose, some experimental 
and numerical techniques are used to gain insights on the failures in the interconnections, their 
location and root causes, and then reproduce the actual EWS and wire bonding. The driving 
force to mimic EWS tests and wire bonding is the duration and expensiveness of large designs 
of experiments, both for test and process parameters and for pad architecture optimization. As 
a matter of fact, these studies require patterned silicon wafers, the availability of the tools 
(probers, bonders…) and also dedicated equipment (probe card dedicated to the wafer for the 
EWS) and materials (copper or gold wires for wire bonding). Thus, in an industrial context, 
there is a need to have faster and cheaper reliable tools for technology development or crisis 
resolution. In that frame, nanoindentation and finite element modelling are particularly 
adequate to try to reproduce the process and test loading conditions. The former is a 
simplified loading condition (compressive test) with respect to the EWS and wire bonding, 
which only requires dies. The latter only requires the development and calibration of a 
numerical model, and allow the investigation of a large amount of test conditions and 
structures. 
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The complexities of the evaluation of the EWS and the bonding operations on pads are 
multiple. Indeed, the study of test and process parameters requires the evaluation of the 
inertial effects during these operations, and more specifically the contact between the needle 
tip and the bond pad. Then, this is a multi-scale issue from the size of the interconnections (a 
few micrometres) to the size of the operating tools (e.g. the needle for probing is in the range 
of few millimetres). Moreover, the pad is a multilayer system with complicated design and 
very different material behaviours that undergoes high damages during these operations and 
sometimes failures. Hence, the evaluation of the pads and the reproduction of the test and 
process must take into account all these considerations to be relevant. 
 

II. Solving approach 
 

After introducing the manufacturing steps of an integrated circuit, the electrical wafer sort, 
the assemblies and their relative mechanical issues are briefly presented. In the second 
chapter, the characterization techniques to gain insight on the failures occurring in the 
interconnections below the pad are detailed. Then, the nanoindentation, which is a recent 
technique used to characterize thin films, and the finite element model (using explicit scheme) 
set up to mimic the EWS test and assembly are described. The advantages and expected 
limitations in the reproduction of the loading conditions of the actual tests are also questioned. 

In the next chapters, several designs of experiments, based on many test, process and pad 
design parameters are performed to improve the understanding of the failure mechanisms. 
Thus, in the third chapter, the objective is to determine which test and process parameters 
have an influence on the damaging of the top aluminium layer and the appearance of failures 
in the oxide layers of the interconnections. After that, some rules to control the test and 
process parameters are expected in order to reduce the fracture hazard. 

The fourth chapter is dedicated to the evaluation of the influent pad design parameters on 
the mechanical robustness of the structure. Indeed, several layouts at various scales of the 
back end of line level (layer thicknesses, metal density, presence of via and layout of a 
specific metal level) and also some interactions with the failures (cracks during EWS, peeling 
after wire pull tests) are investigated. The determination of the critical loading conditions 
prior to the appearance of the failures for the various designs is also investigated. Then, 
correlations between the experimental and numerical techniques using adequate indicators are 
questioned. Finally, some guidelines for the optimization of the pad mechanical robustness 
are expected. 

As a work in an industrial context, there is a need to have fast and reliable nanoindentation 
and finite element model to reproduce the loading conditions of EWS and wire bonding and to 
evaluate various pad structures. In the last chapter, some rules for the comparison of the 
mechanical robustness of pads using the nanoindentation technique are clarified. Afterwards, 
an implicit finite element model based on all the insights of the experiments and simulations 
previously achieved and dedicated to the pad study is set up. 
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I. Introduction: integrated circuits and pads 
 

In this first chapter, the various scales set up in the semiconductor industry are swept: from 
the transistor to the size of a moulded chip. A global description of the several hundred steps 
required to build the chip is performed. Then, a focus is made on the interconnections and the 
pads, which allow the electrical connections with the outer part of the integrated circuit. The 
probing, wire bonding and other assemblies during the chip processing are realized on pads 
during the packaging operations. These tests and assemblies and their induced mechanical 
issues, failures in the oxide layers, are widely described. 

I.A. Integrated circuits: description  

I.A.1. Generalities on IC 
The Integrated Circuits (IC) are manufactured on silicon wafers. Nowadays, these silicon 

wafers have usually 200mm or 300mm diameter and are made from silicon single crystal. 
Silicon, as a semi conductor material, has the electrical properties of conductors and insulators 
materials depending on its doping. Hence, electrical conduction is possible under specific 
conditions, and can be tuned. 
 
The manufacturing of I.C. is usually divided in 2 parts: 

• The Front End (FE) composed of electrical compounds and interconnections. 
• The Back End (BE), which refers to the sawing, the assembly and the packaging. 

I.A.2. Front end 
The front end is composed of the electrical compounds and the interconnections as 

depicted in the Figure I.1. 
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Figure I.1. Side view of the FE part of a chip for a CMOS 90nm technology node. 
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The electrical compounds represent the active part of the FE, also known as the Front End 
of Line (FEoL). Usually, these are transistors, but resistances, capacitors and diodes are found 
as well. The interconnections are the passive part of the FE. The main purpose of this part of 
the I.C. is to connect electrically the transistors between themselves. The whole FE processing 
requires hundreds of operations.  

I.A.2.a) FEoL: Transistors 
There are two kinds of transistors, the bipolar and Metal Oxide Semiconductor (MOS). 

Most of the integrated circuits are based on MOS transistor type and its applications are wide 
such as counting, memorizing and realizing logical functions.  

MOS transistors are always 4 terminal devices, which include a gate, a source and a drain 
(doped semiconductor areas) and the bulk (silicon). The source and the drain are inversely 
doped with respect to the bulk. Therefore, two types of MOS transistors are distinguished: the 
NMOS (source/drain doped N with atoms such as P, As…) and the PMOS (doping with B, 
In…). The gate is separated form the substrate by an oxide layer. The functioning principle of 
a NMOS transistor is the following: by applying an electric field, the channel resistance can 
be modulated. More precisely, under the application of a positive tension to the gate, the 
electrons of the N-doped areas (source and drain) are attracted under the gate to form an 
electron channel, as shown in the Figure I.2. On the contrary, the holes from the silicon bulk 
are repulsed. This channel is obtained when a threshold tension is reached, allowing the 
electrical current to pass from the source to the drain while a tension is applied between both 
parts. The functioning of the PMOS is the same but with inversed batteries, and the channel is 
made from holes. Several NMOS and PMOS transistors are usually linked to realize logical 
functions, and called Complementary MOS (CMOS). 

 

Source

Gate
Oxide

Drain

+ +
+-

Channel
N N

PSilicon Electron circulation
Figure I.2. NMOS type transistor functioning: positive tension is applied to the gate inducing the attraction 
under the gate of the electrons (left) to form a channel, while a threshold is reached, that can further allow the 
electron circulation from the source to the drain (right). 
 

The minimum width of the gate determines the technology node. This width regularly 
decreases following the well-known Moore’s law. Nowadays, the industry is able to produce 
technologies down to 45nm (CMOS 45nm or C45), nevertheless 65nm (CMOS 65nm), 90nm 
(CMOS 90nm) and 120nm (CMOS 120nm) gate widths are still commonly industrially 
produced for specific applications. 

I.A.2.b) BEoL: Interconnections 
The interconnections correspond to the passive part of the integrated circuit, also called 

Back End of Line (BEoL). Their purpose is to link the electrical compounds to create the 
desired functionality for the chip. These are made from several materials (see Figure I.1), 
whose major ones are metals and oxides. Metal layers and vias are currently made from 
copper and ensure the electrical connections. To electrically insulate these layers, some 
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dielectric materials are used. Several kinds of materials can be used for insulation. They are 
later detailed in the sections I.B and I.C. At the end of the FE process, before performing BE 
steps, a parametric test is performed to check the functionality of the chip: the electrical wafer 
sort. 

I.A.3. Back end 
The back end part is composed of all the steps from the thinning of the wafer to the end of 

the packaging. As described by the Figure I.3, the die manufacturing consists in four main 
successive steps: the thinning, the sawing, the assembly and finally the packaging. The Figure 
I.4 presents an integrated circuit at the end of the back end steps, opened on one quarter, to 
show the chip and the assembly. 
 

 Molding compound

Wire 
bond

Chip

Figure I.3. Description of the back end main steps. Figure I.4. View of an IC with partial opening 
of the moulding. 

 
Various back end processes exist to ensure the electrical connection between the chip and 

the packaging of the die. In the next section, only the major ones are described. Many 
mechanical issues (delamination, die fracture…) are raised during all these back-end stages. 
In this work, attention is only paid to those occurring in the interconnections. 

I.A.3.a) Silicon backgrinding 
This step is required to simplify the cut of the wafer and to reduce the final size of the chip. 

Wafer thinning is achieved by polishing the back side of the wafer from about 750µm down 
to 50µm depending on the die application. 

I.A.3.b) Dicing 
The purpose of this step is to separate the dies from a wafer. This process is accomplished 

by scribing, which is made either by mechanical sawing (dicing saw) or by laser cutting, and 
then breaking the wafer. In order to keep the electrical function undamaged, the dicing is 
performed in scribe lines.  

I.A.3.c) Assembly 
After being split, the dies are packaged. The chip is flipped (Flip Chip or FC) or not 

depending on the application, the number of dies packaged together and the required electrical 
connections. In each case, several assembly techniques exist, and only the most common ones 
are further described. Most of these techniques are currently applied and induce stress in the 
pad structure leading sometimes to failures. As a consequence, the assembly techniques and 
related issues are more widely treated in sections III and IV of this chapter. 

For a standard assembly, within top side of the dies faces up, commonly used processes to 
link electrically the integrated circuit to the Printed Circuit Board (PCB) are the wire bonding 
and the use of Through Silicon Vias (TSV). Flip chip, within top side of the dies faces down, 
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also allows establishing a connection between the PCB and the die. For flip chip, the 
connections are made with solder bumps or copper pillars.  

I.A.3.d) Encapsulation 
Once the assembly performed, the die is encapsulated in order to protect the chip from 

physical damages or corrosion effects. This step is achieved by using moulding compounds, 
which can be ceramics, plastics or epoxy resins. An epoxy resin matrix is often used as filler 
for the encapsulation. 

I.B. Description and elaboration of the BEoL and the pad 

I.B.1. Description of the interconnections 
The pad refers to the area of the integrated circuit not covered by the passivation layers 

(nitride and oxide layers). The opening is performed at the end of the FE steps. As a 
consequence, the pad is located on top of the interconnections and is composed of the BEoL 
and the aluminium capping on top of it. In this volume, the electric connections between the 
transistors and with the outer part of the I.C. are set up. Thus, good electrical properties and 
mechanical resistance are required, since the parametric test (EWS) and assemblies are made 
on top of the pads. 

Nowadays, the metal layers from the BEoL are made from copper. Their number varies 
from 4 to 7, depending on the technology node as depicted in Figure I.5.  

For latest technology nodes, the top of the pad is made from an aluminium alloy (99.5% of 
aluminium and 0.5% of copper) to enhance its mechanical robustness. Moreover, this 
aluminium alloy (also often referred as alucap) is related to lower corrosion issues compared 
to copper. Indeed, a 2 to 5 nm native aluminium oxide is formed on its surface when exposed 
in air. This very thin layer is thermodynamically stable and its thickness varies slowly with 
time and heat. The aluminium oxide has an amorphous structure that protects aluminium for 
further oxidation. However, this oxide barrier is an excellent electric insulator (support 
electric field in the order of 1V/nm). 
 

Aluminium

TaN/Ta

Passivation

USG

M1 & M2
M3
M4

M2

Aluminium

M1 to M5

M6

M7
Oxide

Figure I.5. Tilted SEM side view of a pad for CMOS 120nm (left) and for CMOS 45nm (right). 
 

The other major family of materials found in the BEoL is the oxides, also known as Inter-
Metal Dielectric (IMD). This family has insulation purposes and evolves with technology 
nodes. This evolution is necessary since thinner layers are used in the bottom part of the 
BEoL, requiring higher insulation capabilities from the oxides to lower the capacitances. 
These insulating capabilities are defined by the dielectric constant (noted k). The dielectric 
constant of SiO2 is 4. Low-k materials have dielectric constants below 4 that can reach values 
close to the air (see Table I.1.). Thus, 3 main sub-families can be distinguished, with 
microelectronic applications: 
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• Silica based (see Figure I.6): these oxides have the tetrahedral basic structure of SiO2. 
They are either undoped such as USG (Undoped Silica Glass) or doped like FSG 
(Fluorinated Silica Glass). The latter are obtained from TEOS (Si(OEt)4), with k 
values between 3.2 and 4. Another approach is the introduction of carbon, through 
CH3 groups, in silicate glasses. The k value of the material depends on the number of 
CH3 groups and is in the range 2.6-3. This family is by far the most common in current 
technology nodes and allows obtaining low-k materials by introducing porosities (see 
Figure I.8). 

• Silsesquioxane based (SSQ): the elementary unit is silsesquioxane (R-SiO3/2)n, as 
depicted in Figure I.7. These are organic-inorganic polymers and allow obtaining 
lower dielectric constants. Most common forms are hydrogen-silsesquioxane (HSQ) 
and methyl-silsesquioxane (MSQ, commercially known as Black Diamond®), whose 
dielectric constants are respectively 3-3.2 and 2.8. 

• Organic polymers: these are polymers with C-C polar or non-polar bonds. Dielectric 
constants can reach 2.6-2.8, but many thermal stability issues can be encountered and 
some incompatibility with process limits their applicability.  

 

Figure I.6. Elementary units of: (a) SiO2 and (b) C 
doped silica glass. 

Figure I.7. Structure of elementary units of SSQ 
dielectric materials. 

Dielectric materials Dielectric 
constant 

SiO2 3.9-4.1 
SiOF 3.2-4.0 

Polysiloxane 2.7-4.0 
Polyimide 2.9-3.9 

Fluorinated polyimide 2.7-3.0 
Fluoropolymers 1.8-2.5 

Aerogels and 
microporous polymers 1.1-1.8 

 

Table I.1. Examples of dielectric materials and their 
dielectric constants after [Leu, 1995]. 

Figure I.8. Evolution of the dielectric constant 
with increasing porosity [Maex, 2003]. 

 
In latest technology nodes (CMOS 65nm and CMOS 45nm), the oxide deposited in the 

bottom of the BEoL belongs to the low-k family (X and Y levels, e.g. below the M5 layer for 
CMOS 45nm). The oxide of the top of the BEoL is USG, since thicker layers are deposited. 

Apart from metal and oxide layers, other materials are used in the pad structure. These 
have specific functions during the manufacturing or for the chip reliability: 

• TEOS is used in latest technology nodes to protect the low-k layers from Chemical 
Mechanical Polishing (CMP). 

• SiCN, a silicon nitride layer doped with carbon, is used to avoid the copper oxidation 
during the process steps. 
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• TaN/Ta, which is very thin (30nm to 40nm), is deposited to avoid the copper diffusion 
in the oxide layers surrounding. 

 
On top of the chip, 2 layers are deposited for protection purposes: 
• PSG (Phosphorus Silica Glass) that acts as a diffusion barrier to metallic and organic 

contaminants. 
• Silicon nitride (Si3N4) is used for mechanical protection and as a shield against 

humidity. 

I.B.2. Elaboration of the oxide and copper layers 

I.B.2.a) Dielectric layers 
The oxide of the IMD can be deposited in 2 main ways:  
• Chemical Vapour Deposition (CVD) is used for dielectric materials. A solid material 

is deposited on a substrate with the help of a gaseous precursor reacting on the 
substrate. Plasma could be used to reduce the deposition temperature (Plasma 
Enhanced CVD – PECVD).  

• Spin-on is used for the deposition of low-k oxides. For this technique, either a sol (a 
stable suspension) or a gel (result from the interaction between a sol and a solvent) is 
poured on the substrate that is in rotation. The thickness of the deposited material 
depends on the deposition duration and the rotation velocity. 

I.B.2.b) Copper lines and vias 
The copper lines and vias are deposited following the dual damascene process. This 

process can be achieved by two etches: the trench etch and the via etch. Only the latter is 
described here since it corresponds to the current methodology to coat the wafers (Figure I.9). 
 

Copper

Oxide

TEOS & 
SiCN

 
Dielectric and barrier layers deposition Step 1. Photoresist 1 coating 

 
Step 2. Photoresist 2 coating Step 3. Anisotropic via etch 
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Step 4. Resist via fill Step 5. Anisotropic line etch 

 
Step 6. Seed Cu and Cu deposition Step 7. CMP Cu 

Figure I.9. Dual damascene process with via etch approach for the copper deposition. 
 

Firstly, the wafers are coated with photoresist and lithographically patterned (steps 1 and 
2). Then, anisotropic etching cuts through the surface hard mask and down to the IMD and the 
embedded etch stop to end on the bottom silicon nitride barrier (step 3). Next, the via mask is 
removed and the via is filled with resin (step 4). An anisotropic etching then cuts the surface 
hard mask and goes down through the oxide, stopping at the embedded hard mask. This 
etching forms the line (step 5). The photoresist is then stripped and the silicon nitride barrier 
at the bottom of the via is opened with a soft etching. TaN/Ta is deposited using Physical 
Vapour Deposition (PVD). To enhance the copper adhesion to the layer below, a Cu seed 
layer is deposited also by means of PVD. Copper can be deposited by means of electroplating 
(step 6). Finally, a thermal treatment and a Chemical Mechanical Polishing (CMP), which 
allows the surface planarization, are achieved (step 7). 

I.C. Introduction to mechanical issues in Pads 
The introduction of low-k oxides induces reliability issues. Indeed, the decrease of the 

dielectric constant is accompanied by a reduction of the mechanical properties (e.g. see Figure 
I.10: reduction of the elastic modulus). Characterisation studies to evaluate the mechanical 
properties of the dielectric thin films have been performed [Padovani, 2001; Vella, 2003; 
Volinsky, 2003; Brillet, 2007]. For most of the low-k oxides, the Young’s modulus is below 
12GPa and the hardness below 2GPa. Hence, these new materials have weak mechanical 
properties compared to those of silicon (E=65-75GPa, H=7-9.5GPa). 
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Figure I.10. Evolution of the Young’s modulus as a 
function of the dielectric constant [Moore, 2001]. 

Figure I.11. Elastic modulus and hardness for organo-
silicate glass (SiOCH family) [Vella, 2003]. 

 
Moreover, the adhesion energy values diminishes as well [Maex, 2003; Cherault, 2006]. 

Considering only the linear elastic domain, the crack propagation is directly related to the 
energy release rate, G. Hence, the lower the adhesion energy values, the easier the crack 
propagates. The adhesion energy value for low-k materials are between 2.5J/m2 and 6J/m2, 
which is very low comparing to the ones of the silicon and its deriving materials (over 
10J/m2). 

Mechanical issues are induced in silicon oxide during harsh or non adequate processes, 
tests or assemblies conditions. These failures are responsible for short circuits and lead to the 
reject of an integrated circuit and thus yield loss. In a more general manner, most of the 
FE/BE interactions implies mechanical stresses within the pad structure that can lead to 
failures in the interconnections. These parametric tests and assemblies, and the mechanical 
issues induced are described in the next chapters and sections (II.C, III.C and IV). 

 

II. Electrical wafer sort:  
 
Electrical wafer sort (EWS), also known as probing, is used to check the electrical 

functionality of the die at the wafer level. As mentioned previously, this test is performed at 
the end of the FE part of the process, before assembly. 

II.A. Test description 

II.A.1. Introduction to the EWS process 
This test is part of the manufacturing process for over four decades. Patents on probing can 

be found as far as 1969 for microelectronic applications [Harmon, 1969]. To achieve the sort, 
a contact between the pad of a die and a contact element (needles, wires…) is established. 
This results in scrub marks (few tens of micrometres long) left in the aluminium layer on top 
of the pad.  

At a larger scale, a prober, with electrical capabilities and software, is used to perform the 
electric tests and marks the rejected dies. It is composed of a test head, made from an epoxy 
ring containing the Probe Card (PC). The probe card contains several contact elements. On 
the other side, a chamber is used to store the wafers before and after being sorted. During the 
test, the prober holds the wafer in a vacuum chuck. The chuck moves in the horizontal 
direction to position the pads under the probe card and then, moves along the vertical axis to 
bring in contact the elements of the card and the pads. 
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II.A.2. Test description and parameters 
During a test, a double touchdown is performed to improve the electrical measurements. It 

is required to remove the aluminium native oxide on top of the pad and to perform a reliable 
measurement. Many parameters should be taken into account while considering the test: 

• The OverDrive (OD), which corresponds to the vertical displacement, in 
micrometres, applied to the chuck once the contact with the pad is established. 

• The number of passes, which refers to the number of times the test is performed to 
get a good electrical response from the pad. Multiple passes are required to 
diminish the reject rate of dies. 

• The velocity of the chuck during the test: on the one hand, a high test velocity 
fasten the overall testing time, on the other hand, it increases the odds to damage 
the pad, so a balance must be found. 

One pass is made from several steps, as depicted by Figure I.12. At the beginning, the 
chuck is raised with a high velocity close to the probe card (about 10um to the tip’s end), and 
after a stabilization time, the first touchdown is performed at slower velocity. This first 
touchdown is composed of a loading step, followed almost directly by an unloading one. 
After another short stabilization time to avoid the oscillations of the needle and the chuck, the 
second touchdown starts. The loading ends when the OD value is reached, similarly to the 
first touchdown. Then, the electrical measurement is performed lasting a given time, and 
finally the unloading ends the pass. 
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Figure I.12. Vertical movement of the chuck during a pass (2 touchdowns), measured by laser. 

II.A.3. Probe Cards 
The Probe Card (PC) holds the contact elements that establish the connection with pads 

and perform the electrical measurements. Three major kinds of PC exist depending on the I/O 
pad layout, and consequently to the die application: the cantilever probe card, the vertical 
probe card and the ones made from springs and/or MEMS (MicroElectronic Mechanical 
System). They are used respectively for conventional perimeter, area array and line on centre 
(see Figure I.13).  
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(a) Conventional perimeter (b) Area array (c) Line-on-centre 

Figure I.13. Main I/O pad layouts. One pad has a size ranging from tens to hundreds of micrometres. 
 

II.A.3.a) Cantilever probe cards 
Nowadays, they are the most widely used probe cards. They are specifically designed to fit 

with conventional perimeter type of pad layout (Figure I.13 (a)). This type of probe card has 
been mainly developed in the 80’s, with patents from Aigo [Aigo, 1984], Ohkubo [Ohkubo, 
1986] or Evans [Evans, 1988]. One probe card has to be designed for each pad layout since 
needles should be accurately positioned on the pads. 

As depicted by the Figure I.14, the probe card is composed of several needles (up to ten 
thousand). The end of these needles is attached to the probe card by means of an epoxy resin. 
Hard materials such as tungsten, tungsten-rhenium, beryllium-copper and other alloys are 
used to manufacture these needles. They are characterized by a bending angle, which is 
between 90° and 105°. Today, the minimum pitch between 2 needle tips is between 20µm and 
30µm depending on the PC provider. 
 

 
Figure I.14. Cantilever probe card (left) and set of needles (right) [Vallauri, 2007] 

 
Cantilever probe cards are considered during further work and for most of the published 

papers on the probing topic. Hence, damages induced and additional information are 
discussed in chapters 3 and 4. 

II.A.3.b) Vertical probe cards 
The main alternative probe card is the vertical one. It best fits with area array type of pads 

(Figure I.13 (b)), although it can be used for conventional perimeter pad layout in some 
specific cases. The area array pad layout configuration is increasingly used since it is required 
for flip chip assemblies (see section IV.A for additional information on FC). In this design, 
the needles are attached to the probe card and are positioned almost vertically above the pads. 
This kind of PC has been firstly developed in the 70’s by Bove [Bove, 1974] under the 
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buckling beam name because needles bend slightly during the test (see Figure I.15). 
Nevertheless, the most famous and promising one is the Cobra probe needle, patented by 
Byrnes and Wahl [Byrnes, 1977] as depicted by Figure I.16. 
 

 
Figure I.15. Set of vertical needles [Bove, 1974]. Figure I.16. Cobra needle [Byrnes, 1977]. 

 
The actual trend to develop the flip chip for some applications (high performance 

microprocessors and many high speed devices) increases the interest for these PC. As a 
consequence, some studies focuses on the design of the probe to reduce the stress during the 
bending of the needle [Chiu, 2009]. In another study [Hung, 2009], actual probing tests are 
performed on Cu/low-k structures ( CMOS 65nm) and some design rules for the pad design 
are highlighted. 

Vallauri et al. [Vallauri, 2007] performed a comparison between cantilever and vertical PC 
for a specific application (and for a conventional perimeter pad layout). Needles have 
buckling beam geometries and are mounted on specific cards (see Figure I.17). The 
comparison between the probe cards shows smaller scrub marks are expected while probing 
with the vertical one. Hence, the area of aluminium damaged by the electrical wafer sort can 
decrease by up to 50% as shown by Figure I.18 and Figure I.19. Moreover, according to this 
study, probing with buckled needles shows improved electrical contact and crack appears at 
higher loading.  

 

 
Figure I.17. Route60® vertical probe card (left) and vertical needles tip set (right) [Vallauri, 2007]. 

Figure I.18. Scrub mark induced by probing with 
cantilever PC [Vallauri, 2007]. 

Figure I.19. Scrub mark induced by probing with 
Route60® vertical PC [Vallauri, 2007]. 
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Hauck et al. [Hauck, 2009] evaluated the forces and stresses induced by vertical probe card 
on pad structures in order to evaluate the significant design parameters, using finite element 
modeling. They found that buckling probe needles provide a constant probe force over a large 
range of overdrives. Pad designs like the number of vias in the top oxide layer and their 
distance to each other were also found to be critical parameters.  

As previously described, the range of application for the vertical probe cards is widening. 
Nevertheless, the pitch for these PC is close to 60µm, which is higher than the pitch of 
cantilever PC, and can be limiting for some pad layouts. 

II.A.3.c) Probe cards with micro-springs and/or MEMS 
Some probe cards with micro-springs and/or MEMS are emerging. Figure I.20 and Figure 

I.21 depict the needles for such cards. Nowadays, they still have limited industrial 
applications but interest is paid to due to the reduction of the pitch size. Some recent studies 
evaluated various tip shapes and the damages induced while probing on pad structures with 
low-k oxides. Yorika et al. [Yorika, 2004] showed by means of actual testing and finite 
element analyses that the tip form is more important than the probe loading to avoid the 
mechanical issues in the structure. On the contrary, Martens et al. [Martens, 2004] and Wang 
et al. [Wang, 2007] demonstrated that the tip shape is not a significant factor for the scrub 
performance. Both studies agreed on the necessity to have a very high contact precision 
during the sort. 

 

Figure I.20. Microspring probe [Yorika, 2004]. Figure I.21. Microspring probes [Wang, 2007]. 
 

II.A.4. Electrical measurements and cleaning 
The main purpose of EWS is to check the electrical functionality of the die. To maintain 

the accuracy of the electrical measurements, the resistance due to the contact has to remain as 
low and constant as possible. A high contact resistance is likely to induce additional passes to 
check the functionality of the die and as a consequence additional stress in the pad structure. 
The contact resistance between the probe needle and the pad is defined according to an 
equation from Holm [Holm, 1967]:  

trace
filmiumaluprobe

res R
F

H
F
HC ++

+
=

σπρρ
4

min
 (I. 1) 

where Cres is the contact resistance, ρprobe and ρaluminium are the bulk resistivity of the probe and 
the aluminium, H is the hardness of the softer material, σfilm is the film resistivity, F is the 
probe force and Rtrace is the trace resistance contribution. 

Several studies have evaluated the contact resistance [Maekawa, 2000; Broz, 1999; Broz, 
2006; Liu, 2007], and its variations with parameters such as the over drive (Figure I.22) and 
the number of touchdowns performed by the probe card (Figure I.23). 
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Figure I.22. Probe force and contact resistance 
versus the applied overdrive [Broz, 2006]. 

Figure I.23. Cres for W and WRe probes at 30°C and 
85°C as a function of the number of touchdowns. A 
cleaning is performed after 100,000 tests [Broz, 1999]. 

 
The studies have underlined the necessity of a regular cleaning of the probe to maintain a 

low and constant contact resistance (Figure I.23). This cleaning is used to remove particles 
and other contaminants (e.g. process related organics, bond pad surface oxides…) deposited. 
This particle contamination causes the contact resistance to increase. The cleaning is made 
with an abrasive material (a polymer foam containing polishing particles, and coated with a 
debris collection material to avoid redeposition on pad). 

II.B. Failure analysis: pad integrity 
Due to applied forces on pads, EWS can induce failures in the oxide layers beneath, 

requiring failure analysis during the development stages. Nowadays, no non-destructive 
characterization technique is available to perform large scale study (i.e. on several hundreds 
of pads) after probing. Thus, the use of destructive method is required to check if mechanical 
failures had occurred during the test. Among, these techniques, the most common consists in 
removing the layers on top of the pad and reveal cracks with chemicals. As a result, 
mechanical failures are observed directly with an optical microscope.  

The process to observe the cracks is described by the Figure I.24. Once pads are probed, 
the alucap is selectively etched by chemicals1. The etching solution contains acetic acid (2.5% 
to 10%), nitric acid (<2.5%) and orthophosphoric acid (50% to 97.5%). The latest component 
reacts with aluminium with an activation temperature of 45°C. Then, the thin TaN/Ta layer is 
plasma etched.  It is a two steps process. The first one is an etching with argon to remove the 
remaining aluminium and impurities. For the second one, a gas containing CF4 and O2 is used 
to selectively etch the barrier layer since both N and Ta react with fluorine. The plasma 
parameters have to be fine tuned to etch selectively the layers and obtain a pad free from 
aluminium and tantalum2. Finally, to ease the observation of the cracks under the optical 
microscope, a chemical attack is performed. The solution used for the aluminium removal is 
efficient, since the nitric acid infiltrates through the crack to etch the copper and reveal the 
cracks.  
 

                                                 
1 The whole pad integrity test is set up and used by the ST Crolles physical characterization team. 
2 The 2 steps plasma etching of  TaN/Ta has been set up and fine tuned by A. Pofelski and V. Guyader [Pofelski, 
2009] from the ST Crolles physical characterization team on the probed dies further presented. 
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Figure I.24. Successive steps of the pad integrity test for crack revelation. 
 

II.C. Introduction to mechanical issues during probing 
In this section, the mechanical damages observed during the EWS are only introduced, 

since complex mechanical issues are raised by this test and will be further more widely 
developed. 

During the probing test, a scrub mark, whose length, width and depth depends on the test 
conditions, results from the contact between the hard material of the probe and the ductile 
aluminium top material of the pad. Thus, each time a pass is made; some aluminium is shifted 
from its initial location and piled up in front of the needle (see Figure I.25 (b)). While pad 
integrity tests are performed on harshly probed pads, some cracks appear in the oxide layers 
underneath the aluminium leading to short circuits and finally to a reject of the die, as shown 
in Figure I.26. In a more general manner, probing initiate damages and sometimes cracks in 
the pad structure that reduce the production yield.  

 

 (a)

25-40um

 (b)

Heavily 
damaged 
area

Pile-up

 

Crack

Figure I.25. Probe mark after probing with standard conditions (a) and with harsh 
conditions (b). 

Figure I.26. Crack observed 
after pad integrity test. 
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On some structures, and due to the actual trend to reduce the pad pitch, while EWS and 
wire bonding (or other assemblies) are performed at the same location, probing conditions can 
induce high damages on the aluminium layer and affect the bondability of wires [Hotchkiss, 
2001]. Mercado et al. demonstrated that harsh probing conditions are related to lower shear 
stresses after ball bonding [Mercado, 2000]. In that frame, Yao et al. [Yao, 2004], found a 
threshold of 20% for the area of the pad damaged after probing. Similarly, Sauter et al. 
[Sauter, 2003] has shown that the percentage of probe mark area deeper than 0.6µm must be 
limited to 25-30% of the ball bond area to achieve reliable wire bonding. Finally, EWS is 
responsible for both failures and damages during testing and issues like non sticking bonding 
during the assembly steps. 

 

III. Wire bonding and related testing  
 
Wire bonding is the most common way to connect electrically the chip to the package. 

The other existing ways are controlled collapse chip connection (C4) also called Flip Chip 
(FC) and the use of through silicon vias, which will be more widely developed section IV. 
This assembly is part of the back-end (see Figure I.3). Sawed dies are linked to the die attach 
with the help of wires. 

III.A. Test description 
Three major techniques were successively used to achieve bonding in microelectronics 

[Harman, 1997]: thermocompression, ultrasonic and thermosonic bonding. For all these 
techniques, the wire material is welded. The difference is based on the mean to weld the wire: 
using heat, ultrasonic energy or both. The bonding on the pad side can be completed either 
with wedge bonds or more often with ball bonds (see Figure I.27). 
 

(a) (b)
First 
bond

Second 
bond

Figure I.27. Typical geometrical configurations for ultrasonic wedge bond (a) and for gold ball bond (b) 
 

III.A.1. First techniques to bond wires 

III.A.1.a) Thermocompression bonding 
The thermocompression, first bonding technique, was developed by the Bell Laboratories 

in 1957 [Anderson, 1957; Christensen, 1958] for microelectronics. This method was used 
only for a few years until ultrasonic wedge bonding replaced it. Thermocompression bonding 
is a type of solid-phase welding that combines heat and compressive force to plastically 
deform the welded elements. Surface contaminants (oxides, halogens, sulphur, 
carbonaceous…) are swept aside and a contact between cleaned surfaces is established. The 
metallic welded bond is energetically activated, following an Arrhenius relationship. Hence, 
to achieve such a bonding, the entire device needs to be heated around 300°C. As a 
consequence, this technique raises issues due to the high bonding temperatures that can 
damage the entire die and the packaging material. 
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III.A.1.b) Ultrasonic wedge bonding 
Ultrasonic wedge bonding was introduced to the microelectronics industry in the 1960s, 

and rapidly replaced thermocompression in the device production. Ultrasonic wedge bonding 
is performed at room temperature, and the welded elements are formed by applying ultrasonic 
energy through a resonating capillary, while applying a clamping force. The wedge bonding 
system has to be oriented in a straight line from the first to the second bond before the first 
one is made. This alignment slows down the entire bonding process by more than 50% 
compared to the ball bonding. 

III.A.2. Thermosonic ball bonding 
Ultrasonic power and heat have been first combined by Coucoulas [Coucoulas, 1970]. 

Today, this is the most common way to perform wire bonding. The combination of ultrasonic 
and thermocompression welding uses advantages of both techniques. The interface 
temperature can be lowered to a range between 125°C and 220°C. The ultrasonic energy helps 
to remove the contaminants and to mature the weld. Moreover, after the ball bond is made, the 
loop can be formed in any direction that allows fast bonding. 
 

Capillary 
tool

EFO wand
Spark

Gold 
wire

 

Pad

(a) EFO spark melts the wire (b) Ball is positioned above the pad (c) Ball is pressed against the pad 

 
(d) Capillary is raised (e) Formation of kinks (f) Wire loop formation 

  

(g) Second bond formation (h) Capillary is raised, end of the cycle 
 

Figure I.28. Simplified procedure for making a ball bonding using the thermosonic method. 
 
The procedure for making a ball-stitch wire connection with a capillary tool is shown in 

Figure I.28. Only the major stages of the bonding cycle are described. Firstly, the wire is fed 
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through the capillary, and an Electrical Flame Off (EFO) spark melts the wire. Due to the 
surface tension of the molten gold, a ball forms at the end of the wire (a). The solidified ball is 
also known as Free Air Ball (FAB). The wire is pulled into the chamfer so that the wire is 
positioned against the bottom of the capillary. At the same time, the ball is centred above the 
pad (b). The tool is lowered to the bond pad and the ball is pressed against it (c). The die is 
heated all along the wire bonding process. Once the contact between the ball and the pad is 
established, force and ultrasonic power are applied during a given time and the bond is 
formed. Then, the capillary rises to the loop height position, leaving the welded ball on the 
pad (d).  Kinks are formed to give to the bond the final desired shape (e) and the bond loop is 
made as the capillary moves toward the second bond (f). The second bond is also known as 
stitch or crescent bond. During the formation of the second bond, the wire is deformed against 
the lead while force, heat and ultrasonic energy are applied (g). After the second bond is 
made, the capillary tool moves upward, the wire is clamped and the bonding cycle can be 
repeated (h). 

 
Capillary trajectory

Bonded 
wire

Loop 
height

Kinks

 
Figure I.29. Capillary trajectory to form the loop shape. 

 
The trajectory of the capillary during the looping stage is one of the key parameter during 

wire bonding. The trajectory, as depicted by the Figure I.29, has to take into account the 
distance between the pad and the leadframe, but also the final height of the package; this is 
achieved by fixing the loop height. Kinks are used to control the looping of the wire, but also 
to avoid highly elongated areas. Several studies are led to optimize and find out key 
parameters in the looping behaviour [Saraswati, 2004] or to model and reduce the stress in the 
wire [Park, 2009]. 

As described, numerous parameters have to be taken into account for the thermosonic 
bonding. The heating temperature, the bonding power, the bonding force and the bonding 
time have an influence on the intermetallic compounds formation (see next section). The 
bonding time corresponds to the duration of application of the ultrasonic power and the 
compressive force. The geometrical aspects, such as the loop height, number of kinks and 
distance between pad and leadframe must also be considered depending on the packaging 
requirements. Additionally, the impact of the ball on the pad is controlled by the contact force 
and the capillary velocity. Hence, to achieve a good bonding, all these parameters have to be 
fine tuned. 

III.A.3. Materials in wire bonding 
The bonding wire is specified by its electrical, mechanical, thermal and economic 

properties and considerations. Thus, the mechanical specifications generally provided for the 
wire are its elongation prior to failure and breaking load. Nowadays, the production units 
often employ gold wires with smaller and smaller diameters. Yet, a recent trend to move 
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toward copper emerges. The material considerations, but also advantages and drawbacks of 
both materials for wire bonding are hereafter described. 

III.A.3.a) Gold ball bonding 
Since the thermosonic bonding technique is used, gold is selected as bonding material. It 

has several advantages such as a very good bondability with the aluminium of the pad, good 
electrical properties and it is inert in air. Due to the use of auto-bonders and to prevent break 
or stretching when the wire is rapidly pulled through the capillary, strong Au wires with 
improved breaking loads are required. This is achieved by doping the Au wires with beryllium 
(5 to 8 ppm) or calcium (5 to 7 ppm). Nevertheless, the dopant concentration is kept small and 
almost pure gold wires are selected for bonding applications1. The wire purity is important in 
the bonding process since it affects the mechanical properties of the wire and as a 
consequence its reliability. 

Gold wires for ball bonding are supplied in the annealed condition. If the wire is hard (as-
drawn), the portion immediately above the ball is annealed during its formation to become the 
weakest part of the wire. This zone is often referred as the Heat Affected Zone (HAZ). The 
hardness of this zone is lower than the original wire as depicted by Figure I.30 [Hsu, 2007]. 
The Figure I.31 shows the grains in the wire. The grain structure in the HAZ, after the ball 
formation, has an intermediate size between the coarse grains of the ball and the fine grains of 
the thermally stable zone, explaining the reduced mechanical properties of the zone [Wulff, 
2003; Dresbach, 2009; Park, 2009]. 

  

HAZ As-drawn wire

FAB

Figure I.30. Micro-Vickers hardness of the 
FAB, HAZ and as-drawn Au wire [Hsu, 2007]. 

Figure I.31. FIB image of the cross section of a wire with 
FAB [Park, 2009]. 

 
At the interface between the gold ball and the aluminium of the pad, some InterMetallic 

Compounds (IMC) are formed during the bonding. They are related to the reciprocal diffusion 
of atoms from one of the material to the other. The IMC coverage during bonding is an 
important parameter because these compounds ensure a good bond. As shown in the phase 
diagram, five intermetallic compounds are found in the Au-Al system (Figure I.32). Some 
properties of the intermetallic compounds are given in Table I.2. After ball bonding, 
semiconductor chips undergo further processing steps such as encapsulation and curing. The 
elevated temperatures reached during these steps cause the intermetallic growth (Figure I.33), 
through atomic diffusion. Many studies evaluated the existing phases, but also the mechanical 
and electrical properties of these intermetallic compounds [Harman, 1997; Breach, 2004; 
Breach, 2010; Ji, 2007; Seng, 2007]. They are related to many issues such as reduced electric 
current conduction and voids (see Figure I.34), which can lead to wire debonding. The reason 
of these voids is still unclear; in most of the studies, the differences in rate diffusion between 
gold and aluminium (Al diffuses faster than Au) induces these Kirkendall voids [Harmann, 
1997]. However a recent study suggests that these voids are due to the stresses created during 

                                                 
1 99% (2N), 99.9% (3N) and 99.99% (4N) pure Au wires are widely used. 

 - 29 -



Chap 1. Downscaling from IC to Pad: description, elaboration, related processes and mechanical issues 

the interdiffusion. Since the compounds grow and have various specific volumes, stress 
gradients can modify the diffusion to create voids [Breach, 2010]. 

 
 

Phase Composition 
(at. % Au) 

colour Hardness 
(GPa) 

AuAl2 33% purple 2.58 

AuAl 50% white 2.44 

Au2Al 66% tan 1.28 

Au8Al3 72% tan 2.66 

Au4Al 80% tan 3.28 
 

Figure I.32. Aluminium-gold phase diagram 
[Breach, 2010]. 

Table I.2. Some properties of the various Au-Al intermetallic 
compounds [Massalski, 1986]. 

 
 

Void

 
Figure I.33. SEM image of the Au-Al interface 
after 200h aging [Breach, 2004]. 

Figure I.34. SEM image of an Au ball bond after 200h aging 
[Breach, 2004]. 

 

III.A.3.b) Copper ball bonding 
For cost reduction purposes, the trend is moving toward copper bonding. A comparison of 

the two wire materials is drawn in the next section. However, among the drawbacks of the 
copper, it easily oxidizes in air. Oxidation is particularly critical during the formation of the 
FAB, since this leads to non bonded ball and interconnection damages. Thus, many studies 
such as Uno et al. [Uno, 2009] investigated various inert gases compositions to achieve a 
good bonding. Using a forming gas, made from a mixture of 5% H2 and 95% N2 is found to 
ensure a good bondability of the copper wire. Novel options such as coating a thin layer of 
palladium on the copper wires has also been developed providing promising reliability results 
[Vath, 2009]. As for gold, the weakest area of the wire is the HAZ. Additionally, the ball is 
strain hardened during the bonding [Srikanth, 2004]. 

Similarly to gold bonding, IMC are formed through the same nucleation mechanisms. The 
phase diagram (Figure I.35) shows that five intermetallic compounds can be found in a Cu-Al 
system. Some of the properties of the intermetallic compounds are given in Table I.3. Many 
studies [Seng, 2007; Vath, 2009; Breach, 2010] have been carried out to evaluate the growth 
of IMC in the Cu-Al system.  
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Phase Composition 
(at. % Cu) colour Hardness 

(GPa) 

CuAl2 33% white-yellow 3.18 

CuAl 50% gray 6.16 

Cu4Al3 56% white-yellow 6.04 

Cu3Al2 60% white-gray 5.47 

Cu9Al4 65% white-light 
yellow 5.38 

 

Figure I.35. Aluminium-copper phase diagram 
[Breach, 2010]. 

Table I.3. Some properties of the various Cu-Al intermetallic 
compounds [Wulff, 2004]. 

 

III.A.3.c) Mechanical and electrical considerations between gold and 
copper wires 

As aforementioned, copper is cheaper than gold. Copper also has other advantages such as 
a higher electrical conductivity and a higher fusing current. As shown in the Figure I.36, the 
rate of IMC formation is slower for copper bonding. The slowness of volume diffusion for the 
Al-Cu IMC is attributed to the reduced connectivity of the lattices of these IMC and the 
availability of vacancies to transport the atoms. Thus, lower IMC are encountered during 
copper bonding and no voids are found. Moreover, Cu-Al intermetallics have lower resistivity 
so the electrical conduction is less altered [Breach, 2010]. 

 

 
Figure I.36. Total intermetallic thickness of Au-Al 
and Cu-Al plotted against t1/2 [Breach, 2010]. 

Figure I.37. Variation of the Vickers hardness of bonded 
Au and Cu balls across the ball diameter [Breach, 2010]. 

 
But copper also has several drawbacks that delay its industrial application to wire bonding. 

The hardness of copper wires is higher than the one of the gold wires as depicted in the Figure 
I.37. Due to the higher mechanical properties of the copper wire, additional force and power 
are required to bond the ball, which lead to higher pad deformation and in some cases to 
damages in the interconnections (cracks in oxide layers). Moreover, the ease of copper to be 
oxidized in air implies a necessity to use coated wires and/or a forming gas to ensure a 
reliable bonding.  
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III.B. Bond characterization tests 
In order to check the reliability of wire bonds, several destructive and non destructive tests 

can be done. The most common methods for evaluating the bonds are the shear test, the wire 
pull test, and the thermal aging test, which are further described. Others such as chemical 
opening of the package, etching to obtain the IMC coverage are less easily set up at a large 
scale. The hereafter described tests are further used during this work to evaluate the bond and 
the robustness of the structures underneath the pad. 

 
Binocular microscope

Tool cartridge

X-Y-Z positioning and operating joysticks

X-Y-Z table

Figure I.38. Pull and shear test apparatus Dage® 5000 (left), hook for wire pull test (centre) and shear tool (right) 
[Internet 1]. 
 

The apparatus depicted in Figure I.38 is currently one of the most common for wire pull 
and shear tests1. The sample is placed in horizontal position and viewed from above with an 
optical microscope. This apparatus allows the control of most of the parameters that can affect 
measurements during these tests. 

III.B.1. Shear test 

III.B.1.a) Introduction and apparatus 
The shear test is the best way to evaluate the quality of the ball-bond interface, and, thus, 

allows setting up a ball bonding machine. This test has been introduced in 1966 [Gill, 1966; 
Arleth, 1967] but it has only been set up for bond strength evaluation by Jellison [Jellison, 
1975; Jellison, 1977] after the design of precision shear testers. The principle of the test is to 
bring a shear tool to the side of a bonded ball, to apply a sufficient force to push it off, and to 
record the force during the measurement. The test is illustrated in Figure I.39.  
 

Pad

Gold ball

Shear test 
height

Contact 
area

Shearing 
ram

Figure I.39. Schematic drawing of the ball shear test. 
 

The input parameters for the test are the velocity of the shear ram, and the shear tests 
height. The former is fixed to 250µm/s, and seems to have little effect on the measurement 

                                                 
1 This apparatus, available at ST Grenoble, is used during further work. 
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and the latter depends on the sample, and is fixed to 3µm. The effects of these two parameters 
are investigated during further experiments. 

III.B.1.b) Typical failure modes during Ball shear tests 
During the shear test of the ball, the failure modes that can be observed after testing are 

shown in Figure I.40, after Charles et al. [Charles, 1984]. While performing ball shear test, the 
failure mode 2 is expected (c). For this mode, some material from the ball remains on the pad, 
showing a strong bond and thus a good IMC formation during the wire bonding. Weak bond 
leads to failure mode 1, which corresponds to the absence of wire material remaining on the 
pad (b). The failure mode number 3 is the most critical since it can be related to a weak 
structure and can induce reliability issues during the BE operations (d). Failure modes 4 and 5 
(e and f respectively) are more related to wrong experimental conditions, and could be easily 
avoided by using adequate ones. For the former, the shear height is fixed too high, and the 
shear test is performed close to the top of the ball. For the latter the shear height is too low, 
and the shear test cannot be successfully achieved.  
 

 
(a) Normal test configuration (b) Failure mode 1: ball lift 

 
(c) Failure mode 2: ball shear -  leaving gold on pad (d) Failure mode 3: cratering 

 
(e) Failure mode 4: wire shear (f) Failure mode 5: ram contacts substrate 

Figure I.40. Normal test configuration and typical failure modes of the ball shear test (after [Charles, 1984]).  
 

The accuracy of the shear test measurement can be reduced by some interference [Harman, 
1997]. Firstly, the shear tool must not drag on the substrate. This is related to improper 
vertical positioning of the tool. Secondly, the shear tool has to be clean in order to keep the 
shear height constant for successive measurements. Thirdly, the shear tools wear during long 
use and/or mishandling, leading to deformed surfaces that can also further reduce the test 
reproducibility. 

The output of the test is the measured shear force (SF) prior to failure. Nevertheless, the 
recorded force depends on the contact diameter between the ball and the pad. Thus, the shear 
strength (SS) is often introduced to compare the bonding resistance for various wire 
diameters, or at least for various ball sizes. Two measurements of ball bonded diameter made 
at right angle are sufficient to obtain the shear strength: 
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where dx and dy are the ball diameters respectively in the x and y directions. 
When the ball is almost perfectly round, a single measurement of the diameter is 

necessary: 

2*
*4

D
SFSS

π
=  (I. 3) 

In order to be even more accurate, the measurement of the diameter can be done on the 
welded area (IMC coverage), that can be achieved by etching the bond pad under the ball with 
some chemicals that does not attack the ball such as KOH. 

III.B.2. Wire bond pull test 

III.B.2.a) Introduction and apparatus 
The wire bond pull test is used to control the quality of the wire bonding operation. It has 

been introduced to evaluate the strength of the wire bonds in the 1960s. During a pull test, a 
hook is positioned below the wire and a vertical tensile load is applied to the wire. Hence, the 
pull test can be either non-destructive (NDPT) or destructive. For the former, a given low 
force is applied to the wire, assuming no or little plastic deformation of the wire occurs during 
the test. The NDPT is used to check the bond strength, only for particular application 
requiring very high reliability and should be applied to all the wires of the die. On the 
contrary, the destructive pull test is used while setting up the bonding parameters, during 
advanced development stages, or when reliability issues are faced. 
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Figure I.41. Geometric variables for wire pull test [Harman, 1978]. 

 
The geometrical configuration and the equations defining the resolution of forces were 

described by Harman [Harman, 1978]. The force in each wire, at break, with a specified pull 
force, F, at the hook is: 
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In our case, the wires are pulled straight up (φ=0) and the purpose is to evaluate the ball 

side of the bond (ε tends toward 1), so finally F~fwd. 

III.B.2.b) Typical failure modes during wire pull test 
Several failure modes are observed during the wire pull test, as depicted by Figure I.42. A 

successfully achieved pull test results in a failure at the wire neck. As mentioned in section 
III.A.3.a), due to annealing, the HAZ is the weakest part of the wire and as a consequence, 
failure in the wire is expected to occur in that part. For such failures, the measured force is 
expected to be a little lower than the breaking load of the wire.  

 

Interconnects

Neck break: mode 1

Ball lift: mode 2

Peeling: mode 3

Cratering: mode 4

(a)

Ball

HAZ

 

(b)

Ball

Wire 
neck

 (c)

Pad surface

IMC
(d)

Pad

Interconnects

Figure I.42. Typical failure modes during wire pull tests performed close to the ball (a) SEM cross section 
depicting the 4 failure modes1, (b) SEM top view of a failure at the wire neck, (c) optical microscopy top view 
of a mode 2 failure and (d) SEM top view of peeling in the interconnections (mode 3). 

 
Other failure modes are encountered at lower pull forces and can be related either to 

mechanical weaknesses of the structure or to inadequate bonding conditions. The failure mode 

                                                 
1 Courtesy of S. Gallois-Garreignot from ST Crolles Mechanical and Thermal Modeling team for the SEM image 
of the moulded wire. 
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2 is the ball lift. The ball is detached from the bond pad due to weak welding and thus reduced 
adhesion of the ball to the pad (b). This is also referred as the Non-Sticking On Pad bond 
(NSOP). For such failures, some fine tuning of the bonding parameters have to be performed. 
The peeling or Metal Peel Off (MPO) is a failure within the BEoL, highlighting its weakness 
for harsh bonding conditions. For such failure, both the HAZ and the bond remain intact (c). 
The failure mode 4 is the cratering (d). All the FE structure and sometimes additionally some 
silicon are removed from the die. This is not a very common failure mode, but some paper 
point out such failures after pull tests [Spaan, 2010].  

During wire pull tests, additional failure modes are observed when the force at the second 
bond cannot be neglected while compared to the pull force on the ball side or when the bond 
strength of the stitch bond is evaluated. These failures are: 

• Midspan failure: the wire fails under the hook location. 
• Heel break: the stitch bond fails at the heel. 
• Second bond lifting: the second bond is detached from the leadframe, similarly to the 

NSOP. 

III.B.3. Thermal aging  
The thermal aging is also known as High Temperature Storage (HTS). During this test, the 

devices undergo a high temperature (usually 175°C) during a given time (usually 192 hours or 
264 hours). Thus, various conditions, such as humidity, thermal heating and aging duration 
can be investigated. This procedure is dedicated to investigate the effects of the IMC growth. 
Thermal aging is an accelerated fatigue test, particularly for devices that are submitted to 
thermal cycling during their lifetimes. The drawbacks of the growth of IMC are increased 
electrical resistance of the contact and possible failures, which have been developed in 
III.A.3. 

III.C. Mechanical issues during wire bonding 
Generally, the mechanical issues induced by wire bonding are found during the 

development stages when shear and wire pull tests are performed. Though, some issues can be 
encountered latter during the production. Hence, most of the mechanical issues related to wire 
bonding are observed after the achievement of all the BE steps. These are only efficiently 
observed by removing the moulding resin using chemicals to uncover the die. Two main 
failures are obtained after such opening: broken or lifted wires and bonding pad cratering. The 
former is related to either heterogeneous thermal mechanical stresses during the assembly 
steps, non optimized loop profiles or bonding parameters (time, force, heat, ultrasonic power, 
etc) or contamination of the bonding pad. The driving forces of the latter are the wire bonding 
parameters, the coefficient of thermal expansion mismatch between aluminium and gold and 
die stacking issues. During thermosonic bonding, the working temperature can reach 180-
200°C. For gold bonding, some bonding degradation can then be related, such as a high 
increase of the electrical resistance due to the intermetallic growth and possible lift off.  

 

IV. Other processes inducing mechanical failures in pads 
 
The following work mainly focuses on EWS and wire bonding pad related issues. 

However, many other assembly processes, existing or emerging in the semiconductor 
industry, lead to similar mechanical failures in the pad structure. In this section, the most 
common assemblies and their related known failures in interconnections are described.  
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IV.A. Flip Chip assembly 
The flip chip process consists in turning the chip upside-down to directly connect the pad 

to the substrate. The advantages of this technique are the enhanced thermal package 
performance and the reduced parasitic impedance provided compared to the wire bonding 
assembly. Furthermore, the connections over active devices can also be increased. Since this 
process is much more expensive than wire bonding, its application is still limited to particular 
products. The two major ways of connecting flipped chips to the pad are described hereafter. 

IV.A.1.  Solder bump  
To achieve the electrical connection between the die and the substrate, solder bumps are 

used as depicted in Figure I.43. These solder bumps, generally lead free, are commonly made 
from SnCu, SnAgCu or SnAg alloys. The overall reliability of the process is enhanced by 
adding a polymer resin, also known as underfill, between the chip and the die.  

 

Die Molding resin

Substrate

Solder 
bump

Underfill

Figure I.43. Schematic side view of a flipped chip 
assembly [STMicroelectronics]. 

Figure I.44. SEM cross section of sample with failure 
in the low-k [Chen, 2006]. Delamination is underlined 
by the arrows. 

 
During this assembly, fractures in interconnections can be observed as shown in Figure 

I.44 and described by Chen [Chen, 2006]. These failures are often referred as ghost bump, 
since during X-Ray reliability checking, white dots can be observed under such bumps.  

IV.A.2. Copper pillar  
This assembly is based on a similar principle to solder bump, by being a recent evolution 

of the flip chip assembly. A copper pillar is used for the connection instead of the solder 
bump. On the top of the pillar, a solder joint is added for welding purposes (see Figure I.45). 
Compared to solder bumps, this assembly enhances thermal and electrical conductions. The 
density of connections is increased and pillars as small as 60µm can be obtained.  

 

Silicon
Interconnects

Copper 
pillar

Solder 
joint (Sn)

Polyimide

Figure I.45. SEM cross-section views of a flip chip assembly with a copper pillar (left) and zoom at 
delaminations and failures that can be observed after the assembly, highlighted by the arrows (right) [ST 
Microelectronics].  
 

The issues met after assembly with copper pillar are similar to those encountered with 
solder bump: fractures in the interconnections observed as ghost bumps. The Figure I.45 
depicts the delamination and failures that can be observed between the layers of the BEoL. 
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Hence, several numerical studies [Mercado, 2003; Ong, 2009; Zhang, 2010] have been 
performed to investigate the various design options to reduce the mechanical issues. Among 
other parameters, the height of the copper pillar, the polyimide (PI) thickness and opening 
were found to reduce the stress in such structures [Zhang, 2010]. 

IV.B. Toward 3D integration: TSV 
To overcome the Moore’s law, the more than Moore law has emerged. Its purpose is to 

integrate more functionality on devices. It can be achieved by stacking the I.C. in 3 
dimensions to reduce the overall size of the dies. The connection between the chip and the 
substrate is obtained in doing Through Silicon Vias (TSV) that goes through the whole 
thinned silicon (See Figure I.46). Additionally, micro-bumps, using SnAg alloy, are added for 
the die interconnection [Gagnard, 2010]. Two main ways of connecting the integrated circuits 
exist: via-first and via last, depending on the location of the via etching: on the top or at the 
bottom of the interconnections. This technique is not sufficient enough to connect the dies to 
the substrate and requires an additional assembly. This is generally achieved by using bumps 
similarly to flip chip. 
 

50um

Figure I.46. 3D demonstrator with 45nm and 120nm dies (left) (STMicroelectronics) and cross section of one 
through silicon via (right) [Gagnard, 2010]. 
 

In the literature, most of the mechanical and thermo-mechanical issues are located at 
geometrical singularities of the TSV, in the lateral barrier of the TSV or at the bottom of the 
copper via, close to the location of the connection with micro-bumps [Liu, 2009; Khan 2010]. 
Hence, the mechanical issues in the BEoL for this assembly are up to now limited. 

 

V. Problematic and conclusions 
 

In this first chapter, the main stages of the production from the silicon to the moulded I.C. 
are swept. These are divided in front end and back end steps, and further described work deals 
with the interactions related to these parts of the semiconductor industrial process. The pad 
corresponds to an opening in the integrated circuit to realize the electrical connections of the 
I.C. with the outer part. With the current trend to reduce the critical dimensions (the pad pitch 
is particularly a concern in this case) and introduce low-k, brittle dielectric materials, failures 
are observed in the oxide layers of the interconnections under the pads.  

The first source of cracks is the electrical wafer sort, or probing, which is performed to 
check the electrical functionality of the die at the wafer level. This test consists in establishing 
a contact between a stiff needle and the top surface of the pad. Thus, during this test, the 
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aluminium undergoes high damages, and the integrity of the layers underneath is threatened. 
The probing, its most common parameters and various related test conditions and probe card 
technologies have been described in this chapter. During the products development stages, the 
failure analysis, a destructive method, is frequently used as mean to check the pad integrity, 
by revealing the cracks in the oxide layers. The second source of failures in the BEoL is the 
various assemblies that enable the electrical connections with the outer part of the integrated 
circuit. In the semiconductor industry, the most common is the wire bonding, which consists 
in bonding the pad to the leadframe with gold or copper wires. The bonding conditions 
applied during the process can induce failures and thus lead to non-functioning dies and yield 
loss. Some destructive techniques such as the wire pull, the shear and the high thermal storage 
tests have been developed in the frame of evaluating the reliability of the bonded wires. These 
tests and the failure modes observed are presented. Hence, in this first chapter, the parametric 
test and assemblies inducing mechanical issues under the pad during the process flow and the 
apparatuses used to check the pad integrity are depicted.  

In the next chapters, the experimental and numerical tools developed during this work to 
mimic these operations and reproduce their loading conditions and failures are described. 
These tools are required to improve the knowledge on the failures locations and mechanisms 
induced by these processes, since both are widely unknown. On the one hand, the 
nanoindentation tool, which is generally used to evaluate the mechanical properties of thin 
films, is applied to the pad and a dedicated methodology for data analysis is developed. On 
the other hand, a 3D explicit numerical model is set up to reproduce the EWS. Such a 
complex model is required since the contact between the needle and the probe, the needle 
dynamics and various pad designs have to be reproduced. Moreover, the issues faced during 
EWS and assemblies involve many scales from the hundreds of nanometres to few 
millimetres. Then, these experimental and numerical tools and methodologies are applied to 
actual test conditions and pad designs, and compared with probing and wire bonding. Some 
correlations between the analysis techniques, but also some limitations are emphasized. 

The pad mechanical robustness is the driving force of the overall study, and the main 
purpose is thus to provide tools to understand, predict and reduce the fracture hazard in the 
interconnections. As a consequence, to fit with industrial requirements in fast and reliable 
tools, some nanoindentation methodologies and rules for pad evaluation and an implicit 
numerical model are developed to evaluate the robustness of the architectures. The 
description, uses and limitation of these tools are finally depicted in the frame of providing 
guidelines for pad design.  
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In the first chapter, the pad elaboration has been described. The industrial tests and 
processes to check the electrical functions and connect the die electrically to the outer part of 
the integrated circuit are known to induce mechanical failures in the interconnections, and 
more specifically in the oxide layers. These failures are related to leakage and short circuits 
and must be avoided. Thus, some dedicated experimental and numerical tools and analyses 
are firstly required to improve the knowledge of the failure mechanisms.  

In this second chapter, the experimental techniques (FIB/SEM, optical profilometry…) are 
firstly presented to observe the crack locations and understand the root causes leading to these 
fractures. Then, some methodologies are described in order to reproduce the loading 
conditions and failures observed during the actual tests and assemblies. Hence, the 
nanoindentation technique and the Oliver and Pharr model used to extract the results during 
the experiments are presented. The compressive loading applied during the indentation test 
corresponds to a simplified loading condition compared to EWS or wire bonding. 
Additionally, an explicit finite element model is set up to mimic the probing. The model with 
related assumptions and also physical and numerical parameters is described. To obtain a 
faithful model, it is calibrated with some dedicated experiments. Finally, a modal analysis of 
the finite element model is performed to check some of dynamical effects related to probing. 

 

I. Experimental techniques for failure analysis  
 
The characterization of surfaces and volumes at the micrometre scale requires adequate 

tools. In some cases such as scrub mark control after probing, optical microscope is sufficient, 
but generally, such viewing provides limited information. Hence, the imaging tools used 
during the following work and their principle and application domains are described. Then, 
some other techniques coupled to these imaging apparatuses such as electron backscatter 
diffraction and energy dispersive X-Ray are briefly mentioned. 

I.A. 3D observation of the pad surface: Optical profilometry 
Optical microscopy profilometry is used to obtain a 3D topography of a surface. The 

principles, application but also limitations of this technique are described.  

I.A.1. Principle 
The optical profilometry principle is based on light interferences. There are 2 distinct 

techniques: Phase Shift Interference (PSI) and Vertical Shift Interference (VSI). The former is 
dedicated to roughness measurements and the latter, using white light, is based on the 
principle of vertical sweeping to evaluate the topography of the samples. Hence the VSI mode 
is suitable to evaluate the pad wear due to testing and assemblies. 

A schematic view of the instrument is depicted in Figure II.1. To perform the mapping of a 
surface, the light from the source goes on a semi transparent mirror and is focused by the lens 
on the microscope’s objective. Then, the light is separated in two beams by a splitter: 

• The first one reflects back on a mirror located in the microscope objective. Then, the 
beam is reflected by the semi reflecting mirror of the beam splitter on the sensor of a 
camera. 

• The second beam goes a first time through the semi reflecting mirror of the splitter to 
reflect back on the surface of the sample. Then, it goes a second time through the 
mirror to interfere with the first beam. The sensor of the camera saves the intensity 
and the position of the interference fringes.  

The principle of the measurement with a white light consists in reducing continuously the 
size between the objective of the microscope and the sample. Therefore, the fringes of 
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interference go on the sample. Finally, once the measurement is completed, algorithms 
calculate the heights of the areas of the sample to give a 3 dimensional image.  

The interference is constructive while the optical paths of the 2 beams are equals. The light 
intensity reaches its maximum. While the difference in the optical path is k time l/2 (k is an 
integer), then the interference is destructive and the light intensity observed by the camera is 
null. Thus, the measurement provides a serial of interferences fringes on the sample 
depending on the distance between the surface of the sample and the objective. 
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Figure II.1 Schematic principle of the optical 
microscope profilometry. 

Figure II.2. Views of the aluminium of the pad after EWS: 
optical microscope top view (a), top view and 3D views of 
the same mark observed by optical profilometry (b and c). 

 

I.A.2. Expectations and limitations of the technique 
The optical profilometry allows a nanometre vertical resolution. However, for optical 

profilometry, the lateral resolution is limited by the wave length of the light source and the 
sensors of the camera. For this tool, the scanning velocity and the objectives limits the lateral 
resolution at 100nm.  

The VSI mode allows a 3D mapping of structures whose vertical shift is in the range of 
micrometres. Since the measurement is done with white light that has a short range of wave 
length coherence, the fringes of interference are obtained for a very short range of vertical 
position for each location. As a consequence, steep angles over about 70° cannot be 
measured.  

Finally, optical profilometry is a fast and non destructive imaging technique to observe the 
surface of the pad and establish mapping profiles. For the current work, it is a very useful 
apparatus to obtain the profile of a pad damaged after EWS or wire bonding. More 
specifically, it is further used in the next chapters to map the peeling cases after wire pull tests 
and to evaluate the scrub mark due to probing and provide insights for the numerical model. 

I.B. 3D reconstruction of the pad volume: FIB/SEM reconstruction 
In order to obtain the 3D reconstruction of the pad and the whole BEoL volume, an 

imaging technique that combines the Focused Ion Beam (FIB) and the Scanning Electron 
Microscopy (SEM) can be employed. 
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I.B.1. FIB and SEM principles 
The Focused Ion Beam (FIB) is used for milling purposes. The overall principle of the 

technique is similar to the SEM one described hereafter. Ions beam, usually Ga, is used 
instead of electrons. The interaction between the big and heavy ions and the material mills the 
latter. This technique is particularly adapted to remove some materials at the microscopic 
scale.  

The scanning electron microscopy (SEM) is based on the sweeping of a surface by an 
electron beam. The primary electron beam interacts with the atoms of the sample and the 
electrons loose energy due to repeated random scattering and absorption within a teardrop-
shaped volume of the specimen. Hence, according to the type of electron/atom interactions, 
various electrons are reemitted: secondary electrons, backscattered electrons, Auger electrons 
and X-rays. For SEM imaging, the low energy secondary electrons are collected to allow the 
observation of the sample. By using SEM, single or coupled with other techniques, some 
observation of a surface is obtained. 

FIB is mounted in a SEM chamber to combine both techniques. In that case the sample is 
tilted at about 52° to perform vertical milling and observations simultaneously. The schematic 
principle of the coupled FIB/SEM tomography is shown in Figure II.3. To obtain the 
reconstruction of the pad volume, FIB cuts are performed at regular intervals1, and after each 
cut, a SEM view is taken. Then, the SEM images can be computed2 and the volume is 
reconstructed in every desired direction. 

 

Figure II.3. FIB/SEM reconstruction principle. 
 

I.B.2. Advantages and drawbacks of the technique 
The FIB/SEM imaging is particularly efficient and accurate to obtain much information not 

only on the pad surface, but also to the BEoL structure underneath. Indeed, the observation of 
the failure under the surface, its path and location are collected. However, this is a destructive 
and very slow method since only one sample can be treated at a time and both accurate 
milling and SEM views computing are time consuming. As a consequence, the use of the 
FIB/SEM technique is limited to research and development and/or for specified investigation 
purposes. 

                                                 
1 Every 56nm in the further considered case, but intervals down to 6-10 nanometres can be achieved. Hence, for 
a 20µm wide probe mark, about 350 slices are cuts and views required, which takes several hours. 
2 In our case, the Amira® software has been used to realign the SEM views.  
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I.C. Additional tools used to evaluate the pad damages 
Additionally to imaging (and particularly to SEM), some dedicated tools can be used to 

obtain physical-chemical data about the sample. Hence, EBSD and EDX are hereafter 
presented and their use in the frame of the work underlined.  

I.C.1. Electron backscatter diffraction 
Electron BackScatter Diffraction (EBSD) is able to characterize and measure grain and sub 

grain structures for metals, which affect greatly its mechanical properties. The typical main 
components of an EBSD installation are depicted in Figure II.4. The EBSD apparatus is 
placed in the SEM chamber. The sample is tilted between 60° and 70° from the horizontal and 
backscattered electrons from the sample to analyze are collected using detectors providing a 
diffraction pattern. An image of the diffraction patterns is obtained while many different 
planes diffract the electrons to form the Kikuchi bands (Figure II.5). Based on the Miller 
indexes, the bands are indexed and the crystal phases and orientation revealed. 

In a publication, Humphreys [Humphreys, 2001] reviewed the most relevant parameters 
affecting both quality and quantity of the data. These are the material, the pattern acquisition 
time, the effective special resolution and the relative angular precision.  
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Figure II.4. Schematic diagram of a typical EBSD installation, after 
[Humphreys, 2001] 

Figure II.5. Example of Kikuchi bands 
(Nickel). Courtesy of EMSE-CMP. 

 
For this work, this technique is useful to evaluate the modifications of the mechanical 

properties and the grain sizes and orientation of the various materials implied in the tests and 
processes. Hence, the damages on aluminium during EWS and the recrystallization of the 
gold and copper wires for the wire bonding process can be investigated.  

I.C.2. Energy dispersive X-Ray 
Energy dispersive X-ray spectroscopy (EDX) is used to perform an elemental analysis or a 

chemical characterization of a sample. The tool is placed in a SEM chamber. The principle is 
based on a primary source providing an energetic electron that collides with the inner electron 
of an atom. Hence the electron is removed and replaced by one from an outer shell. Such 
transition yields a fluorescent photon whose characteristic energy depends on the difference in 
energy between the initial and the final atomic orbital. The transition from an L shell to a K 
shell is called Kα that is intrinsic to the atoms.    

A detector, generally silicon doped with lithium, captures the photons X allowing 
distinguishing these photons according to their energy. However, some issues related to close 
transitions energies between the elements can be encountered.  
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CA B

 
Figure II.6. EDX analyses for surfaces containing O, Cu, Al and Ta elements (a), N, Cu and Si elements (b) and 
Si, O and C ones (c). Abscissa and ordinate are respectively the energy and the counts. 

 
Some typical results of an EDX analysis are shown in Figure II.6. It enables us to find the 

chemical composition of a surface, which is, for instance, efficient to find the delaminating 
interfaces for the peeling cases observed after wire pull tests. The depth of the analysis 
depends on the input energy of the primary source, but is often limited to few hundreds of 
nanometres. The peak height is based on the number of counts measured by the detector for a 
given element.  

 

II. Experimental evaluation of the mechanical robustness of pads: 
nanoindentation  

 
In the past three decades, a particular focus is paid to the development of new techniques 

to evaluate the mechanical properties of thin films at the micrometre and nanometre scales. In 
that frame, the nanoindentation has been developed. This technique derives from the well-
known indentation of bulk films. The range of forces applied during depth sensing indentation 
is between 0.1µN and 10N. Such range of forces allows penetrating into the surface to 
analyze it at very small depth (tens of nanometres) up to tens of micrometers. As a 
consequence, nanoindentation seems particularly adequate to evaluate the mechanical 
robustness of pad and reproduce the loading conditions of the EWS and assemblies. 

II.A. Principle and apparatus 

II.A.1. Presentation of the technique 
The general principle is to apply a compressive force (P) or displacement (h) on a sample 

to extract mechanical properties (Young’s modulus, hardness…). The following description 
concerns standard nanoindentation. Cross section nanoindentation also exists and is used to 
evaluate adhesion energy between layers, but the technique is not detailed here1. 

The test output is a load-displacement curve that is further post processed to obtain the 
desired properties. 

 

                                                 
1 Measurement of the adhesion energy is performed with cross section nanoindentation. It has been applied to 
thin films firstly by Sanchez [Sanchez, 1999] and extended to interfacial adhesion energy of pads by S. Gallois-
Garreignot [Gallois-Garreignot, 2009]. 
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Figure II.7. Schematic representation of the basic components of a nanoindenter. 
 
The schematic representation of the basic components of an instrumented testing system is 

depicted by the Figure II.7 following Hay et al. [Hay, 2000]. The three major components are 
the indenter tip with specified geometry, an actuator for applying the force and a sensor for 
measuring the displacements of the indenter. The low forces can be generated by 3 various 
means: electromagnetically with a coil and a magnet assembly, electrostatically using a 
capacitor or with piezoelectric actuators. The displacements are measured by several different 
ways, whose most common are capacitive sensors and linear variable differential 
transformers. However, whatever the measurement mean, the displacements include the 
compliance of the machine. To reduce the effect of the compliance, the machine needs to be 
calibrated.  

II.A.2. Berkovich and cube corner indenter tips 
Since nanoindentation involves contact mechanics and elastic-plastic deformation of the 

tested material, the indenter tip has to be selected carefully. Diamond is often used for these 
tips since it has high hardness and Young’s modulus that minimizes the indenter’s 
compliance. Other materials such as sapphire, tungsten carbide or hardened steel are also used 
to manufacture the indenter even if they have lower mechanical properties.  

Moreover, indenters have various geometries: conical, spherical or pyramidal. In further 
works, from choice and availability, the Berkovich and cube corner tips are employed to 
evaluate the structures. Both are three-sided pyramidal tips, as shown in Figure II.8. The 
geometrical considerations of both tips are displayed in the Table II.1. The Berkovich tip is 
very commonly used for testing since it has the same depth to area relation than the well-
known Vickers four-sided pyramid used for macro indentations. The cube corner tip is very 
sharp compared to the Berkovich one, and is arranged like the corner of a cube.  
 

a)
 b)

 
Figure II.8.Berkovich (a) and cube corner (b) tips. 
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Table II.1. Geometrical considerations for Berkovich and cube corner tips. 

 Berkovich tip Cube corner tip 
Centreline-to-face angle, θ 65.30° 35.26° 
Area (projected), A(h) 3√3*tan2θ*h2 ~ 24.56*h2 3√3*tan2θ*h2 ~ 2.598*h2 
Volume-depth relation, V(h) 8.1873*h3 0.8657*h3 
Projected area/face area, A/Af 0.908 0.5774 
Equivalent cone angle, φ 70.32° 42.28° 

 
The main purpose when using sharper pyramidal indenters (smaller centreline-to-face 

angle) is to produce larger stresses and strains at the vicinity of the contact. Hence, cube 
corner tip is often used when investigating fracture toughness as cracking is observed at much 
smaller loads. The comparison and utilization between the two tips to evaluate pad structures 
is more widely treated in the following chapters. 

II.A.3. General description of the indentation process  
A classical load-displacement indentation curve is depicted by Figure II.9. It is obtained 

when testing silica glass with a Berkovich tip. The curve contains three distinct parts. The first 
one is the loading stage, up to a maximum force Pmax or displacement in the material hmax. It is 
followed by a holding step, to evaluate the creep of the material. During this plateau, no 
additional force is applied to the tip that sinks in the material due to its material properties. 
Then, the unloading stage occurs to remove the indenter. During this step, the material 
recovers depending on its elastic behaviour and a residual indent is obtained, whose depth hf 
can be observed at the end of the test. The Figure II.10 shows a schematic representation of an 
axisymmetric indentation and the important parameters while performing such testing. The 
parameter Ac describes the projected contact area between the indenter tip and the sample and 
hs is the displacement of the surface on the material during the testing.  
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Figure II.9. Indentation load-displacement curve with Berkovich tip in silica glass. 
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Figure II.10. Schematic representation of axisymmetric indentation showing various quantities used in analysis. 

 

II.B. Determination of material properties 

II.B.1. Measurement of hardness and elastic modulus 
The hardness is defined as the mean pressure that the material undergoes while loaded. As 

a consequence, the following equation is obtained: 

cA
PH max=  (II. 1) 

For the nanoindentation technique, Bulychev et al. [Bulychev, 1975] established a 
relationship to extract the Young’s modulus deduced from the slope of the unloading curve: 

AES rβ 2
=

π
 (II. 2) 

where β is an indenter geometry parameter, whose value is discussed in section II.B.2.b) and 
Er the reduced modulus defined by:  

ir EEE
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22 111 νν −

+
−

=

mhP α=

 (II. 3) 

where E and ν are the Young’s modulus and Poisson’s ratio of the evaluated material, and Ei 
and νi the same parameters for the indenters. For diamond indenters, the Poisson ratio is 0.07 
and the Young’s modulus is 1141GPa.  

The reduced modulus is introduced in order to take into account the non rigidity of the 
indenter. Both the hardness and the elastic modulus can be obtained from nanoindentation 
tests with the help of the Oliver and Pharr method. 

II.B.2. Oliver and Pharr model and limitations 

II.B.2.a) Description of the model 
The first elastic contact models have been developed in the late 19th century by Hertz 

[Hertz, 1881] and Boussinesq [Boussinesq, 1885]. Hertz analyzed the problem of the elastic 
contact between two spherical surfaces with different radii and elastic constant. Boussinesq 
developed a method based on potential theory to evaluate the stresses and displacements in an 
elastic body that undergoes a rigid and axisymmetric compression under an indenter. Later, 
Sneddon [Sneddon, 1965] derived relationships between the load and the displacement for flat 
punch indenter: 

 (II. 4) 
where α and m are constants. The constant α depends on the material and the exponent m 
depends on the punch geometry. For flat cylinders, m=1, m=2 for cones and m=1.5 for 
spheres (considering small displacements) and for paraboloids of revolution. This formula is 
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valid for elastic materials. Hence, considering the plastic behaviour increases highly the 
complexity of the problem since additional material parameters are required (yield strength, 
work hardening…) and constitutive equations are nonlinear. In that frame, Tabor [Tabor, 
1948] performed indentation experiments on numerous metals deformed by hardened 
spherical indenters and finally obtained a well-known approximation between the hardness 
(H) and the yield stress (σy) for metals: 

yH σ3=  (II. 5) 
From these considerations, Doerner and Nix [Doerner, 1986] proposed a method to 

evaluate the slope at the beginning of the unloading step. Their approach is based on the 
observation that during the initial unloading stages, the contact area remains constant. From 
this, the methodology to extract the elastic modulus and the hardness of a material is extended 
by Oliver and Pharr [Oliver, 1992]. It corresponds currently to the most common 
methodology to obtain these material properties. The Oliver and Pharr method begins by 
fitting the unloading portion of the load-displacement curve with a power-law relation: 

( )m
fhhP −= α  (II. 6) 

where α and m are power-law fitting constants and m is in the range 1.2 to 1.6.  
From this, the contact stiffness S is obtained by differentiating the equation (II. 6) and 

evaluating the result at the maximum depth penetration that gives:  
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The next step is to evaluate the contact depth, which in most cases is different from the 
maximum displacement into surface due to sink-in or pile-up. The contact area is estimated 
using: 

S
Phhc

max
max ε−=  (II. 8) 

where ε is a constant that depends on the indenter geometry. For Berkovich and cube corner 
tips, ε is respectively equal to 0.75 and 0.72.  

Finally, the projected contact area is calculated by evaluating an area function at the 
contact depth hc. The latter depends on the tip geometry and is given in the Table II.1. 
However, in practice, indenters have not a perfect sharp shape. To take this into account, the 
area function of a Berkovich indenter is fitted by the relationship: 
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hChhA  (II. 9) 

where the leading term corresponds to the case of a perfect Berkovich tip and the others 
describe the derivation from the geometry due to blunting at the tip. For a cube corner 
indenter, an area function similar to the Berkovich one is obtained, only the leading term is 
different (given in the Table II.1). This is the main advantage of the Oliver and Pharr method, 
within the contact area does not need to be measured for each indentation. Hence, prior to 
indentation tests, the coefficients C1 to C8 must be defined through calibration on fused silica, 
whose Young’s modulus is known (E=72GPa).  

Once the projected area and contact stiffness are known, the hardness and elastic modulus 
are obtained from the equations (II. 1) and (II. 2). 

II.B.2.b) Limitations of the Oliver and Pharr model 
The Oliver and Pharr theory is widely used. However, some assumptions have to be taken 

into considerations. These assumptions are investigated in a more recent study from the 
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original authors of the method [Oliver, 2004]. The first one is the elastic properties of the 
evaluated sample, which leads to sink-in during indentation. However, many materials and 
particularly metals have elastic-plastic properties and are more prone to form pile-up around 
the contact. When pile-up is observed, the contact area is greater than that predicted from the 
method. As a consequence, hardness and elastic modulus can be overestimated by as much as 
50% [Bolshakov, 1998].  The Figure II.11 depicts the results from finite elements studies 
showing the influence of material properties on pile-up. Hence, Bolshakov et al. showed that 
this phenomenon is important for materials without work-hardening and it is increased when 
the ratio hf/hmax is over 0.7. 
 

Figure II.11. Finite element simulations of contact profiles under loading with Berkovich tip of non work-
hardening material (a) and linear work-hardening material with rate η = 10 σy (b), after [Bolshakov, 1998]. 

 
The second source limiting the accuracy of the Oliver and Pharr technique comes from the 

fitting coefficients in the equations. More precisely, the correction factor β, in equation (II. 2), 
has a major role on the evaluated hardness and Young’s modulus. King [King, 1987] 
evaluated that β=1.034 for a triangular indenter. Many recent studies evaluate the value of β. 
Among others, Hay et al. [Hay, 1999] tried to take into consideration physical and 
geometrical aspects to establish an equation:  

( )

( )

2

14
21cot8312.0

2

14
21cot1548.0

4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−
−

+
=

ν
νφπ
ν
νφπ

πβ  (II. 10) 

where φ is the half included angle (see Table II.1) and ν the Poisson ratio of the indenter, 
which lead to β=1.067 for a Berkovich tip. Finally, no clear trend is obtained, but a value 
close to 1.07 for the latest mentioned indenter seems to provide good results [Oliver, 2004]. 

II.B.3. Parameters affecting the indentation curves 
During nanoindentation on a sample, other sources of inaccuracy need to be taken into 

consideration. Some materials such as polymers and a few metals are submitted to creep, as 
described by Chutoba et al. [Chutoba, 2001]. It induces an increase of the displacement at the 
beginning of the unloading stage. Hence, negative slope can be obtained (S<0) and finally, the 
material properties are not possible to estimate. In order to reduce the effect of creep on 
measurement, a holding stage (in further experiments, the holding time is 30 seconds) is 
applied at the end of the loading as shown in Figure II.9. 
 Another cause is that indentation tests are time dependent, and strongly influenced by the 
thermal drift. Thermal variations are related to errors in the measurement of the displacement 
of the tip. As a consequence, the drift has to be measured and the curve corrected. Usually, the 
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software connected to the nanoindenter is able to directly correct the load-displacement 
curves in performing a holding plateau during 15 seconds at the end of the unloading stage.   

The strain rate also has a significant effect on the nanoindentation and the extraction of the 
material properties. In that frame, Wu et al. [Wu, 2006], performed indentations for a large 
range of strain rates (from 0.0025s-1 to 1s-1), and found that this parameter must be kept low in 
order to avoid having an influence on the measured material properties. Other parameters 
such as a flat surface are important and more widely described by Hay et al. [Hay, 2000]. 

II.B.4. Continuous stiffness measurement 
The Continuous Stiffness Measurement (CSM) is a technique recently set up to evaluate 

the stiffness continuously along the loading. This is achieved by applying a small dynamic 
oscillation for the motion of the indenter, as depicted by Figure II.12. Hence, these 
oscillations introduce smaller loading-unloading cycles during the test, allowing the 
determination of the elastic modulus and the hardness at each cycle. The mean to evaluate the 
stiffness from the measurement is widely described in papers [Li, 2002; Oliver, 2004].  
 

Displacement, h

Lo
ad

, P

Standard 
indentation

CSM

 
Figure II.12. Typical nanoindentation load-displacement curve with continuous stiffness mode.  

 
The oscillations usually have a frequency of 45Hz and amplitude of 2nm1. The effect of 

these parameters has been evaluated by Wu et al. [Wu, 2006]. For the frequency, they found 
that higher frequencies reduce the accuracy of the measurements since the loading is no more 
almost static. Moreover, the amplitude is found to have little influence on the measurements. 

II.C. Considerations for the indentation of multilayer structures 
The technique and the tips used during the nanoindentation tests have been presented 

previously. The uncertainties during the testing due to pile-up, creep, thermal drift, etc have 
been shown to be considered with great care to obtain reliable results. The Berkovich tip is 
commonly used in nanoindentation, but, based on geometrical considerations; the Cube 
Corner (CC) tip is sharper than the Berkovich one. Thus, for a given depth, the indented 
volume is smaller, and implies larger strains. 

For application to the microelectronic, the nanoindentation technique is performed on 
multilayer structures. As aforementioned, they are made from an alternation between metal 
and oxide films, which have very different mechanical properties and material behaviours. 

In the literature, several studies evaluate the effect of the substrate (bi-layer indentation) on 
the material properties of the thin film. Usually, to obtain E and H of the film independently 

                                                 
1 These values are Agilent/MTS recommendations for the CSM mode with the XP nanoindenter.   
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on the substrate, the indentation depth is less than 10% of the film thickness, as described by 
Hay et al. [Hay, 2000] or by Fischer-Cripps [Fischer-Cripps, 2006]. Moreover, the former 
showed that in some cases, depending on the elastic and plastic behaviours of the layers, 
values for E and H can be trusted until 25% of the film’s thickness. The latter describes the 
common errors while interpreting the nanoindentation curves and extracting the material 
properties. He underlines that piling-up induces very high uncertainty in the results to extract 
E and H, especially for films on substrates. Hence, it is recommended to use E and H as 
qualitative quantities for comparison purposes.  

In our case, the aluminium film is on a harder oxide substrate. In that frame, Soare and co-
workers [Soare, 2004] evaluated through experiments and simulation the effects of creep and 
pile-up for aluminium on silicon and bulk aluminium. They found that in both case, pile-up, 
even using a Berkovich tip is significant, modifying the determined Young’s modulus and 
hardness. The hardness of aluminium on hard substrate is higher than on bulk aluminium due 
to the substrate effect, even at small depth. Chen et al. [Chen, 2005] performed 
nanoindentation using the Berkovich tip on glass and silicon substrates. They also observed 
the effect of the substrate on the measurement. In their study, Saha and Nix [Saha, 2002] 
showed the substrate effect while considering aluminium thin films. The Figure II.13 and the 
Figure II.14 show respectively the load-displacement curves and the measured hardness, 
according to the Oliver and Pharr technique. The effect of a harder substrate is clearly 
highlighted. They found that the increase of the aluminium hardness on a harder substrate is 
not very important because the plastic deformation is contained within the film and the 
substrate yield plastically only when the tip penetrates in. 

 

 
Figure II.13. Load vs. indentation depth for 0.5µm 
films on sapphire, silicon, glass and aluminium 
substrates, after [Saha, 2002]. 

Figure II.14. Hardness for the 0.5µm Al film on the 
substrates as a function of the depth normalized by the 
film thickness, after [Saha, 2002]. 

 
Another target of the nanoindentation on pads is to induce cracks in the oxide layer below 

the aluminium. Due to the sharpness of the cube corner tip, the stress induced is high, and can 
lead to cracks in brittle films. In the literature, several studies have been reported to evaluate 
low-k oxides. Morris et al. [Morris, 2008] found that in some cases the Berkovich tip is not 
acute enough to generate radial fracture in low-k films. On the contrary, the use of the cube 
corner tip allows the cracks generation. Similarly, Nay et al. [Nay, 2004] and Fujikane et al. 
[Fujikane, 2008] demonstrated that the cube corner tip induces more likely cracks in the low-k 
oxide thin film even for very low load and displacement into the surface. The effect of the 
geometry of the indenter tip is considered by Jang et al. [Jang, 2008] who demonstrated that 
reducing the equivalent cone angle of the indenter induces an increase of the displacement 
into surface in Si and Ge films for a given load. Additionally, the ability of the tip to induce 
cracks in a brittle film increases as well. 

The cracks observed during the nanoindentation with the CC tip are characterized by 
discontinuities in the load-displacement curve, as obtained by Simonyi and co workers 
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[Simonyi, 2005]. Similarly, Chen et al. [Chen, 2006] showed that nanoindentation under 
displacement control is suitable to investigate small cracks in submicron films. Furthermore, 
the discontinuity caused by the failures is correlated to an energy dissipated by the film. 

The ability of nanoindentation to compare various oxides has been studied by Vella et al. 
[Vella, 2003], who evaluated the mechanical properties and the fracture toughness of low-k 
films (OSG), and shown that nanoindentation is an efficient tool to compare various oxide 
films. For the mechanical properties, they observed an important substrate effect. Yet, recent 
studies [Hay, 2009] have shown the possibility to have substrate independent modulus even 
for low-k film as thin as 200nm in combining simulation and experiments. 

Finally, it seems that the nanoindentation raises several issues for the measurement of 
mechanical properties on multi-layers stacks. Additionally, in our case, the aluminium, which 
is prone to very important pile-up, and the objective to obtain cracks in the oxide thin layer, 
harden the pad study. At the same time it reduces the reliability of the hardness and the 
Young’s modulus measurements due to the multilayer system. 

II.D. Nanoindentation experiments for pad robustness evaluation 
In the literature (later described in chapter 3 to 5), many papers deal with nanoindentation 

studies and its use as mean to evaluate the material properties of thin films. However, several 
issues are still faced such as the effect of the substrate on the measurement. The use of 
nanoindentation to reproduce the EWS test and wire bonding assembly to compare the pads 
robustness in which several thin films stacked is still limited. Nanoindentation corresponds to 
a simplified test with respect to EWS or WB because only a compressive load is applied to the 
pad. In further work, the ability of nanoindentation to reproduce the failures in the oxide 
layers and to evaluate the pad robustness is questioned. Additionally, material properties of 
the pad are also measured to provide a background for modeling. 

 

III. EWS numerical model 
 
In the frame of reproducing the probing tests, a dedicated Finite Element (FE) model is 

developed to mimic the probing. The model is developed using the explicit solver1 ANSYS 
LSDyna release 11.  

The reproduction of the actual EWS is very complex and related to many challenges. As 
previously mentioned, during the test, a contact is established between the hard probe and the 
aluminium of the pad. The contact and its related non linearity have to be modelled and also 
the high damages undergone by the aluminium and oxide layers. Moreover, probing is a 
transient phenomena and it implies dynamics of the needle during and after the contact. The 
use of an explicit solver perfectly matches the expectations since it has a higher ability to 
manage the contacts and take into account the dynamical effects compared to an implicit 
solver2. The general equation of the motion (u: displacement) of the needle, solved by the 
explicit solver is defined by: 

[ ]{ } [ ] [ ]{ } { } { ( )}tFuKuCuM  (II. 11) + &&&

                                                

+ =
where [M], [C] and [K] are respectively the mass, damping and stiffness matrixes. 

 
In order to evaluate the robustness of the pads, a multi-scale issue is raised considering the 

difference between the size of the probe (in the range of the millimetre) and the size of the 
pad and the detailed in the stack below (in the range of the micrometre and even below 

 
1 See chapter 5 for comparison between explicit and implicit solving methods.  
2 The probing model for an implicit solver scheme is described and discussed in chapter 5. 
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depending on the details). Additionally, the analysis requires a three dimensional model to 
investigate the effect of pad layouts.  

III.A. Model description  

III.A.1. Geometrical model 
Similarly to EWS, the geometric FE model is made from two parts, which are the probe 

and the pad. Only half of the model is simulated due to symmetry plane. The Figure II. shows 
these parts and highlights the various scales faced during the probing modeling. Both parts are 
meshed with SOLID164 quadrangle elements. These are 8 nodes 3D elements with one 
integration point (reduced integration option). 

 

Pad

Probe tip
Probe body

 
Figure II.15. Model for level 2 probe geometry (left) and zoom at the probe’s tip and the pad (right). 

III.A.1.a) Probe side of the model 
For the probes, four various geometries are considered as shown in Figure II.16. They 

correspond to existing needle levels as part of the cantilever probe cards H9 and Helium+ 
(respectively for the testing on CMOS 120nm and CMOS 45nm technology nodes), 
manufactured by Technoprobe, one of the STMicroelectronics provider. The geometries of 
the needles for the two probe cards slightly differ. Thus, the geometries and material 
properties of the probes are given by the supplier. 

 

L1
L2

L3
L4

L1
L2

L3
L4

 
Figure II.16. The four various geometries of probe and probe tip studied for the H9 probe card. 

 
The finite element model of the needle side has been previously developed and described 

by Cacho et al. [Cacho, 2007]. Additionally to the probe, to get closer to the EWS test, an 
effective volume is added to take into account the rigidity of the probe card at the probe’s end. 
This volume is required because the needle is fixed using an epoxy resin that has a low 
rigidity. 
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III.A.1.b) Pad side of the model: CMOS 120nm pad 
The typical components and manufacturing of the pad have been previously described in 

the first chapter and are shown in Figure II.17 (a). A side view of the numerical model 
corresponding to this pad is depicted in Figure II.17 (b). Two main differences exist between 
the model and the actual pad. Firstly, the barrier layers such as TaN/Ta are not represented in 
the model. Indeed, it is assumed that this very thin layer (30 to 40nm) has little effect on the 
overall robustness of the structure. Moreover, the thickness of this layer is constant whatever 
the pad stacking and design options. Indeed, if the pad open oxide and the tantalum layers are 
homogenized, the result is very close to the material properties of the oxide alone, and further 
experimental work confirms that both layers have a brittle behaviour. 

Secondly, some layers or details are not represented. The top copper layer (M4) is 
described by the corresponding homogenized properties1. The third level of metal (M3) and 
the oxide layers right above (IMD3) are represented as one layer. The stack made from all the 
oxide and metal layers bellow IMD2 (M1, M2…) are also regrouped in one layer. Here, it is 
assumed that most of the mechanical issues during EWS are located on the top of the pad. 

 

Aluminium
TaN/Ta

PO

M1 & M2
M3
M4

IMD3

a

Alucap

Padopen
M4

M3+IMD3/SiN/V3+IMD3
IMD2

From PMD to M2 (Free for routing layer)

b
Figure II.17. SEM cross section view of a CMOS 120nm pad (a) and side view of the corresponding model (b). 

 

III.A.2. Material Properties 

III.A.2.a) Homogenization technique 
In the pad, the various designs necessary to perform the electrical connection can be 

smaller than 1 micrometre. Hence, it is not possible to insert them directly in the model and 
the use of homogenized properties is required to take into account the mechanical properties 
related to these small patterns. The numerical method described had been developed specially 
for the pad evaluation by Fiori et al. [Fiori, 2005]. Due to the patterning of the pad, isotropic 
elastic material properties are not relevant in most of the cases and anisotropic equivalent 
mechanical parameters are needed. The pad structure is often periodic, thus a representative 
unit cell can be extracted.  With the help of boundary conditions with respect to the model, 6 
loading cases are applied to evaluate the 9 equivalent orthotropic properties from the Hooke’s 
law [Ansys LSDyna, rel. 11]: 

{ } { } [ ] { }σεε 1−+= Dth

                                                

 (II. 12) 
where {ε} is the total strain vector, {εth} the thermal strain vector that is null in the present 
case, [D] is the elastic stiffness matrix and {σ} the stress vector.  

Thus, by applying successively tensile loads along each axis, the Young’s moduli and 
Poisson’s ratios are deduced. The same operation with shear loads gives the shear moduli G.  

 
1 The several designs for the top copper layer investigated during this work are later described in the chapter 4.  
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The homogenization method can be used for one or several layers. The results obtained by 
Fiori et al. applied to wire bonding show that both can be used with good results, and the 
former is more accurate but increases the CPU consumption. 

III.A.2.b) Material properties 
The probe’s needle is mainly made from tungsten and its material properties are employed, 

though it is actually made from a WRe alloy. Bulk tungsten has a Young’s modulus, a 
Poisson’s ratio and a density of respectively of 390GPa, 0.29 and 19.3g/cm3. The use of 
elastic material properties for the probe is based on its mechanical properties compared to 
those of aluminium and the fact that it is almost not damaged during a test. This assumption is 
validated by the fact that several thousands of touchdowns are made with these needles as 
described in the section II.A.4 of the first chapter. Moreover, Liu et al. investigated by means 
of a numerical model the stress in the probe during one test and found it bellow the yield 
stress of the tungsten (1.899GPa) [Liu, 2006]. 

The aluminium and oxide layers are provided with isotropic elastic material properties. 
The use of plastic material properties for aluminium increases highly the CPU consumption 
and can lead to convergence issues, so it is not considered in this part. The density is inputted 
into the model since the explicit solver is able to reproduce inertial effects. For layers 
containing copper and oxide, the homogenization technique is applied to get orthotropic 
material properties. For these close to the surface of the pad, the method is applied to a single 
layer, and for the deeper ones, the homogenization is applied to a stack of several layers. All 
the material properties used for the model are shown in Table II. 2. The orthotropic properties 
in the x-y plane of the pad are different due to the small patterns in the various layers, such as 
vias. 

 

Material Young’s modulus 
(GPa) Poisson’s ratio Shear modulus 

(GPa) 
Density 
(g/cm3) 

Aluminium 69 0.34 / 2.7 
SiO2 (USG) (pad 
open and IMD2) 63 0.23 / 2.2 

Top copper layer 
(M4) – Slots1 

Ex=120 
Ey=115 
Ez=120 

ν=0.25 
Gxy=45 
Gxz=43 
Gyz=45 

7.27 

Top copper layer 
(M4) – Lines1 

Ex=132 
Ey=132 
Ez=125 

νxy=νxz=0.26 
νyz=0.25 

Gxy=52 
Gxz=49.3 
Gyz=49.3 

8.96 

M3 /  
IMD3 

Ex=81.1 
Ey=78.8 
Ez=74.7 

ν=0.23 
Gxy=49.3 
Gxz=52 

Gyz=49.3 
3.68 

Free for routing 
layers 

Ex=98.3 
Ey=98.8 
Ez=94.4 

ν=0.28 
Gxy=37.7 
Gyz=35.9 
Gxz=35.8 

4.96 

Table II. 2. Elastic isotropic and orthotropic material properties used for the pad. 

III.A.3. Loading conditions and contact checking 
During EWS tests, the chuck is raised to establish the contact with the needles of the probe 

card. Hence, for the model, in a first attempt (i.e. during the calibration step described in the 
section III.B.1.b)), the loading is applied to the pad. The velocity of the calibration 

                                                 
1 The M4 layouts are described and evaluated in the section C of the fourth chapter. 
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experiments, whose profile during one pass is shown in Figure II.19, is used to mimic the 
probing. Such a velocity profile provides a similar displacement (or overdrive) of the pad to 
the one observed during the electrical tests. The impact velocity is fixed at 827.5µm/ms.  
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Figure II.18. Input and outputs for simulations. 
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Figure II.19. Velocity and overdrive as a function of 
time. 

Figure II.20. Vertical and lateral reaction forces and 
overdrive as a function of time. 

 
Hence, the first control after the solving the model is to check that the OD applied is the 

one desired. The outputs of the simulation to verify that the contact is well managed are the 
vertical and lateral reaction forces between the needle and the pad. The Figure II.20 shows 
these forces during one touchdown. Thus, during the loading, holding and unloading stages, 
the vertical reaction force is proportional to the imposed displacement and remains constant 
when the maximum overdrive is reached. The variations of the lateral reaction force are more 
complicated. During the loading stage, the force is proportional to the sliding distance due to 
the elastic deformation of the probe. During the unloading step, the force direction is inversed. 
At the beginning of the unloading, the sliding distance is null. It is due to the elastic recovery 
of the probe body, slightly bended during the loading step. After that, the friction force is 
opposite to the sliding motion and finally the lateral force decreases to null when the contact 
is lost. 

In order to simplify the model and avoid issues during pad evaluation studies, the velocity 
is applied to the effective volume. Velocities applied have opposed signs and it is checked 
that they lead exactly to the same reaction forces undergone by the surface of the pad. 

III.A.4. Physical and numerical parameters 
A couple of physical and numerical parameters can have an influence on the results given 

by simulations. They are the effects of the mass scaling, the damping of both the probe and 
the contact, the friction coefficient, the meshing, the reduced integration and the effective 
volume. Using explicit solver for simulations is highly CPU time consuming. Hence, a good 
trade-off has to be obtained between resource consumption and solution accuracy. 
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III.A.4.a) Effect of the meshing 
The meshing size has an influence because increasing the number of finite elements 

implies a simulation model closer to the physical model. But the CPU time increases 
exponentially as well. Hence, a good trade-off between accuracy of the simulation and CPU 
time consumption is required. The convergence of the model has also to be checked to 
simulate accurately both vertical and lateral forces. The simulations of the influence of the 
number of elements were performed without effective volume. The level 1 probe was used for 
this set of experiments. The overdrive is fixed at 100µm. 
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Table II.3. Normalized lateral and vertical forces vs. 
number of finite elements in the probe. 

Figure II.21. Normalized vertical force vs. number of 
elements. 

 
The Figure II.21 highlights that there is a convergence of the model by increasing the 

number of finite elements (and as a consequence decreasing the size of each element). As 
shown in the Table II.3, over 6000 elements, a constant value of the vertical force is reached 
(and similarly the lateral force for reasons explained hereafter). Nevertheless, this number of 
finite elements is highly CPU time consuming and thus for further simulations, the model 
with 2435 elements is chosen. This number of elements corresponds to about 96% of the 
maximal vertical and lateral forces and is far less CPU time consuming.  

III.A.4.b) Effect of the mass scaling 
The mass scaling effect is a simulation parameter that has a huge influence on the CPU 

time. The use of mass scaling allows a reduction of the CPU time consumption by increasing 
the minimum time step. The time step compels the explicit algorithm. This minimum time 
step is based on its material properties and characteristic length: 

c
lt min

min =Δ
 

and ( ) ρν *1 2−
=

Ec
 

(II. 13) 

where lmin is the length of the smallest element, E, ν, ρ are respectively the Young modulus, 
the Poisson ratio and the density of the materials. 

The previous equation can be rearranged to find the required density of each element for a 
desired time step size: 
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Et
for the element i. (II. 14) 

 
Mass scaling consists in adding the corresponding mass to these elements, which reduces 

the solving time. But it can also invalidate the results in case of abuse. Thus, a Differential 
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Time step Mass Scaling (dtms) has to be fixed for simulations. A high time step parameter 
(dtms = 1.10-3) gives a very low CPU time consumption by reducing the number of iteration 
cycles but it also reduces the accuracy of the results. On the contrary, a low time step 
parameter (dtms = 1.10-5) gives a very precise result but the solving requires a huge CPU time 
consumption.  
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Figure II.22. Effect of mass scaling on the vertical reaction force during the loading stage (left) and for the first 
ten milliseconds after the contact (right). 

 
The Figure II.22 shows the mass scaling effect on the management of the contact during 

the simulation. For a desired minimum time step of 1.10-5 (orange curve), the curve of the 
vertical reaction force simulated is smooth even just after the contact and shows no resonance 
effect of the probe. This time step is good with respect to the probing test but is very high 
CPU time consuming. On the contrary, a time step of 1.10-3 (blue curve) gives a wrong result 
and finally doesn’t simulate accurately the interactions between the probe tip and the pad. 
Time steps of 1.10-4 (violet curve) and 5.10-5 (green curve) give intermediate results and are 
quite good trades-off between CPU time consumption and accuracy of the result. Those 2 
mass scales are further considered to evaluate the other parameters. The former is chosen for 
results that require medium accuracy (typically for the determination of the Young’s modulus 
of the effective volume) and the later is used when quite high precision of the results is 
necessary (meshing study).  

III.A.4.c) Effect of the friction coefficient  
The friction coefficient (noted µ) is the force resisting to the lateral motion of the probe, 

and is defined by the Coulomb equation:  

lateralvertical FF *μ= (II. 15) 
In the model, it is the single parameter that can be fixed to obtain the lateral reaction force 

and describe the lateral displacement of the needle. The value of the friction coefficient is 
determined from the calibration performed by the supplier (described in III.B). For the model 
of the H9 probe card, the friction coefficient was fixed at 0.096. The one of the Helium+ 
probe card is much higher (about 0.58).  
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Figure II.23. Evolution of the lateral reaction force versus the friction coefficient for experimental 
measurements. 

 
The experimental uncertainty of this coefficient sometimes reached 20%. Hence, for the 

simulations, friction coefficients equals to 0.084, 0.096 and 0.12 are compared for the 
calibration of the H9 probe card. The simulations are performed for an overdrive of 100µm 
and level 2 needle geometry. Therefore, the vertical reaction force is the same for each of the 
simulations. The lateral reaction forces increases linearly with the increase of the friction 
coefficient, as depicted in the Figure II.23. 

III.A.4.d) Effect of the effective volume 
During the first calibration attempts, both the lateral and vertical reaction forces reached 

are very high compared to those given by experiments from Technoprobe. Hence, it appears 
necessary to add an effective volume to better fit experiments and simulations. The forces 
measured cannot be totally attributed to the probe needle and the assumption that the blocking 
system at the end of the needle is totally rigid (i.e. infinitely stiff) is not valid because a small 
quantity of the force is absorbed by the probe card. The probe end is linked to the probe card 
by some glue and an epoxy resin whose mechanical behaviours are unknown. Hence, an 
effective volume is required at the probe end. The volume of the added part is fixed at Veff = 
0, 00188mm3 similarly to Cacho et al [Cacho, 2007]. An increase of the volume is related to a 
decrease of the reaction forces. To fit the experimental results, the Young’s modulus of the 
effective volume is evaluated.  

 

0,70

0,75

0,80

0,85

0,90

0,95

1,00

0 500 1000 1500
Young modulus (Gpa)

N
or

m
al

iz
ed

 re
ac

tio
n 

fo
rc

e

Fvert
Flat

Young’s modulus (GPa)  
Figure II.24. Evolution of the lateral and vertical forces versus Young’s modulus. 

 
The evolution of both the lateral and vertical forces with respect to the elastic modulus is 

evaluated as shown in Figure II.24. The highest value of the reaction forces corresponds to the 
case without effective volume (i.e. the case of an effective volume with infinite elastic 
modulus). An increase of the Young’s modulus raises both reaction forces.  
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The elastic modulus of the effective volume is deduced from the curves giving the lateral 
and vertical forces versus the Young’s modulus, for the various probe geometries. It is 
assumed that all the levels require the same Young’s modulus for the effective volume. This 
assumption is checked later when the fitting between simulations and experiments is 
performed. Hence, for those geometries, the study was performed for the 3 different 
overdrives (50µm, 75µm and 100µm). As a consequence, the elastic modulus is fixed at 
90GPa. 

III.A.4.e) Effect of the reduced integration 
The elements with reduced integration use one integration point, located in their centre (for 

SOLID164 elements). On the contrary, fully integrated elements are commonly used for 
implicit modeling, and usually have 8 integration points. The main advantage of using 
reduced integration is the CPU time saving by minimizing element processing. In addition, 
single integration elements are also extremely robust in case of large deformations. However, 
reduced integration elements are prone to have hourglassing. It is a zero-energy mode of 
deformation that oscillates at a frequency much higher than the structure global response, as 
shown in Figure II.25. Hourglassing modes result in stable mathematical states that are 
physically not possible. They typically have no stiffness and give zigzag deformation 
appearance to a mesh as depicted by Figure II.26. The occurrence of hourglass deformations 
in an analysis can invalidate results and have to be minimized or eliminated. The overall 
hourglass energy has to stay below 10% of the internal energy of a model, otherwise there is 
likely an issue.  

 

a b

Figure II.25. Zero energy deformation for reduced 
integration elements, after [Ansys LSDyna, rel. 11]. 

Figure II.26. Model with (a) and without (b) hourglass 
after [Ansys LSDyna, rel. 11]. 

 
Hence in the current model, the reduced integration is selected, this assumption has to be 

checked after each simulation, and the validity for this model is discussed in section III.B.1.c). 

III.A.4.f) Effect of the damping 
Two kinds of damping exist: the damping due to the contact that is a numerical parameter 

and the damping due to the materials that is rather a physical parameter. In the current study, 
both damping types have limited effect on the final result of the simulation because the 
convergence of the reaction forces is obtained (see paragraph III.A.4.a)). By modifying the 
damping values, there is no modification of both vertical and lateral reaction forces.  

III.B. EWS numerical model set up: calibration  
The main interest of the study is to fit experiments and simulations in order to obtain a 

reliable numerical model. Assumptions (mesh size, Young’s modulus of the effective volume 
…) have been performed and are now faced to experiments.  

 - 66 -



Chap 2. Comprehension of the mechanical failures: Presentation of the experimental and numerical tools set up 

III.B.1. Experiment and calibration for CMOS 120nm pad model 
The finite element model for the CMOS 120nm technology node is calibrated with H9 

cantilever probe card, whose needle geometry has been previously shown. 

III.B.1.a) Experimental measurements of the reaction forces 
A specific tool is developed by Technoprobe since it is not possible to perform 

measurements in-situ. The apparatus is shown in Figure II.27. To measure the vertical and 
lateral reaction forces, a vertical displacement is applied to one needle. Hence, this procedure 
allows obtaining the forces for the four needle geometries and for various overdrives and 
number of touchdowns.  

From these experimental measurements and the Coulomb’s law of friction, the friction 
coefficient is estimated being equal to 0.096.  

 
Needle Wafer

Lateral force 
measurement

Vertical force 
measurement

Vertical imposed 
displacement 

Needle Wafer

Lateral force 
measurement

Vertical force 
measurement

Vertical imposed 
displacement 

 
Figure II.27. Experimental tool set up by Technoprobe to measure the vertical and lateral reaction forces. 

 
These measurements allow a fair reproduction of the actual process as depicted by the 

Figure II.28. To compare the results from the numerical model and the experimental 
calibration, the maximum reaction forces, observed during the holding stage are extracted for 
each parameter. All the values are gathered in Figure II.29 after one touchdown. Hence, it is 
shown that the vertical reaction force increases linearly with the increase of the overdrive. The 
needle geometry has a slight effect on the force and a ranking of the needles according to the 
force they induce to the pad is established:  

3421 levellevellevellevel < <<  (II. 16) 
 
For the lateral forces, the effect of the overdrive is the same. However, some experimental 

maxima such as the overdrive 50µm for the needle level 1 are questioned, since the 
measurement is different from the linear increase expected. Indeed, the lateral force values are 
of the order of the millinewton that is the order of magnitude of the experimental resolution 
and is probably the reason for the unexpected values obtained. 
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Figure II.29. Evolution of the maximum vertical (a) and lateral (b) reaction forces measured experimentally for 
various overdrives and for the four needle geometries (levels one to four). 
 

III.B.1.b) Calibration of the numerical model 
The same parameters than the one evaluated during the experiments are simulated with the 

previously described finite element model. Hence, the 4 geometries of probe are evaluated for 
3 different overdrives (50µm, 75µm and 100µm) with an effective volume at the end of the 
probe needle as defined before (elastic modulus of 90GPa). The Figure II.30 shows that the 
numerical model is able to reproduce the behaviour of the whole experimental curve for both 
vertical and lateral reaction forces.  
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Figure II.30. Simulated and measured reaction forces for needle level 2 and an OD of 50µm. 
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For the levels 2, 3 and 4, there is a good agreement between experiments and simulations 
concerning the vertical force as shown in Figure II.31 (b), (c) and (d). There is an increase of 
the vertical reaction force with increasing the over travel as expected because increasing the 
over travel increases the force applied to the pad and thus the reaction force measured at its 
surface. Hence, for those geometries, the assumptions established before are correct. 

For the level 1 geometry of probe, the match is not as good as in the previous cases (see 
Figure II.31 (a)). This variation is probably due to the fact that this level has a slightly 
different geometry from the other probes. Hence, for this geometry, the assumptions have to 
be re-evaluated to better fit the experimental results. The assumption the most geometry 
dependant is the Young’s modulus of the effective volume. The vertical reaction force 
simulated for the Figure II.31 (a) is 16mN for an OD of 75µm. The Young’s modulus of the 
effective volume to fit with experiment has to be increased (see Figure II.24), and an elastic 
modulus of 300GPa matches the experimental value. This elastic modulus is valid for all the 
overdrives. With this new value of Young’s modulus for the level 1 geometry of probe, the 
simulations and experiments are in good agreement. 
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Figure II.31. Vertical reaction force for various overdrives for needle geometries: (a) level 1, (b) level 2, (c) level 
3 and (d) level 4. 

 
The Figure II.32 shows the comparison between the experimentally observed scrub marks 

left by the probe and the ones obtained by simulations. The measurement of the maximum 
length of the marks is performed with the help of an optical microscope for the experiments. 
For the modelling, the lateral displacement of the probe is added to its tip’s diameter (i.e. 
19µm). This assumption concerning the model leads to an over evaluation of the actual scrub 
mark, which underlines the complexity of the contact and the root causes of this over 
evaluation are later explained. However, the main point is that measured and simulated scrub 
marks are still in the same range of values, that is to say between 25µm and 49µm for the 
experiments and 31µm and 61µm for the modelled ones.  
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Figure II.32. Experimental and numerical scrub marks for various overdrives. 

 
Finally, a good agreement is found for the modelling of the probing on CMOS 120nm with 

H9 probe card. Some effects such as the increase of the overdrive on the vertical and lateral 
reaction forces are noticed, and further investigation are required to see if it can also be 
related to higher damages in the pad.  

III.B.1.c) Energetic considerations 
The simulated energies have to be checked because energies such as hourglass (see section 

III.A.4.e) for additional details) are purely numerical and can invalidate the results. The total 
energy of the system is the following: 

dissipatedveconservatitotal EEE +=
 (II. 17) 

where the conservative energies are the internal and the kinetic energies and the dissipated 
energies are the sliding and the hourglass energies. More precisely in our case:  

hourglassslidingkineticinternaltotal EEEEE +++=
 (II. 18) 

where Esliding, which is linked to the energy loss due to friction between the pad and the probe, 
is equal to:   

dxxFE
space

vertsliding *)(∫= μ  (II. 19) 

where µ is the friction factor and Fvert (x), the vertical force that depends on the lateral 
position of the probe on the pad. 

For the EWS model, since the probe is light and has a small velocity, the kinetic energy is 
negligible in front of the other energies. As shown in Figure II.33, the total energy behaves 
like the overdrive applied with loading, holding and unloading stages. The internal energy is 
the major contributor to the total energy. The sliding energy increases as described by the 
equation (II. 19). The hourglass energy is very low (less than 5% of the internal energy) and 
has the same shape than the internal energy. Hence, the use of reduced elements is not 
detrimental to the simulation here. The total energy at the end of the probing is not null due to 
the energy loss linked to the friction during the probing. 
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Figure II.33. Evolution of the total, internal, sliding and hourglass energy during a typical EWS simulation. 
 

III.B.2. Experiment and calibration for CMOS 45nm pad model 
The probing on the CMOS 45nm technology node is made with Helium+ cantilever probe 

card, whose needle geometry is shown in Figure II.34. Hence, similarly to the calibration with 
the H9 probe card, dedicated experiments are required to get a reliable model. 

 

L4

L2

L1

 
Figure II.34. Three of the geometries of probe and probe tip studied for the Helium+ probe card. 

 

III.B.2.a) Experimental measurements of the reaction forces 
For the Helium+ probe card, three of the four needles are tested (level 1, 2 and 4). The 

overdrive is fixed at 90µm and the number of touchdowns varies from 1 to 8. The scrub mark 
resulting from one of the test is shown in Figure II.35. The lengths and widths of the damaged 
areas are in the range of 21µm and 16µm respectively. The length of the marks is much 
smaller than these with the previous probe cards while their width is close. 
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(a)

(b)

(c)

(b) (c)

Probing

Figure II.35. Optical profilometry view of a probe mark (a) and profiles of the mark (b and c). 
 
The reaction forces measured are depicted in the Figure II.36. The ranking according to the 

force, whether vertical or lateral, applied to the pad by each needle is deduced: 
421 LevelLevelLevel <<  (II. 20) 

 
It has to be noted that the ranking obtained for that probe card is the same that the one of 

the H9 probe card (II. 16). Moreover, the lateral force induced by the level 1 geometry is 
lower than the one from the two other needles. On the contrary, the vertical force induced by 
the level 4 geometry is much higher than these of the two other needles. This induces higher 
differences for the friction coefficient that depends also on the needle geometry in that case, 
and varies from 0.48 (level 2) to 0.68 (level 4). The friction coefficient found for this probe 
card is much higher than the one obtained with the previously considered probe card (0.096).  
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Figure II.36. Vertical and lateral reaction force for the various needles for the eighth touchdown. 

 
The effect of the number of touchdown on the reaction force is depicted in Figure II.37. 

Both vertical and lateral reaction forces increase when the number of touchdown increases. 
The ratio of forces between the first and the eighth touchdown reaches 0.92 and 0.71 
respectively for the vertical and the lateral reaction force. Hence, only a small increase of the 
vertical force is observed. For the lateral force, this effect is much more important. However, 
in both cases, after about five touchdowns, the maximum value is reached. 

The reasons for the increase of the vertical and lateral reaction forces may have two 
sources. The first one is the formation of the pile-up that is located in front of the mark (refer 
to the green and red areas on the Figure II.35) and the second one is the work hardening of the 
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aluminium layer during the successive tests. These root causes are later more widely 
explained. 
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Figure II.37. Vertical and lateral reaction forces for level 1 needle geometry. 
 

III.B.2.b) Model calibration and issues 
The simulation related to the experimental conditions is performed (same OD and number 

of touchdowns). However, as previously mentioned, the friction coefficient is much higher 
than during the calibration of the H9 probe card. The length of the scrub is smaller as well. 
Hence, the friction coefficient has to be fixed at 0.58 to try to mimic the experiments. 
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Figure II.38. Vertical and lateral displacement of the 
probe tip during one touchdown. 

Figure II.39. Vertical and lateral reaction forces during 
one touchdown. 

 
The Figure II.38 shows the displacement of the probe tip during one touchdown. The 

vertical displacement evolves as expected and shows no contact loss. The behaviour of the 
lateral displacement shows a plateau during the loading stage due to the increase of the 
friction coefficient. A sort of slip-stick motion thus appears. Moreover, due to the higher 
friction coefficient, the delay between the beginning of the unloading and the beginning of the 
lateral motion of the tip is very important. Both the vertical and lateral reaction forces no 
longer evolve linearly with the overdrive as shown in Figure II.39. This is also linked to the 
high friction coefficient. The quick variations of the vertical and lateral reaction forces have 
different sources. The first one is the slip-stick motion, as mentioned here above. A loss and 
regain of the contact between the needle and the pad and vibrations in the body of the needle 
can be related to jumps of the forces as well. Finally, the concept of friction coefficient 
between the pad and the tip is not valid anymore in that particular case.  
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In the numerical model, the friction coefficient is computed by the relation [Ansys 
LSDyna, rel. 11]: 

( ) ( )vcd
dsd e −−+= μμμμ  (II. 21) 

where µs is the static friction coefficient, µd is the dynamic friction coefficient, cd is the decay 
coefficient. Additionally, the friction coefficient depends on the relative velocity v between 
the slave and the master segments. 

In the literature, many papers [Reid, 2004; Hashiguchi, 2005; Hashiguchi, 2008; Peillex, 
2008] describe issues encountered while using explicit models with high friction coefficients, 
or describe some new algorithms to try to solve related issues. However, these new algorithms 
are not implemented yet in the simulation software. In particular, Reid et al. underlines among 
other meshing and solving conditions (use of fully integrated elements, fine meshing and low 
time steps). The use of the penalty contact algorithm, which is different from the actual 
physical friction phenomenon, is emphasized as well. All these effects lead to very long 
computing time additionally to the point aforementioned. Hence, a dedicated modelling study 
would be required to calibrate the model and in particular reproduce properly the lateral 
displacement and induced forces of the tip. 

III.B.3. Modal analysis of the probe behaviour 
The modal analysis is performed for the cantilever H9 probe card. The main purpose while 

performing a modal analysis is to evaluate the response of the geometrical design to dynamic 
loading. Such an analysis gives the natural frequencies and the shapes of the modes. It can 
also be used to help calculating the solution control (i.e. mass scaling) for the dynamic 
analysis. 

III.B.3.a) Problem description and model extraction 
Assuming that the model is free of damping and vibrations, the equation (II. 11) becomes: 

[ ]( ) [ ]{ } { }0  (II. 22) + uKuM && =
( )tUuMoreover, assuming harmonic motion (i.e. sin ω= ), (II. 22) can be rewritten:  

[ ] [ ]( ){ } { }02 =− uMK ω  (II. 23) 
where the matrixes [K] and [M] are large, sparse and symmetric positive. 

The roots of the equations are ωi
2, the eigenvalues, where i ranges from 1 to the number of 

degrees of freedom, and corresponding eigenvectors are {u}i. The square roots of the 
eigenvalues ωi are the structure’s natural circular frequencies. Hence, the natural frequencies 
fi are obtained using ω π2/iif = . The eigenvectors {u}i represent the mode shapes, that are 
the shapes of the structure while vibrating at frequency fi. 

In order to extract these eigenvectors and eigenvalues, the block Lanczos algorithm is 
chosen (see also [Ansys LSDyna, rel. 11]). The theoretical basis of the solver is described by 
Grimes et al. [Grimes, 1994]. This method uses blocks of vectors and the Lanczos iteration to 
obtain the higher mode shapes and related frequencies (the 4 principal modes in this case). 

III.B.3.b) Modal analysis 
For the model, which contains only the needle, a vertical motion is applied to the end of 

the tip that can move either freely or not. Thus, five cases are investigated, as depicted in 
Table II.4, in order to evaluate the effects of the friction and the mass scaling. 
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Case 1 2 3 4 5 
Lateral 
displacement 
of the probe tip 

Free Free Free Free Locked 

Mass scaling None No mass Mass of the tip 
*10 

Mass of the tip 
*103 None 

Table II.4. Simulated cases investigated to check the effects of the mass scaling and friction 
 
While the lateral displacement of the probe tip is set as free, it corresponds to a contact 

with pure sliding that is to say with a null friction coefficient (or scrubbing). On the contrary, 
when the displacement of the tip is locked, the model assumed underlies no sliding or sticking 
(or stubbing). The mass scaling is only applied to the tip since it contains the smallest 
elements (that control the time step as described in section III.A.4.b)) to get a good 
management of the contact. The Table II.5 shows the results of the modal analysis, for the 
four principal vibration modes. The effect of the mass scaling is shown to have little effect on 
frequency of the first vibration mode. Yet, this decrease of the frequency of oscillations 
becomes very important for higher vibration modes and the frequency of the fourth mode is 
60% smaller than the probe with actual mass (cases 1 to 4). For our model, the mass of the 
whole probe is 0.8949mg and the mass of the tip is 0.96*10-5mg (only half of the model is 
considered for simulations). The effect of the mass scaling has to be taken into consideration 
when higher vibration modes are considered as part of motion of the probe, i.e. while 
dynamics of the needle can not be neglected (see next chapter for the effect of the velocity 
during probing).  

 
 Case 

1 2 3 4 5 

Frequencies 
(Hz) 

Mode 1 13180 13181 13175 12594 14746 
Mode 2 58523 58536 58409 46502 63709 
Mode 3 117810 117331 117331 77162 129613 
Mode 4 205244 205443 203406 122569 228713 

Table II.5. Oscillating frequencies for the 4 principal modes and the 5 considered cases. 
 
The effect of the friction (slipping and sticking options) is also considered in the study. The 

stubbing is related to higher frequencies of the vibration modes. Moreover, the shapes of the 
vibration modes are also changed by locking the end of the tip. The three major vibration 
modes for the scrubbing and the stubbing cases are shown in Figure II.40 and Figure II.41. 
Hence, the sliding, controlled by the friction coefficient is shown once more to have a huge 
effect on the deformation and vibration frequencies of the needle. 

 

Mode 1 Mode 1
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Mode 2

Mode 3 Mode 3

Figure II.40. Principal mode shapes for case 1 (free 
probe tip). 

Figure II.41. Principal mode shapes for case 5 (locked 
probe tip). 

Mode 2 

 
In the literature, a modal analysis has been performed by Schmadlak et al. [Schmadlak, 

2007] on a cantilever needle. For the scrubbing and the stubbing first modes, they obtain the 
same needle deformation shapes. However, they get different frequencies, about 4 times 
bigger than these of the current work. The reason is the distinction in the geometrical model 
and more precisely the size and the mass of the needle. 

III.B.3.c) Comparison with explicit model 
In order to compare the vibration modes obtained during the modal analysis and these of 

the explicit model, a specific loading is performed, as shown in Figure II.42. Firstly, the pad is 
raised to reach an overdrive of 100µm, then the pad is hold at a plateau in order to avoid 
vibration due to the loading, and finally, the pad is removed, and the free, non-damped 
oscillation can start. A mass scaling of 5*10-7 is selected, which correspond to an increase of 
the mass by a factor of 4.6*103. The analysis of these oscillations is made using the Fast 
Fourier Transform (FFT).  

The Fourier analysis is the decomposition of a function in terms of sinusoidal functions of 
different frequencies that can be recombined to obtain the original function. The 
recombination process is the Fourier synthesis. The result of the decomposition is the 
amplitude and the phase, which are imparted to each basis frequency in the reconstruction. 
The main interest of the FFT is its reduced computation time, due to a lower number of 
operations. A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier 
transform (DFT) and its inverse. The DFT is defined by the formula: 

∑
=

−
=

0n

nk
N

nk exX
−1 2N iπ

                                                

 (II. 24) 

where x0,…,xN-1 are complex number, and k varies from 0 to N-1. 
 
As depicted in the Figure II.43, the frequencies corresponding to the first and the second 

modes are respectively 12.5 kHz and 44 kHz, which are in good agreement with the values 
obtained during the modal analysis with mass of the tip multiplied by 1000 (see Table II.5). A 
third frequency is found at 56 kHz. This frequency cannot be related a vibration mode1. The 
amplitude of the first vibration mode is much higher than other ones (about 20 times), as a 

 
1The small difference of mass scaling between the modal analysis (mass*1000) and the dynamic model 
(mass*4600) is expected to reduce the frequency of the third vibration, but not in a such important  range (77 
kHz versus 56 kHz) . 
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consequence, the first vibration mode is the main contributor to the deformation of the needle 
during the simulation.  
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Figure II.42. Loading conditions for the modal analysis and zoom at the initial oscillations. 

Figure II.43. Frequencies of the 3 major vibration modes from explicit modelling. 
 
Finally, the first vibration mode of the needle has the major role in the deformation of the 

probe. As a consequence, the mass scaling has limited effect on the probe motion when the 
needle dynamics is not too important.  

IV. Conclusions 
 

In this chapter, the various analysis techniques to observe the pad such as the FIB milling 
followed by SEM observations or the optical profilometry have been described. The 
advantages and drawbacks of each of these techniques have also been underlined. These 
imaging tools enable us to improve the understanding of the damages and failures undergone 
by the pad during the probing and wire bonding operations, providing data like the profile of 
the scrub mark or the localization of the cracks under the surface. 

In a second part, the principle of the nanoindentation is described. This experimental 
technique is set up to evaluate the mechanical robustness of the pad structure and to reproduce 
the loading conditions and failures related to EWS and assembly steps. Then, the Oliver and 
Pharr model and its limitations are introduced. The Berkovich and cube corner tips that are 
later used during testing are presented as well. 

In a third section, the numerical model to mimic EWS is described, starting with the 
description of the geometries of the needles evaluated. Then, the material properties used for 
the needle and the pad are justified. The physical (e.g. damping, effective volume…) and 
numerical (e.g. mass scaling, reduced integration…) parameters leading to inaccuracy and 
even errors in the modelling results are checked not to influence them in a large range. In 
order to build a model valid for several technology nodes (CMOS 45nm to CMOS 120nm) 
and to fairly reproduce the probing, the calibration of two cantilever probe cards is described. 
For the first one (H9 for CMOS 120nm testing), a good agreement is obtained between the 
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experiments dedicated to the calibration and the model. As a consequence, this model is later 
widely used. For the second one (Helium+ for CMOS 45nm probing), the numerical 
instability due to the high friction coefficient does not able to obtain reliable results. Finally, a 
modal analysis (for H9 probe card) has been performed to investigate the effects of mass 
scaling and sliding. The former has been proved to have little effect while the dynamical 
effects are not involved, and the later is shown to modify in a large range the deformation of 
the needle. 

In the next chapters, the imaging and the experimental and numerical tools presented and 
set up in this chapter are used to evaluate various tests and design conditions. Additional 
refinements and indicators to improve the nanoindentation and the finite element model 
capabilities to compare the mechanical robustness of pads will be defined. These techniques 
will be faced to actual tests and correlations, but also few limitations of the tools will be 
described. 
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In the previous chapters, the electrical wafer sort and the wire bonding have been described 
and shown to be able to generate failures in the pads. Additionally, the common pad integrity 
analyses to observe failures induced by probing and the wire pull and shear tests have been 
presented. Then, some experimental and numerical tools and techniques have been set up to 
reproduce the actual tests.  

In this chapter, the test and assembly parameters are investigated through experimental and 
numerical designs of experiments in order to find out which ones are detrimental to the pad 
structure. In that frame, the target is to induce failures (cracks and peeling) in the pad to 
compare them, even if in the manufacturing of an I.C., these must be avoided. For the EWS, 
the dynamical effects such as the velocity of the chuck or its vibrations are considered with 
the help of the numerical model. Then, the scrub marks left by the probing test on aluminium 
are measured. After that, the overdrive and the number of passes, which are EWS test 
parameters, are investigated through both actual tests and numerical studies. In a second part, 
the bonding parameters are weighted for both gold and copper bonding. To that purpose, ball 
size measurements, wire pull and shear tests are performed, which allow the evaluation of the 
bonding resistance. Finally, all the tests and process parameters are compared with the design 
ones. 

 

I. EWS tests parameters effect on the crack occurrence 
 

I.A. Dynamical effects during probing  

I.A.1. Chuck velocity 

I.A.1.a) Problem position 
The velocity of the chuck during the impact between the needle and the pad is suspected by 

the ST Grenoble EWS team to be responsible for the appearance of the failures. The effect of 
this parameter can be evaluated during actual tests, using various velocities and performing 
pad integrity tests. Some MEMS structures can be used as well to measure the forces 
undergone by the pad. Both techniques are quite long and expensive to set up and a simple 
way to check this effect is through modelling. The velocity of the chuck during actual EWS is 
between 1mm/s and 20 mm/s. Hence, in the following study, chuck velocities from 4mm/s to 
4000mm/s are evaluated. 

I.A.1.b) Numerical results 
Only the loading stage is considered here, and the overdrive is fixed at 100µm. For 

comparison purpose, the time is normalized between the beginning and the end of the loading 
(time=1 corresponds to the time when the chuck reaches the 100µm). The study is based on 
the vertical reaction force since it allows a good evaluation of the contact between the pad and 
the needle. 
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Figure III.1. Vertical reaction force versus normalized time for the various velocities investigated. The end of 
the loading (t=1) is reached at the maximum overdrive. 

 
The vertical reaction forces for the various chuck velocities considered are shown in the 

Figure III.1. At the end of the loading, the maximum vertical reaction force obtained is 
29.3mN. For v=4000mm/s, at the impact time, the reaction force reaches 136mN. Hence, it is 
much higher than the force at the end of the loading, and issues related to the impact on the 
pad may occur. The threshold for the appearance of this dynamical effect is v=1000mm/s. For 
such a velocity, both dynamic and static effects must be considered and the forces undergone 
by the pad are in the same range (Fvert=30.1mN for the impact).  

For velocities bellow 400mm/s, the force during the impact becomes negligible in front of 
the force at the end of the loading and even not detectable bellow 100mm/s, as depicted by the 
Figure III.2.  
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Figure III.2. Vertical reaction force versus normalized time for the lowest velocities. 
 
In the literature, the effect of the velocity has been investigated by Cacho et al. [Cacho, 

2007] and by Schmadlak et al. [Schmadlak, 2007], and similar results have been obtained. 
The former have shown that for low velocities (below 16mm/s), the impact does not induce 
any oscillation in the vertical reaction force. The latter have demonstrated that very small 
oscillations were obtained for v=35mm/s (the impact force reaches 14mN while the maximum 
force reaches 140mN, i.e. about 10%), and as aforementioned, the geometrical design of the 
probe is slightly different that may explain the variation observed here. Hence, in both papers, 
it is deduced that the dynamical effects do not need to be considered. 

Finally, from the results of the numerical model, the current velocity during the probing 
process may not induce damages in the pad and a threshold value for their appearance is 
given. This result is later confirmed with the crack location (see next chapter). Increasing the 
chuck velocity is related to a reduced time to test the wafers and consequently to a technology 
speed up. 
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I.A.2. Chuck vibrations 
The vibrations of the chuck at the end of the loading stage can induce additional non 

expected stress in the structure. These are caused by the inertia of the chuck that cannot stop 
immediately at the end of the loading stage and whose position oscillates around the fixed 
overdrive. This issue has been suspected by EWS team at ST Grenoble due to differences in 
failure analyses after probing on the same samples but different probers. A dedicated 
experiment is required to evaluate this effect for overdrives of 50µm and 90µm. Thus a laser 
is positioned on the top of the prober, in order to measure the position of the chuck during the 
EWS test. The schematic of the apparatus is presented in Figure III.3. 
  

LaserProbe card

Chuck

Prober

Figure III.3. Schematic apparatus set up for the measurement of the vertical displacement of the chuck during 
probing. 

 
The measured position of the chuck during the first touchdown is shown in Figure III.4. 

Some small oscillations are found at the end of the loading and unloading stages, reaching 
less than 1.3µm, whatever the overdrive. 

Theses displacement profiles are implemented in the finite element model and the reaction 
forces are analyzed. Thus, the increase of the reaction forces is lower than 0.2mN whatever 
the OD, which is less than 1% of the maximum vertical force undergone by the pad. As a 
consequence, the vibrations of the chuck during the probing can be neglected, and cannot 
explain the differences observed after the pad integrity analyses. 
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Figure III.4. Laser measurement of the position of the chuck during one touchdown (OD=50µm).  
 
Finally, considering the tests parameters currently used, the velocity of the chuck and its 

inertial effects can be neglected during further analysis, but they have to be kept in mind since 
they might be the causes of damages for the next technology nodes with more fragile 
structures containing low-k oxides. 

I.B. Test parameters effect: overdrive and number of passes 
The test parameters of EWS investigated in this study are the number of passes and the 

overdrive. Either 5 or 10 passes with overdrives of 50µm and 90µm have been performed on 
patterned wafer CMOS 120nm technology node. 
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I.B.1. Observation and measurements of the probe mark 

I.B.1.a) Scrub mark measurements 
After being probed, the scrub marks are observed by means of an optical microscope. The 

Figure III.5 shows top views of the marks on aluminium. Scrub marks have an ovoid shape 
that is related to the slip of a cylinder on a flat surface.  

 

10µm 10µm

(a) Scrub mark for OD 50µm and 5 passes (b) Scrub mark for OD 50µm and 10 passes 

10µm 10µm

(c) Scrub mark for OD 90µm and 5 passes (d) Scrub mark for OD 90µm and 10 passes 
Figure III.5. Optical microscopy top views of scrub marks for the various probing conditions. 

 
Thus, the marks are measured and the average over 20 marks is made. The averages and 

standard deviations are gathered in the Table III.1. It is found that increasing the overdrive 
from 50µm to 90µm induces an increase of both the length and the width of the scrub mark. 
The former is due to a bigger bending of the probe’s body since the chuck is raised higher and 
the tip’s end is fixed. The radius of the probe tip is 15µm, and the radius of curvature is 2µm, 
thus the increase of the width may be due to a deeper penetration of the probe into the 
aluminium layer. 

 
 Average length (µm) Average width (µm) 
OD 50µm – 5 passes 27.29 +/- 2.15 13.89 +/- 1.02 
OD 50µm – 10 passes 27.18 +/- 1.75 15.42 +/- 0.88 
OD 90µm – 5 passes 40.39 +/- 2.89 17.67 +/- 0.84 
OD 90µm – 10 passes 39.8 +/- 2.39 18.97 +/- 0.98 
Table III.1. Scrub mark lengths and widths. 

 
While increasing the number of passes from 5 to 10 for a given OD, the length of the probe 

mark does not increase. This result is correlated to the one observed during the calibration 
step while after 5 passes, the vertical and lateral reaction forces had reached their maximum. 
However, the widths of the marks increase by 1.53µm (+11%) and 1.3µm (+13%) 
respectively for the lowest and the highest OD. This increase is due to either an increase of 

 - 85 -



Chap 3. Test and assembly critical parameters on the appearance of mechanical issues in pads 

the contact area between the needle and the pad or to a small misalignment of the probe 
between the successive passes. 

Moreover, the increase of the test parameters (mainly the overdrive) seems also to increase 
the damages and the removal of the aluminium from the top of the pad, as shown by the 
Figure III.5 (c) and (d), corroborating the assumption of a larger contact between needle and 
pad. The white areas in the centre of the mark are caused by a complete removal of the 
aluminium and thus a direct observation of the TaN/Ta layer. 

In the literature, Chang et al. [Chang, 2010] have also observed an increase of both the 
scrub length and the scrub area while the overdrive increased, in the range between 35µm and 
65µm, by means of actual tests. Liu et al. [Liu, 2006] have obtained from experiments and a 
finite element model that increasing the overdrive induces an increase of the scrub length, in 
the range 30µm to 100µm. 

I.B.1.b) Aluminium damages after EWS 
During the probing test, the aluminium top layer of the pad is plastically deformed. A 3D 

observation by means of optical profilometry of the surface is shown in the Figure III.6. The 
probe tip removes some aluminium from its original location, and pushes it away to form the 
pile up in front of the mark (red and green areas). As a result, in the centre of the mark, the 
aluminium is partially or completely removed and a depression is seen after the test (deep 
blue zone). 

 
umum

Figure III.6. 3D observation of the pad surface after EWS by optical profilometry. 
 
The FIB/SEM technique allows observing the aluminium grains and reconstructing them in 

3 dimensions. The Figure III.7 shows a SEM view of the cross section of the pad after FIB 
milling. The pile up and removed aluminium are observed similarly to the optical 
profilometry. Additionally, the aluminium grains can be distinguished, and their observation 
is enhanced in the Figure III.8, which correspond to a reconstruction of the pad in the 
aluminium layer from the various SEM views previously taken, following the technique 
described in the section I.B.I of the second chapter. Large aluminium grains are observed on 
the pad (on the edges of the reconstruction). In the probe mark, the grains are much finer, 
which indicates an important work hardening of the aluminium during the EWS. The areas in 
black on both images correspond to the resin used to perform the observation. 

 

Reconstructed level

5 µm

Figure III.7. SEM view of the cross section of the pad after FIB milling. 
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5 µm

Figure III.8. Reconstructed top view of the pad, in the aluminium layer. 
 
In order to evaluate the plastic deformation undergone by the aluminium during the tests, 

some EBSD is performed on the pad and in the probed area, using the equipment of the 
ENSMSE-CMP in Gardanne. Indeed, the plastic deformation is related to crystalline rotation 
(rotation of 1° ~ elongation of 1%). On the pad surface, the scan is realized on a 10µm*10µm 
area to get the initial grain orientation. All the grains have an {111} orientation, as depicted 
by the Figure III. 9. The range of sizes for the aluminium grains using the equivalent circle 
diameter is found between 0.5µm and 3.88µm.  

 
Observed Area

a)  
1µmb)

c)
001

111

101

Figure III. 9. SEM top view of the pad (a), grain orientation map (b) and inverse pole figure (c). 
 
Similar analysis is performed in the probed area, delimited by the orange line, and the 

results are shown in the Figure III.10. However, even after many tests, it seems hard to index 
most of the points in the probed area. As a matter of fact, the high roughness of the sample, 
the hardening due to the EWS test and the angle of 70° applied to the sample shadow some 
part of it. The few indexed points describe the grain rotation, and the new grain orientation. 
Thus, neither statistics of the grain size nor precise grain reorientation can be deduced. 
Finally, EWS is shown to induce strong hardening of the aluminium. 

 

a)
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b) 2µm

c)

111

101

001

 
Figure III.10. SEM top view of the probe mark (a), grain orientation map (b) and inverse pole figure (c). 

 

I.B.2. Pad integrity results and observations 
The principle of this analysis has been described in the first chapter. In this section, it is 

performed for various aluminium and padopen thicknesses, which are more specifically 
considered in the next chapter1. The thinnest and thickest films are respectively 0.88µm and 
1.2µm for aluminium and 0.5µm and 0.7µm for padopen oxide. The analysis is made on 296 
pads from two different dies, except for the harshest probing condition whose analysis is 
made on 592 pads from 4 different dies2.  

The pad integrity test allows a direct observation of the pad open oxide layer. A SEM 
observation before and after FIB milling is shown in the Figure III.11. A crack of several 
micrometres is seen in the oxide layer. This vertical crack goes through its whole thickness.  
 

Cracks

Padopen
oxide

M4a b

A

 
Figure III.11. SEM observations with a 52° tilt of a crack before (a) and after (b) FIB milling along A. The 
etching of the M4 copper layer (view b) is caused by the chemicals used to ease the crack observation. 
 

 OD 50µm 
– 5 passes 

OD 50µm 
– 10 passes 

OD 90µm 
– 5 passes 

OD 90µm 
– 10 passes 

Alu 1.2 – PO 0.7 0% (0/296) 0% (0/296) 0.7% (2/296) 4.9% (29/592) 
Alu 1.2 – PO 0.5 0% (0/296) 0.3% (1/296) 4.1% (12/296) 25.2% (149/592) 
Alu 0.88 – PO 0.5 0.7% (2/296) 1.4% (4/296) 7.1% (21/296) 35.8% (205/592) 
Alu 0.88 – PO 0.5 0% (0/296) 0% (0/296) 15.9% (47/296) 76.1% (334/444) 
Table III.2. Number and rate of cracks observed after pad integrity analysis. 
 

                                                 
1 The stack thicknesses are introduced here to further compare the relative effect of the test and the design 
parameters. 
2 The enlarged study (OD 90µm and 10 passes) is due to the set up of the plasma etching in the pad integrity 
analysis for the TaN/Ta removal, for the harshest probing condition and the sample with lowest thicknesses of 
aluminium and padopen oxide, some pads could not be observed. Hence, only 444 pads have been analyzed on 3 
dies (thinnest stack). 
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Figure III.12. Crack occurrence for various EWS test 
conditions. 

Figure III.13. Estimated response surface for the 
stack with lowest thicknesses. 

 
The results of the pad integrity analyses are collected in the Table III.2. The increase of the 

overdrive and the number of pass both lead to an increase of the crack occurrence, as depicted 
by the Figure III.12. Moreover, the two tests parameters have a cumulative effect as shown by 
the Figure III.13 and increasing both parameters increases highly the crack occurrence. 

I.B.3. Finite element model results and limitations 
The effect of the overdrive is evaluated in FE model, keeping the velocity constant. The 

duration of the application of the velocity depends on the targeted OD. The velocity is applied 
to the end of the needle. The level 2 needle geometry is used for modelling. In order to 
evaluate the stress in the pad, the compressive and the Von Mises stresses are investigated. 
The Von Mises stress or equivalent stress is computed as [Ansys LSDyna, rel. 11]: 

( ) ( ) ([ ])213
2

32
2

212
1 σσσσσσσ −+−+−=e  (III.1 ) 

where σ1, σ2 and σ3 are the principal stresses ordered in a way that σ1 is the most positive 
(tensile) and σ3 is the most negative (compressive) 
or:  

( ) ( ) ( ) ([ ])222222 6
2
1

yzxzxyxzzyyxe σσσσσσσσσσ +++−+−+−=  (III.2 ) 

 
Since the largest failures are observed in the pad open oxide, the stress analysis focuses on 

this layer. Hence, the Figure III.14 describes the meshed oxide layer and the elements selected 
for the analysis. The Figure III.15 shows the compressive stress (in absolute value) in the 
elements of the top of the padopen layer during one touchdown. Both the compressive and the 
Von Mises stresses have similar evolutions during the test. During the loading step to reach 
the maximum overdrive, a given element is stressed when the tip goes over, and when the tip 
is far enough, the elastic recovery occurs and the stress in the element returns to null. Similar 
phenomenon is observed during the unloading stage, explaining the two peaks observed. The 
maximum of the stress undergone by the structure is located in the element where the tip stops 
at the end of the loading step, and during the plateau. 

On that chart, a curve that passes through all the maximum of the successive elements have 
exactly the same shape than the loading curve and the vertical reaction force. Hence, the 
compressive and Von Mises stresses in the pad are proportional to the applied load. Since it 
has been demonstrated in the section III.B.1 of the chapter 2 that increasing the overdrive is 
related to an increase of the vertical reaction force, the increase of the overdrive leads to an 
increase of the stress in the structure. 
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Figure III.14. Meshed padopen oxide layer and elements selected to evaluate the stress in the pad. 
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Figure III.15. Compressive stress in the structure during the test. 
 

The number of passes is not estimated with this model for two main reasons. Firstly, elastic 
material properties are selected, hence at the end of the first touchdown, no stress due to the 
pass is observed in the structure. Secondly, the current model is quite long to solve (4 days 
with four processors), and adding plastic material properties to perform a second touchdown 
plus several passes would take a very long CPU time. Hence this model is not directly able to 
evaluate the effect of the number of passes on the pad robustness. 

However, it has been emphasized in the section III.B.2 of the chapter 2 that increasing the 
number of passes is related to an increase of both vertical and lateral forces until 5 passes. As 
a consequence, similarly to the observation for the overdrive, the stress in the structure is 
expected to rise while increasing the number of passes. 

I.B.4. Discussion 
In the section I.B.2, the layer stacking options have briefly been shown to be key 

parameters for the pad robustness. Hence, in this part, the pad design options and the test 
parameters are weighed to compare their influence and further avoid failures in the structure. 

The results are analyzed and trends are extracted with the help of Statgraphics release 5.1. 
Then, a Pareto chart showing the effect of the considered parameters is depicted in the Figure 
III.16. Hence the tests parameters and their interactions are shown to be the most important 
contributors to the appearance of failures in the pad. Moreover, a ranking is established 
according to the higher ability to induce cracks in the structure to further prevent issues: 

Overdrive > Number of passes > Pad stacking options (layer thicknesses) 
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Bar for significant 
parameters

 
Figure III.16. Standardized Pareto chart for the crack occurrence. 
 

An analysis of variance is made on the results of the design of experiments to check the 
validity of the model. The coefficient of determination of the model in quite good and r2 is 
equal to 0.919. 

In the literature, Liu et al. [Liu, 2005; Liu, 2009] performed a probing DOE to weight tests 
(OD and number of touchdowns) and designs (dielectric thickness and metal thickness) 
parameters. Their range of parameters is slightly different because the OD varies between 
100µm and 200µm and the number of touchdowns between 1 and 4. Yet, they obtained that 
the tests parameters and particularly the overdrive are more prone to induce failures in the 
dielectric layer than the pad layout.  

Finally, in both the literature and the current study, the increase of the overdrive and the 
number of passes is related to a high increase of the fracture hazard. However, these test 
parameters are often specified by the product’s customer1 or needed to reduce rejects and 
generally, they cannot be lowered. 
 

II. Gold bonding: Influence of the process parameters 
 

During the wire bonding assembly, several options such as the wire material, the wire 
diameter and bonding parameters have to be optimized to achieve a good adhesion and 
electrical connection between the pad and the packaging. Most of the parameters that have 
been described in the first chapter are considered in this section.  

Nowadays, most of the wire connections are made using gold. Hence, bonding with 25µm 
gold wires have been made in a first attempt. This diameter is often employed for CMOS 
120nm dies since the mashed ball corresponds to the adequate pad opening. Then, with 
regards to the results obtained with these wires and the objectives, 20µm wires are used. This 
diameter best suits with more recent technology nodes whose pad openings are smaller. 
Finally, thermal aging is performed to evaluate the effect of thermal heating on the aging of 
wires. 

II.A. Gold bonding with 25µm diameter wires  
During the gold bonding study, the Bonding Power (BP), Bonding Time (BT) and Bonding 

Force (BF) are investigated. The first one corresponds to the ultrasonic power applied to weld 
the ball to the pad. The second one is the duration of the application of this ultrasonic power. 
The third one corresponds to the force applied to the ball by the capillary during the bonding 
process.  

                                                 
1 Other parameters not discussed here such as the temperature during EWS testing are sometimes additionally 
specified for particular applications when dies encounter thermal cycles during their lifetime. 
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II.A.1. First bonding Design of Experiments 
During the first wire bonding DOE, bonding is made on probed pads (8 passes at OD 

80µm) as shown in Figure III.17. The gold bonding is performed with wires manufactured by 
Kulicke & Soffa. It is a FP2 gold wire (purity: 99%) whose elongation and breaking load are 
respectively in the ranges 2% to 6% and 13gf to 18gf1. The bonding is performed using an 
ASM Eagle 60 bonder at ST Grenoble by the ATM team. The substrate is heated at 180°C 
during the bonding. 

The design of experiment is a full central composite type duplicated two times to get 
reliable trends and a reasonable amount of wires to pull (about 60 for each configuration), 
based on the three process parameters. This DOE ensures the isovariance and the 
orthogonality and is made from fourteen tests plus three repeated for the standard process 
condition (central point). The standard process conditions for BT, BP and BF are shown in 
Table III.3. 

 
 Lowest value Medium value Highest value 
Bonding time (ms) 12 15 18 
Bonding power (mW) 46 51 56 
Bonding force2 (gf) 17 20 23 
Table III.3. Set of bonding parameters for the first DOE. 

 
Once the bonding operation is achieved, the balls heights and diameters are measured and 

the wires are pulled. For these tests, peeling cases are preferred to neck break ones in order to 
discriminate the critical bonding parameters. Both failure modes are observed as shown in 
Figure III.17. 
 

Pad after peeling Pad after neck break

Pad before bonding

Pad after peeling Pad after neck breakPad after peeling Pad after neck break

Pad before bonding

 
Figure III.17. SEM top view of the pads, showing the probe mark obtained prior to bonding and the 2 failure 
modes obtained after wire pull test (peeling and neck break). 
 

II.A.1.a) Mashed ball measurements 
The measurements of the ball size are made by means of optical profilometry on 3 balls. 

However, as depicted by the Figure III.18 and Figure III.19, there is no clear trend on both the 
ball diameter and the ball height while modifying the bonding parameters (BT, BP or BF).  
 
                                                 
1 The gram force is commonly used by wire bonding manufacturers and its conversion to the standard unit 
system is 1gf = 9.8mN. 
2 In millinewton, the bonding forces are respectively 167mN, 196mN and 225mN. 
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Figure III.18. Variation of the ball diameter as a 
function of the bonding time. 

Figure III.19. Variation of the ball height as a function 
of the ball force. 

 
In the literature, many studies have been led to evaluate the effects of the bonding 

parameters on the gold ball dimensions. In two successive designs of experiments, Shu et al. 
[Shu, 1991; Shu; 1996] show that the gold ball diameter in both x and y directions increases 
while increasing the BP, BF and BT. In their paper, Beng Teck et al. [Beng Teck, 2006] 
evaluated a new structure for high temperature applications (Electroless Nickel Immersion 
Gold pad: ENIG pad). Similarly to Shu et al., they found that the gold ball diameter increased 
while increasing bonding force or bonding power. Kripesh et al. [Kripesh, 2002], 
demonstrated that increasing either the bonding force or the bonding power is related to a 
reduction of the ball height. In their study, Gillotti et al. [Gillotti, 2002] showed that an 
increase in ultrasonic current or BF leads to an increase of the ball diameter. They also found 
that increasing the BF leads to a decrease of the ball height but an increase of the ultrasonic 
generator current lead to an increase of the BH. In their paper, Mayer et al. [Mayer, 2003] 
stated that the increase of the amplitude of the ultrasonic vibrations and the bonding force are 
both related to a reduction of the ball height and an increase of the ball diameter. Finally, the 
studies previously described and also many others [Huang, 2009; Breach, 2010] show that the 
increase of the process parameters is generally related to an increase of the ball diameter and a 
decrease of the ball height. 

Hence, some questions are raised on the range of values for the parameters of the DOE, 
and also on the ball dimension measurement technique comparing with expected results 
aforementioned (effects of the bonding force and power on the ball height and diameter). 

II.A.1.b) Wire pull tests 
During the wire pull tests, 1580 wires are manually pulled using the Dage 5000 described 

in the first chapter. Among these wires, 96.5% of the failure modes are neck breaks, i.e. 
fracture in the heat affected zone, and the remaining 3.5% (55 occurrences) are peeling cases. 
The latter, which is caused by the weakness of the structure, has been more precisely observed 
in the Figure III.20. Peeling is accompanied by a removal of some of the interconnect 
structure from the pad, and the border of peeled area raises, showing a delamination within 
the inner layers of the pad. In order to evaluate the location of the delamination, some optical 
profilometry is made. As shown in Figure III.21, the profile of the peeled pad underlines 
several characteristics. Firstly, the top layers surrounding the failures are raised consequently 
to the failure (about 3 µm). As a consequence, the failure seems to start from the bottom of 
the pad, in a weak interface, and then reach its surface. Secondly, the delamination is located 
4.07µm under the pad surface, which is linked to a delamination occurring between the M2 
and IMD2 layers. Moreover, with respect to the profile at the bottom of the failure, this 
delamination takes place between the copper of the M2 level and the oxide of the M2 and 
IMD2 layers. 
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a
Figure III.20. Top views of pads with peeling: with an optical microscope (a) and with a SEM (b). 

Profile

M2 copper

Figure III.21. Optical profilometry image of the peeled pad and profile of the failure. 
 

The peeling occurrence is plotted for all the process conditions, as depicted by the Figure 
III.22. No clear trend can be found between the peeling occurrence and any of the bonding 
parameters.  

 
2.5% of 
peeling
25% of 
peeling

2.5% of 
peeling
25% of 
peeling

2.5% of 
peeling
25% of 
peeling

 
Figure III.22. 3D plot of the peeling occurrence as a function of the bonding parameters. 
 

In the literature, the experimental and numerical studies performed to evaluate the effect of 
the bonding parameters on the peeling occurrence for gold wire bonding are summarized in 
the Table III.4. In a general manner, all the works show that the bonding power, time and 
force have to be reduced to avoid the peeling risks. A purer wire is also advised to reduce the 
peeling occurrence. Additionally, Gu et al. [Gu, 2003] have shown that the FAB size have to 
be increased to reduce the fracture hazard. Through a numerical study of the stress in the pad, 
Liu et al. [Liu, 2004] have found that increasing the ultrasonic amplitude or frequency lead to 
increase the stress in the pad. Thus, the peeling occurrence is expected to increase as well. 
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 Variation of the bonding parameters required to reduce the peeling occurrence 
Impact force Bonding time Bonding power Bonding force Wire purity 

[Gu, 2003] n/a Reduce Reduce No effect Increase 

[Binner, 2004] Effect observed: 
control required n/a Reduce n/a n/a 

[Fiori, 2007] Increase n/a n/a n/a Increase 
[Zhang, 2007] n/a n/a Reduce Reduce n/a 
Table III.4. Bonding parameters required variation to reduce the peeling occurrence. 

 
As a consequence, the reliability of the current DOE is questioned since no variation of the 

ball size and the peeling occurrence are observed while modifying the bonding parameters. 
Hence, a second, wider, design of experiment is required to investigate bonding parameters, 
wire material (copper versus gold) and design parameters.  

II.A.2. Second wire bonding DOE 
In this second DOE, in a first attempt to fix the DOE borders, only the standard and the 

extreme bonding conditions are made. The same bonder (ASM Eagle) at ST Grenoble and the 
same gold wire than during the first set of experiments are used. The EFO current for the FAB 
formation is 3850mA and the EFO duration is 450µs. The standard case is also the same. 
However, the gap with other bonding cases is larger, as shown in Table III.5.  
 
 LLL MMM HHH 
Bonding time (ms) 13 15 17 
Bonding power (mW) 44 51 57 
Bonding force1 (gf) 15 20 25 
Table III.5. Bonding set of parameters for the second design of experiments. 
 

For this second DOE, and all the following gold and copper wire bonding results, the pad 
organisation on the die is not common (i.e. not a conventional perimeter as defined in the 
chapter 1). Thus, as shown in the Figure III.23, the wires are long, with minimum, average 
and maximum sizes of respectively 4466µm, 4760µm and 5234µm. Hence two kinks are 
made between the pad and the leadframe to achieve a good bonding. The structures are 
CMOS 120nm structures, made from four copper layers and an aluminium layer on top, as 
further described (chapter 4 section II.A). 

 

500µm

Figure III.23. Optical microscopy top view of the bonded pads.  
 

                                                 
1 In millinewton, the bonding forces are respectively 147mN, 196mN and 245mN. 
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II.A.2.a) Mashed ball measurements 
As a high uncertainty has been observed for the measurement technique and the number of 

measured balls during the first DOE, these are made with an optical microscope on 8 mashed 
balls. For the ball height, it achieved by successively focussing on the pad and on the collar of 
the mashed ball. 
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Figure III.24. Effect of the bonding parameters on the ball diameter (a) and the ball height (b). 
 

The measurements of the balls diameters and heights are depicted in the Figure III.24. As 
expected and found in the literature (see section II.A.1.a)), increasing all the bonding 
parameters induces an increase of the ball diameter and a decrease of the ball height. Hence, 
higher confidence is reached for the ball measurement technique and the wire bonding, and 
the closeness of the values during the first set of parameters is clearly underlined. 

II.A.2.b) Results of the wire pull and shear tests 
For each set of bonding parameters, 45 wires (15 wires on 3 different dies) are pulled. Only 

failures at neck break are obtained, whatever the bonding conditions. The range of forces for 
the neck break cases during the pull tests is between 8.74 gf and 9.95 gf, which are, as 
expected, below the breaking load of the gold wire. 

Additionally, some shear tests are performed to check the bonding resistance. In each case, 
the ball is removed completely from the pad (failure mode 1) showing average bonding 
quality of the ball and a reduced formation of IMC. The range of shear forces obtained is 
between 16.7gf and 23.4gf. The shear strength is calculated from the equation (I.2), and 
values between 94MPa and 132MPa are obtained. 

II.A.3. Discussion 
The requirements of the study are not fulfilled with this wire because no peeling is 

obtained. During the first DOE, some peeling has been found for similar bonding conditions. 
Hence, two reasons can explain the current results. Firstly, during the first DOE, EWS was 
made prior to bonding and may have induced pre-cracks in the structure. In the literature, 
several studies point out the cumulative effect between the probing and the wire bonding. 
Hotchkiss et al. [Hotchkiss, 2001], showed that increasing the number of touchdowns from 0 
(i.e. no EWS) to 4 is directly related to an increase of the number of metal lift failure modes. 
To prevent issues due this testing and assembly, Yong et al. [Yong, 2003] even proposed a 
new structure separating the bonding and the probing regions to avoid failure during bonding 
due to probing. The second reason can be that the current pads are more robust than those of 
the first DOE. Yet, due to uncertainty on the structures firstly tested, this assumption is hard 
to check. 
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As a consequence, for further experiments on gold bonding, smaller wire diameters are 
used. This modification combines two advantages. The current trend is to move forward to 
smaller pad pitch, which requires bonding with smaller wires to get smaller mashed balls. 
Moreover, recurrent issues are obtained while reducing the wire diameter, as shown by 
Mercado et al. [Mercado, 2000]. The root cause of these issues is that to maintain a stable and 
robust bond (i.e. shear strength), the wire bond force per unit area is higher for smaller balls 
than for larger balls. As a consequence, higher stress is undergone by the pad structure and 
peeling is more likely observed. Thus, for the following wire bonding experiments, a gold 
wire with a 0.8 mil (or 20 µm) diameter is selected. 

II.B. Gold bonding with 20µm diameter wires  
The gold wire for the bonding is still manufactured by Kulicke & Soffa. The wire purity is 

still 99% (GPG2 wire), and the elongation and breaking load ranges are respectively 4-8% 
and 5gf (49mN) to 10gf (98mN). Hence, compared to the larger wire, the elongation prior to 
failure is higher. As expected with the reduction of the wire diameter, the breaking load 
decreases. 
 
 LLL MMM HHH 
Bonding time (ms) 16 18 20 
Bonding power (mW) 41 45 49 
Bonding force1 (gf) 6 9 12 
Table III.6. Bonding set of parameters for the design of experiment with 0.8 mil gold wires. 

 
The standard case has to be redefined to obtain the desired ball diameter and avoid non 

sticking on pad cases. Once more, only the 3 extreme bonding set of parameters have been 
used, as displayed in the Table III.6. 
 

II.B.1. Bonding parameters effects on mashed ball dimension 
The effect of the bonding parameters is investigated the same manner as for 25µm wires. 

As shown in the Figure III.25 and previously observed for larger wires, increasing altogether 
the bonding parameters is related to an increase of the ball diameter and a decrease of the ball 
height. For these smaller wires, the ball diameter and height are smaller as well, of 
respectively about 12 µm and 4 µm. 
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Figure III.25. Effect of the bonding parameters on the ball diameter (a) and the ball height (b). 
 

                                                 
1 In millinewton, the bonding forces are respectively 58.8mN, 88.2mN and 117.6mN. 
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II.B.2. Wire pull tests results 
For each set of bonding parameters, 15 pads on 3 different dies are pulled. Only the neck 

break failure mode is obtained, even for the harshest bonding conditions. The range of forces 
for the pull tests is very narrow (between 6.04 gf to 6.33 gf), so no trend can be deduced for 
the effect of the bonding parameters on the pull force. These forces are lower than those of 
larger wire, which is due to a lower breaking load of the gold wire.  

II.B.3. Ball adhesion on pads 
The adhesion of the ball to the pad is tested on 180 wires for each set of bonding 

parameters. Two failure modes are observed during the shear tests. The failure mode 1, 
depicted in the Figure III.26 (a), is observed on most of the pads. For some tests, gold from 
the mashed ball remains on the pad after the tests, which corresponds to the failure mode 2, as 
shown in the Figure III.26 (b). As previously mentioned in the first chapter, the failure mode 2 
is preferred since it is related to an enhanced bonding quality, with a noticeable IMC 
formation and growth during the process. 
 

(a) (b)
Figure III.26. Failure mode 1 (a) without gold remaining on the pad and failure mode 2 (b) with gold remaining. 
 

As shown by the Figure III.27, increasing the bonding parameters, in the considered range 
of values, induces an increase of the number of the failure modes 2 observed. Therefore, it 
enhances the strength of the bond. The bonding time, force and power are coupled in the 
current study, thus it is not possible to evaluate the significance of the parameters 
individually.  
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Figure III.27. Number of failure mode 2 for the 
bonding parameters considered. 

Figure III.28. Average shear stress and shear strength for 
the set of bonding parameters.

 
The Figure III.28 shows the average shear force and strength for the set of parameters. The 

shear strength is calculated using the results of the Figure III.25 (a). The shear force increases 
with increasing the bonding parameters. The shear strength does not behave similarly. A 
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maximum is found for the medium bonding parameters. Considering the number of failure 
modes 2 obtained for the highest set of bonding parameters, this set of parameters is expected 
to have the highest shear strength. Hence, it seems that the measurements of the balls diameter 
have once more to be questioned and either the ball diameter of the medium bonding 
parameter is under evaluated or the one of the high bonding parameters is over evaluated.  

In the literature, Zhang et al. [Zhang, 2007] found that the ball shear strength increases 
when the ultrasonic power increases from lower to medium values, then, while continuing to 
increase the bonding power, no or little variation is found. Nevertheless, they found no clear 
correlation between the bonding force and the shear strength. Kripesh et al. [Kripesh, 2002] 
found that increasing the bond force or the bond power is related to an increase of the shear 
force, similarly to the results aforementioned. 

II.B.4. Discussion 
The experimental measurements enable us to observe the effect of the wire diameter on the 

strength of the bond and the tensile load applied to the pad during the bond testing. Higher 
pull and shear forces are obtained for the larger wire diameters. Yet, the use of the shear 
strength as an indicator of the bonding quality seems particularly efficient to evaluate the 
robustness of the bond since the shear strength of the smaller wire is higher than that of the 
larger one. This trend is correlated to the failure mode observed for the diameters. 

Similarly to the shear strength, while comparing wires with very different diameters (for 
instance 25 µm wires versus 20 µm wires), it can be interesting to calculate the ratio of the 
pull force over the application diameter to evaluate the tensile stress applied to the pad during 
the test. Hence, the equation giving the pull stress is: 

2*
4

D
PFPS

π
=  (III. 3) 

where PS is the pull stress, PF the pull force and D the diameter of the mashed ball, which is 
assumed to be circular. 

The calculation, averaging the ball dimension for each wire diameter, leads to stress ranges 
from 50MPa to 57MPa and from 59MPa to 62MPa respectively for the large and the small 
wires. It confirms that higher tensile loading is required to remove the smaller wires. As a 
consequence higher stress is also undergone by the structure during the testing operations. 

Additionally, the IMC coverage would be a good confirmation of the effect of the bonding 
parameters on the robustness of the bond; however this technique is not very easy to set up. 
All these measurements raise questions about the validity of wire pull and shear tests to 
evaluate the bonding quality and the impact of the process on the structure. Indeed, in the 
literature, Harman et al. [Harman, 1978; Harman, 1997] have shown the parameters and 
uncertainties related to these tests. Chemical deprocessing can also be an interesting method 
to evaluate the presence of cracks in the pad structure after wire bonding, avoiding pull and 
shear tests that induces additional (and different, e.g. tensile loading for the pull tests) stresses 
into the structure. 

II.C. Effect of the thermal aging  
The High Thermal Storage (HTS) has been introduced in the first chapter. It is used to age 

the wire and reproduce the thermal cycles undergone until the end of the chip process and 
during the die lifetime. The thermal aging implies the IMC growth, which can lead to 
debonding. However, aging is also related to peeling cases while both the temperature and the 
time increase [Jamin, 2008]. The samples of the section II.B (20 µm gold wires) are stored 
during 264 hours at 175°C. 
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In the literature, Vath et al. [Vath, 2009] found that thermal aging induces an increase of 
the diameter of the welded ball and a reduction of its height. Nevertheless, for a thermal 
storage of 264h, the diameter should only slightly increase, independently on the bonding 
parameters. In the current case, this trend is verified and measurements similar to those 
depicted in the Figure III.25 are observed. 

II.C.1. Wire pull tests results 
The wire pull tests are performed on 120 wires for each bonding condition. All but one 

wire failed at the neck break as observed before aging. In one case shown in Figure III.29, the 
ball lifted during the test, which highlights the appearance of the voids within the intermetallic 
compounds. 
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Figure III.29. Optical microscopy top view of a pad 
after ball lift. 

Figure III.30. Measured pull force for the set of 
parameters investigated. 

 
The Figure III.30 shows that the effect of the increase of the bonding parameters on the 

measured pull force is almost imperceptible. The average forces are slightly above the ones 
measured before aging (about 0.2gf or 2mN). In other papers from Jamin et al. [Jamin, 2008] 
or from Eu et al. [Eu, 2009], the same small increase of the pull force is found while 
increasing the aging time. Almost similarly, Han et al. [Han, 2007] and Vath et al. [Vath, 
2009] found that the pull force is decreasing only a little while increasing the aging time up to 
one thousand hours. Hence, both current results and published studies lead to quite similar 
results. 

The stability of the pull force during HTS can be explained by the high annealing 
temperature of the gold wire. In their study, Omar et al. [Omar, 2002] showed that the tensile 
strength of the gold wire reduces significantly only above 300°C.  

II.C.2. Ball adhesion on pads 
In parallel to the wire pull tests, 60 gold balls are sheared for the medium set of bonding 

parameters. The shear forces are in the range 15.4gf to 17 gf, and the shear strengths are 
between 167MPa and 183MPa. As a consequence, the aging is shown to increase the 
robustness of the bond due to the growth of the IMC. This corroborates with studies on IMC 
described in the first chapter.  

In their study, Ganesh and co-workers [Ganesh, 2004] demonstrated that increasing the 
aging time, for a constant temperature of 150°C is related to a small increase of the ball shear 
force until 2000 hours. On the contrary, Vath et al. [Vath, 2009] showed that the ball shear 
force firstly increases when the storage time increased, then for more than 500 hours; a sharp 
decrease of the shear force is obtained, characterizing the ball lifts observed during the pull 
tests performed in parallel. In a paper, Murali et al. [Murali, 2006] also observed an increase 
of the shear force while increasing the aging time below 200 hours. 
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II.D. Discussion 
The initial purpose of the second DOE was to enlarge the bonding process window of the 

first one with other dedicated structures, and to uncouple the EWS and wire bonding effects. 
The results do not fulfil the expectations of the study since no peeling cases are found. 
However, the measurements of the mashed ball diameter and height have proven the effect of 
the bonding parameters, even though only large increase of the bonding power, time and force 
are required to observe the variations of the ball dimensions. These variations of the wire and 
the ball diameters highlight the need to use indicators that are independent on the ball size 
such as the shear and pull forces per unit area. Yet, caution is required on the accuracy of the 
measurements of the ball size, and as shown in the literature, the use of the IMC coverage 
instead of the ball diameter to calculate the strengths should improve their accuracy. 
Moreover, the ball shear tests have underlined the influence of the bonding parameters on the 
adhesion of the ball to the pad. Due to the current trend to use more and more copper wires to 
perform the electrical connections, the DOE is extended to copper bonding, which also allows 
a comparison of the gold and copper materials for bonding. 
 

III. Copper bonding: effect of the process parameters 
 

As mentioned in the first chapter, the actual trend in the semiconductor industry is to move 
toward copper bonding mainly for cost reduction purposes. Indeed, the increase of the price of 
the expensive gold becomes a major part of the bonding process cost. Nevertheless, this new 
bonding material has two major drawbacks, the first one is its increased ball hardness 
compared to gold. Hence higher bonding parameters are required to form the ball and to 
realize the bonding. As a consequence, risks of structure damaging are increased. The second 
one is oxidation in air of the copper. In order to solve this issue, the copper wires used are 
coated with palladium and/or a forming gas containing N2 (95%) and H2 (5%) is used during 
the bonding operation. These wires are manufactured by Nippon Micrometal Corporation. 
The wire diameter is kept at 20µm (0.8mil). Its breaking load, elongation and Vickers 
hardness are respectively 112mN, 11.8% and 55, as given by Uno et al. [Uno, 2009]. 
Furthermore, they showed the good aging resistance of the copper wire, which is not 
evaluated hereafter. Similarly, Vath and co-workers [Vath, 2009], compared the IMC growth 
during thermal aging for gold, copper and palladium coated copper wires. The latter is found 
to be the most stable and no void is observed either in the wire or at the interface between the 
pad and the ball.  

In a first attempt, the bonding parameters investigated are the same than those of the gold 
bonding DOE. However, after some initial pull test trials, no peeling cases are observed on 
the pads. After discussions with the ST Grenoble ATM team, it seems that for copper 
bonding, another key parameter is presumed to induce peeling during wire pull tests. Hence, a 
central composite DOE is made to evaluate 2 process parameters (3 levels) and 3 design 
parameters (2 levels)1. The contact force varies from 30mN to 50mN and the bonding power 
from 70mW to 90mW. The bonding time and bonding force are fixed to 12ms and 15mN 
respectively. The temperature of the strip holder is set to 178°C. The loop height is reduced 
compared to the gold bonding and fixed at 200µm.  

In order to obtain a good reproducibility, for each of the set of process and design 
parameters, 3 dies of 15 wires are pulled and 2 dies of 15 pads are sheared. As a whole, 3240 
wires are pulled and 2160 wires are sheared during the copper bonding design of experiments. 

                                                 
1 The 3 pad layouts parameters (metal density, presence of vias and pad open vias) are more widely described 
and studied in the next chapter. 
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Figure III.31. Schematic representation of the typical forces applied during the copper bonding process. 
 
The Figure III.31 shows the typical forces applied to the pad during the copper bonding 

operation. The contact force is the highest force applied to the pad, and then the ultrasonic 
period occurs with the application of a bonding force, and finally, the unloading stage to go to 
the next bond. The forces undergone by the pad have been measured by Mayer, Shah and co-
workers [Mayer, 1998; Mayer, 1998; Mayer, 2003; Shah 2008] for both gold and copper 
bonding. They used and calibrated microsensors to evaluate the forces during all the bonding 
stages, and obtained a similar profile. The amplitude of the ball lateral displacement during 
the application of the ultrasonic power is thus measured between 0.1µm and 0.3µm. 

III.A. Initial bonding observations and copper ball measurements 

III.A.1. Aluminium pad splash 
Once copper bonding is achieved, aluminium from the pad is removed from its original 

location, squeezed outside the bonded ball perimeter. The aluminium splash results in two 
hillocks on both sides of the ball, as depicted by the Figure III.32 (a). Since copper is harder 
than gold (see Figure I.37 in the chapter 1), the aluminium is plastically deformed during the 
bonding process. According to the SEM view, the splash expends during the application of 
the ultrasound, and the size of the splash depends on the ultrasound power (more specifically, 
the amplitude of the ultrasound is suspected), since the splash is observed in the direction of 
the US. This result is confirmed on the SEM view showing peeling in the structure since the 
damages of the aluminium are wider in the direction of the ultrasound application, as shown 
in Figure III.32 (b). The variation of the aluminium splash has been recently studied by Shah 
et al. [Shah, 2010], who deduced the variations of the splash diameter with the bonding force 
and the ultrasonic power. They deduced that the major contributor to the splash diameter at 
interface is the ultrasound applied to the ball, and then in a smaller range the bonding force. 
Similarly, Clauberg et al. [Clauberg, 2010] found the same dependence of the aluminium 
splash with the increase of the applied ultrasonic energy. 

In a dedicated design of experiments, Qin et al. [Qin, 2009] associated the aluminium 
splash to a phenomenon of metal wear, and found that the size of the splash depends on the 
impact force, the bonding force and the bonding power.  
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(a)  (b) 

US

 
Figure III.32. SEM top view with aluminium splash observed after copper bonding (a) and SEM top view of a 
peeling case and the direction of the ultrasonic power (b). 

 
Two major issues can arise from high aluminium splashes. Firstly, the thickness of the 

aluminium layer decreases, which can further induce a mechanical weakness in the structure, 
and secondly, short circuits can be created depending on the pad pitch and the ultrasonic 
direction (bridging between the aluminium splashes of two pads). 

III.A.2. Mashed ball measurements 
The bonded balls are measured with the same tool than the gold balls. Similarly to the first 

DOE on the gold wires, only little variations are found for the effect of the contact force (CF) 
and the bonding power (BP) on the ball diameter and height, as shown in Figure III.33. 
Indeed, the range of sizes for both measurements is very small, almost in the range of the 
uncertainty of the optical microscope (0.4µm).  
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Figure III.33. Effect of the bonding parameters on the ball diameter (a) and the ball height (b). 
 

Similarly to this study, in their work, Shah et al. [Shah, 2010] found little variations of the 
ball height and the ball diameter over a large range of scale while modifying the ultrasonic 
power. However, Zhong and co-workers [Zhong, 2007] observed that the major factor on the 
variations of the balls height and diameter is the ultrasonic power. Its increase is related to a 
decrease of the ball height and an increase of the ball diameter. In their study, Xu et al. [Xu, 
2008] also showed that the ultrasonic power is the most influent factor. Smaller variations of 
the ball dimensions are observed when the bonding power and the bonding time augment. 

III.B. Wire pull tests results 
Following the ball measurements, the wires are pulled. Two failure modes are obtained, as 

expected. On the one hand, the failures at neck break, which occurs in the heat affected zone, 
similarly to gold bonding, and on the other hand, the failures in the pad structure. The latter 
failure mode represents about 3% of the wires (98 out of 3240 wires). The Figure III.34 shows 
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the number of peeling cases observed for all the bonding conditions. Hence, both process 
parameters are significant. The increase of the contact force and the reduction of the 
ultrasonic power induce a diminishing of the cracks number in the oxide layer.  

The Figure III.35 depicts the safe bonding area to avoid failure risks for a given structure 
(low metal density, no via and presence of via padopen under the bonding area). Such a 2D 
contour plot is useful to define a process window to achieve bonding avoiding peeling risks. 
In the literature, Lim et al. [Lim, 2006] performed a Box-Behnken DOE to evaluate the effect 
of the bonding time, power and force to set optimized bonding parameters. Similarly, they 
obtained a safe process window in the centre of the range of values for the bonding 
parameters. 

For the same structure, all the measurements of the pull forces are collected in the Figure 
III.36, within the ultrasonic power is high to highlight the effect of the contact force. The 
peeling cases are found for lower pull forces than the failures at neck break. Therefore, 
increasing the contact force diminishes the peeling occurrence, and also the risks of peeling at 
reduced pull forces. This trend is highlighted by the box and whisker plot in Figure III.37, 
within the reduced contact force is related to larger boxes and boundaries. The minimum pull 
force measured during the tests is 33mN (3.4gf).  

In case of failures at the neck, the pull forces are measured between 8gf (78mN) and 9gf 
(88mN), which is slightly below the breaking load of the copper wire (112mN). 
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Figure III.35. 2D contour plot of for the effect of the 
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Figure III.37. Box and whisker plot for the effect of 
the contact force on the peeling occurrence. 

 
During the bonding process, the bonding force is 15gf (or 147mN), the contact force is 

between 30gf (294mN) and 50gf (490mN). Decreasing the contact force in the range of values 
considered during the DOE is found to increase the crack occurrence. It is probably due to the 
formation of the mashed ball during the contact. A higher contact force may induce a larger 
contact area between the ball and the pad before the application of the ultrasonic power. 

 - 104 -



Chap 3. Test and assembly critical parameters on the appearance of mechanical issues in pads 

Hence, when the ultrasonic power is applied, it is distributed over a larger contact area and 
finally lower stress is undergone by the pad. In their paper, Qin and co-workers [Qin, 2010] 
have evaluated bonding parameters with the help of microsensors and laser vibrometer for 
gold wires. They observed that increasing the contact force induces a larger FAB deformation 
and as a consequence a larger contact area to end with a similar assumption. They also 
estimated that the increase of the impact force seems to imply a delay in the bond formation 
between the pad and the ball. Even if copper does not behave exactly the same way than gold, 
these observations could confirm the assumptions. One way to check them is to perform 
copper bonding and only apply the contact force, the bonding time and all the other 
parameters set to 0. This surely lead to non-sticking on pad cases, but the mark can then be 
analyzed by means of optical profilometry for instance to check the effect of the impact 
damages left by the copper ball in the aluminium. 

Higher bonding power is applied to the pad and is related to higher shear stresses in the 
pad structure and then induces the apparition of small cracks or weaknesses in the pad at 
geometrical singularities that are further highlighted by wire pull tests. The increase of the 
stress in the structure has been experimentally measured by Shah et al. [Shah, 2009] who 
found that for bonded balls with equal diameters, the stress in the structure is proportional to 
the ultrasonic power.  

Similarly to this work, Toyozawa et al. [Toyozawa, 1990] established that decreasing the 
ultrasonic power induces a reduction of the number of cracks in the interconnections. In 
addition, they found that increasing the bonding load implies an increase of the failure 
occurrence and when high loads are reached, the fracture hazard diminishes. On the contrary, 
England et al. [England, 2007] investigated the effects of the bonding power and the bonding 
force for two strip heater temperatures (150°C and 175°C). They have seen many pad lifts 
throughout the parameter set, and have not been able to identify key parameters. These 
peeling cases have been obtained at pull forces close to the ones of failures at the neck break. 
These are quite higher than the requirements for the robustness of the structure. As a 
consequence they emphasized that these pad lift failures are not a major concern in such a 
case. 

In a general manner, the peeling cases are critical since they underline a weakness of the 
structure, however, for quite high pull force values; the pad is robust enough to avoid any 
failure during its lifetime. Nevertheless, considering also the complexity of the structures, it 
seems difficult to define a clear threshold that identifies a pad as prone to failures, and 
generally, peeling failure mode should be avoided.  

III.C. Shear tests results 

III.C.1. Effect of the shear test parameters on forces 
As mentioned in the first chapter, some experimental parameters can influence the 

measurement of the shear force. As a consequence, the effect of the shear height and the shear 
velocity are evaluated. The shear height varies from 3 µm to 15 µm. As shown in the Figure 
III.38, this parameter has little influence on the measurement. For the highest value, a 
reduction of the force is observed since the shear test is made very close to the top of the ball 
and does not evaluate the bond anymore. 

The shear velocities of 50µm.s-1 and 500µm.s-1 are compared to the standard 250µm.s-1 
one. The velocity modifies the results for less than 10%, as shown in Figure III.39. This is 
mainly observed for low shear velocity, where additional material behaviours are observed 
due to the slowness of the test. These results corroborate those found by Harman [Harman, 
1997]. 
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Hence, the shear height, and the shear velocity do not modify significantly the 
measurements in the considered range of experimented values, so aforementioned conditions 
are valid. 
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Figure III.38. Variation of the normalized shear force 
with the shear height. 

Figure III.39. Variation of the normalized shear force 
with the shear ram velocity.

 

III.C.2. Effect of the contact force and the bonding power 
The shear tests are performed to evaluate the adhesion of the copper balls to the pads. Only 

the failure mode 1 is observed (ball lift). The reason for the ball lifts observed is that the 
copper ball is very strong (for instance compared to gold). As a consequence, the shear ram is 
not able to shear the ball in its middle, and the copper-aluminium interface is the weakest part 
of the system, which leads to ball lifts. This failure mode is observed in several studies [Kim, 
2003; England, 2007]. Chu et al. [Chu, 2008] explained this failure mode by the low 
formation of the IMC during copper bonding process. 

Increasing the contact force is shown to reduce the shear force, and augmenting the 
bonding power increases it, as shown by the Figure III.40. Moreover, these two parameters 
have a cumulative effect, and the highest shear force is obtained while the former parameter is 
minimized and the latter maximized.  

Since no clear trend has been observed for the measurements of the ball diameters, the 
shear strength is not depicted, however, it is expected that the effect of the contact force is 
reduced and on the contrary, the effect of the ultrasonic power increased1. As a consequence, 
the results of the shear test clearly show an effect of the bonding parameters on the adhesion 
of the ball to the pad. Considering a ball diameter of 46µm, the shear strength is found 
between 136MPa and 171MPa. 

It appears that the results of the shear tests are in opposition with those of the pull tests. For 
gold bonding, usually, ensuring a good ball adhesion is the best way to achieve a good 
bonding and good formation of the intermetallic compounds. Its seems that for copper 
bonding, due to the material properties of the wire and the bonding parameters, this objective 
is not valid anymore, and highest shear forces are obtained for conditions inducing the highest 
peeling occurrence. Similar observation has been obtained by Shah et al. [Shah, 2009]. 
 

                                                 
1 Considering the results shown by Qin et al. [Qin, 2009], i.e.  to maintain the diameter of the copper ball 
constant, if the contact force decreases, the ultrasonic power has to be increased. 
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Figure III.40. Effect of the bonding parameters on the measured shear forces.
 

Some of the recent studies that investigated the effect of the bonding parameters on the 
value of the shear force and/or shear strength for copper wires are summarized in the Table 
III. 7. In accordance with the aforementioned work, the increase of the ultrasonic power and 
the decrease of the contact force enhance the adhesion of the copper ball to the bond pad. 

 
Investigated 
parameters 

Results and  
observations 

Lim et al. [Lim, 2006] 

- Bonding power 
- Bonding force 

The SF is shown to increase while 
increasing the bonding power. The 
behaviour for the force is more 
complicated. 

Zhong et al. [Zhong, 2007] 
- Bonding power Both shear force and shear strength are found to increase while ultrasonic power is 

increased. 
England et al. [England, 2007] 

- Bonding power  
- Bonding force 

SF is found to increase while the 
investigated parameters augment. 

 

Xu et al. [Xu, 2008] 

- Bonding power 
- Bonding force 
- Bonding time 
- Substrate heat 

SF and SS are investigated. Generally, similar 
trends are observed for both.  
Increasing the BP or BF is related to increasing 
and then decreasing the shear values. 
Increasing the temperature induces an increase 
as well. 
Increasing the BT is linked to an increase and 
then a plateau.  
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Qin et al. [Qin, 2009] 
- Bonding power 
- Contact force 
- Bonding force 
- EFO firing time 

Many coupled parameters: SS increases while:  
the contact force is reduced and the BP increased, 
the BF is reduced and the BP increased, 
the EFO firing time decreases. 

Shah et al. [Shah, 2010] 

- Bonding power 
- Bonding force 

SS increases while BP increases 
and while BF decreases (in a 
smaller range). 

Table III. 7. Bonding parameters effect on shear force (SF) and strength (SS) found in the literature. 
 

III.D. Discussion 

III.D.1. Comparison between gold and copper bonding 
During all the study, gold and copper bonding have been successively performed to realize 

the electrical connections between the die and the substrate. For a similar wire diameter, the 
copper bonding is found to be able to induce peeling much easily than gold bonding, due to 
the necessity to increase the bonding parameters to achieve the bonding.  The Table III.8 
highlights the needs to increase the bonding force and bonding power to achieve the bonding 
operation while using copper wires. Additionally to these parameters, Shah et al. [Shah, 2008] 
showed that the impact force has to be increased for copper bonding as well. In the same 
manner, Qin et al. [Qin, 2009], using the same bonding parameters for both wires, have 
obtained some peeling case only for the copper wires, similarly to the current study.  

 
 Gold bonding Copper bonding 
Bonding time (ms) 18 12 
Bonding power (mW) 45 80 
Bonding force (gf) 9 15 
Table III.8. Standard bonding parameters used to achieve bonding with gold and copper wires. 

 
The mechanical properties of the gold and copper wires are clearly observed during the 

pull and shear tests. During the pull tests, the higher elongation prior to failure of the copper is 
observed during tests whose failures are at the neck. Its higher hardness modifies the failure 
mode observed during the shear tests. 

 
 Gold bonding Copper bonding 
Wire pull tests failure mode Neck break Neck break and peeling 
Wire pull force range for 
neck break (gf) 6.2 to 6.6 8 to 9 

Pull strength (MPa) 59 to 62 49 to 53 
Shear failure mode Ball lift and ball shear Ball lift 
Shear force (gf) 15.4 to 17 23 to 29 
Shear strength (MPa) 167 to 183 136 to 171 
Table III.9. Measurement and failure modes obtained during pull and shear tests for gold and copper bonding. 
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The differences between gold and copper wires are summarized in the Table III.9. Yet, in 
this particular case, the shear strength of copper bonds is quite low. As noticed previously, the 
process window has been changed a little to obtain peeling cases, which can explain the low 
values obtained. In the literature, many studies reports higher adhesion of the copper ball to 
the pad [Shah, 2008; Vath, 2009] and found that the copper bonding improves the pull and 
shear tests performances even though the process window is much smaller to avoid pad lift 
[England, 2007]. 

III.D.2. Weight of the process and design parameters 
In this section the process and design parameters are faced with respect to wire pull tests 

(particularly the peeling cases) and shear tests. In that frame, the Figure III.41 show the 
standardized Pareto charts of the peeling occurrence observed during the copper bonding. The 
effects of the bonding parameters have been previously described. The bonding power is the 
major contributor to the appearance of pad lift. The contact force is also pointed out. Some 
interactions between the process and design parameters are also observed, but they are more 
widely treated in the next chapter since the pad layout is clearly involved.  

The Figure III.42 depicts a similar trend for the shear force. The contact force and the 
ultrasonic power and their interaction are the preponderant parameters for the adhesion of the 
copper ball to the aluminium pad. Hence, from theses Pareto charts, the process parameters 
during wire bonding are always shown to be very critical, and often more than the design 
ones. 
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Figure III.41. Standardized Pareto chart of the peeling occurrence after pull tests. 
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Figure III.42. Standardized Pareto chart of the shear force after shear tests. 
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IV. Conclusions 
 

In this third chapter, the process and test parameters have been investigated. Firstly, the 
dynamical effects during the probing have been evaluated. According to the analyses on the 
reaction forces and the stress obtained from the simulations, the velocity of the chuck and its 
oscillations during the process do not increase significantly the stress in the pad. As a 
consequence, they are unlikely responsible for the cracks observed inside the structure. Then, 
pad integrity analyses on dies and the numerical model show that the increase of the overdrive 
and the number of passes increases the damages on the aluminium capping layer and also the 
failure hazard in the pad beneath. Nevertheless, due to the use of elastic material properties, 
the numerical model is not able to investigate directly the effect of the number of passes. 

In a second part, several wire bonding process parameters are evaluated through designs of 
experiments. The main objective of the studies is to observe peeling during pull tests to find 
out the parameters detrimental to the pad. For the gold bonding, the bonding time, the 
bonding force and the bonding power are studied. The ball dimensions depend on the process 
parameters. Therefore, the increase of the parameters altogether enables us to see an increase 
of the ball diameter and a reduction of the ball height. The pulls tests only give failures at the 
wire neck, which do not match the expectations. Then, the shear tests provide some insight of 
the effect of the bonding parameters on the adhesion of the gold ball to the pad.  

Due to the current trend to move toward copper bonding, similar study is performed. To 
that purpose, the contact force and the bonding power are considered. The small variation of 
the parameters and the accuracy of the measurement tool have not allowed to establish 
correlations between the bonding parameters and the size of the ball even if they are expected 
to evolve in the same way than for gold bonding. Many peeling cases have been obtained 
during the wire pull tests, which highlight that increasing the bonding power and diminishing 
the contact force reduces the fracture hazard in the structure. Then, the shear tests showed that 
contrary to gold bonding, the increase of the bond strength between the copper and the 
aluminium of the pad is often related to an increase of the peeling risks. Therefore, in this 
chapter, guidelines for process and test parameters to reduce the fracture hazard in the pad 
structure are obtained. The necessity to find a balance between the bonding parameters to 
achieve a good and non damaging bonding in thus underlined. 

Finally, it is demonstrated that the process and test parameters show even higher 
preponderance than the layout ones to imply failures in the pad. However, during wire 
bonding or EWS, it is generally not possible to modify the parameters aforementioned. 
Hence, the study of the structure beneath the pad is also very important to avoid failures in the 
structure and to find optimized structures with enhanced mechanical robustness. 
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In the previous chapter, the tests and process parameters during the EWS (overdrive and 
number of passes) and the wire bonding (contact force and bonding power) have been shown 
to induce failures in the pad structure. Actual related tests and modelling have been achieved 
to obtain these results. The nanoindentation and some methods of observation and analysis 
have been presented in the chapter two. During an indentation test, a compressive load is 
applied to the pad, which can allow a cheap and fast reproduction of the EWS and assembly 
loading conditions. 

In this fourth chapter, a top-down approach of the various scales set up in the pad volume 
is performed. Indeed, several parameters can be modified to improve the mechanical 
robustness of the pads. Hence, the thickness of the aluminium and pad open oxide layers is 
initially investigated. Afterwards, the effects of the metal density and the presence of vias and 
pad open vias are questioned. In a third section, several designs for the top copper level (lines 
and slots) are considered. For each of these scales, several structures are evaluated and 
general trends are given, but also a more general methodology to analyze the pads through 
experimental and numerical techniques. 

For both probing and wire bonding, actual tests and characterizations are performed to 
provide baselines for further comparison. These trends are deduced according to the crack and 
peeling rates. Therefore, for each layout, a comparison is performed between the results of the 
actual tests, these of the nanoindentation tests and the EWS simulations. For both techniques, 
some adequate indicators are described to get relevant rankings according to the mechanical 
robustness of the pad structures. The objective is to establish correlations between the die 
process and testing, the experimental and numerical techniques. Finally, a full methodology 
for the technology development and the crisis resolution at the pad level is obtained.  
 

I. Stacking influence: thickness of the top layers 
 

The thickness of the layers is often defined for a technology node. However, on some 
particular products, while failure issues are faced, this parameter can be modified. Hence, in 
this section the effect of the thicknesses of the aluminium capping layer and the pad open 
oxide one just below is investigated. The aluminium thicknesses evaluated are 0.88µm and 
1.2µm, and the oxide thicknesses are 0.5µm and 0.7µm. For clarity purposes, the lowest value 
is often noted L and highest H. 

The analyses are performed on CMOS 120nm pads, following all the tests conditions 
presented in the section I.B. of the third chapter. From bottom to top, this structure is 
composed of four copper layers (M1 to M4), with Inter-Metal Dielectric (IMD) layers in-
between, and then one pad open oxide and finally the aluminium capping layer, as depicted by 
the Figure IV.1. 
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Figure IV.1. Schematic cross section of the evaluated CMOS 120nm pads. 
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I.A. Failure analyses after EWS 
The cracks are firstly observed after pad integrity tests, with the help of optical 

microscopy, and then using more dedicated techniques to gain insights on the location and 
root causes of the cracks.  

I.A.1. Crack occurrences after pad integrity tests 
This study follows the one started in the section I.B.2 of the previous chapter. The failures 

are located in the pad open oxide layer, as viewed in the Figure IV.2. Multiple cracks are 
observed in the oxide layer, and the copper is eroded due to the use of chemicals that 
infiltrates through the fractures (see section II.B. on the chapter 1 for additional details). All 
the failures are located under the probing area. 
 

20µm

a) b)

PO

M4 copper
Oxide

Figure IV.2. Optical microscopy top view of a pad after pad integrity test (a) and SEM cross section of the 
corresponding pad after FIB milling along the white dashed line (b). 

 
From these observations, the crack occurrence for various tests and stacking parameters is 

estimated, as depicted in the Figure IV.3. The crack occurrence is found null for the stronger 
stacks, and can reach up to 80% of the pads for the weakest one. It is demonstrated that the 
increase of the thicknesses, whether aluminium, oxide or both, induces a reduction of the 
failures observed in the pad. It remains valid whatever the test conditions.  
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Figure IV.3. Crack occurrence for various EWS tests and pad design conditions. 
 

Moreover, a ranking according to the mechanical robustness of the structures, after EWS 
testing can be deduced: 
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Optical microscopy is very efficient to count the cracks for a large amount of pads. 

Therefore, the use of chemicals to reveal the cracks does not allow to observe very accurately 
the crack path in the oxide layer and to further understand some interactions with the design 
of the layers underneath. 

I.A.2. 3D reconstruction of the cracks under the pads 
In order to get a deeper knowledge about the failures, the volume of the pad is 

reconstructed in 3 dimensions by means of the FIB/SEM observation whose method has been 
described in the second chapter. 

 

Cracks

Aluminium

Oxide

TaN/Ta

M4

M3

Figure IV.4. SEM cross section of the pad (true image). 
 
The Figure IV.4 shows a cross section of the centre of the probe mark, in parallel of the 

probe path. Similarly to previous observations, high pile up is observed in the front of the 
probe mark (see the left of the aluminium). Some major cracks are encountered in the pad 
open oxide alike the observations of the pad integrity tests. These cracks are located under an 
area where no or little aluminium remains on the pad. Moreover, smaller cracks, located at 
geometrical singularities are also observed in oxide layers deeper into the pad.  
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Schematic side view of the pad (a) Above the pad
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Cracks

(b) In the aluminium layer (c) In the pad open oxide layer 

Depression

(d) In the pad open oxide layer (e) In the copper M4 layer

Cracks

(f) In the copper M4 layer, deeper than (e) (g) In the oxide IMD3 layer 
Figure IV.5. Top-down views of the reconstructed pad.

 
The 3D reconstruction of the pad allows observing and featuring the pad in each direction, 

and thus the oxide layers containing the cracks. The Figure IV.5 shows several reconstructed 
top views of the pad from above its surface down to the IMD3 layer. The view (b) shows the 
finer grains observed in the probing area due to the work hardening of the aluminium during 
the test. A wide crack (roughly 6.3µm*5.4µm) in multiple directions is seen in the pad open 
oxide layer (c). Additionally, some close interactions between the crack path and the pad 
design are shown (d), since fracture path is found to be affected by the copper layer below the 
oxide. A depression is observed in the top copper layer (e) and has to be related to the plastic 
deformation of the copper during the probing. Then, still deeper into the architecture, an 
almost vertical crack is observed in the oxide of the IMD3 layer, from the geometrical 
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singularities of the M4 copper layer (g). The copper from the third level does not show 
significant plastic deformation and seems unaffected by the EWS test.  

These cracks and deformation in the structure underline the high stresses undergone by the 
interconnections during EWS tests and provides guidelines for further pad designs. Hence, the 
aluminium, a ductile material, acts as a protective film for the brittle oxide layers of the pad. 
Aluminium is a stress buffer and the control of its remaining thickness after the test can be a 
good indication of the failures probability. The top copper layer is plastically deformed during 
the test and has an influence on the crack path. The design, and particularly the edges, and 
consequently the geometrical singularities, of the layer under the PO appear to be the site of 
either initiation or end of propagation of the cracks. Yet, a closer comparison between the 
views (c), (d) and (e) of the Figure IV.5 does not show any correlation between the crack path 
and the M4 copper grain size or distribution. 

Additionally, this reconstruction provides confirmations of the assumption and results 
already demonstrated. Thus, the crack in the PO layer is located close to the half length of the 
probe mark. As a consequence, in that particular case, the impact of the probe on the pad 
cannot be suspected to be the cause of the failures. On the numerical model, the TaN/Ta layer 
has not been considered specifically. The relevance of the simplification is confirmed by the 
cracks and deformation of this layer, which are similar to the PO oxide, as depicted in the 
Figure IV.4.  

I.B. Resistance to compression: nanoindentation tests 
The nanoindentation corresponds to a similar loading condition as EWS test. Indeed, only 

compressive loading is applied to the pad. Since the experiments to calibrate the numerical 
model have shown that the vertical forces are higher than the lateral ones, it does not appear 
to be limiting. Hence, two results are expected while using the nanoindentation to mimic 
probing. Firstly, the ability to reproduce the cracks observed in the pad open oxide layer, and 
secondly, the faculty to compare and rank the structures according to their mechanical 
robustness and obtain the same results as those described in the previous section. The 
nanoindentation tests with Berkovich and cube corner tips are described for a given pad 
layout (copper M4: lines) to keep this parameter constant. 

As described in the chapter 2, the nanoindentation raises several issues for the 
measurement of mechanical properties on multi-layers stacks. In our case, the aluminium, 
which is prone to very important pile-up, and the objective to obtain cracks in the oxide thin 
layer, harden the pad study. At the same time it reduces the reliability of the hardness and the 
Young’s modulus measurements due to the multilayer system. As a consequence, both 
Berkovich and cube corner tips are used during the testing for their distinct capabilities. 

I.B.1. Cube corner tip 

I.B.1.a) Load determination and indent observations 
In order to evaluate the load necessary to penetrate deep enough into the surface, i.e. in the 

aluminium and oxide layers, some tests with increasing loading are performed, as shown in 
Figure IV.6. The nanoindentation in the oxide layer is required to generate crack within, and 
to try to reproduce the failures observed during probing. As expected, all the curves overlap 
each other in the loading part. A loading of 15mN is selected to penetrate through the oxide 
film. Then, for reproducibility purposes, 35 indents are performed for each structure.  
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Figure IV.7. SEM top views of the indent made by a cube 
corner tip on the alucap. 

 
The cube corner tip is very sharp. As a consequence, the size of the indent left after the 

indentation is very low. For an indent reaching a depth of 2µm, the triangle height of the 
projected area remaining is below 5µm. The pile up is very important for such tests on 
aluminium. More precisely, for this loading condition, the width of the pile up is found 
between 1.1 and 1.6µm, as shown in Figure IV.7. Its height is measured during the FIB 
milling and SEM observations of samples, and estimated to be in the order of 0.6µm for the 
sample with 1.2µm thick aluminium, which is consequent. 

I.B.1.b) Analysis of the load-displacement curves 
The load-displacement curves for the stack with lower values of aluminium and PO 

thicknesses are depicted in Figure IV.8. A quite good reproducibility of the nanoindentation 
with cube corner tip is observed for both the loading and unloading stages. Firstly, during the 
loading step, a clear slope break is observed between the aluminium and the oxide layers. 
Indeed, the tip goes through the aluminium very easily since only about 2mN are sufficient, 
and in the oxide part, the penetration of the tip is much harder. These two films have close 
Young’s moduli, which are respectively 69GPa and 63GPa for the aluminium and the SiO2. 
However, the hardness of the aluminium layer is close to 0.6GPa, while this of the oxide is 
close to 7.7GPa.  

 

Aluminium Oxide

Copper

Cracks

Figure IV.8. Load-displacement curves for the experiments on the structure with lower values of aluminium and 
oxide. 

 
Moreover, a small discontinuity is observed in all the curves in the oxide part. This 

discontinuity is the signature of cracks in the structure. This failure is vertical and located in 
the oxide layer, as shown in the Figure IV.9. However, the cracks observed in the pad open 
oxide layer during the indentation with the cube corner tip can not be easily and directly 
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compared to those due to the EWS tests, mainly because of the sharpness of the tip that highly 
damages the oxide layer. The only similarity is its verticality through the whole thickness of 
the film, which also indicates good adhesion energy between the oxide and the surrounding 
TaN/Ta and copper layers. 

 

FIB milling

 

M4

Oxide

Alucap

Figure IV.9. SEM tilted cross section of the pad after FIB milling.
 
At the beginning of the unloading curve, an almost vertical straight line is observed, and 

then a low elastic recovery occurs. In the literature, several studies [Doerner, 1986; Oliver, 
1992] on bulk aluminium have shown that aluminium depicts very low elastic recovery during 
the unloading stage, i.e. an almost vertical unloading curve (hf/hmax close to 1) is obtained. 
The case of the copper is more widely investigated in further sections, but it also shows an 
important plastic deformation and a low elastic recovery. However, it seems hard to attribute 
this behaviour to the oxide film only. A complex mechanism due to the stacking of the three 
layers is probably involved, and release of stressed layers might have an effect as well. Then, 
the load-displacement curves are averaged for the various stacks, and the results are depicted 
in the Figure IV.10. 

 

Increase of the 
aluminium thickness

Increase of the 
oxide thickness

Alu 0.88 PO 0.7 
Alu 0.88 PO 0.5
Alu 1.2 PO 0.7
Alu 1.2 PO 0.5

Figure IV.10. Average load-displacement curves for the various stacks. 
 
The increase of the thickness of the aluminium (blue arrows) is shown to increase the 

depth reached by the tip at the end of the loading. In the literature, Beegan et al [Beegan, 
2005] found a similar effect while increasing the thickness of the top layer, even though the 
test have been performed with copper on oxidised silicon substrates instead of aluminium on 
top of the pad. 

On the contrary, the decrease of the oxide thickness increases the maximum displacement 
into the surface. The depth at the end of the loading can be related to the ability of a structure 
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to resist to vertical compression. Hence, a ranking can be established according to this 
parameter: 

HPO
LAlu

HPO
HAlu

LPO
LAlu

LPO
HAlu
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−
−

−
−

−
− <<<

(IV. 2) 

 
This ranking does not match with the results from the actual EWS tests. Indeed, the effect 

of the aluminium thickness is not well taken into account since for the highest thicknesses a 
shift is already observed at the end of the aluminium layer due to its low capability to resist to 
compression with a sharp material. Thus, in that particular case, only the effect of the oxide 
layer is well reproduced. This is characterized by the curves overlapping in the aluminium 
domain. 

I.B.1.c) Determination of a novel indicator to characterize the cracks 
Hence, it appears necessary to find relevant indicators that characterize all the thicknesses 

effects. Until now, the very small cracks have been only mentioned. A comprehensive study 
of their corresponding depth and loading of appearance could provide additional 
characterizations on the robustness of the structures. Indeed, their observations on the load-
displacement curves are quite difficult because most of them are very small, and usually, they 
are related to discontinuities lower than 50 nm. In order to emphasize them, h*dh/dp is plotted 
versus the displacement or the load, as shown in the Figure IV.11. The inverse of the slope 
dh/dp correspond to the ability to resist to the tip penetration. The multiplication by the 
displacement into the surface underlines the effect of the small plateau related to the crack. 
From these curves, high values correspond to an easy sink in the structure, and as a 
consequence to the aluminium layer and to the cracks. The value of h*dh/dp is almost 
constant in the oxide layer. 

 

a)

Cracks

Alucap

b)
Figure IV.11. h*dh/dp curves as a function of the displacement (a) and the load (b) for the stack with lower 
aluminium and oxide thicknesses. 

 
Thus, from these curves, the maximum value of h*dh/dp for each pad structure is used to 

extract the critical loads and depths related to the cracks, which are summarized in the Figure 
IV.12. The depth of the crack seems mainly dependant on the thickness of the aluminium 
layer, and in both cases, is found to be close to the middle of the half of the oxide thickness. 
For the crack load, even if quite high uncertainty is obtained for the values, a clear trend 
between the layers is obtained. Increasing the thicknesses of the top two layers induces a 
delay in the appearance of the cracks load because higher crack loads are necessary. 
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Figure IV.12. Cracks load and depth for the various pad stacks. 
 
The variation of the aluminium thickness does not invalidate the trends and the various 

stacks can still be compared. Thus, considering that the pad design below the pad open oxide 
is exactly the same for all the structures, the differences of slopes in the oxide part of the 
curve should only be related to effects of these two layers. As a consequence, the increase by 
about 1kN/m in each case while increasing the aluminium thickness can be directly related to 
the ductile properties of the aluminium, that act as a buffer and to an additional force that is 
required to overcome this thickness increase. The increase of the oxide thickness induces an 
increase (about 4kN/m), which depict the increase of its resistance to compression. All the 
results aforementioned are summarized in the Table IV.1. 

 
 Maximum 

displacement (nm) Crack depth (nm) Crack load (mN) Slope of the curve 
in the oxide (kN/m) 

Alucap 0.88µm 
PO 0.7µm 1542 (57) 1201 (57) 8.6 (1.3) 18.2 

Alucap 0.88µm 
PO 0.5µm 1778 (20) 1205 (105) 6.0 (1.3) 14.3 

Alucap 1.2µm 
PO 0.7µm 1758 (46) 1489 (59) 9.3 (1.1) 19.2 

Alucap 1.2µm 
PO 0.5µm 1904 (43) 1412 (43) 6.9 (0.5) 15.2 

Table IV.1. Extracted maximum displacement, crack depth and load and slope in the oxide layer and related 
standard deviations from the nanoindentation curves for a given pad layout (for M4: lines). 

 
Finally, considering all the results described, a ranking according to the resistance to 

compression and fracture can be established between the various stacks: 
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(IV. 3) 

 

I.B.1.d) Evaluation of E and H 
For the indentation at 30mN, 15 indents with the CSM mode have been performed on the 

stack with low aluminium and pad open oxide thicknesses. Using the Oliver and Pharr 
method, the hardness and Young’s modulus of the structures versus the displacement into the 
structure are calculated and shown in Figure IV.13 and Figure IV.14. Substrate effects for the 
values in the aluminium layer are clearly observed on both curves. Considering the 10% limit 
of the film thickness to avoid substrate effects, the hardness and an elastic modulus are 
respectively 0.38GPa and 70.7GPa. The former is quite low, usually, the hardness of the 
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aluminium layer is found between 0.5GPa and 0.7GPa, depending on the process used for the 
layer deposition. The hardness in the alucap film increases in the layer (i.e. until the 880nm 
depth) due to the harder oxide below. The substrate effect is clearly observed on both curves. 
For the Young’s modulus, the presence of the copper, whose modulus is about 130GPa, 
increases the values expected for the aluminium and pad open layers.  
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Figure IV.13. Young’s modulus as a function of the 
nanoindentation depth. 

Figure IV.14. Hardness as a function of the 
nanoindentation depth. 

 
Hence, even if the hardness in the oxide layers can also be supposed to be a good indicator 

to weight the mechanical robustness of the structures, the previous indicators (maximum 
displacement, crack load and depth) fulfil the requirements and avoid the mistakes related to 
the Oliver and Pharr method on multi-layers with high pile up of the top one. Additionally, for 
the calculation of the material properties of distinct aluminium thicknesses, the pile-up and 
the projected area are probably different, and so do the deduced hardness and Young’s 
moduli. Indeed, the film-substrate interactions are different since the strains are confined in 
the aluminium layer. 

I.B.2. Berkovich tip 

I.B.2.a) Measurements and results 
In a second part, some tests are made with the Berkovich tip, which is more commonly 

used. For each structure, 15 indents are performed for reproducibility purposes. The load 
applied is set to 200mN. This is about 10 times higher than the load applied during the cube 
corner experiments, which is expected due to the volume-depth relation of both tips (see 
section II.A.2. of the second chapter). The indent left by a Berkovich tip in the pad is shown 
in Figure IV.15 (a) and (b). The mark shows the 3 sides of the pyramid, and for such loading 
conditions, the triangle height of the projected area is about 16.4µm. It is about 3 to 4 times 
larger than the indent left by a cube corner tip for a similar indenting depth. The aluminium is 
also clearly plastically deformed during the test, and some pile-up is observed on the edges. 
The maximum width of the heap is between 2.4µm and 3µm in that particular case. 
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Figure IV.15. Optical microscopy (a) and SEM (b) top views of an indent on the pad made with a Berkovich tip.
 
The load-displacement curve resulting from such tests is depicted in Figure IV.16. A good 

reproducibility is obtained for the set of measurements. The loading curve follows a power 
law equation, and no clear slope variation is observed at the interfaces between the layers. The 
tip penetrates through the aluminium, then through the pad open oxide, and at the end of the 
loading reaches the copper layer. No discontinuity in the oxide part can be clearly observed 
on the load-displacement curves. During the unloading stage, initially, the curve is linear, and 
then similarly to the cube corner tip, a small elastic recovery is observed. 

 

Aluminium Oxide Copper

Figure IV.16. Load-displacement curve for nanoindentation using a Berkovich tip (aluminium 1.2µm, PO 
0.7µm). 

 
The depths reached at the end of the loading are shown in the Figure IV.17. Increasing the 

thickness of the aluminium induces an increase of the displacement into the surface. As 
mentioned previously, this can be explained by the material properties of the aluminium 
compared to these of the oxide. The difference in aluminium thicknesses between the stacks is 
320nm. After the nanoindentation with the Berkovich tip, the shift is only about 180nm (see 
Figure IV.17). Hence, it underlines the protective effect of the aluminium. 

No clear trend can be established for the role of the thickness of the oxide layer, since the 
standard deviation is higher than the differences between the structures. Moreover, since no 
discontinuities are observed in the load-displacement curves, it seems that no other 
information can be obtained.  
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Figure IV.17. Maximum displacement into surface for the various stacks (pad layout with lines). 
 

I.B.2.b) SEM analysis of the sample after FIB milling 
On a Berkovich indented pad, some FIB millings followed by SEM views are performed. 

The observation along one edge of the indenter for the thickest stack (aluminium and pad 
open thicknesses are respectively 1.2µm and 0.7µm) is shown in Figure IV.18. The pile up 
reaches about 0.9µm. After the indentation, some aluminium, even in the middle of the indent 
is observed on the tantalum layer, even if very thin. In the structure some cracks can be 
observed in the PO oxide and in the IMD layers. The former fracture is located under the 
indent, in a location where oxide is highly bent. The failure propagates in the TaN/Ta layer as 
well, which underlines once more that this layer have quite similar behaviour than the oxide 
below. Contrary to the previous cases, the failure does not go through the whole oxide 
thickness. In that particular case, the oxide from the pad open layer bends and breaks, since 
along the soft edge of the indenter (SEM view on the right), no crack is observed. 
Additionally, a correlation may exist between the crack’s location and the indenter geometry 
since it appears where the oxide starts to bend. It can also explain the appearance of the crack 
in the layer during cube corner nanoindentation tests, because, the oxide has to be bent 
enough prior to fail. The initiation of the crack from the top of the oxide layer is related to the 
most stressed and bent area. Then, the failure does not propagate through the whole thickness 
of the layer due to the plastic deformation of the M4 copper. The latter cracks are located in 
IMD2 and IMD3 at the geometrical singularities. 

The copper is plastically deformed during the indentation. Then during the unloading stage 
the release of the load is related to an extrusion of the compressed copper, explaining 
probably the shape of the unloading curve. 

 

A
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TaN/Ta

Figure IV.18. SEM tilted cross sections after FIB milling in location A of the pad with highest thicknesses of 
aluminium and oxide pad open. 

 
The failures in the oxide layers propagate along the indenter’s side, as depicted in the 

Figure IV.19. The behaviour of the copper, more particularly its plastic deformation during 
the loading stage and extrusion during the unloading one are emphasized as well. The 
extrusion seems to take place along the edges of the indent. In the literature, Lee and co-
workers [Lee, 2007] also observed some cracks in the oxide layer with copper extrusion 
within the pad during nanoindentation on pads. 

 

 
Figure IV.19. SEM tilted cross sections after FIB milling of the pad in the location B. 
 

On the load-displacement curves shown in the previous section, no discontinuity has been 
clearly observed on the curves. A closer look to the curve corresponding to the FIB/SEM 
observation, using the h*dh/dp indicator is shown in Figure IV.20 (a) and (b). On that plot, a 
very small peak is seen in the oxide region at 1330µm. This small peak underlines that these 
cracks are related to very small released energy. 
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Figure IV.20. FIB/SEM corresponding load-displacement curve (a) and h*dh/dp versus displacement plot (b). 
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These failures in the pad structure have to be closened to those observed in the pad during 
the EWS tests, depicted in the Figure IV.4. Hence, the nanoindentation with the Berkovich tip 
is very interesting in its ability to reproduce the cracks observed during actual probing. 

Finally, nanoindentation with cube corner and Berkovich tips shows some features of the 
EWS, and has proven its efficiency to evaluate pads, even if both indenters have advantages 
and drawbacks. 

I.C. EWS numerical model: stress analysis 
For this study, the OD is fixed to 100µm, which corresponds to the harshest probing 

condition, and as a consequence to the highest stresses undergone by the pad. The description 
of the pad has been made in the section III.A.1 of the chapter 2. In the section I.B.3 of the 
chapter 3, it has been demonstrated that the compressive and Von Mises stresses are 
maximum at the end of the loading stage, during the plateau used to perform the electrical 
measurements. As a consequence, the study focuses on these steps. The pad and the probe tip 
during one corresponding substep are shown in the Figure IV.21. For clarity, all the materials 
are translucent and the iso-stress curves are plotted in the pad only. The maximum is found in 
the aluminium layer, just under the contact location. 

 
σ (GPa)VM

 
Figure IV.21. Simulated Von Mises iso-stress in the pad. 

 
Then, the compressive and Von Mises stresses are collected on top of each layer, which 

correspond to the maximum reached stress. As confirmed by the Figure IV.22, the maximum 
stress is located in the aluminium, and then decreases while reaching deeper layers under the 
surface of the pad. 
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Figure IV.22. Compressive (a) and Von Mises (b) stresses in the various layers along the pad length for the 
thinnest structure. 
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The maxima of the top four layers are depicted in Figure IV.23. The most interesting layers 
are those containing oxide since cracks are found within. Hence, the comparison between the 
structures is made according to the stress values in the PO and in the M3/IMD3 layers. 
Increasing both the thicknesses of aluminium and pad open oxide is found to reduce the stress 
in the investigated layers. Since lower stress is undergone by the layer, lower crack 
occurrence is expected in the structure. Similar trends are obtained analysing the compressive 
stress. The cumulative and separated thickness effects are evaluated through modelling. 
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Figure IV.23. Maximum Von Mises stress in the top layers for the various stacks. 

 
Thus, a ranking, according to the maximum Von Mises in the structure, is obtained: 
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(IV. 4) 

I.D. Discussion and correlation between techniques about the thickness 
effect 

I.D.1. Comparison between techniques to evaluate the thickness effect 
In the previous sections, a ranking according to indicators proper to each technique have 

been achieved. The crack occurrence after the EWS test is the reference (see ranking (IV. 1)). 
Indeed, increasing the thicknesses of the aluminium or the pad open oxide layers is 
demonstrated to reduce the crack occurrence in the pad during testing. The ability of 
nanoindentation and modeling to mimic the effect of the thicknesses of aluminium and PO 
oxide is investigated.  

The stress analysis, based on the Von Mises or the compressive stress made on the 
numerical model reproduces all the stacking effects and the ranking obtained is the same as 
the actual test one ((IV. 4). The aggregate effect linked to the variation of both layers is also 
well depicted. 

The nanoindentation with the cube corner tip is able to reproduce the increase of the 
thickness of the two layers separately. Using only the comparison of displacement into the 
surface at maximum load is not sufficient, and the analysis of the load and displacements of 
the cracks induced by the penetration of the tip in the oxide enables us to match the trends 
(IV. 3). However, the cumulative effect is not obtained due to the differences of material 
properties between aluminium and oxide (TEOS). The nanoindentation with the Berkovich tip 
is only able to compare pad with various aluminium thicknesses. Therefore, the same crack 
locations are found during these indentations as during EWS. Hence, nanoindentation with 
both tips provides interesting insights for the pad evaluation. 
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To summarize, for the stacking parameters, the experimental and numerical analyses, and 
their related indicators set up are efficient to reproduce the results obtained during the EWS 
test. 

I.D.2. Discussion 
In this study, increasing the thicknesses of the aluminium and/or the pad open oxide, and a 

cumulative effect while increasing both at the same time are shown to reduce the failure 
hazard in the pad. The influence of the aluminium thickness has been expected due to the 
ductile material properties of aluminium. The aluminium acts as a buffer to reduce the stress 
undergone by the pad, and is submitted to large plastic deformation during the test. In the 
literature, Tran et al. [2000] showed that augmenting the aluminium thickness is related to 
lower issues during EWS. However, due to manufacturing issues, they preferred the mid-size 
aluminium thickness. 

In their papers, Liu and co-workers [Liu, 2005] evaluated the effect of various thicknesses 
of aluminium and IMD from experiments and modeling. They obtained a reduction of the 
number of cracks and of the first principal stress while increasing the layer thicknesses, which 
is in agreement with the results of the current study. In a more recent study on a different pad 
structure (see Figure IV.24), the same authors [Liu, 2007] evaluated through a stress analysis 
from their FE model that increasing the thicknesses of the SiN layer lead to a reduction of the 
first principal stresses in the SiN and dielectric layers. On the contrary reducing the thickness 
of the copper, the nickel is shown to reduce the stresses in the investigated layers. The 
thickness of the M2 layer and third dielectric level has no or limited effect on the stresses. 
Hence, due to its higher Young’s modulus and hardness, the copper does not allow a 
reduction of the stress the same way as aluminium. However, the thick copper and the global 
stacking of the pad are very different from the studied pad, which explains probably some 
differences in the results.  

 
b)Au Ni

SiNTiW

M2

M1

TEOS

a)

Figure IV.24. Bond pad over active structure (a) and corresponding 2D FE model (b) after [Liu, 2007]. 
 

II. Effect of the pad layout: metal density, presence of vias  
 
In the previous sections, the FIB/SEM observations after the probing tests have underlined 

the protective effect of the copper on the structure. Hence, in this section, the metal density 
and the presence of vias and pad open vias are investigated. These effects concerns smaller 
scales than previously described ones. As a matter of fact, the copper density of the layers at 
the bottom of the stack, just above the silicon is evaluated. It varies from empty to full sheet 
(100% copper). As a consequence of the design and routing required in the structure, it is 
sometimes possible to modify the layer’s density, depending on the pad technology. It induces 
a variation of the overall rigidity of the structure, which is expected to have a role on the 
failure hazard. Moreover, between the copper levels, some vias can be required to ensure the 
electrical connections. Between the top copper layer, and the aluminium capping, some vias 
in the pad open layer may be necessary for the same reason. 
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II.A. Failure observed after wire bonding tests 
As part of the large copper bonding DOE aforementioned in the section III of the chapter 

3, the effect of the metal density, the presence of vias and vias pad open are investigated. 
Wire pull and shear tests are made in order to evaluate the resistance to peeling. These 
structures are quite different to those evaluate in the frame of the EWS mimicking. 

II.A.1. Pad description 
The technology node for these pads is CMOS 120nm. The copper density of the top (M4) 

layer is fixed at 80% due to design requirements, hence, only the densities of M1 to M3 are 
investigated. They are set at either 30% or 80%. The remaining material is some squared 
TEOS oxide filled holes in the copper plate with a given size for each design. This pad layout 
is also often referred as slots. The current layout induces different surfaces roughness between 
architectures with and without pad open vias, as depicted in Figure IV.25 and Figure IV.26. 
For the structure without PO via, the aluminium is directly on top of the M4 layer (mostly 
copper). For the one with via pad open, the aluminium is either on M4 copper or on the pad 
open oxide, which implies the roughness variation. Yet the aluminium thickness is constant 
throughout the pad. Between the copper layers M1 to M4, the presence of vias is investigated, 
the pad contains vias between all the layers or none of them. 
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Figure IV.25. Optical microscopy top view (a) and schematic cross section (b) of pads without PO. 
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Figure IV.26. Optical microscopy top view (a) and schematic cross section (b) of pads with PO vias.  
 

Pad structure Metal density  
(M1 to M3) Presence of vias Presence of PO with vias 

A 30% No Yes 
B 80% Yes Yes 
C 80% No No 
D 80% No Yes 
E 30% Yes No 
F 30% No No 
G 80% Yes No 
H 30% Yes Yes 

Table IV.2. DOE matrix for the study of pad layouts. 
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The DOE matrix for the study of the design parameters is shown in Table IV.2. Then, for 
each of these structures, the bonding is achieved and wire pull and shear tests are made. 

II.A.2. Pull tests 

II.A.2.a) Peeling and neck break occurrences 
In order to evaluate with quite good accuracy the rates, 45 wires for each pad layout and 

each set of bonding parameters are pulled. Hence, 405 wires are pulled for each structure and 
3240 wires for the whole DOE. 

The main target of the wire pull test is to obtain peeling in order to discriminate the 
structures according to their mechanical robustness. The effect of the bonding parameters has 
been already discussed (see section III.B in the chapter 3), thus, only the effect of the design 
parameters is focussed on. As previously mentioned, both peeling and neck break are 
obtained. In most of the cases (3142/3240 wires, i.e. 97%), failures at the neck are observed. 
However, high disparities according to the parameters are seen. Thus, the peeling occurrence 
is null for most of the pads, but reaches 33% for the pad D with specific bonding conditions 
(CF = 30mN, BP = 90mW). The number of peeling cases for each condition is shown in the 
Table IV.3.  

 
 CF/BP 30 

70 
30 
80 

30 
90 

40 
70 

40 
80 

40 
90 

50 
70 

50 
80 

50 
90 Total Pads  

A 0 2 10 0 1 6 0 0 0 19 
B 0 1 7 0 2 5 0 0 3 18 
C 0 0 2 0 0 1 0 0 0 3 
D 0 1 15 0 0 12 0 0 1 29 
E 0 0 0 0 0 0 0 0 0 0 
F 0 0 1 0 0 0 0 0 0 1 
G 0 0 0 0 0 1 0 0 0 1 
H 0 0 9 0 1 12 0 1 4 27 

Total 0 4 44 0 4 37 0 1 8 98 
Table IV.3. Number of peeling cases obtained among 45 wires for the various bonding parameters (contact force 
and bonding power) and layouts. 
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Figure IV.27. Number of peeling cases for all the layouts, independently on the bonding conditions. 

 
The presence of the pad open via is clearly observed to increase the peeling occurrence 

since the four pads containing this layout show the highest rates, as depicted in the Figure 
IV.27. The metal density and the presence of via do not modify the robustness of the structure 
while faced to pull tests. Hence, a ranking according to the mechanical robustness of the pads 
is obtained: 

EGFCBAHD <≈<<<<<<<  (IV.5) 
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II.A.2.b) Observation and analysis of the peeling cases 
Then, the observation of the peeling cases is required to locate the failures and try to find a 

failure mechanism for this kind of pads. Therefore, SEM top views are performed and 
coupled with EDX analyses to identify the remaining layers.  

Similarly to the peeling results, depending on the presence of pad open via, distinct 
delamination locations are observed. For the pads with pad open vias (A, B, D and H), the 
peeling is often found between the top copper layer (M4) and the pad open oxide, as shown in 
Figure IV.28. The EDX analyses show that remaining layers on top of the surface after 
peeling are copper and Si3N4. Hence, the delamination has occurred either at the Cu/Si3N4 
interface or at the Si3N4/SiO2 interface. The nitride layer is 40nm thick and is used in order to 
avoid the copper oxidation during the process steps. Yet, due to the thickness of the nitride 
layer, conventional four point bending and cross section nanoindentation do not permit to get 
and compare these adhesion energies. Thus, it is not possible to discriminate these interfaces. 
On a few samples, a delamination can also be observed under the M4 layer, at the SiO2/Cu 
interface, as depicted in Figure IV.29. 

 
Copper

SiN

Figure IV.28. SEM top view of pad D: peeling is observed above M4.
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Figure IV.29. SEM top view of pad A, and corresponding EDX analyses.
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On the pads without pad open layer (C, E, F and G), the delamination is necessarily 
different since the interfaces involved in the other structures do not exist in that case. The 
Figure IV.30 and Figure IV.31 show that the delamination occurs in two locations. On the one 
hand, just above the M3 layer, as depicted by EDX analyses in A on the 2 samples. The weak 
interface if that case is Cu/Si3N4. The M4 layer is not involved since it has another pad design 
(see for instance Figure IV.28), and the layer is torn off from the pad with some of it 
remaining in the outer of the peeled zone (see EDX analysis in location D on the Figure 
IV.31). On the other hand, another delaminated interface is observed between the oxide from 
the IMD2 layer and the M3 copper, as shown by the EDX analyses in the location C and E. 
Thus, for these pad structures, the peeling location is found to be either just above or just 
below the M3 copper layer. The path of the peeling generally follows the design of the M3 
layer and the geometrical singularities between oxide and copper within M3 level, as depicted 
by the Figure IV.30. 

 

C B

ACu

SiO2, Cu
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Figure IV.30. SEM top view of pad C: peeling is observed above and below M3. 
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Figure IV.31. SEM top view of peeled pad G and related EDX analyses of the pad. 
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II.A.2.c) Discussion 
During the wire pull tests, the metal density and the presence of vias have not been 

correlated with the peeling occurrence. In the current DOE, the copper density of the M4 is 
always 80%. Additionally, this layer is very thick compared to the other three metal layers 
(i.e. about 2 to 3 times thicker), which increases this effect. Hence, it underlines the supposed 
effect of the top copper layer for the pad resistance to peeling. 

Concerning the peeling cases for the pad structures with pad open vias, the presence of the 
vias is related to several geometrical singularities, which have been shown to be the location 
of the failure initiation within the copper interconnections by Brillet-Rouxel and co-workers 
[Brillet-Rouxel, 2006]. The singular points for such layouts are shown in the Figure IV.32. 
Additionally, the top SEM views show that the crack initiate in these singular points, then 
propagates and reaches the surface at the edges of the ball. In the section III.D.2 in the 
previous chapter, the correlations between the process and the layout parameters have been 
shown. Therefore, a very strong interaction is found between the bonding power and the 
presence of theses vias. The shear motion induced increases the stress in the structure, and 
particularly at the geometrical singularities. Similar trend and reasons are found while the 
contact force decreases.  

For the pads without padopen oxide, the peeling is found just above or below M3, which is 
deeper into the structure (about 2.4µm or 2.7µm below the surface versus 1.8µm for pads with 
PO vias). The different ultrasonic (shear) stress repartitions and the induced residual stresses 
into the structures possibly explain these variations. The borders of the peeled areas rise. It 
emphasizes similar failure propagation from the M3 level to the surface of the pad, as 
depicted in the Figure IV.33.  

 

M4

Padopen 
oxide

Copper ball

ultrasonic

Geometrical singularities

Alucap

Failure at the 
neck break

Peeling

Copper ball

M4
M3
M2
M1

Alucap

Heat affected 
zone of the wire 
(HAZ)

Figure IV.32. Schematic representation of the pad 
structures with PO vias, depicting the geometrical 
singularities. 

Figure IV.33. Schematic representation of the pad 
without pad open showing the peeling initiation and 
evolution. 

 

II.A.3. Shear tests 
The shear tests are made on 30 pads for each structure and bonding set of parameters to 

evaluate with quite good reproducibility the adhesion of the ball to the pad. Hence, 2160 pull 
tests are performed. This study follows the one started in section III.C.2 in the chapter 3. The 
failures mode 1 is observed (pad lift). The measured shear forces are presented in the Figure 
IV.34. Increasing the metal density augments the ball adhesion to the pad, which is related to 
a reduction of the overall stiffness of the pad structure and an improved compliance. 
Nevertheless, neither the presence of pad open vias nor the vias modifies the shear force. 

Considering that the ball dimension is not affected by the layout parameters, the shear 
strength calculated from these measurements provides the same results. 
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Figure IV.34. Pad layout effect on measured shear forces. 
 
Hence, according to these results, the adhesion of the ball on the pad mainly depends on 

the process parameters. The design ones, which modify the overall stiffness of the structure, 
are able to modify the shear force only in small ranges if acting on the ball shear force. 

II.A.4. Discussion 
In this section, the results are faced to the ones found in the literature. The latter are 

summarized in the Table IV.1. For the numerical analyses, either a stress analysis or a 
released energy based criterion is used to establish a comparison between the designs. The 
energy released during the crack propagation is evaluated with the methods ARE or NRE: 
Area or Nodal release energy. For more details about the methodologies, refer to papers from 
van Gils et al. [van Gils, 2005] for the ARE method or Gallois-Garreignot et al [Gallois-
Garreignot, 2007] for the NRE one. 

 
Investigated 
parameters 

Analysis 
method 

Results and  
observation 

Mercado et al. [Mercado, 2000] 

-Number  of metal 
layers 

Experiments and 
modeling 

Experimentally, pad structure with 3 metal layers is more prone to 
ball shear and wire pull critical failure modes. 
Numerically, only minor differences are found in the relative stress 
concentration between 3 and 5 metal layers. 

Chin et al. [Chin, 2007] 

-Number of vias Numerical 
model (explicit) 

The equivalent stress in the pad 
increases while decreasing the 
number of vias. 

Hsu et al. [Hsu, 2007] 
-Number of vias 
-Via height 
-Via width (i.e. metal 
density) 
-Via distribution 

Numerical 
model (similar 

to [Chin, 2007]) 

Equivalent stress distribution in USG increases while: 
-Reducing the number of vias, 
-Increasing the via height, 
-Reducing the via width, 
-Modifying the via distribution (loop vs. straight). 

Kregting et al. [Kregting, 2006] 
-Peeling location 
-Metal lines 
-Dielectric layer 
-Via structure 

Experiments and 
modeling 

Metal peel off is initiated by delaminations under the alucap. The 
peeling location is affected by the design parameters from stress 
analysis and the use of ARE method. 
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Engelen et al. [Engelen, 2007] 
-Metal density 
-Presence of via 

Numerical 
model (ARE) 

Mechanical performance of the whole stack is affected by the 
presence of via and the metal density. 

Viswanath et al. [Viswanath, 2007] 

-Bond pad thickness 
-USG Young’s 
modulus  

Numerical 
model (explicit) 

Von Mises stress increases 
while reducing the bond pad 
thickness. 
EUSG is not significant. 

Lee et al. [Lee, 2007] 

-Presence of PO via Experiments 

Alucap lift is observed at the 
interface between Ta and Cu. 
The presence of PO via is 
required to correct this issue. 

Via pad open

Liu et al. [Liu, 2008] 

-Bond pad thickness 
-Presence of TiW 
-Presence of vias 

Numerical 
model (implicit) 

Increasing the bond pad thickness 
induces a decrease of the stress in 
the structure. 
On the addition of TiW and vias, a 
trade-off is required. 

Liu et al. [Liu, 2008] 

-Shape of the BPSG 
layer (dome shape 
vs. M shape vs. 
square shape)1 

Experiments and 
Numerical 

model (similar 
to [Liu, 2008]) 

Neither crater in the silicon, nor 
stress variation is observed while 
modifying the BPSG shape. 

Alucap BPSG

Silicon

Table IV.4. Design effects during wire bonding experiments and simulations found in the literature. 
 
Hence, the studies evaluate many different design parameters and possibilities. Most of 

them are evaluated through numerical studies, and found to have an effect of the robustness of 
the pad. More precisely, an agreement is obtained concerning the increase of the pad 
thickness in order to reduce the peeling hazard. For the presence of via, results from Hsu and 
co-workers contradict those obtained by Liu et al. Lee et al. suggest to add PO via to avoid the 
delamination below the aluminium layer, however, in our study, these vias are shown to be 
detrimental to the pad. The metal density is shown to have an effect on the resistance to 
peeling by Engelen et al. and Hsu et al. 

Several other studies evaluate the pad overall stiffness in the wire bonding context, 
whatever the bonding material. Hence, Degryse and co-workers [Degryse, 2004] showed 
numerically that the stress in the low-k becomes very high during the bonding process due to 
the reduced stiffness of the oxide material causing a large deformation. Similarly, by means of 
a stress analysis, Yeh et al. [Yeh, 2006] showed the effect of the material properties (Young’s 
modulus and yield stress of the low-k, Young’s modulus of the IMD layers) on the stress 
inside the pad structure. Experimentally, Ng et al. [Ng, 2006] found that using a harder ENIG 

                                                 
1 In the structure modelled by Liu et al. [Liu, 2008], the BoroPhosphoSilicate Glass (BPSG) layer is located just 
below the aluminium layer. Then, modifying the shape of the BPSG can be closened to a modification of the 
shape of the pad open oxide vias. 
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(electroless nickel immersion gold) pad is related to larger ball diameter and an increase of the 
shear force. 

Finally, the parameters evaluated during the wire bonding experiments are generally found 
to have an influence on the mechanical robustness of the pad. In our case, the effect of the 
very dense M4 layer is confirmed to reduce the perspectives of evaluating the effects of the 
metal density and the presence of via. Indeed, the M4 layer appears to have a shield effect for 
the evaluation of the layers below. Concerning the pad open via, differences in observation 
between the current study and others is probably due to other design effects such as the 
aluminium thickness of the design of these PO vias. 

II.B. Nanoindentation tests on CMOS 120nm 

II.B.1. Nanoindentation with Berkovich tip 
On the pads used during wire bonding and associated characterizing tests, 15 indents are 

performed with the Berkovich tip.  
The load-displacement curves for the pad E are shown in the Figure IV.35. A good 

reproducibility is obtained during the tests, whatever the pad structure. As seen in the 
previous case, no crack in the structure is obtained with this tip, and then the comparison 
between the curves is made using the maximum displacement into the surface, reached at the 
end of the loading. The results are depicted in the Figure IV.36.  

 

1950

2000

2050

2100

D
is

pl
ac

em
en

t i
nt

o 
su

rfa
ce

 (n
m

)

A F H B D E C G

Figure IV.35. Load displacement curves for the pad 
structure E. 

Figure IV.36. Maximum displacement into the surface 
for the various structures. 

 
Low metal density and the presence of the pad open vias are seen to decrease the indent 

maximum depth. The difference between this trend and the peeling occurrence is further 
discussed. 

The average displacements measured are very close. Yet, due to the very good tests 
reproducibility, a ranking according to the maximum displacements into the pad can be 
deduced: 

AFHBDECG <<<≈≈<≈  (IV.6) 
 
This ranking is submitted to uncertainty due to the small range of values (between 2030nm 

and 2080nm) and the closeness between the maximum depths. Thus, confirmation with the 
cube corner tip is needed, since the tip exhibits more local behaviours. 

II.B.2. Nanoindentation with cube corner tip 
Then, 15 indents are performed on the pads with the cube corner tip. The maximum load is 

2gf or 19.6mN. The test is repeated twice due to reproducibility issues (series 1 and 2). The 
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top view of these indents is seen in the Figure IV.37. The view (b) shows that nanoindentation 
is necessarily made on the small vias in the oxide layer. 
 

(a)
2µm

 (b)
2µm

 
Figure IV.37. Optical microscopy top views of the pads without pad open via (a) and with PO vias (b), after 
nanoindentation. 
 

The maximum displacement into the surface for all the structures is shown in the Figure 
IV.38. As mentioned, for some of the sets of indentations, which are the series 1 of structures 
B, D, F or E, and the series 2 for pad C, the reproducibility is very low. The structures with 
pad open via (B, H, A and D) are clearly differentiated to those without (F, E, C and G), and 
these layouts are split in the following discussion. The former pads have a lower maximum 
indentation depth than the latter. 
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Figure IV.38. Displacements at maximum load for the various pad structures.  
 

II.B.2.a) Pads with pad open vias 
The pads with pad open vias are B, H, A and D. While going downward into the structure, 

the tip goes through aluminium, oxide and ends in the M4 layer. Hence, for these pads, the 
variability can come from surface detection due to the pad layout or from the penetration into 
the M4 layer, i.e. an effect of the indentation location on the pad. 

The Figure IV.39 depicts the load-displacement curves for one of these structures, where 
cracks are clearly observed. These failures are analysed using the indicator described in the 
section I.B.2.c) and shown in Figure IV.40. For all the structures, the crack depth is found 
between 1450nm and 1500nm. As a consequence, they are located within the oxide layer. The 
crack load is found between 8.7mN and 9.3mN. Thus, the crack load and depth for the 
structures show little variation. This result is expected because only the metal density and the 
presence of vias are modified between all these structures, and these layers are located below 
the M4 layer. Similarly to the previous tests, a slope break is observed between the aluminium 
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and the oxide layer. Consequently, the local probing induced by the cube corner tip is 
confirmed.  

 

Cracks

Figure IV.39. Load displacement curves measured for 
the test 2 of the pad D. 

Figure IV.40. h*dh/dp curves as a function of the 
displacement for the corresponding measurements. 

 
The SEM cross section views of the pad after indentation are showed in Figure IV.41. On 

the top view of the pad, a white area is observed in the centre of the indentation mark. This 
can be related to the tantalum layer observed, which means that during such test, the 
aluminium is completely removed in the centre of the indent, as demonstrated by the cross 
section in C. On the views A and B, a crack, which is observed on the measurements, is found 
in the pad open oxide layer. This failure is located at geometrical singularities due to the M4 
design, which have been also pointed out during the wire pull tests. 
 

A B C A

B

Aluminium

Oxide
Copper

C

Figure IV.41. SEM cross section views after FIB milling of indented pad D, within crack is observed in the pad 
open oxide layer. 
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II.B.2.b) Pads without pad open vias 
The pads without PO vias are D, E, C and G. While going downward into the structure, the 

tip goes through aluminium, and then reaches the M4 copper layer, which is composed of 
80% copper. 

The load-displacement curves corresponding to the pad G are depicted in the Figure IV.42. 
In spite of its increase along the loading stage, the slopes of the curves do not show a clear 
break at the interface between aluminium and copper. It is related to the material properties of 
these two materials. Indeed, the Young’s modulus and hardness of the copper are respectively 
132GPa and 1.1GPa from nanoindentation measurements1. Hence, the variation of these 
properties (and particularly the E/H ratio) is lower than these between aluminium and oxide, 
and the effect reduced. 
 

Figure IV.42. Load displacement curves measured for 
the test 1 of the pad G. 

Figure IV.43. h*dh/dp curves as a function of the 
displacement for the corresponding measurements. 

 
Moreover, no crack is observed on the measured curves, which is highlighted by the Figure 

IV.43, where no jump is observed on the curves. As a matter of fact, the tip penetrates through 
the copper layer, which is plastically deformed during the test, but is not fractured, as shown 
in the Figure IV.44. On the views, the centre of the indent is not as white as in case of 
nanoindentation in the pad with oxide beneath aluminium. Indeed, aluminium is found over 
the tantalum layer, even in the centre of the indent, as depicted in the Figure IV.44 b). This 
can be explained by the large plastic deformation of the copper. 
 

a)

Copper

Alucap

b)

Figure IV.44. SEM top view of the pad (a) and SEM cross section view (b) after FIB milling on the indented 
pad. 
 

                                                 
1 The measurement of the material properties of the copper is depicted in the chapter 5. 
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In these structures, the variation between the measurements is sometimes very important, 
such as measurements 1 on pads E and F and measurements 2 on pad C. It is induced by the 
M4 layer, which is made from 80% copper. Hence, in some particular cases, the 
nanoindentation takes place in the oxide filling the holes, or at the frontier between oxide and 
copper, which induces important variations. The load-displacement curves from the first 
measurement on the pad E are depicted on the Figure IV.45. Low reproducibility is found 
between the tests and the measurements on the samples 6 and 12 are more precisely observed. 
It is expected that the former penetrates in an aluminium over oxide stack and the latter an 
aluminium over copper one. The h*dh/dp curves confirm this assumption for these two 
samples in the Figure IV.46. On the sample 6, a clear slope break and reduction of h*dh/dp 
occurs at the interface between the aluminium and the oxide. Additionally, the peak 
corresponding to a small crack is highlighted in the PO. On the contrary, for the sample 12, no 
clear reduction or slope break is observed after indentation into aluminium, which 
characterizes an interface between aluminium and copper. 
 

Sample 6

Sample 12

Alu/Oxide

Alu/Copper

Sample 6

Sample 12

Figure IV.45. Measured load-displacement curves for 
the pad E, series 1. 

Figure IV.46. h*dh/dp as a function of the 
displacement for the two samples investigated. 

 
These results are confirmed by the SEM views following FIB milling along one of the 

median of the mark, for the two samples. On the Figure IV.47, for the sample 6, the indent 
penetrates through the aluminium to end in the oxide film. Yet, the crack is not detected 
during these milling and observations. Inversely, for the sample 12 shown on the Figure 
IV.48, the indentation evaluates aluminium over copper stack, even though little oxide part is 
also probed during the test.  
 

Aluminium

Copper

Oxide
Aluminium

Copper

Oxide

Figure IV.47. SEM cross section after FIB milling of 
the sample 6. 

Figure IV.48. SEM cross section after FIB milling of 
the sample 12. 
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These tests and views underline the ability of nanoindentation to evaluate and detect very 
accurately the structures. The sensibility of the analysis while probing a pad with the cube 
corner tip is also demonstrated. However, this advantage can become a limitation due to the 
size and the sharpness of the cube corner tip that can probe very small details and local 
microstructure and not provide a global response of the structure robustness. 

II.B.2.c) Ranking and discussion on the robustness of the pads 
Considering the few uncertainties in the measurement reproduction aforementioned, it is 

possible to weight the structures according to their mechanical robustness, taking into account 
the average values for each stack, over the two tests. 

Thus, the ranking according to the maximum displacement into the pad (Figure IV.38) is: 
BAHDFECG <<<<<≤<<  (IV.7) 

 
Inserting pad open via in the structure is obviously reducing the maximum penetration 

depth, due to the difference of material properties between oxide and copper. This effect is 
clearly observed during this set of measurements.  

The decrease of the metal density from 80% to 30% induces a little reduction of the 
maximum indentation depth. The presence of via is not found to have a significant effect on 
the displacement reached at maximum load. These results confirm the local testing achieved 
during nanoindentation with cube corner tip and the high resistance to compression of the 
oxide faced to copper. 

II.B.3. Discussion: wire bonding versus nanoindentation 
During the wire pull and shear tests, the effect of the pad open vias has been clearly 

emphasized as detrimental to the structure. Additionally, the metal density and the presence of 
vias showed no clear effect on the pad robustness. The following ranking according to the 
peeling rate has been obtained (IV.5) for the pad structures: 

EGFCBAHD <≈<<<<<<<  
The bonding operation is related to a compression applied to the pad through the contact 

force and then the bonding force, and to a shear due to the application of the ultrasonic power. 
The wire pull test induces a tensile load to the structure. This load is not perfectly normal to 
the pad since the hook cannot be located right above it. Hence, the pull angle should also be 
considered while interpreting the pull tests results, as shown by Fiori et al. [Fiori, 2007]. 

The nanoindentation tests consist mainly in a compressive load applied to the pad1. Thus, 
the loading undergone by the pad is much more complex in case of peeling. The depth 
reached at maximum load with Berkovich and cube corner tips depict the same trends, but 
both submitted to some uncertainties due to reasons described in the previous paragraphs. The 
ranking according to the depth is for the Berkovich and cube corner tip respectively: 

AFHBDECG <<<≈<<≈  
BAHDFECG <<<<<≤<<

Hence, the classifications are quite similar. The main difference is that Berkovich tip 
underlines the effect of the metal density, while the cube corner one this of the pad open oxide 
layer. This difference is explained by the shapes of the two tips, which probe more the volume 
or the local properties of the pad. Both studies show that the presence of PO vias, and at a 
lower degree the reduction of the metal density increase the pad resistance to compressive 
loading.  

                                                 
1 At the vicinity of the indenter tip, some shear forces are also applied to the pad due to the resulting forces and 
the tip geometry. 
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The peeling rate demonstrates that the use of pad open via is detrimental to the structure. 
On the contrary, the nanoindentation tests have shown that the oxide layer between the 
aluminium and the copper increases the resistance of the pad to compression. As a 
consequence, on that particular sample, it seems that the compressive loading is not directly 
held responsible of the peeling observed. The compressive load and more particularly the 
reduction of the contact force has been observed in the previous chapter to induce peeling. 
The assumption of the reduced surface application of the ultrasonic power can be related to 
that result. In a more general point of view, the presence of oxide between aluminium and 
copper is shown to increase the resistance to compression. Therefore, the structure with only 
M4 below aluminium implies lowered resistance to compression, but no crack is observed 
inside the structure. A critical load prior to failure can also explain the difference observed 
between the results. 

In appendix A, the effect of similar study with reduction of the maximum displacement 
into the surface due to the presence of a thick oxide layer beneath aluminium is shown. Actual 
probing and wire pull tests are performed and show the same ranking as the one deduced from 
the nanoindentation measurements. It underlines the effect of a critical load prior to failure 
and the negative effect of the pad open vias. 

As a conclusion the nanoindentation with cube corner tip is generally able to evaluate the 
effect of pad open vias. However, for some cases the strengthening of the structure (due to the 
presence of oxide) is correlated to cracks, and critical load of the structures seems hard to 
determine. 

II.C. Nanoindentation on CMOS 45 nm pads 
As part of the calibration on EWS numerical model for the CMOS 45nm, these pads, with 

various structures have also been faced to nanoindentation. 

II.C.1. Pad description 
For this technology node, seven layers of metal are required to perform the 

interconnections. The thicknesses of the aluminium, pad open oxide, copper M7 and inter-
metal dielectric layers composing the pad are respectively 1450nm, about 600nm, 900nm and 
600nm. The structures investigated have distinct metal densities, presence of via and presence 
of pad open via. The metal density of only the five layers (M1 to M5) in the bottom of the 
structure is either 30% or 70%. The presence of via is investigated between all the copper 
layers, from M1 to M7. Contrarily to the tests on the CMOS 120nm, the option without via in 
the padopen layer consists of a full plate of oxide. The layouts are depicted in the Figure 
IV.49.It should be noticed that for lower levels (below M5), in this technology node, a low-k 
oxide is used instead of silicon glass. As mentioned on the first chapter, the mechanical 
properties of these layers are much weaker than these of TEOS. In their work, Wu et al. [Wu, 
2006] have measured the film’s mechanical properties with the Berkovich and the cube corner 
tips. For the Young’s modulus and the hardness, they obtained respectively about 6.5GPa and 
1.1GPa.  

 
Metal 
layer

M7

M5

M1

  

PO via

1 - metal density: 30%, 
w/o via, w/o PO via 

2 - metal density: 70%, 
w/o via, w/o PO via 

3 - metal density: 30%, 
w/o via, with PO via 

4 - metal density: 70%, 
w/o via, with PO via 
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Via

   

5 - metal density: 30%, 
with via, w/o PO via 

6 - metal density: 70%, 
with via, w/o PO via 

7 - metal density: 30%, 
with via, with PO via 

8 - metal density: 70%, 
with via, with PO via 

Figure IV.49. Various pad layouts evaluated during the nanoindentation on CMOS 45nm. 
 

II.C.2. Measurements with Berkovich tip 
Due to the reduced number of pads available on a die, 8 indents are performed for each 

sample and the maximum load is 20gf (196mN). Yet, the variability between the dies is 
checked, and for the pad layouts 1, 2, 5 and 6, the averages difference is below 7nm. The size 
of the indent after the tests is about 16µm for one triangle height of the projected area. Like 
the other nanoindentation tests, aluminium pile up is observed on the top view of the pad 
(Figure IV.54). 

 

Alucap Oxide 
padopen

Copper
15.4µm

16.5µm

Figure IV.50. Load-displacement measurement for the pad 
layout 1. 

Figure IV.51. Optical microscopy top view 
of the pad after indentation. 

 
The standard deviation is found below 27nm, which underlines the good reproducibility of 

the tests. The maximum displacement into surface for each pad design is given in the Table 
IV.5. For all the measurements, the depth reached at maximum load is found between 2194nm 
and 2303nm. 

 
Pad layout Metal density 

(%) Presence of via Presence of PO 
via 

Maximum depth into surface and 
standard deviation (nm) 

1 30 No No 2248 (21) 
2 70 No No 2204 (7) 
3 30 No Yes 2303 (13) 
4 70 No Yes 2266 (27) 
5 30 Yes No 2234 (15) 
6 70 Yes No 2194 (18) 
7 30 Yes Yes 2294 (15) 
8 70 Yes Yes 2255 (21) 

Table IV.5. Depth reached at maximum load and standard deviation for the various pad layouts. 
 
The effect of the metal density of the lower layers is depicted in the Figure IV.52. The 

average and also the position of the minimum and maximum measured curves show that 
increasing the metal density from 30% to 70% is related to a decrease of the depth reached by 
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the indenter. This is observed for all the layouts, while other parameters are kept constant. 
The reduction of the depth is often about 45nm, which is higher than the standard deviation of 
the measurements. Hence, for structures with low-k, the increase of the metal density 
augments the resistance of the structure to compression. It can be directly related to the 
mechanical properties of the two materials. 

The presence of pad open via is presented in the Figure IV.53. Their presence induces an 
increase of the displacement into the pad. The augmentation is about 55nm whatever of metal 
density and the presence of via. Considering the size of the indent, during the test, the oxide 
and the aluminium are probed, and an increase of the displacement into the surface is 
expected due to the presence of aluminium filling the vias (similarly to Figure IV.26 b)). 

The presence of via reduces slightly the displacement into surface (about 10nm) for each 
structure compared. However, considering the standard deviation of the results, this variation 
is not significant. This can be explained since the addition of via into the structure induces a 
very low variation of the density of the layer where they are located due to their size and 
sparseness. However, the presence of via has to be related to the increase of the copper 
density with respect to the properties of the materials introduced. 

 

Layout 1
Layout 2

Figure IV.52. Minimum, average and maximum indentation curves for the pad layouts 1 and 2, depicting the 
effect of the metal density.

Layout 1
Layout 3

Figure IV.53. Minimum, average and maximum indentation curves for the pad layouts 1 and 3, depicting the 
effect of presence of pad open via. 

 
The ranking according to the maximum displacement into the surface reached by the 

indenter at maximum load is: 
62518473 ≤<≤≤≤<≤ (IV. 8) 
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II.D. Discussion on the pad layouts effect 
The wire pull tests and the nanoindentation are used to evaluate the mechanical robustness 

of the structures. More particularly, the copper density, the presence of via and of pad open 
vias is questioned. The peeling occurrence have clearly underlined that the presence of the PO 
via under the bonding area is detrimental to the pad due to the presence of the geometrical 
singularities. The nanoindentation with both Berkovich and cube corner tips of the same 
structures have shown an opposite trend. It has been related to the difference of loading 
condition of both tests. The indentation tests made on CMOS 45nm structures have shown 
that the use of PO via induces a reduction of the resistance of the pad to compression 
compared to an oxide full sheet. Hence, the presence of padopen via is worse than the 
aluminium over copper stack and also the aluminium over oxide full sheet one.  

The metal density of the copper layers has been investigated only for the lower levels for 
both technology nodes. The peeling rates have highlighted that the metal density have reduced 
effect, for the CMOS 120nm node. It has been related to a very thick and dense top copper 
layer that reduces the effect of the layers below on the overall resistance of the structure. For 
the nanoindentation test with Berkovich tip, the metal density effect has been observed. On 
the CMOS 120nm structure, increasing the metal density reduces the resistance to 
compression, and for the CMOS 45nm, the opposite results are observed. The difference is 
due to the presence of low-k oxide in the latter structure. The silicon glass has higher 
resistance to compression than the copper, but the low-k oxide has a lower one. Yet, the metal 
density is not necessarily directly related to issues in the pad. Therefore, for latest technology 
nodes, within low-k oxides are used between lower metal levels, increasing the copper density 
can improve the pad resistance to compression. 

The presence of via, whatever the technology node has not been found to have an effect on 
the mechanical robustness of the pads during the current experimental tests. In the literature, 
Cecchetto et al. [Cecchetto, 2007] investigated the effects of the presence of via and the via 
pitch (1µm vs. 4µm) in the M3 layer (out of 5 metal layers, whose top one is 3µm thick 
aluminium) using a numerical model, during probing tests. The structure without vias in the 
M3 layer has been related to lower Von Mises stress and then, wider spacing between the vias 
is also shown to reduce the stress. Thus, this numerical results seems to be different from the 
current ones, however, higher stress is not always directly related to higher failure rates, if 
critical values are not obtained, which can explain the difference. 

 

III. Metal copper layer design  
 
In the previous sections, it has been observed that the failures in the pad open layer have a 

strong correlation with the layout of the copper layer below since their initiation starts at the 
copper geometrical singularities. As a consequence, the effect of the top copper layer’s design 
is investigated (M4). The layout modification can induce small variation of the copper 
density. However, the densities of each of the layer are very close. The DOE performed to 
study the effect of EWS described in section I is split. The results for the structures made 
from long lines have been presented. Here, pad designs with slots are also considered. Once 
more, the comparison between the layouts is made from actual probing, nanoindentation with 
both tips and modelling. 

III.A. Pad layouts description 
The pad layouts investigated are of two kinds: lines and slots. The former correspond to 

long copper lines, separated with oxide, as shown in the Figure IV.54 a). The metal density 
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for this layout is 89%. For the latter, the copper is deposited in a way that oxide forms small 
islands. This layout is commonly known as slotted copper plates or slots. The copper density 
for such designs is 74%. This design is derived in three variants. Hence, pad layout with 1µm 
slots, 1µm slots with shifted plates and 2µm slots, as depicted in the Figure IV.54 b) to d). 
The layout with shifted copper plates is investigated to evaluate the effect of the location of 
oxide small line between the plates. In the standard design, it is located in the centre of the 
pad, thus, surely under the probing area. The use of larger slots can have an effect on the 
copper deposition, grain formation and the number of singularities. As a consequence, the 
overall mechanical robustness of the structure can be affected. 

 

20µm

Oxide line

Copper

20µm

Oxide line

 
(a) Pad layout with lines (b) Pad layout with 1µm slots 

20µm

Shifted 
copper plate

20µm
 

(c) Pad layout with shifted 1µm slots (d) Pad layout with 2µm slots 
Figure IV.54. Optical microscopy top views of the pads after aluminium and tantalum removals. 

 

III.B. Pad integrity tests 
The EWS is performed on the pads with the harshest condition (OD 90µm and 10 passes). 

Then, similarly to other studies, the aluminium and tantalum layers are removed, and cracks 
are numbered. The pad integrity test is made on 4 dies containing 28 pads for lines structures 
and 40 pads for layouts with slots, thus, on respectively 112 and 160 pads. All the cracks that 
can be observed are located in the PO layer.  

The results of the pad integrity tests are shown in the Figure IV.55. Whatever the stack, it 
is found that the highest crack occurrence is observed for the pad layout with lines. For the 
thinnest stack, the failure rate reaches 91.7% of the pads, which show major issues. Then, 
increasing the size of the slots is shown to increase the crack occurrence in the considered 
range of values. The most robust structure is the pad layout with 1µm slots on shifted plates, 
which is shown to enhance the mechanical robustness. Hence the position of the oxide lines 
between the copper plates has an effect on the crack occurrence.  
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Figure IV.55. Crack occurrence for the various pad designs. 
 
This typical crack for the structures is depicted in the Figure IV.56. On layouts (a), (b) and 

(d), the cracks propagate from or until the small oxide line between the lines or the plates. For 
the shifted copper plates (c), the crack propagates between the singularities related to the 
presence of the slots, but do not reach the oxide line.  

 

50µm 20µm
 

(a) Crack in the PO for pad layout with lines (b) Crack in the PO for pad layout with 1µm slots

20µm 20µm
 

(c) Crack in the PO for pad layout with 1µm slots on 
shifted plates 

(d) Crack in the PO for pad layout with 2µm slots

Figure IV.56. Optical microscopy top views of the pads after pad integrity test, depicting cracks in the pad open 
oxide layer. 

 
Finally, based on the crack occurrence, the ranking of the layouts according to their 

mechanical robustness is: 
plates  shifted with Slots1µm   Slots1µm   Slots2µm Lines <<<  (IV. 9) 

This provides the basis design ranking for the following comparison with the results of the 
nanoindentation tests and the numerical model. 
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III.C. Nanoindentation 
In a second step, the nanoindentation apparatus is used to evaluate the influence of the 

layout on the robustness of the stack, using the Berkovich and then the cube corner tip. 

III.C.1. Berkovich tip 
The nanoindentation with the Berkovich tip is performed on 15 pads for each pad structure. 

The maximum displacement into the surface is collected in the Figure IV.57. The structure 
with lines shows higher maximum depth for all the stacks. The density of this layout 
combined with the remarks on the ability of oxide to resist to compression is one of the 
reasons. The plastic deformation of the copper lines shown in the Figure IV.18 also explains 
the current results. Due to the presence of small oxide cubes in the copper, harder and more 
brittle material, the M4 metal layer with slots has lower capability to plastically deform and 
bend under compressive loading. Accordingly, the pad layout with slots is related to higher 
resistance and thus lower displacement into the surface.  

All the structures with slots are in a very close range. Yet, from comparison between all the 
stacks and considering the range of uncertainty between the measurements, the layout with 
1µm slots provides the lowest average and related range of values, then the 1µm slots with 
shifted plates, and finally the 2µm slots. 
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Figure IV.57. Maximum displacement into surface for the various pad layouts. 
 
Hence, the ranking of the layouts according to their resistance to compression with the 

Berkovich tip is: 
 Slots1µm  plates  shifted with Slots1µm   Slots2µm Lines ≤≤<<  (IV. 10) 

III.C.2. Cube corner tip 
In order to obtain good test reproducibility, 24 measurements are performed for each pad 

structure. The maximum indentation depth for all the structures is shown in the Figure IV.58. 
Whatever the thicknesses of the aluminium and pad open oxide films, the M4 design with 
lines is always the structure within the displacement into the pad is the highest. For pads with 
slots, the design with 2µm is related to the worst case. The two other ones show very similar 
results, with measurements a little lower for standard 1µm pads. 
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Figure IV.58. Maximum indentation depth for the various pad layout options and stacks. 
 
On the nanoindentation curves, failures are observed on the load-displacement curves and 

their corresponding load and depth are extracted following the method aforementioned. In 
three out of the four stacks, the M4 design with lines is related to lower loading prior to 
failure, as depicted in the Figure IV.59. Nevertheless, the difference is very low compared to 
the uncertainty and the other process and stacking effects. All the structures have roughly the 
same load and displacement for appearance of the cracks. In all the cases, the displacement 
corresponding to the fracture is close to half the thickness of the oxide film. The location of 
the failure does not depend on the thickness of the oxide film. It is emphasized by the about 
100nm difference of crack depth between the stacks, whose oxide thicknesses are 0.5µm and 
0.7µm. 
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Figure IV.59. Load and depth of the crack for the various stacks and layouts.

 
To summarize, the ranking according to all the indicators described is: 

 Slots1µm  plates  shifted with Slots1µm   Slots2µm Lines ≤<<<  (IV. 11)
 
The effect of the pad layout is lower than the thickness one, and mechanical robustness 

can be modified is a smaller range. 

III.D. Numerical results 
The explicit finite element model described in the chapter 2 is used to compare the various 

pad layouts. For this analysis, the small details cannot be introduced in the numerical model, 
because it would lead to a very high CPU time consumption due to a high number of elements 
in the model. Hence, the M4 layer is homogenized, using the technique described in the 
second chapter. The material properties resulting have also been given.  
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For the pad layout with slots, the construction is made in a way that the structure with 2µm 
slots is a homothecy with ratio equal to two. The pad layout with shifted plates is made on the 
basis of the standard one. As a consequence, the three pad layouts with slots have the same 
design along the 3 axes and copper density in the M4 film. Thus, the homogenization 
technique lead to the same elastic orthotropic material properties and these layouts cannot be 
distinguished, leading to the same results. The use of the orthotropic properties is necessary 
due to the differences of copper densities in the two directions of the layer’s plane. Then, only 
the comparison between the layouts with slots and with lines is achieved. 
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Figure IV.60. Maximum Von Mises stress in the layers for the pad with highest thicknesses of aluminium and 
pad open oxide. 

 
The analysis based on the Von Mises stress in the top layers of the pad is shown in the 

Figure IV.60. The stress in the oxide layers (PO and M3/IMD3) decreases while designing 
pad with slots. Hence, introducing slots with lower copper density, which also lead to a 
reduction of the equivalent Young’s modulus, shear modulus and density of the layer, induces 
a reduction of the stress. 

 
Finally, the ranking according to the Von Mises stress analysis for the pad is: 

Lines < Slots (IV. 12)
 

III.E. Discussion 
The design of the pad is not often investigated in the literature, and some of the structures 

evaluated are depicted in the Table IV.6. Even though their main application is the resistance 
to the wire bonding process and tests, since part of the pads have to resist to EWS and wire 
bonding, trade-off and understanding of the issues induced by both is required. All the studies 
are made on results from numerical models, sometimes confirmed by actual tests. 

 

a)
 

b) c)

Pad layouts evaluated by van Gils et al [van Gils, 2005]:  
Full metal plates (a), metal plates with holes (b) and full metal plates with vias (c) 
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a)  b)
c)

Pad layouts evaluated by van des Sluis et al [van des Sluis, 2006]:  
Slotted plates (a), wide copper lines (b) and buchettes (c)
Pad layouts evaluated by Fiori et al [Fiori, 2005]:  
Slotted short metal lines and vias (i.e. buchettes) (a), wide lines (b) and slotted plates (c) 

a) b) c) d)
Pad layouts evaluated by Fiori et al [Fiori, 2007]: 
Wide lines (a), with narrow slots (b), with narrow lines (c) and with wide slots (d). 
Table IV.6. Pad designs investigated in the literature. 

 
In their paper, van Gils and co-workers [van Gils, 2005] compared the various layouts 

using the area release energy method. A positive effect of the presence of holes (slotted 
plates) and of the presence of via is observed. Also using the ARE method, van der Sluis et al. 
[van der Sluis, 2006] found that the structure b) has a released energy slightly below the one 
of the layout a) and structure c) is the worst one. These results were confirmed by 
experimental tests. The absence of via in the structure a) while comparing it to b) may explain 
the differences found in the study and in those previously demonstrated. 

In their work, Fiori et al. [Fiori, 2005] also obtained that the first principal stress for layout 
with buchettes is higher than this of the other structures. The numerical analysis, similarly to 
the experimental tests, was not able to distinct the structures with wide lines and slotted 
plates. In a more recent paper, Fiori and co-workers [Fiori, 2007] compared pad layouts with 
lines and slots and each of them has been derived with two distinct sizes. Indeed 3µm and 
6µm oxide holes in the plates are investigated using the NRE method. Then, the ranking 
between the structures is established. The layout with wide slots (d) is the best one, followed 
by the layout with narrow slots, the layout with wide lines and finally the layout with narrow 
lines. An experimental DOE is performed, and a ranking according to the peeling rate 
confirmed the numerical results. Yet, the structure d) has not been experimentally tested. 
Thus, similar results are demonstrated for the comparison between lines and slots. Differences 
are observed concerning the increase of the width of the oxide hole. Nevertheless, the sizes of 
the holes considered are different: 3µm vs. 6µm for the study from Fiori et al. and 1µm vs. 
2µm for the current study, and intermediate sizes of holes are maybe critical for the pad 
reliability.  

In their studies, Rhee et al. [Rhee, 2003] and Vayrette et al. [Vayrette, 2010] demonstrated 
through experiments and modelling that the copper in small lines, i.e. in the range from 
0.25µm to 2µm, have non neglecting residual stress due to the thermal stages of the die 
process. The residual stress is found to be tensile stress, in the range of few hundreds of mega 
Pascal. Moreover, they found that increasing the line width is related to a decrease of the 
residual stress. For 2µm lines, the latter underlined that the stress is close to the one of a thin 
film. Additionally, Muppidi and co-workers [Muppidi, 2005] evaluate by means of EBSD 
observations and analyses, the effect of the line width on the copper grain size filling it. They 
showed that increasing the line width is related to a small increase of the average grain size 
(between 1µm and 2µm). A variation of the grain orientation is observed as well. Then, very 
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high differences in material properties (and the Young’s modulus particularly) are found for 
different copper grain orientations. The yield stress is also found to increase while decreasing 
the line width. In spite of the field of study restricted to copper lines, similar behaviour can be 
expected with slotted copper plates, which can explain the differences observed during the 
experiments. It can also explain why different results are found in the literature [Fiori, 2007] 
since constant elastic isotropic material properties of the copper are used in the numerical 
model. 

IV. Nanoindentation and modelling to reproduce EWS and wire bonding 
 
In this section, the correlations between the techniques used to try to mimic the probing 

and wire bonding are discussed. On the one hand, the finite element model is set up to 
simulate the EWS test. Modelling allows evaluating a large amount of designs at reduced 
cost, since the patterned wafers are not required to compare the structures. The Von Mises and 
compressive stresses are evaluated in all the layers and a particular attention is paid to the 
oxide ones, within the cracks are experimentally observed. For the thicknesses effects, the 
same trends are found as the actual tests, including the cumulative effect while increasing the 
thicknesses of aluminium and/or pad open oxide. Nevertheless, due to the use of the 
homogenization technique, the layout of the top copper layer provides the good results only 
when different structures are investigated, i.e. different orthotropic material properties are 
required to weight the pads. Among other, submodeling can be used to try to discriminate the 
structures. 

On the other hand, the nanoindentation measurements with Berkovich and cube corner tips 
provide complementary results. The nanoindentation is useful to evaluate the pads much 
easily than the probing, by applying a compressive loading. Even though wafers are needed to 
perform the tests, neither the prober, nor the expensive probe card is required. Indenting with 
the Berkovich tip has reproduced the same failures at geometrical singularities, and the same 
plastic behaviours of the aluminium and copper layers as wafer sorting. Both tips give 
complementary results, and the cube corner tip allows a more local evaluation of the 
materials. Initially, the depth reached at maximum load is used to compare the structures. 
Moreover, the cube corner tip is able to generate cracks in the pad open oxide. These failures 
correspond to an energy release characterized by a discontinuity in the load-displacement 
curves. As a consequence, a new indicator (h*dh/dp) is plotted and used to obtain the critical 
load and displacement into the surface prior to failure. Then, all these results are combined to 
rank the structures according to their mechanical robustness. The effect of the thicknesses of 
the aluminium and oxide layer is reproduced. Nevertheless, due to the ease of the tips to 
penetrate through the aluminium layer, the nanoindentation provide good results for the 
effects separated, i.e. one parameter modified at a time, and cross comparison do not depict 
the right results. Still on the same CMOS 120nm samples, the evaluation of the top copper 
design is able to reproduce most of the tests results. Only the shift of the plate has not been 
obtained. This design effect is a global effect that requires taking into account the shear stress 
and evaluating global response of the pad. Finally, for the study of the EWS nanoindentation 
and the numerical model have shown their ability to reproduce the results, even if few 
limitations have been found in each case. 

Then, the nanoindentation measurements are compared to the wire pull tests. The loading 
condition in the two cases is quite different, since the wire bonding induces not only 
compressive loading, but also important shear and tensile loads during the process or the pull 
test. For these particular samples, the nanoindentation has not been able to predict the peeling 
results. It is related to the presence of the geometrical singularities in the pad open via design, 
where the peeling occurs. Their presence enhances the resistance to compression, but reduces 
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the resistance to shear. However, for some other pads without such singular points, 
nanoindentation is able to obtain the same results as the wire pull tests1. Then, for the pads 
study described in this chapter, it seems that a failure threshold is obtained, explaining the 
failures and following peeling cases. Nanoindentation is also able to predict the resistance to 
compression for latest technology nodes with low-k oxide, and can be used to strengthen the 
mechanical properties of these layers. 

Finally, both the finite element modelling and the nanoindentation are shown to be able to 
reproduce the results of the tests and processes performed on the pad during the 
manufacturing steps. These tools are very efficient to forecast further failures in the pads and 
can be used for technology development or for crisis resolution, considering the few 
limitations aforementioned. 

 

V. Conclusions 
 

In this chapter, most of the currently available designs to strengthen the pad robustness 
have been probed or simulated. In a first step, many EWS tests, wire pull tests and related 
characterizations have been performed to gain insight on the failure mechanisms, and to 
obtain baseline for further comparison. Hence, the behaviour of aluminium and copper during 
these tests and their respective role on the robustness of the pad is underlined. The aluminium 
acts as a stress buffer layer to avoid the damages in the interconnections. These damages are 
cracks or peeling, which occur in the pad open oxide or inter-metal dielectric layers. The 
geometrical singularities in the pad have been pointed out to be detrimental to the pad 
robustness while submitted to such tests. Then, the finite element model and the 
nanoindentation have been used to mimic these test and process. The development of 
indicators for each analysis technique has been achieved to provide reliable results for the pad 
study. 

On the pad designs effects, all the techniques show that increasing the thicknesses of the 
aluminium and pad open oxide layers is related to a reduction of the failure occurrence in the 
pad open oxide and inter-metal dielectric layers. Then, the metal density of the copper layer is 
demonstrated to have an effect on the mechanical robustness of the pad. However, the 
increase or the decrease of the copper density is intimately linked to the oxide materials 
surrounding it. Indeed, the differences in materials properties between the copper and either 
the silicon glass or the low-k oxide is consequent. Thus, for technology nodes using the 
former oxide, the reduction of the metal density increases the pad resistance to compressive 
loading. For latest nodes, using the low-k oxide, the opposite trend is advised to strengthen 
the pad. The presence of via between the cooper layers has not been related to any variation of 
the mechanical robustness of the pads. Neither nanoindentation nor wire pull and shear tests 
have underlined this trend. The presence of the pad open oxide layer is observed to improve 
the resistance to compression, however, while via are inserted within the layer, and under the 
probing or bonding area, the numerous geometrical singularities introduced as well are shown 
to increase dramatically the number of peeling cases. The layout of the top copper level can 
be modified in order to reduce the fracture hazard. As a matter of fact, the pad layout with 
slotted plates, and particularly with smallest oxide holes, should be preferred to wide copper 
lines while designing the pad. The location of the plates with respect to the probing location is 
also able to reduce the crack occurrence. 

Finally most of the pad layout parameters have an effect on the mechanical robustness of 
the pad, and their modification according to the results previously described can help to 

                                                 
1 See appendix A for additional details one these experiments 
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reduce the mechanical issues in the pad. Additionally, a methodology to evaluate the pads has 
been given in this chapter. The use of nanoindentation and finite element modelling is found 
to be able to reproduce most of the probing and some of the wire bonding issues. Hence, these 
tools can be used for the technology development and to solve crises by giving fast and 
reliable alternatives to the costly actual tests and processes operations applied to the pad. Yet, 
for the nanoindentation, choices of the tip for a given layout and pad study methodologies 
have to be clarified to perform reliable tests. Similarly, a less CPU consuming finite element 
model to mimic EWS is required in the industrial context to evaluate more rapidly the various 
pad options. 
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In the previous chapters, the mechanical issues in the pads during EWS and the wire 
bonding followed by wire pull and shear tests have been investigated. In parallel, 
nanoindentation and finite element modelling have been used to evaluate the mechanical 
robustness of the structures and rank them. Then, some correlations between the various 
techniques have been demonstrated, and nanoindentation and the probing modelling have 
been able to reproduce the failures and trends from the actual tests. However, in the industrial 
context, fast and reliable analysis techniques are required. More precisely, for the 
nanoindentation technique, guidelines for the pad study are necessary to compare their 
mechanical robustness. In addition, a less CPU time consuming and pad’s enhancement 
dedicated numerical model also need to be set up. 

Indeed, in the chapter 4, distinct nanoindentation results have been obtained using the 
Berkovich and the cube corner tips. Hence, it appears necessary to clarify test guidelines, such 
as the loading condition to apply to the pad. Some indications on the tip selection are also 
required since the choice depends on the pad structure to evaluate.  

Then, a 3D finite element model needs to be developed. It must take into account all the 
experimental and numerical observations and results already obtained to define accurate 
loading conditions mimicking the probing. In the frame of reducing the CPU time 
consumption, the simulation of the contact between the probe and the pad should be avoided. 
Thus, specific loading conditions, based on the Hertz contact, are applied and their ability to 
reproduce the actual EWS loading conditions is verified by introducing elastic plastic material 
properties for the aluminium. Afterwards, the effects of the overdrive and the number of 
passes on the scrub size are evaluated. 

Finally, a full methodology, including both experimental and numerical methods, has been 
investigated for pad yield optimization. Hence, an efficient tool set for manufacturing process 
developments is proposed. 

 

I. Nanoindentation: pad robustness qualification 
 
In the previous chapter, the Berkovich and the cube corner tips have been used to evaluate 

the pads. Usually, most of the trends observed are similar for the two tips. Hence, in this part, 
the differences between the indenters are discussed, and then, general rules for the evaluation 
of the pad’s mechanical robustness are provided. 

I.A. Comparison between Berkovich and cube corner tips 

I.A.1. Dimension and shape of the indent 
The geometrical considerations of the Berkovich and the cube corner tips have been 

described in the section II.A.2 of the chapter 2. Thus, the projected area and the volume-
depth relation are lower for the cube corner tip. As a consequence it has been underlined in 
the previous chapter that for an equivalent depth, the indent left in the pad is much bigger 
with a Berkovich tip. Yet, cracks are more easily induced in the oxide with the cube corner 
tip. 

The Figure V.1 depicts the projected area of the two tips. The pile-up is larger in case of 
indentation with the Berkovich tip. However, when related to the indent size, the cube 
corner tip induces a more important pile-up. For these indents, the pile-up heights 
measured during the SEM observations after FIB milling are respectively in the order of 
0.6µm and 1µm for the cube corner and Berkovich tips.  
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Pa4 = 1.47µm

Pa2 = 1.11µm

Pa3 = 1.54µm

Pa1 = 4.88µm

2µm

a) b)

16.4µm

2.5µm

3.0µm

Figure V.1. SEM top views of the pads after nanoindentation with cube corner (a) and Berkovich (b) tips on 
aluminium. 

 

I.A.2. Influence of the tip geometry on the load-displacement curves 
The load-displacement curves for a given penetration are shown in the Figure V.2. 

Thus, much lower load is required to reach the same depth while using the cube corner tip. 
In the literature, many works have highlighted similar differences for the load-
displacement curves obtained from the two indenter tips. [Bucaille, 2004-A; Bucaille, 
2004-B; Mirshams, 2004; Johnson, 2007]. More generally, for a three-sided punch, the 
load required to reach a given depth decreases while decreasing the equivalent cone angle 
[Chollacoop, 2003; Jang, 2008].  

The load-displacement curves described are normalized (over their maximum load and 
displacement) to compare the penetration of the two tips in the multi-layers of the pad. As 
depicted in the Figure V.3, the Berkovich tip has more a parabolic evolution of the 
displacement while increasing the load. On the contrary, the cube corner tip induces a clear 
slope break between the aluminium and the oxide layers. This slope break occurs almost at 
the interface between the two materials, which underlines the local solicitation of the 
material parameters with the latter indenter. The unloading curve obtained from 
indentation with the two tips is also different. Indeed, higher elastic recovery is observed 
for the Berkovich tip, i.e. the hf/hmax ratio is lower. 
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Figure V.2. Load-displacement curves for typical 
indentations with Berkovich and cube corner tips on 
CMOS 45nm samples. 

Figure V.3. Normalized load versus normalized 
displacement curves for indentations with Berkovich 
and cube corner tips. 

 
The Table V.1 summarizes the results obtained during the study on the CMOS 45nm 

samples. These pads have been studied in the section II.C of the chapter 4. The pad layout 6 is 
evaluated (metal density: 70%, with via and CB via). Higher standard deviation is observed 
for the cube corner tip. It implies a reduction of the measurement stability, particularly while 
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the results between the structures are close. The higher variation between the measurements is 
due to the crack observed on the load-displacement curve for the cube corner tip. 
Additionally, the local stresses and strains induced by this tip imply a higher dependence on 
the small details (e.g. pad open vias) met during the tip penetration. 

 
 Berkovich tip Cube corner tip 
Average maximum displacement 
(in nm) 

2194 2162 

Standard deviation (in nm) 18 64 
Uncertainty (std deviation/max. 
displacement) 

0.8% 3.0% 

Elastic recovery (hf-hmax, in nm) 318 162 
hf/hmax 0.86 0.93 
Table V.1. Nanoindentation results for both indenter tips on CMOS 45nm samples. 

 
In the literature, the higher stresses and strains induced by the cube corner tip have been 

evaluated by Bucaille et al. [Bucaille, 2003]. They have shown from indentation simulations 
on copper that for a small included angle (i.e. a cube corner tip), the plastic strains are 
localized near the indenter. Moreover, the plastic volume deformed is higher for the 
Berkovich indenter than for the cube corner one. Nevertheless, plastic strains are higher in the 
case of indentation with cube corner tip, as depicted in Figure V.4.  

 

θ

 
θ=70.3° θ=42.3° 

Figure V.4. Map of equivalent plastic strains in copper near the tip for Berkovich and cube corner tips, after 
[Bucaille, 2003]. 

 
Similarly, through finite element simulations, Durst and co-workers [Durst, 2006] 

evaluated the plastic zone left by an indentation with a cube corner tip. They described the 
extension of the plastic zone, and compared it for indentations with the Berkovich and the 
cube corner tips. 

I.A.3. Determination of the Young’s modulus and hardness 
In order to have reliable inputs in the numerical models, some nanoindentation with the 

Berkovich and the cube corner tips have been made on a copper film, whose thickness is 
1.95µm, deposited on a silicon substrate. Hence, some measurements with the CSM mode are 
performed to obtain the material properties as a function of the displacement into the pad.  

The depth reached at the end of the loading step is 1400nm, which is lower than the film 
thickness. The loads applied to reach this depth are 78.7mN and 7.96mN for the Berkovich 
and the cube corner tips respectively. 

The normalized load-displacement curves with the two indenters are shown in the Figure 
V.5. The parabolic shape described in several papers [Chollacoop, 2003; Bucaille 2003] for 
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the indentation with the Berkovich tip is observed. Indeed, the following relationship is 
obtained: 

2*hCP =  (V.1) 
where the value of C is 3.79 for the current indentation in copper. 

 
During the unloading stage, the elastic recovery is more important for the indentation with 

the Berkovich tip. This trend on copper is similar to the one observed for the multi-layer 
stacks. It underlines the effect of the cube corner tip geometry, which induces higher stresses 
and strains to the copper. 
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Figure V.5. Normalized load-displacement curves for 
nanoindentation in a thick copper film on silicon. 

Figure V.6. Hardness as a function of the displacement 
for the Berkovich and the cube corner tips. 

 
Then, the Young’s modulus and the hardness of the copper are determined. The material 

properties obtained are respectively 132.9GPa and 1.1GPa for the Berkovich tip and 
127.7GPa and 1GPa for the cube corner one. The Young’s modulus and the hardness deduced 
from the Berkovich tip are slightly above these of the cube corner one. As aforementioned, 
this difference is related to the presence of the important pile-up for the latter tip. Then, the 
Figure V.6 shows that the hardness measured with the Berkovich tip is, whatever the 
displacement, slightly above the one deduced from the cube corner tip. Moreover, while 
increasing the indentation depth, the difference between the two tips increases. It is explained 
by the presence of the silicon below the copper layer, whose Young’s modulus (166GPa) and 
hardness (about 8GPa) are above these of the copper. The high hardness values observed at 
the shallow indentations depth are referred in the literature as the indentation size effect (ISE), 
which is explained by the presence of geometrically necessary dislocations [Nix, 1998]. Then, 
the low values at the beginning of the curves are probably explained by the presence of a thin 
(40nm) Si3N4 barrier layer on top of the copper. This material has higher hardness than 
copper, but in this stack, it is a very thin and fragile layer. 

These measurements are in agreement with these made in the literature. Actually, hardness 
measurements from the Berkovich tip are found below the ones from the other tip for 
measurements on micro and nano-crystalline pure nickel [Mirshams, 2004; Mirshams, 2006], 
on poly-crystalline nickel and copper [Durst, 2006]. Yet, in other works, the hardness 
measurements on polymethyl methacrylate, stainless steel, copper, iron and aluminium [Wei, 
2008] or in low-k oxides (BD2X) [Wu, 2006] are of the same range. 

Finally, small measurement variations of the mechanical properties are also obtained while 
comparing the Berkovich and the cube corner tips. It underlines the difference between the 
geometries of the two indenters. 
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I.B. Application to the determination of the pad robustness 
In the chapter 4 and in the previous sections, some differences have been shown while 

comparing the Berkovich and the cube corner tips. Hence, some standard rules for the 
analysis of pads, depending on its design and the expectations are given. 

The nanoindentation maximum displacement into the surface is expected to reach about 2 
layers to obtain quite an overview of the pad’s robustness. While oxide is detected below the 
top layer, nanoindentation has to penetrate most of it in order to try to generate a crack within 
the layer. Much deeper nanoindentation into the pad may induce additional interpreting issues 
due to the multi-layer systems and should be avoided. Thus, for the CMOS 45nm and the 
CMOS 120nm pad, a depth of 2µm is good to obtain a ranking between the structures. For the 
technology nodes in between, the same maximum displacement into surface is expected to 
provide good results as well.  

Then, several tests are required for reproducibility purposes. Actually, between 15 and 30 
indentation tests on a given structure strengthen the results reliability. Generally, fewer tests 
are required with the Berkovich tip due to its higher reproducibility. 

The two tips have to be used if possible, since they provide complementary information on 
the pad’s mechanical robustness. Indeed, during the study on pads, the Berkovich tip is able to 
reproduce the cracks induced by the EWS test, and in some cases the loading conditions 
undergone by the pad during the wire bonding process. Yet, the cube corner tip induces high 
stresses and strains in the materials, which lead to the appearance of noticeable cracks in the 
pad open oxide layers. Whenever the use of the two tips is not possible, the flow chart 
depicted in the Figure V.7 provides help to choose the tip that best suit with the pad study 
(and architecture). The tip selection can be necessary due to lack of time or lack of samples to 
perform the analysis.  

 
Possibility of using Berkovich 

and cube corner tips?

Presence of PO via or important 
design in the top 2 layers?

Use both tips and proceed using 
aforementioned indicators

No Yes

Variation of the thickness of the 
alucap (top) layer? 

No Yes

Use Berkovich tip

Use cube corner tip Use cube corner tip but ...

Use max. displacement into the 
surface to rank the structures

No Yes

3 indicators, care should 
be taken in the ranking

3 indicators, no 
limitation expected

Figure V.7. Flow chart of the nanoindentation on pads: tip selection as a function of the investigated layout. 
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II. Modelling: FEM dedicated to pad enhancement to reproduce EWS 
 

In the previous chapter, the explicit numerical model is developed to mimic the probing. 
For most of the test and design parameters, the numerical model has been able to predict the 
EWS results, i.e. rank the structures according to their mechanical robustness. However, the 
model is highly CPU time consuming since about one hundred hours are required to obtain 
the results from one simulation (i.e. one stack). Moreover, some limitations have been 
highlighted for the pad study due to the homogenization technique. In the industrial context, 
and more specifically, in the development of new technologies or during the crises resolution, 
several pad structures need to be simulated and thus, a very long time is required to obtain the 
results. Hence, in this part, a new finite element model has to be developed to compare the 
structures more rapidly. This model has to take into account all the insights collected from the 
various experiments and simulation previously made. 

This model consists only in the pad. Thus, the contact between the probe tip and the pad is 
not represented, and then the numerical related non-linearity and convergence issues (e.g. the 
CMOS 45nm calibration) do not need to be modelled. 

II.A. Comparison between explicit and implicit methods 
The finite element models of the EWS have been solved using an explicit scheme (chapters 

2, 3 and 4). In this chapter, an implicit scheme is considered. In the following section, these 
methods and the related assumptions and applications are described. Deeper comparison of 
the two methods is given in the Ansys user manual [Ansys, rel. 11].  

II.A.1. Time integration 

II.A.1.a) Implicit time integration 
In the implicit time integration method, the inertia effects of mass and damping ([C] and 

[M]) are not included. The average acceleration and displacements evaluated at time t+Δt are 
given by: 

{ } [ ] { }a
tttt FKu Δ+

−
Δ+ = 1  

Hence, for linear problems, the solution is unconditionally stable when the stiffness matrix 
[K] is linear and large time step can be chosen. For non linear problems, the solution, which 
requires the inversion of the non linear stiffness matrix, is obtained using a series of linear 
approximations (Newton-Raphson method). However, small iterative steps are necessary to 
achieve the convergence, which is not always obtained, especially for highly nonlinear 
problems. 

II.A.1.b) Explicit time integration 
In the explicit time integration method, the accelerations are evaluated at a time t, following: 

{ } [ ] { } { }( )int1
t

ext
tt FFMa −= −  

where { }ext
tF  is the applied external and body force vector and { }int

tF  is the internal force 
vector, which is given by: 

∑ ∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++Ω=

Ω

conhg
n

T FFdBF σint  

where Fhg is the hourglass resistance force and Fcon is the contact force. 
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Then, the velocity and displacements are evaluated: 
{ } { } { } tttttt tavv Δ+= Δ−Δ+ 2/2/  
{ } { } { } 2/2/ ttttttt tvuu Δ+Δ+Δ+ Δ+=  

where  ( )ttttt ttt Δ+Δ± Δ±Δ=Δ 5.02/

 
The geometry is updated by adding the displacements increments to the initial geometry {x0}: 

{ } { } { }ttttt uxx Δ+Δ+ +=
 

As a consequence, the equations become uncoupled and can be solved directly, even for 
nonlinear problems. Since no inversion of the stiffness matrix is required, all the 
nonlinearities and the contact are included in the internal force vector. Finally, no 
convergence issues are faced because the equations are uncoupled. Nevertheless, very small 
time steps are required to maintain stability limit, which implies high computation duration. 

II.A.2. Stability limits 

II.A.2.a) Implicit time integration 
As previously mentioned, the implicit solution is always stable and the time step can be 

arbitrarily large. For nonlinear problems, the time step size may become small due to 
convergence difficulties. 

II.A.2.b) Explicit time integration 
The explicit solution is only stable if the time step is smaller than the critical time step size 

(as noticed in the section III.A.4.b) of the chapter 2): 
crittt Δ≤Δ  

 
As a consequence of the very small step size, the explicit method is only useful for very 

short transient phenomena. 

II.B. Development of the 2D implicit model 

II.B.1. Objectives and use of experimental and numerical insights 
In the chapters 2 to 4, observations, experimental and numerical studies have provided 

much information on the probing and its related failures in the pad. These insights are used in 
the implicit model to define accurate loading conditions. The two dimensional implicit FE 
model do not contain the contact between the probe tip and the pad. Though, the loading 
conditions must be reproduced as fairly as possible.  

In order to reproduce the test parameters (overdrive and number of passes), the loading 
conditions of the finite element model must depend on these parameters. In that frame, the 
measurements of the vertical and lateral reaction forces performed during the calibration step 
are used. Moreover, depending on the technology node, the pads pitch changes, and so does 
the probe card, the probe geometry… As a consequence, the numerical model must also take 
into account these modifications. The loading area, which represents the scrub mark left on 
the pad after testing, changes too, depending on the test conditions. Indeed, the results in the 
section I.B.1 of the chapter 3 have underlined the increase of the scrub length while increasing 
the overdrive and the limited effect of the number of passes.  

Then, the shape of the loading has to refer to the experiments and simulations. As a matter 
of fact, during the explicit simulations, the contact between the probe tip and the pad has been 
demonstrated to be almost punctual due to the deflexion of the needle during the test (refer to 
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Figure IV.23). Finally, the failures have been observed in the oxide layers, and the largest one 
in the PO oxide, then, this model must end with similar stress peak location.  

II.B.2. Model description 
Only the pad is represented in the 2D implicit finite element model. The explicit model has 

shown some limitations to compare stacks due to the use of the homogenization technique. 
Then, it should be possible to introduce very small details such as vias in this model. The use 
of an implicit solver scheme enables us to use much more elements than the explicit model to 
describe the pad and thus the design. The model is developed using the Ansys release 11 
software, and some information can be found in the user’s manual [Ansys, rel. 11]. 

In this step, the portion of the pad represented consists in a cross section of the pad in the 
centre of the probe mark. Each layer is represented in the pad. In the model set up, full sheet 
layers with elastic isotropic material properties are used, as shown in the Table V.2. The 2D 
implicit finite element model describing the pad structure is depicted in Figure V.8. In order 
to be able to compare with previous results, the architecture of the CMOS 120nm pad is 
modelled. A 10µm thick silicon layer is added in the bottom of the model to avoid sharp 
boundary condition in the bottom of the pad. The mesh in this layer does not need to be as 
small as in the other layers since stresses in this layer are not the major issues. 

 
Material Young’s modulus (GPa) Poisson ratio 
Aluminium 69 0.34 
Oxide (TEOS) 63 0.23 
Copper 128 0.33 
Silicon 166 0.23 
Table V.2. Material properties used in the 2D finite element model. 
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Figure V.8. 2D geometrical model of the CMOS 120nm pad. 
 
The pad is meshed with some Plane183 elements, square shaped and quadratic, whose size 

is fixed at 0.2µm*0.2µm. By considering the characteristics of the pad, the plane strain 
assumption is made for these elements. This assumption is made while the third dimension is 
very important compared to the two represented in the model, and imposes the out of plane 
strains to be zero (εzz=gxz=gyz=0). Additional details and assumptions induced by the plane 
strain are described in a course by Lagace [Lagace, 2002]. In the literature, only a few papers 
[Ayhan, 1999; Krueger, 2002; Yeo, 2004] report studies between the 2D plane stress and 
plane strain options, compared to the 3D results, for the microelectronic field of applications. 
All the works showed that the results of the 2D plane stress and plane strain models are the 
boundaries of the true 3D model. At the package scale, they obtained results closer to the 
plane strain option. Besides, for the current model, since the mesh size is very small and no 
specific details are added to the pad, there is no meshing convergence issue. 

Then, to mimic the probing loading, a pressure is applied to the pad. To that purpose, some 
SURF153 elements with mid-side nodes are added on its top. For these elements, it is possible 
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to apply normal and tangential pressures. These elements are used along a length that 
represents the length of the scrub mark left by the probe during EWS. 

A set of boundary conditions is applied to the pad. On one lateral side, the vertical and the 
lateral Degrees Of Freedom (DOF) are removed for all the nodes (ux=0 and uy=0). On the 
other side of the pad, the displacement of all the nodes along the vertical is set to null (uy=0) 
and the lateral displacement is constant (ux=constant). At the bottom of the pad, both the 
vertical and lateral displacements are fixed at zero. 

II.B.3. Loading conditions of the 2D model 
Since the explicit model has underlined an almost punctual contact during the test and 

particularly at the end of the loading stage, the Hertz contact is introduced to reproduce the 
loading conditions of the probing. Then, to take into account the variations due to the 
technology nodes, the probe card, the needle geometry, etc, these parameters need to be in the 
modelling inputs. The analytical equations from the various calibration vertical and lateral 
reaction forces measurements depending on these parameters (and also obviously on the 
overdrive and the number of passes) are described to be finally applied to the pad. 

II.B.3.a) Brief introduction to the Hertz contact 
The contact is studied at the macroscopic scale, examining the stress fields and the strains 

related to the contact between two solids. The Hertz theory for a normal contact has been 
established in 1881 [Hertz, 1881]. It allows the determination of the contact area and the 
stresses and strains distributions from the contact pressure, the solids geometry and their 
elastic moduli. In the following, only a brief introduction to the Hertz contact theory is made. 
For additional details, refer to books from Johnson [Johnson, 1985] or François et al. 
[François, 1991]. The problem for two convex solids is described by the Figure V.9.  
 

Figure V.9. Hertz contact for two convex solids, after [François, 1991]. 
 

The assumptions for an elastic contact are: (i) the surfaces are continuous, (ii) small strains 
are considered, (iii) each solid can be considered as a semi infinite solid and (iv) no sliding 
between the solids. It means that the contact radius (a) is very small compared to the curvature 
radius (R) of the two solids (a<<R), and the friction coefficient is null (µ=0). 

For a bi-dimensional contact between two cylinders, the pressure distribution is parabolic, 
similarly to solids of revolution: 

( )
2
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⎠
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Then, the contact radius and the maximum of the pressure are given by: 
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E
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π

=  (V.3) 

R
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ππ

*

0
2

==  (V.4) 

where P is the load applied, E* and R are respectively the equivalent Young’s modulus and 
the equivalent curvature radius, defined by: 1/E*=1/E1+1/E2 and 1/R=1/R1+1/R2, and p0 is the 
pressure. 

The various stresses undergone by the solid for such a contact are depicted in the Figure 
V.10. The following stresses are obtained: 
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xxzz σστ −= 2/11  (V.7) 
 
The maximum shear stress τ1 is equal to 0.30*p0 for a distance 0.78*a. For solids of 

revolution, this maximum shear stress is found maximum at a distance 0.48*a. 
In our case, the probe is sliding over the surface, and the die is immobile during the test. 

Thus, the friction force, which restrains the relative motion of the two solids, has to be 
considered. It modifies the contact stress. Additionally, a Coulomb friction law is used. The 
variation of the stress distribution due to the sliding is shown in Figure V.11. 
 

Figure V.10. Contact between two cylinders, 
stress in the structure (a) and iso-values shear 
stresses (b), after [François, 1991]. 

Figure V.11. Shear stress (τ1) level curves in the structure for 
a sliding contact, with µ=0.2, after [François, 1991]. 

a) b)

Figure V.12. Compressive (a) and Von Mises (b) stresses in silicon (a=2µm). 
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The Hertz contact is simulated in the silicon, using the pressure distribution 
aforementioned in the equation (V.2). The contact radius is 2µm. The stresses in the structure 
are depicted in the Figure V.12 and the Figure V.13. Similar results than those observed on 
the Figure V.10 are obtained. Hence, the Hertz contact is fairly reproduced from modelling in 
only one layer. 

II.B.3.b) Analytical equations for the loading evaluation 
These analytical equations must depend on all the test parameters and apparatuses (needle 

geometry, probe card...) to reproduce accurately the loading conditions. Hence, due to results 
availability and since these are the extreme loading cases, only needle geometries level 1 and 
level 4 are later considered. These analytical equations are derived from the calibration 
measurements described in the section III.B of the chapter 2. 

For the whole range of technology nodes and probe card, the analytical equation describing 
the vertical (and also the lateral) reaction force is: 

213
2
222221

2
1121110 ****** xxxxxxFvert αααααα +++++=  (V. 8) 

where x1 is the overdrive (in µm) and x2 the number of passes, and the αi are the fitting 
coefficients, given in the Table V.3. 
 

Due to the important number of reaction forces measured by the PC provider Technoprobe, 
a second order equation is possible. Indeed, the vertical and lateral reaction forces have been 
evaluated for three overdrives (OD = 50µm, 75µm and 100µm) and for six different numbers 
of passes (1, 2, 3, 5, 7 and 9). Thus, the analytical equations are valid in the range of values 
considered during the experiments. 
 
Technology 
and PC CMOS 120nm and PC 1 CMOS 45nm and PC3 

Needle L1 L4 L1 L4 
Reaction 
force Fvert Flat Fvert Flat Fvert Flat Fvert Flat 

α0 -0.02743 -0.03059 0.12296 0.04908 2.4677 1.1436 3.6543 1.7229 
α11 0.04044 0.00295 0.036 0.00098 n/a n/a n/a n/a 
α12 0.00005 0.00001 0.00013 0.00003 n/a n/a n/a n/a 
α21 0.00710 0.02184 0.03327 0.02473 0.0882 0.235 0.0294 0.0362 
α22 -0.00076 -0.00167 -0.00345 -0.00251 -0.0071 -0.0186 -0.002 -0.0024 
α3 0.00009 0.00016 0.00027 0.00049 n/a n/a n/a n/a 
 
PC and 
needle PC 2, level 1 PC2, level 4 

Reaction 
force Fvert Flat Fvert Flat 

Technology All C 120nm C 45nm All C 120nm C 45nm 
α0 -0.03813 0.12601 1.5704 0.70875 0.57202 1.57 
α11 0.03387 -0.00163 n/a 0.02631 -0.01222 n/a 
α12 n/a 0.00004 n/a n/a 0.0001 n/a 
α21 0.03625 -0.0105 0.2115 0.02313 0.01717 0.1625 
α22 -0.00313 0.00071 -0.0194 -0.00438 -0.00159 -0.0125 
α3 0.00013 0.00011 n/a 0.00044 0.00004 n/a 
Table V.3. Values of the fitting coefficients in the analytical equations. 
 

For the fitting constant in the analytical equation, the r-square is always found above 0.99. 
The standardized Pareto charts for the vertical and lateral reaction forces are shown in the 
Figure V.13 and Figure V.14. As demonstrated in the chapter 2, the overdrive is by far the 
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main contributor to the variations of the vertical reaction force. The lateral reaction force is 
also influenced in a more important range by the number of passes. 
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Figure V.13. Standardized Pareto chart for the vertical 
reaction force (PC 1, needle geometry 4). 

Figure V.14. Standardized Pareto chart for the lateral 
reaction force (PC 1, needle geometry 4). 

 
Thus, by using these analytical equations, the vertical and lateral reaction forces undergone 

by the pad can be estimated for a wide range of test parameters and also technology nodes and 
probe cards and needle geometries. The pressure applied to the model is calculated from this 
abacus. As a consequence, all the parameters mentioned need to be inputs of the numerical 
model.  

II.B.3.c) Application of the loading conditions 
In the previous two sections, the Hertz contact and the vertical and lateral reaction forces 

abacus have been described, and are now used as bases of the loading. Initially, the target was 
to reproduce the whole probing test conditions in a single loading, however, due to the 
assumption of the Hertz contact (i.e. the maximum stress location dependence on the contact 
radius) and particularly the large contact area (long scrub marks), the maximum Von Mises 
stress was located in the silicon, which is not correlated to the cracks location in the pad open 
layer. Thus, multiple loading steps are applied to the pad. Indeed, the multi-step loading is 
suitable due to the probe kinematics, as further explained. 

As shown in the section I.C of the chapter 4, the probe needle deflects during the test, and 
at the end of the loading, there is an angle between the pad surface and the bottom of the tip, 
which induces the high stresses obtained during the simulations. Then, the SEM observation 
of the cracks has shown that the crack is located in the middle of the probe mark. Hence, the 
contact of the probe on the pad is probably close to the one described in the Figure V.15. 
Thus, the contact area between the probe and the pad probably decreases during the loading 
stage. On the contrary, the vertical and lateral reaction forces increases. 
 

Probea)
Probe

b)

Figure V.15. Schematic representation of the initial contact (a) and contact assumed at the end of the loading (b). 
 

Finally, the reaction force, the multiple loading steps and the variation of the contact area 
need to be introduced in the model. Thus, a Hertz contact with decreasing the contact area is 
used to reproduce the loading conditions, as shown by the Figure V.16. The contact area 
decreases from the tip radius (8µm) to the tip curvature radius (on the edges of the needle tip; 
2µm). The pressure (P) applied to the surface’s elements in the location i is:  
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where:  
- j/nb_step is the ratio (between 0 and 1) describing the increase of the vertical reaction 
force along the probe path, i.e., the ratio is null at the impact time and then reaches 1 for 
the last load step, when the vertical reaction force applied is maximum. This linear increase 
of the ratio is related to the linear correlation between the overdrive applied, the lateral 
displacement of the probe and the vertical reaction force measured, as previously described 
in the section III.B in the chapter 2. 
- Fvert is the vertical reaction force, a is the contact area, and centre is the location of the 

centre of the pressure application where the pressure is maximum for the given loading step. 
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Figure V.16. Evolution of the contact radius and the vertical reaction force for various load steps. 
 

Using such successive loading conditions implies a sharper and increasing pressure applied 
to the pad along the probe path (that goes from right to left), as shown in Figure V.17. This 
formulation allows obtaining a maximum load located before the end of the loading area, and 
to reproduce the increasing stress undergone by the structure. 
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Figure V.17. Pressures applied to the pad during the successive load steps. 
 

Similarly, tangential loading conditions are applied, using the lateral reaction force instead 
of the vertical one in the equation (V. 9). 

II.B.4. Results and limitations of the 2D FE model 

II.B.4.a) Stress analysis in the structure 
The Von Mises stress in the structure for the successive load steps is shown in the Figure 

V.18. The successive load steps allow the introduction of the time in the finite element model 
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to reproduce the whole EWS loading stage. For these simulations, the OD is fixed to 90µm, 
and thus the scrub length is about 40µm, as observed in the section I.B.1 of the chapter 4. For 
the calculation of the vertical reaction force, the probe card 1, and the needle geometry 1 are 
selected. The first load step, which corresponds to the impact of the probe on the pad, is not 
depicted in the figures since the vertical reaction force is null. Then, a seven steps loading 
condition is applied to the pad. Obviously, the higher the number of steps, the closer to the 
actual loading condition the test is. However, this parameter increases the CPU time 
consumption, and consequently the duration of one simulation. 
 

a) 5µm

 
b) c)

d)

 
e) f) 2µm

Figure V.18. Von Mises stress in the structure during the successive load steps (mind the range of stresses on 
each view). 
 

The Von Mises stress in the pad increases during the successive loading steps, which is 
expected due to the increasing loading conditions. The evolution of the maximum stress in the 
pad is depicted in the Figure V.19. The variation of the location of the highest stress 
undergone is also shown. It is found that the highest Von Mises stress is initially located in 
the IMD3 layer and then, while decreasing the contact area, it moves to the PO layer, which is 
the layer within major cracks are observed. 
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Figure V.19. Maximum Von Mises stress in the pad structure, and related location, as a function of the 
successive load steps. 
 

Finally, the 2D model and the applied loading conditions are able to reproduce the EWS. 
The stresses undergone by the pad are still very high, but once more, the use of an almost 
punctual contact is the root cause of this estimation. Moreover, these values are found to be of 
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the same magnitude (2GPa to 4GPa) than those of the explicit 3D model that strengthen the 
loading assumptions performed.  

II.B.4.b) Discussion 
The ef ntact on a multi-layer system is shown to modify the 

loc
fect of applying the Hertz co

ation of the stress peak in the structure due to the various material properties of the layers. 
Additionally, the effect of the location of the maximum of stress undergone by the pad is 
closely linked to the contact radius. Indeed, the Figure V.20 shows the variation of the Von 
Mises stress along the vertical axis (y-axis) in the centre of the pressure application (i=0 in 
equation (V. 9)). For the multi-layer system with quite high contact radius (8µm), the 
maximum is found in the oxide IMD3 (for y/a=0.37, that is -2.96µm) layer, as previously 
described. On the contrary, while only the silicon is considered, the stress peak is found 
deeper into the surface (for y/a=0.67). 
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Figure V.20. Von Mises stress in the pad over the silicon substrate and in the silicon only along the vertical axis 
(for i=0, and a Hertz pressure centred in that location). The contact radius is fixed to 8µm. 
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Figure V.21. Von Mises stress in the pad over the silicon substrate and in the silicon only along the vertical 

hile the contact radius is lower (a=2µm), the maximum Von Mises stress is found in the 
pa

haviour at the bottom of the pad is not affected by the multi-layer system on top of 
it, 

ing conditions and the use of a 2D model are underlined. 
As a matter of fact, a 2D model cannot describe entirely a 3D pad design. Indeed, layouts with 

axis. The contact radius is fixed to 2µm. 
 
W
d open oxide layer. Then, the location difference with the actual stress peak described by 

the Hertz contact theory is smaller, as depicted in the Figure V.21. For such contact, the 
location is y/a=0.6. Hence, the value found is in the range of values given in the section 
II.A.3.a. 

The be
whatever the contact radius, indicating a reduced effect of the bottom boundary conditions 

on the simulated results in the pad. 
Some limitations due to the load
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via

er thicknesses, layouts...) must be considered with care. In this model, 
on

s or CB vias, slotted copper plates and in a more general manner all the layouts that 
include 3D variations and orthotropic material properties within a layer cannot be evaluated 
through a 2D model.  

Concerning the loading conditions, the results for the study of crossed parameters (e.g. 
variation of several lay

ly elastic material properties have been used, and reproducing the scrub mark requires to 
use elastic-plastic material properties for aluminium and to remove the elements, after a given 
threshold penetration is reached. Similarly, the work hardening of the aluminium is not taken 
into account. Finally, due to the contact assumptions, and the stress simulated in the structure, 
the comparison between the structures must remain qualitative. Yet, the trends from these 
qualitative analyses to compare the mechanical robustness of the pads is expected to be true 
since a deep study of the loading conditions have been performed.  

II.C. Development of the 3D implicit FE model 

II.C.1. Description of the 3D FE model of the pad 
The 3D geom odel’s one described in the 

cha is of the centre of the probe 
ma

e 3D model. The same material 
pro

etry of the pad is similar to the explicit 3D m
pter 2. Hence it consists in a half pad due to the symmetry ax
rk. Additionally, some silicon is added to reduce the boundary effect and the mesh is much 

smaller, allowing the introduction of small details. The pad is meshed with SOLID186 
elements, whose size is fixed at 0.5µm*0.5µm*0.2µm, respectively in the plane and for their 
thickness. The meshed pad is shown in the Figure V.22. For the top layers, some quadrangle 
elements are selected, and the silicon is meshed with tetrahedrons, with bigger sizes, in order 
to reduce the number of elements in this layer. 

To reproduce the loading conditions, some SURF154 elements are used. These are 
extensions of the elements used in the 2D model to th

perties are used as the 2D model (see Table V.2). 
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Figure V.22. 3D meshed model of the pad. 
 

 the 2D model are applied (for the nodes of the lateral and 
ottom of the pad). Moreover, the node on the symmetry axis (y=0) and for the highest y 

va

Along the symmetry axis of the model, the loading conditions are the same as those used in 
the 2D m II.B.3, with the 
sam

The same boundary conditions as
b

lues have their DOF along the y-axis fixed. 

II.C.2. Loading conditions 

odel, i.e. based on the Hertz contact and described in the section 
e profile (see Figure V.23 a). The problem concerns the third dimension and the 

reproduction of the probe mark along its width. Initially, a linear decrease of the pressure 
along the y-direction is applied, as shown in the Figure V.23 (b). The purpose is to reproduce 
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as fairly as possible the loading induced by the EWS. Hence, the pressure applied to the 
surface’s elements for the last simulation step is depicted in the Figure V.23 (c). 
 

 
Figure V.23. Loading conditions: for the successive load steps along the symmetry axis (a), along the third 
dimension, the y-axis (b) and 3D representation of the x-y load for the last load step (c). 

II.C.3. Results of the 3D model 

n the pad 
The compressive stress along the y axis in the aluminium is firstly investigated. The 

compress e depicted in the Figure V.24 (a) and 
(b)

 

II.C.3.a) Stress distribution i

ive and Von Mises stresses for the last step ar
. This loading step is considered due to the higher stress induced and the use of elastic 

material properties in the pad. As expected, both stresses decrease linearly on the y-axis. At 
the end of the scrub width, the compressive stress is null, and the Von Mises one is low (few 
tens of MPa). 
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Figure V.24. Compressive stress (σz) applied along the y-axis in the aluminium (z=0) (a), and corresponding 
Von Mises stress (b).  

on Mises stress in the various oxide layers of the pad is shown in the 
igure V.25. The maximum of the compressive stress is found in the aluminium, as shown in 

the

 
Moreover, the V

F
 Figure V.26 a). The maximum Von Mises stress in the structure is found in the pad open 

oxide layer, similarly to the 2D model (see Figure V.26 a). 
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y

Figure V.25. View of the Von Mises stress in the oxide layers of the pad. 

-30

-25

-20

-15

-10

-5

0
-4 -3 -2 -1 0

σz (Gpa)

z 
(µ

m
)

a)

-6

-5

-4

-3

-2

-1

0
0,0 0,5 1,0 1,5 2,0 2,5

σvm (GPa)

z 
(µ

m
)

b)

Figure V.26. Compressive stress applied along the z-axis (a), and corresponding Von Mises stress (b). 

In the chapter 4, increasing the thicknesses of the aluminium and the pad open oxide layers 
have bee . It has been obtained by means of 
ex

II.C.3.b) Evaluation of the stacking effect 

n shown to induce a reduction of the failure hazard
perimental tests (i.e. cracks occurrence) and numerical modelling (using stress analysis). 

Thus, in this section, the extreme stacks are weighted, i.e. thinnest thicknesses of alucap and 
PO versus the thickest ones. 
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Figure V.27. Maximum compressive (a) and Von Mises stress in the various layers of the pad for the thinnest 
and thickest pad stacks. 

aximum stresses in the various layers of the pad. Increasing 
the thickness of the aluminium and pad open are shown to reduce the stresses in the PO and 
IM

 
The Figure V.27 shows the m

D3 layers by respectively 0.9% and 14.5%. Yet, low stress variations in the layers are 
observed since elastic isotropic material properties are used for the layers (and particularly the 
copper ones, where the design has been shown to have an effect on the stress in the oxide). 
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Addition of details within the pad such as vias implies stress concentration points and as a 
consequence higher variations between the stacks. 

On the Figure V.27 (b), slightly higher maximum stress is observed in the aluminium layer 
for

II.C.4. Insertion of an elastic-plastic behaviour for the aluminium 

II.C.4.a) Selection of the elastic-plastic law and values 
The E deformation of the 

alu

ress that the 
ha

 the thickest stack. It is explained by the Hertz contact profile in the pad. Indeed, the stress 
peak is obtained in the bottom of the aluminium layer. Hence, this result is different from the 
simulations made using the 3D explicit model (see Figure IV.25, in the previous chapter). 
However, during the EWS test, the aluminium undergoes high plastic deformation which is 
not reproduced in the two numerical models. In the section I.B.3 in the chapter 4, the failures 
obtained with the Berkovich tip during the nanoindentation have shown that the fracture 
presumably starts in the top of the oxide layer.  

WS and the nanoindentation have underlined the plastic 
minium capping the pad, and its role as a stress buffer for the oxide layers underneath. 

Thus, elastic-plastic material properties are introduced in the 3D implicit model.  
For a perfectly elastic-plastic solid, the Tabor relationship [Tabor, 1948] exp
rdness of a material under an indenter is a constant factor of the yield stress: 

yH σ*3=  (V. 10) 
The hardness of the aluminium has been m sured by means of CSM nanoindentation and 

fou
made. 

Ind

ea
nd to be close to 0.6GPa. Thus, the yield stress of the aluminium is set to 200MPa.  
The choice of the tangent modulus (describing the plastic regime) is arbitrarily 
eed, the stress strain curves, and consequently the tangent modulus defining the plastic 

regime for such thin films depend on the process, the thickness… Thus, in the numerical 
model, it is either fixed at 6GPa or at 40GPa. These tangent moduli are selected to have a 
trade-off between noticeable plastic deformation and the convergence issues in the numerical 
model. The lowest value is selected to slightly increase the plastic deformation. Finally, the 
stress-strain curve for the aluminium is depicted in the Figure V.28 for the lowest tangent 
modulus. 
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Figure V.28. Stress-strain curve for the aluminium layer (plastic tangent modulus equal to 6GPa). 

hen, in the numerical model, two plastic options can be selected [Ansys, rel. 11], i.e. the 
Bi

 
T
linear ISOtropic hardening (BISO) and the Bilinear KINematic hardening (BKIN). The 

BISO option assumes an isotropic work hardening, which is produced by a homogeneous 
multiplication of the number of dislocations. The BKIN assumes that the total stress range is 
equal to twice the yield strength, so that the Bauschinger effect is included. This effect is 
related to a heterogeneous distribution of the dislocations, and so the internal stress resulting. 
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Due to the various assumptions (particularly the stress range) and the best results obtained for 
large deformations, the bilinear isotropic behaviour is selected. 

The use of elastic-plastic properties increases the CPU time consumption. Indeed, the 
duration to solve the model with 10 loading steps goes from about 4 hours to about 20 hours. 
It is explained by the necessity to introduce substeps for the various loading steps to ensure 
the convergence of the numerical model. 

As a matter of fact, the introduction of plasticity into the numerical model allows checking 
through comparison with actual scrub mark, the reliability of the loading conditions. Besides, 
the effect of the number of passes can finally be investigated. 

II.C.4.b) Determination of the lateral profile 
In the section II.C.3.a), a linear decrease of the stress along the y-axis has been applied. 

The use of elastic plastic material properties for the aluminium allows the observation of its 
plastic deformation and the possibility to reproduce the shape of the scrub mark. Then, three 
different profiles along the y-axis are selected: 
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These loading profiles of pressure are depicted in the Figure V.29. The scrub width is set to 

9µm, which is about the half width for the scrub mark for a 90µm overdrive (see section I.B.1 
in the chapter 3). The compressive stress resulting is shown in the Figure V.30.  
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Figure V.29. Pressure profiles along the y-axis for the 
last loading step. 

Figure V.30. Compressive stress in the aluminium for 
the various loading profiles. 

 
The top view of the equivalent cumulated plastic strain in the aluminium for the linear 

profile is shown in the Figure V.31. The plastic deformation is cumulated over the 6 
successive loading conditions applied to the pad to reproduce the EWS. The plastic 
deformation in the lateral direction does not exceed 40% of the scrub width. Hence, this 
profile does not allow a fair reproduction of the mark. Similar view of the plateau loading 
profile is depicted in the Figure V.32 a). The plastic deformation of the aluminium does not 

 - 183 -



Chap 5.Enhancement of the numerical and experimental methods and tools to evaluate the robustness of pads 

match the observation of an actual scrub mark. Moreover, stress peaks are observed in all the 
layers due to the sharp variations of the loading condition at the probe mark edge. Thus, this 
loading profile does not reproduce the scrub mark. 
 

a) b)

 
Figure V.31. Top view of the equivalent cumulated plastic strain in the aluminium for the linear loading profile 
(a) and cross-section view of the equivalent plastic strain in the pad. 

a)

Stress peak

b)

Figure V.32. Top view of the equivalent cumulated plastic strain in the aluminium for the plateau loading 
profile (a) and Von Mises stress in the oxide layers for the same profile (b). 
 

Then, the cumulated equivalent plastic strain in the aluminium for the parabolic loading 
profile is investigated, as shown in the Figure V.33. The plastic deformation in the y-direction 
reaches about 70% on the top of the layer. Moreover, this value reaches almost 100% while 
performing similar observation on the bottom of the aluminium layer, as depicted by the 
Figure V.33 b). Wider plastic deformation is observed at the bottom of the aluminium. It has 
been previously demonstrated that the maximum stress in the aluminium is located at the 
bottom of the layer, and then the threshold to plastically deform is more rapidly obtained in 
that location. 

 

20µmb)

Figure V.33. Cumulated equivalent plastic strain: top (a) and bottom (b) views of the aluminium. 

a) 
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20µm

a) b)

 
Figure V.34. Optical microscopy top views of scrub marks in the pad, for OD 90µm, after 5 passes (a) and 10 
passes (b). 
 

Actual probe marks are shown in the Figure V.34. The comparison between the plastic 
deformation (particularly the top view) in the simulated model and the actual ones shows a 
quite good reproduction. 

The actual probe mark is longer than the simulated one (Figure V.33). It is explained by 
the low pressures applied to the pad in the numerical model during the first loading steps. 
Modifying the linear increase of the vertical reaction force and decrease of the contact radius 
can reduce this effect. Yet, for the EWS tests, it can mean that at the beginning of the test (i.e. 
at the impact location), the aluminium is not plastically deformed. In the literature, Strom 
[Strom, 1998] has observed similar results and shown that the probe mark can be small 
compared to the probe path for extreme cases, as shown in Figure V.35. Nevertheless, in-situ 
observation of the EWS test is complex for the cantilever probe card and needle geometry 
used. However, this assumption is probably correct. 
 

 
Figure V.35. First touch and overtravel positions and resulting probe mark for two different needles, after 
[Strom, 1998]. 
 

II.C.4.c) Effect of the EWS tests parameters 
The effect of the overdrive and the number of passes are evaluated with the 3D implicit FE 

model and elastic-plastic material properties. More specifically, their effect on the stress in the 
structure and the plastic deformation of the aluminium, i.e. the probe mark size, is 
investigated. 

Much longer probe marks have been observed with the optical microscope in the section 
I.B.1 in the chapter 3. The Figure V.36 shows the cumulated equivalent plastic strain in the 
aluminium. As expected, the plastic deformation is longer and wider while the OD increases. 
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The maximum plastic strain in the aluminium layer and the maximum Von Mises stress in the 
oxide layer increases as well.  

 

a) b)

Figure V.36. Bottom view of the cumulated equivalent plastic strain in the aluminium, for overdrives of 50µm 
(a) and 90µm (b). 
 

On the effect of the number of passes, due to an important computation time, only probing 
tests with one and two passes are evaluated. The second pass induces a small increase of the 
Von Mises stress in the oxide (2.532GPa, +1.4%) and a small increase of the plastic 
deformation of the aluminium (16.79.10-3, +2.4%). These small augmentations are related to 
the small variations of the measured vertical reaction force, while increasing the number of 
passes (see section II.A.3.b)). 
 

a) b)

Figure V.37. Von Mises stress on the structure at the last step of the first pass (a) and at the first step of the 
second pass (b). 
 

Some compressive residual stress in the aluminium is observed after the first pass 
(σVM=367MPa), as depicted in the Figure V.37 b). Residual stress is also observed in the pad 
open oxide layer. 

Finally, the introduction of elastic-plastic material properties for the aluminium in the 
numerical model allowed an enhanced determination of the probe mark, and more specifically 
of the stress and strains of the lateral profile. Moreover, the same trends as actual probe mark 
measurements have been observed while considering the plastic deformation of the pad 
capping layer. Despite the good reproduction of the probe mark, some additional fine tuning 
of the aluminium properties (tangent modulus), and of the loading profile (linear decrease of 
the contact radius) can further improve it. However, the use of elastic-plastic material 
properties implies a non negligible increase of the CPU time per simulation. Then, the for 
large pad studies, the 3D model with the elastic material properties is trustable and sufficient 
to evaluate and rank various pad layouts. 
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II.D. EWS simulations: explicit versus implicit 3D modelling 
In this section the explicit (using ANSYS LSDyna, see previous chapters) and the implicit 

(using ANSYS multiphysics, current model) 3D finite element models are compared, 
focussing on the expectations for the evaluation of the test and pad layouts parameters. 
 
 

Explicit 3D model Implicit 3D model 

EWS test 
parameters 

Needle dynamics Very efficient Not available 
Chuck velocity and 
vibrations Very efficient Not available 

Overdrive Very efficient Very efficient 

Number of passes 
Moderate: high CPU 

consumption, only through 
variations of the reaction forces 

Moderate: use of elastic-plastic 
properties but no modelling of the 

contact 
Other test 
parameters (general 
expectations) 

Efficient 
Moderate due to the loading 

conditions and the absence of 
contact 

Pad layouts 

Effect of layer 
thickness (alucap, 
pad open…) 

Very efficient Very efficient 

Effect of a given 
design (e.g. 
presence of via) 

Moderate: good results but 
limited due to the use of 
homogenized properties 

Very efficient 

Pad layout (e.g. 
lines vs. slots) Moderate: same as previously Very efficient 

Other pad layout 
parameters (general 
expectations) 

Moderate due the non 
representation of small details 

Very efficient: Model developed 
specifically for the pad layout 
comparison, no size limitation 

Table V.4. FEM ability to evaluate the test parameters and pad layouts. 
 

The Table V.4 summarizes all the capabilities of the two numerical models. In a general 
manner, the explicit model is very efficient to evaluate all the test parameters due to the 
reproduction of the contact between the pad and the probe needle. Then, for the analysis of 
pad layouts, this model is efficient while large details and variations are investigated. While 
studies of small details are required, the use of the homogenization technique can reduce the 
investigation field. On the contrary, the implicit model is not very efficient to evaluate the 
tests parameters because the probe is not introduced in the model. However, it is dedicated to 
the study of pad layouts, and the very small mesh allows the introduction and the evaluation 
of very small details. Besides, the CPU time consumption difference between the two models 
has to be considered for large designs of experiments. Actually, the simulation of the explicit 
model lasts about four days, while this of the implicit one only takes a few hours. 

Finally, depending on the requirements of the study, both finite element models are very 
useful and efficient to evaluate the probing related issues in the pad. 
 

III. Conclusions 
 

In this chapter, both experimental and numerical efficient industrial tools are proposed for 
the optimization of the pad structure. For the nanoindentation, the comparison between the 
Berkovich and the cube corner tip is initially realized on the tip’s geometrical point of view. 
Thus, the Berkovich tip is shown to induce larger indent for a similar maximum displacement 
into the structure. Then, the effect of the choice of tip on the load-displacement curve is 
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considered. The cube corner tip is seen to induce high stresses and strains near the tip, and 
exhibits a local behaviour of the pad. However, it also implies a larger dispersion of the 
measurements than the Berkovich tip. After that, the material properties of the copper 
deduced from the indentation with both tips is described, and lower values of the Young’s 
modulus and hardness are obtained with the cube corner tip due to the Oliver and Pharr model 
limitation (pile-up not taken into account). Finally, general guidelines for the pad’s study are 
given and also some indications about the tip selection while indentation with both tip cannot 
be performed.  

In a second part, a three dimensional implicit finite element model is setup to reproduce the 
EWS. This model is based on all the experimental and numerical information previously 
collected to define relevant loading conditions. Initially, a 2D model is developed to test the 
ability of successive Hertz type loading conditions to reproduce the overall probing test. Once 
the loading conditions of the two dimensional model have shown their ability to reproduce the 
EWS ones, this model is extended to a 3D finite element model. Then, elastic-plastic material 
properties are introduced for the aluminium layer, to check the ability of the model to 
reproduce the probe mark. Hence, an enhanced loading profile is selected. The effect of the 
overdrive and the number of passes is shown to increase the plastically deformed aluminium 
area, i.e. the scrub mark, similarly to actual tests. These results on the elastic-plastic model 
have proven the ability of the loading conditions applied to reproduce the EWS. As a 
conclusion, the 3D explicit and implicit finite element models are compared and the 
advantages and drawbacks of each of them are underlined in the frame of the probing test and 
pad studies. 
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General Conclusion 

 

 
Conclusion and perspectives 

 
 

I. Synthesis 
 

The first chapter initially describes the main stages of the manufacturing of an integrated 
circuit. A focus is made on the pad, which corresponds to an opening in the chip to realize the 
electrical connections with the outer part before the packaging operations. In the 
semiconductor industry, the current trend to reduce the critical dimensions and introduce low-
k, brittle dielectric materials, threatens the integrity of the bond pad and failures in the oxide 
layers of the interconnections are observed.  

On pads, the electrical wafer sort (EWS), or probing, is performed to check the electrical 
functionality of the die at the wafer level. During this test, a contact between a stiff needle and 
the aluminium on top of the pad is established. As a consequence, the aluminium undergoes 
high damages and the integrity of the layers underneath is a concern. Then, the various 
assemblies that enable the electrical connections with the package are presented. A particular 
focus is made on the wire bonding, which is the most common way to achieve the connection. 
It consists in bonding the pad to the outer part of the I.C. with gold or copper wires. The wire 
pull test and the ball shear test allow the characterization of the wire adhesion and the 
intermetallic compounds created. The failure modes observed during these tests can reveal a 
mechanically weak structure. 

 
In the second chapter, the various experimental techniques to characterize and gain insight 

on the failures in the pad such as the FIB milling followed by SEM observations or the optical 
profilometry are introduced. Afterwards, an experimental method, the nanoindentation, is 
used to reproduce the EWS loading conditions and compare the mechanical robustness of the 
pads. This experimental technique is set up to reproduce the loading conditions and failures 
related to EWS and assembly steps. The Berkovich and cube corner tips, used during testing 
are also presented.  

Then, the explicit finite element model to mimic EWS is described, starting with the 
description of the geometries of the needles investigated and the geometrical model 
corresponding to the pad. The physical (material properties) and numerical (meshing, 
effective volume…) parameters used in the model are justified. In order to build the model 
and to fairly reproduce the probing, the calibration is described and a good agreement is 
obtained between the experimental dedicated measurements and the model. Finally, a modal 
analysis is performed to evaluate the influence of the numerical (mass scaling) and physical 
parameters (sliding). 

 
In the third chapter, the damages induced by the test and process parameters are 

considered. The objective is to induce failures (cracks during EWS or peeling during wire pull 
tests) in the structures to discriminate the parameters, even if these must be avoided during the 
manufacturing of an integrated circuit. In that frame, the current inertial effects during the 
probing (velocity and vibrations of the chuck) are initially shown by means of the evaluation 
of the simulated reaction forces to unlikely induce the cracks in the pad. Then, pad integrity 
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analyses on dies and the numerical model indicate that the increase of test parameters (the 
overdrive from 50µm to 90µm and the number of passes from 5 to 10) is detrimental to the 
aluminium capping layer and also to the pad beneath. 

Then, several bonding process parameters (bonding power, time and force and contact 
force) are evaluated through designs of experiments. It is demonstrated for the gold bonding 
that the increase of the parameters altogether induces an increase of the diameter and a 
decrease of the height of the welded ball. The shear tests provide insights concerning the 
effect of the bonding parameters on the gold ball adhesion to the pad. Due to the current trend 
to move toward copper bonding for process overall cost reduction, similar study is performed 
for such wire. Thus, the contact force and the bonding power are questioned. The increase of 
the bonding power (from 70mW to 90mW) and the reduction of the contact force (from 50mN 
to 30mN) reduce the peeling occurrence in the structure. Hence, the contact area between the 
pad and the welded ball is highlighted to be a key parameter to avoid fractures in the 
interconnections. In parallel, the shear tests showed that contrary to gold bonding, the increase 
of the bond strength between the copper ball and the aluminium pad is often related to an 
increase of the peeling risks. Moreover, in this chapter, guidelines to control test and process 
parameters and reduce the fracture hazard in the pad structure are proven. Finally, it is 
demonstrated that the process and test parameters show higher preponderance than the layout 
ones to imply failures in the pad. However, during the die manufacturing, it is often not 
possible to modify the parameters aforementioned, which are defined with respect to a 
product application. 

 
In the fourth chapter, most of the currently available designs are considered through 

experiments and modelling in order to strengthen the pad robustness. Initially, many EWS 
tests, wire pull and shear tests and related experimental characterizations are performed to 
gain insight on the failure mechanisms. These tests also provide a baseline for the ranking of 
the structures according to their mechanical robustness for further comparison with 
nanoindentation and simulations. Cracks and peeling cases are located in the pad open oxide 
or within the inter-metal dielectric layers. More precisely, the geometrical singularities in the 
pad (for a given layout) are pointed out to be detrimental to the pad robustness. On the 
contrary, the protective behaviour of aluminium and copper during these tests and their role 
on the mechanical robustness of the pad is underlined. Then, the finite element model and the 
nanoindentation are used to mimic these test and process. The stress analysis performed on 
the results from the numerical model provides reliable trends for the structure optimization. 
Similarly, for the nanoindentation, the maximum displacement into surface and a novel 
indicator, which allows the determination of the critical load for the crack appearance in the 
oxide layer, are successfully employed to reproduce the actual tests results. 

Concerning the pad designs effects, all the techniques show that increasing the thicknesses 
of the aluminium (from 0.88µm to 1.2µm) and pad open oxide (from 0.5µm to 0.7µm) layers 
is related to a reduction of the failure occurrence in the pad open oxide and inter-metal 
dielectric layers. Then, the metal density of the copper layer is demonstrated to have an effect 
on the mechanical robustness of the pad. However, the copper density variation is intimately 
linked to the insulating materials surrounding it (presence of silicon glass or low-k). The 
presence of the pad open oxide layer is observed to improve the resistance to compression. 
However, while vias are inserted within the layer, under the probing or the bonding areas, the 
numerous geometrical singularities introduced as well increase dramatically the number of 
peeling cases. The layout of the top copper level can be modified in order to reduce the crack 
occurrence. Indeed, the pad layout with slotted plates, and particularly with smallest oxide 
holes, should be preferred to wide copper lines while designing the pad. The location of the 
plates with respect to the probing location is also shown to reduce the crack occurrence. 
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Finally most of the pad layout parameters investigated have an effect on the mechanical 
robustness of the pad, and their modification according to the results previously described 
helps to reduce the fracture hazard. Additionally, a full set of tools is given to compare the 
pad architecture. The use of nanoindentation and finite element modelling is able to reproduce 
most of the probing and some of the wire bonding issues. Hence, these methods can be used 
for technology development and to solve crises by giving reliable alternative to the expensive 
EWS and wire bonding operations applied to the pad.  

 
In the last chapter, general nanoindentation guidelines for the evaluation of the mechanical 

robustness of pads are given and an implicit finite element model dedicated to the evaluation 
and enhancement of the pad structures is set up. Indeed, in an industrial context, fast and 
reliable prototyping are required. In that frame, the Berkovich and the cube corner tip are 
initially compared from a geometrical point of view. Thus, the Berkovich tip is shown to 
induce larger indent for a similar indentation depth. On the contrary, the cube corner tip 
induces higher stresses and strains at the vicinity of the tip, and exhibits a local behaviour of 
the pad. Then, the effect of the tip choice on the load-displacement curve and for the 
comparison of pad structures is discussed. Finally, rules for the study of pads and for the tip 
selection are given.  

In a second part, an implicit finite element model is setup to reproduce the EWS. This 
model is based on all the experimental and numerical works previously achieved to define 
relevant loading conditions. Elastic-plastic material properties are introduced for the 
aluminium layer, to check the ability of the model to reproduce the probe mark. Hence, an 
adequate loading profile is deduced. The effect of the overdrive and the number of passes is 
shown to increase the plastically deformed aluminium area, i.e. the scrub mark, similarly to 
actual tests. These results on the elastic-plastic model prove the ability of the loading 
conditions applied to reproduce the EWS. Finally, the 3D explicit and implicit finite element 
models are compared and the advantages and drawbacks of each of them are underlined in the 
frame of the control of the probing test and the optimization of pad architectures. 

 

II. Perspectives  
 
The perspectives of this work are multiple. Concerning the study of pads, the correlations 

have been established between the experimental and numerical techniques. However, the 
difficulty to determine a critical load prior to failure has been underlined. This is due to the 
complexity of the multilayer system composing the pad structure and to the lack of tools at 
the sub-micrometre scale for such characterization. These thresholds prior to failure can be 
used during modelling to rank the structures and define critical loading conditions. In 
addition, some deeper understanding of the failure initiation and propagation can provide 
insights with respect to the enhancement of the pad structure. It can be achieved through the 
development of in-situ techniques during the test and process. 

Concerning the reproduction of the test and process, nanoindentation has shown some 
limitations to reproduce mechanical issues induced by the wire bonding. Therefore, additional 
techniques such as scratch test after shallow indentation can provide complementary 
information. Indeed, the small lateral displacements could reproduce the shear stresses 
undergone by the pad during the application of the ultrasonic power during the bonding 
process. In that frame, the wire pull and shear tests, which induce additional tensile and/or 
shear stresses in the structures are also questioned for their efficiency to characterize the 
effect of the bonding process itself. The development of additional standards for the bond 
characterization to evaluate the damages due to process only and obtain information such as 
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its induced residual stress in the structure can further allow the optimization of the process 
parameters and the bond pad architecture. Thus, a characterization such as the removal of the 
ball, the aluminium and the barrier layers by chemical etches similarly to the pad integrity test 
can provide some of the information (on cracks in the interconnections). 

 
Then, the forward step of the semiconductor industry to reduce the critical dimensions 

requires the continuous development of new finite element models to follow the evolution of 
the manufacturing changes. Indeed, numerical model describing the EWS test with cantilever 
probe card has been successfully set up. Yet, in the next few years, the pad pitch diminution 
will probably imply to move toward probing with vertical probe cards. Even if the root causes 
for the failure hazard are expected to be similar to these observed for current probe cards, the 
ratio between the vertical and the lateral reaction forces radically changes, requiring the 
development of new explicit models and corresponding calibration to gain insight on the tests. 

In addition, finite element models, either using implicit or explicit schemes are also 
required to evaluate the assembly processes, obviously the wire bonding but also the flip chip 
and the three dimensional integration that also occurs on the pads and raise some pad integrity 
concerns. For the wire bonding the numerical model would consist in fact in a least two 
models: one for the bonding process itself, and one or more for the wire pull and ball shear 
tests, within residual stresses due to the wire bonding process are introduced. These numerical 
models can allow the reproduction of the results obtained from the actual tests and the 
reduction of the failure occurrence in the interconnections. 
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Appendix A. Comparison between nanoindentation, EWS and wire bonding 

A. Comparison between nanoindentation, EWS and wire bonding 
 

During the development of new applications of pads on the CMOS 180nm technology 
node, some mechanical issues have been observed in the pads with buchettes. As a 
consequence, a design of experiment with several pad architectures is performed. Thus, 
nanoindentation with Berkovich and cube corner tip is performed in parallel to actual EWS 
test and bonding operations (probing and bonding performed by ST team).  

A.1. Pad layout description 
For such a technology node, only aluminium is used for the metal levels, whether located 

on top of the structure or inside (aluminium is replaced by copper in the latest technology 
nodes), as depicted in the Figure 1. During the DOE, five different pad architectures are 
considered to solve the mechanical issues observed after EWS. Within the DOE, the effect of 
the metal density and the design of the M2 aluminium layer and the presence of vias between 
the layers are investigated. The Figure 2 shows the four distinct M2 layouts considered, with 
varying aluminium density from 0% to 94%. 
 

M3: aluminium

M2

M1

Via 1 & Via 2

Figure 1. Schematic representation of the CMOS 180nm pad. 

(a) “Buchettes”, 4 lines 
turned 90° periodically 

(b) Squared M2 (c) Full M2 (d) Empty M2, i.e. only 
oxide 

Figure 2. Schematic representation of the M2/V2 pad layouts (orange refers to aluminium, black refers to vias 
and white to oxide). 
 

The various layouts investigated during the DOE are depicted in the Table 1. The standard 
configuration that initially raises questions is the configuration 1, within the second 
aluminium level is made from “buchettes”. 
 

Configuration M2 layout Presence of V1 and V2 
1 Buchettes Yes 
2 Full Yes 
3 Full No 
4 Squared No 
5 Empty No 

Table 1. Pad layouts investigated during the DOE. 

 - 196 -



Appendix A. Comparison between nanoindentation, EWS and wire bonding 

A.2. EWS results 
Electrical wafer sort have been performed on these pads. The electrical response can then 

be evaluated. While mechanical issues occur in the pad, short circuits imply a null electrical 
response. Hence from the measurements, the pads 1, 2 and 3 depict some failures through all 
the performed trails. On the contrary, no electrical issue is detected for the pad structures 4 
and 5. Some pad integrity tests are performed on the pads, more specifically, 10 dies on the 
edge of the wafer and 10 dies in its centre are randomly investigated. For the pad layouts 2 
and 3, cracks are observed in most of the pads, and correlated to the electrical results. For the 
pads configurations 4 and 5, no crack in observed in accordance with the electrical 
measurements. For the pad option 1, no crack is observed during the inspection, but an 
inspection on the samples that failed to pass the electrical tests depicts some failures. Hence, a 
ranking according to the crack occurrences after EWS is established for these structures: 

32145 ≈>>>  (1) 
 
The effect of the via is not shown to be significant. Moreover, the layout of the M2 level 

and more specifically the decrease of the aluminium density are shown to increase the 
mechanical robustness of the pads. Indeed, the latter effect is explained by the material 
properties of the aluminium and the oxide. 

A.3. Nanoindentation tests 
On each pad structure, 15 indentation tests are performed on the centre and the edge of the 

wafer for each layout, using the two tips. 

A.3.1. Results with the Berkovich tip 
The maximum load is fixed at 127.5mN. As described in the chapter 4, the maximum 

displacement into the surface is used to compare the resistance to the compression for each 
layout, as depicted on the Table 2. 
 

Pad layout Displacement at max. load in the 
centre of the wafer (nm) 

Displacement at max. load at the 
edge of the wafer (nm) 

1 1913 (23) 1864 (23) 
2 1925 (22) 1878 (26) 
3 1925 (40) 1881 (22) 
4 1873 (23) 1823 (31) 
5 1861 (25) 1788 (25) 

Table 2. Maximum displacement and its standard deviation for the indentation with the Berkovich tip on the 
centre and at the edge of the wafer. 
 

Hence, from the maximum displacement reach at the maximum load, a ranking according 
to the structures can be established: 

32145 ≈>>>  (2) 
Yet, for the measurements with the Berkovich tip, is some cases, the standard deviation is 

higher than the shift between the curves. As a consequence, some measurements with the 
cube corner tip are complementary achieved. 

A.3.2. Results with the cube corner tip 
For the nanoindentation with the cube corner tip, the load is set to 14.7mN. No crack is 

observed in the oxide crack, probably due to the mechanical properties of the aluminium. 
Then, the results of the measurements are shown in the Figure 3 and summarized in the Table 
3.  
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Figure 3. Averaged load versus displacement curves for the nanoindentation with the cube corner tip in the 
centre of the wafer. 
 

Pad layout Displacement at max. load in the 
centre of the wafer (nm) 

Displacement at max. load at the 
edge of the wafer (nm) 

1 1765 (29) 1706 (22) 
2 1882 (38) 1848 (27) 
3 1845 (35) 1825 (20) 
4 1759 (24) 1768 (29) 
5 1692 (17) 1684 (23) 

Table 3. Maximum displacement and its standard deviation for the indentation with the cube corner tip on the 
centre and at the edge of the wafer. 
 

Hence, from the maximum displacement reach at the maximum load, a ranking according 
to the structures can be established: 

32145 ≈>>≈>>  (3) 

A.4. Wire bonding 
Some wire pull and shear tests have been performed by implied ST teams after gold wire 

bonding. These have been performed on the standard pad (layout 1), and on the optimized 
option from the EWS and nanoindentation results (layout 5). Thus, they obtained for both 
layouts neck breaks during pull tests (i.e. pass the test). However, a deeper investigation to 
observe cracks after bonding shows that a very low amount of the pads depicts some cracks 
for the option 5, while about half of the pads with layout 1 show have failures. The effect of 
the thermal aging is even more detrimental to the layout 1. 

A.5. Correlations between techniques 
The five pad layouts are investigated by means of actual EWS tests and nanoindentation. 

As shown in the chapter 4, nanoindentation with the two tips is a very efficient tool to 
reproduce the EWS loading conditions. Indeed, similar ranking according to the mechanical 
resistance of the structures is observed for the two tests. Moreover in that case, the 
nanoindentation results are in accordance with those of the wire bonding, at least for the 
comparison between the layouts 1 and 5.  
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B. DOE used for the evaluation of the test and assembly parameters and 
the pad layout designs 
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The table describes the use of the DOE performed for the investigation of the test and 

design parameters (from chapters 2 to 5). 
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C. Acronyms 
 
BD: Ball Diameter (wire bonding parameter) 
BE: Back End 
BEoL: Back End of Line 
BF: Bonding Force (wire bonding parameter) 
BH: Ball Height (wire bonding parameter) 
BOP: Bonding over passivation (presence of an oxide layer between aluminium and copper) 
BP: Bonding Power (wire bonding parameter) 
BT: Bonding Time (wire bonding parameter) 
CC: Cube Corner tip (nanoindentation tip)  
CF: Contact Force (wire bonding parameter) 
CMOS: Complementary Metal Oxide Semiconductor 
CPU: Central Processing Unit 
CSM: Continuous Stiffness Measurement 
DOE: Design Of Experiment 
EBSD: Electron BackScatter Diffraction 
EDX: Energy Dispersive X-ray spectroscopy 
EFO: Electrical Flame Off 
EWS: Electrical Wafer Sort 
FAB: Free Air Ball 
FE: Front End 
FEM: Finite Element Model 
FIB: Focussed Ion Beam 
HAZ: Heat Affected Zone (wire bonding process) 
HTS: High Temperature Storage 
IC: integrated circuit 
IMC: InterMetallic Compound 
IMD: InterMetal Dielectric 
MX: Metal level (X=1...7) 
OD: OverDrive (EWS parameter) 
PC: Probe Card (EWS) 
PF: Pull Force 
PO: Pad Open oxide (layer below the aluminium) 
SEM: Scanning Electron Microscopy 
SF: Shear Force 
SS: Shear Strength 
TD: TouchDown 
TSV: Through Silicon Vias 
USG: Undoped Silicon Glass 
WB: Wire Bonding 
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La tendance actuelle dans l’industrie des semi-conducteurs est à une réduction des 
dimensions, que ce soit au niveau de la taille des transistors ou de leur volume global 
(intégration tridimensionnelle). De plus, de nouveaux matériaux fragiles (oxydes faible 
permittivité) sont employés, et de là, la robustesse mécanique des architectures tend à 
diminuer. Dans cette thèse, on s’intéresse plus précisément aux plots de connexion (pads) qui 
permettent de relier les circuits intégrés au monde extérieur. Ces derniers se composent du 
volume des interconnexions situé sous cette zone non couverte par des couches de 
passivation, qui protègent aussi bien physiquement que chimiquement la puce (cf. Figure 1). 
Sur ces pads, des tests de vérification de fonctionnalité et des opérations d’assemblage, ou 
connexions entre la puce et le boitîer sont réalisés. Au cours de ces tests, des fissures 
apparaissent dans les interconnexions provoquant des courts circuits et de fait rendent la puce 
non fonctionnelle.  

Les objectifs sont donc d’une part de mieux comprendre les causes d’apparition de ces 
défaillances, afin de définir des règles de dessin au niveau des architectures de pads. D’autre 
part, il s’agit de proposer des méthodes expérimentales et numériques simplifiées mais 
donnant des tendances fiables. Ces outils doivent permettre de reproduire ces tests et 
assemblages pour comparer diverses architectures de pad dans le cadre industriel du 
développement technologique ou lors de la résolution de crises.  

 

Aluminium

TaN/Ta

Passivation

Oxyde

M1 & M2
Cuivre (M3)
Cuivre (M4)

Vue de dessus

5mm

Figure 1. Vue de dessus de puces (à gauche) et vue en coupe (MEB avec un angle de 52°) d’un pad CMOS 
120nm. Ce dernier contient 4 niveaux de cuivre (M1 à M4), avec un isolant entre ces couches (oxyde). La 
surface du pad se compose d’une couche d’aluminium. 

 

I. Description des tests et processus induisant des défaillances dans les pads 
 
Dans cette première partie, les tests de tri électrique des plaques (en anglais « Electrical 

Wafer Sort », EWS), ainsi que les processus d’assemblage des puces, et en particulier les 
connexions grâce à des fils d’or ou de cuivre (en anglais « Wire bonding ») sont décrites. Puis 
les défaillances induites dans les architectures de pad au cours de ces opérations sont 
introduites. 

I.A. Tri électrique des plaques (EWS) 

I.A.1. Description du test 
Le test électrique des plaques est effectué à la fin des opérations de dépôt de couche sur le 

silicium et de réalisation des interconnexions entre les différents niveaux de cuivre. Il permet 
de vérifier la fonctionnalité électrique de la puce avant sa mise en boitîer. Ce tri est effectué 
depuis plusieurs dizaines d’années et consiste en établir un contact entre un élément de 
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contact (pointe, fils…) et le pad. Le résultat de ce frottement laisse une empreinte dans 
l’aluminium situé en surface du pad. A une échelle plus grande, un testeur, se composant 
d’une carte à pointe est utilisé pour faire les tests et distinguer les bonnes puces des mauvaises 
(voir Figure 2). 

Le test se compose d’un cycle charge-décharge durant lequel une pause sert à effectuer la 
mesure électrique. Les paramètres importants au cours de ce test sont : 

• le déplacement vertical de la plaque servant à déplacer les wafers, 
• le nombre de passage nécessaire avant d’avoir une réponse électrique correcte de la 

puce, 
• la vitesse de déplacement de la plaque automatisée. 

 

 
Figure 2. Carte à pointes cantilever (à gauche) et vues des pointes la composant (à droite), d’après [Vallauri, 
2007]. 

 

I.A.2. Défaillances associées et méthodes d’observation 
Au cours du tri des puces, l’aluminium en surface est sévèrement endommagé, comme le 

souligne la Figure 3. Des défaillances apparaissent également dans les niveaux 
d’interconnexion sous le pad. Actuellement, la méthode d’observation la plus répandue pour 
évaluer si une structure présente des défaillances ou non est un test d’intégrité du pad. Sur un 
échantillon testé, une solution chimique puis un plasma sont utilisés pour enlever les couches 
d’aluminium et de TaN/Ta en surface de la structure. La gravure chimique permet une 
visualisation de l’oxyde situé sous le pad. A la suite de cette gravure, une autre solution 
chimique s’infiltrant à travers les fissures dans l’oxyde provoque une gravure du cuivre, et 
permet une meilleure visualisation de ces défaillances sous microscope optique. 

 

Fissure

Figure 3. Observation en 3 dimensions de la surface d’un pad 
après EWS par profilométrie optique. 

Figure 4. Révélation d’une fissure au cours du 
test d’intégrité du pad. 
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I.B. Assemblage filaire 

I.B.1. Description du processus 
La technique d’assemblage filaire (en anglais : « Wire bonding ») est la plus répandue en 

ce qui concerne la connexion entre le pad et le boitîer. Bien qu’ayant légèrement évoluée au 
cours des dernières décennies, cette technique a été employée dès la fin des années 1950 
[Anderson, 1957]. La technique actuellement employée est basée sur un soudage thermo-
sonique en plusieurs étapes afin de souder une boule d’or ou de cuivre sur le pad en 
aluminium. Elle combine l’utilisation d’ultrasons et un chauffage des puces permettant de 
faciliter le soudage et entraîne la création de composés intermétalliques entre le matériau du 
fil et le pad. L’utilisation de l’or pour réaliser ces connexions est la plus répandue. Cependant 
pour des raisons économiques principalement, l’utilisation du cuivre se développe. Comparé à 
l’or il a des avantages tels que sa meilleure conductivité électrique et la plus faible vitesse de 
formation des composés intermétallique. Cependant la boule de cuivre a une dureté plus 
importante que celle de l’or, et donc les forces à mettre en jeu pour réaliser le soudage sont 
plus élevées ce qui peut entraîner des défaillances dans les interconnexions. D’autre part, le 
cuivre s’oxyde facilement à l’air, et requiert donc des conditions de mise en œuvre 
différentes. 

 

Interconnexions

Boule

Zone affectée 
thermiquement

 
Figure 5. Observation au microscope électronique à balayage d’un assemblage filaire. 

 

I.B.2. Méthodes de caractérisation 
Afin de vérifier la fiabilité des connexions filaires, il existe plusieurs tests destructifs. Les 

deux techniques les plus couramment usitées sont le test de traction du fil (en anglais : « wire 
pull test ») et le test de cisaillement de la boule (en anglais : « shear test »).  

 

I.B.2.a) Test de cisaillement de la boule 
Ce test est la meilleure façon d’évaluer la qualité de l’interface entre la boule et le pad. Au 

cours de ce test, la boule est cisaillée à une hauteur donnée, suivant la représentation 
schématique de la Figure 6. La force appliquée est mesurée, et suite à cela, la boule est soit 
cisaillée, soit enlevée du pad. Dans ce dernier cas, elle peut également mener à l’arrachement 
d’une partie des interconnexions. 
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Pad

Boule d’or

Hauteur de 
cisaillement

Aire de 
contact

Outil de 
cisaillement

 
Figure 6. Représentation schématique du test de cisaillement de la boule.  

 

I.B.2.b) Test de traction du fil 
Le test de traction est réalisé pour contrôler l’opération de soudage. Les variables 

géométriques au cours de ce test sont décrites par la Figure 7. Ce test consiste à placer un 
crochet entre le fil et le pad, puis à appliquer un mouvement de traction verticale pour obtenir 
une force ainsi qu’un mode de rupture. Les modes de défaillances les plus courants sont la 
rupture dans la zone du fil affectée thermiquement, le détachement de la boule, caractérisant 
une faible liaison, et l’arrachement dans le pad. Dans le cas du premier mode de défaillance, 
le fil rompt juste au dessus de la boule dans la zone affectée thermiquement (recristallisation 
de la zone lors de l’application d’un arc électrique servant à former la boule au cours du 
processus de connexion filaire). L’arrachement du pad intervient dans les interconnexions, et 
constitue un mode de défaillance critique puisqu’il caractérise une architecture peu robuste. 

 

Pad de 
connexion 
du boitier

Boitier
Puce

F

φ

fwt

fwd
θt

θf

εd (1-ε)*d

h

H

 
Figure 7. Variables géométriques du test de traction du fil, d’après [Harman, 1978]. 

 

I.C. Problèmes mécaniques induits 
Au cours du tri électrique des puces et de l’assemblage filaire, diverses composantes de 

forces (compression, cisaillement, traction) sont mises en jeu, et peuvent provoquer 
l’apparition de fissures dans les couches d’oxyde situées au niveau des interconnexions. Ces 
fissures entraînent l’apparition de courts circuits dans les puces qui deviennent alors non-
fonctionnelles. Les objectifs de cette thèse sont donc d’identifier les paramètres de test, 
d’assemblage entrainant l’apparition de ces défaillances, mais également de mettre en œuvre 
des moyens d’études rapides et fiables pour étudier diverses architectures de pad. Par ailleurs, 
l’étude et les résultats obtenus peuvent s’étendre à toutes les opérations effectuées au niveau 
des pads, que sont l’assemblage puce retournée ou « flip chip », l’assemblage via des 
colonnes de cuivre ou « copper pillar » ou encore l’assemblage grâce à des via traversant le 
silicium ou « through silicon via ».  
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II. Présentation des méthodes expérimentales et numériques mises en œuvre 
 

Dans cette partie, les techniques d’imagerie utilisées pour caractériser les pads sont 
décrites. Elles permettent d’observer les fissures présentes dans les interconnexions, mais 
également de mieux comprendre les origines de ces défaillances. Ensuite, les méthodes 
expérimentales et numériques mises en place afin de reproduire les tests et assemblages 
effectués sur le pad sont introduites. Il s’agit d’une part de la nanoindentation, qui consiste en 
appliquer un chargement compressif sur la surface du pad. D’autre part, le modèle numérique 
par éléments finis est créé puis calibré grâce à des expériences dédiées, afin d’avoir un bon 
degré de confiance en les résultats obtenus. 

II.A. Observation et reconstruction du pad en 3 dimensions 

II.A.1.a) Observation de la surface du pad : Profilométrie optique 
La profilométrie optique est une méthode d’observation basée sur le principe des 

interférences lumineuses. Une lumière blanche est envoyée sur l’échantillon à analyser, afin 
d’obtenir des franges d’interférences. Ces séries de frange d’interférences permettent, à la 
suite d’un balayage vertical de l’échantillon d’en observer sa surface en 3 dimensions. Un 
exemple de vue de l’aluminium après EWS est montré sur la Figure 3. 

II.A.1.b) Reconstruction du volume du pad : FIB/MEB 
La sonde ionique focalisée ou « Focussed Ion Beam » (FIB) est employée pour réaliser des 

coupes. Ces coupes peuvent être réalisées à des intervalles réguliers très faibles (56nm dans le 
cas présent). Le Microscope Electronique à Balayage (MEB) permet l’observation d’une 
surface ou une tranche grâce à un balayage d’électrons. Le couplage simultané des 2 
techniques permet de cartographier un volume, comme cela est décrit en Figure 8. 
L’utilisation d’un logiciel permet ensuite de recouper les vues pour finalement obtenir une 
reconstruction suivant toutes les directions. 
 

Figure 8. Principe de reconstruction FIB/MEB. 
 

II.B. Evaluation de la robustesse des pads : nanoindentation 

II.B.1.a) Principe et pointes utilisées 
La nanoindentation est une technique récente  permettant l’évaluation des propriétés 

mécaniques des couches minces [Doerner, 1986 ; Oliver, 1992]. Cette technique consiste à 
appliquer un chargement (souvent noté P) ou un déplacement (h) normal compressif, et 
semble donc adapté à la reproduction du test EWS particulièrement. Pour réaliser ces tests, un 
nanoindenteur MTS XP est utilisé. Au cours des expériences décrites, le chargement est 
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appliqué à travers 2 différentes géométries de pointes en diamant ayant 3 faces : la pointe 
Berkovich et la pointe cube corner (représentant le coin d’un cube). Les angles au sommet de 
ces pointes (θ) sont respectivement de 65.3° et 35.3°. Ces pointes sont décrites en Figure 9 et 
Figure 10. 
 

 

 

 

 
Figure 9. Pointe Berkovich. Figure 10. Pointe Cube corner. 
 

II.B.1.b) Description du test 
Un exemple de test d’indentation avec une pointe Berkovich est montré en Figure 11. La 

courbe se compose de 3 différentes parties. La première est une étape de chargement jusqu’à 
une force maximale Pmax ou un déplacement maximal hmax. Elle est suivie d’une étape à 
chargement constant où l’enfoncement de la pointe est uniquement lié au fluage du matériau. 
Enfin, il se termine par une étape de déchargement afin de retirer l’indenteur. Au cours de 
cette étape, l’échantillon retrouve une partie de sa forme originale, dépendant de son 
élasticité. Le module d’Young et la dureté du matériau peuvent être extrait à la suite de ces 
tests suivant la méthode d’Oliver et Pharr [Oliver, 1992]. 
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Figure 11. Courbe force-déplacement provenant d’une indentation avec une pointe Berkovich dans de la silice 
fondue. 
 

Le mode CSM (« continuous stiffness mode ») est un mode permettant d’évaluer la raideur 
en continu, grâce à des cycles charge-décharge de très faible amplitude, afin d’obtenir le 
module élastique et la dureté du matériau durant la pénétration de la pointe. 

II.C. Modèle numérique reproduisant l’ EWS 

II.C.1.a) Description du modèle éléments finis 
De la même manière que les tests EWS, le modèle numérique se compose de 2 parties que 

sont la pointe et le pad, montrés en Figure 12. En raison du plan de symétrie, seulement la 
moitié de la pointe est simulée sous Ansys LSDyna. Les différents composants sont maillés 
avec des éléments quadrangle SOLID164 ayant un point d’intégration de Gauss. Les 
différentes couches composant le pad sont représentées par la Figure 13 a), et la géométrie du 
modèle associé est montrée en b). Les deux principales différences entre le pad réel et son 
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modèle numérique sont l’absence des couches barrières TaN/Ta (qui sera ultérieurement 
justifiée) et la non-représentation des détails dans le pad. Cela se caractérise par l’utilisation 
de la méthode d’homogénéisation des couches qui permet d’obtenir les propriétés 
équivalentes, suivant la méthodologie mise en place par Fiori et al. [Fiori, 2005]. Pour ces 
couches, des propriétés élastiques orthotropes sont donc introduites dans le modèle. 
 

Pad

Probe tip
Probe bodyPointe 

de test
Pointe

Pad

 
Figure 12. Modèle géométrique de la pointe de test (a) et zoom à l’échelle du pad (b). 
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Figure 13. Vue MEB en coupe d’un pad CMOS 120nm (a) et vue du modèle géométrique correspondant (b). 
 

II.C.1.b) Calibration du modèle 
Des mesures des forces de réaction verticale et latérale sont effectuées au cours du probing 

par Technoprobe, le fournisseur de la carte à pointe décrite. Ces mesures sont effectuées sur 
l’appareil visible en Figure 14. La calibration du modèle a été initiée par Cacho et al. [Cacho, 
2007]. Ainsi, la calibration du modèle est obtenue grâce à un bon accord entre les forces de 
réaction verticale et latérale mesurées et simulées, comme le montre la Figure 15. La courbe 
donnant la force de réaction verticale se compose tout d’abord d’une étape de chargement 
jusqu’à atteindre l’overdrive appliqué. Puis, un plateau permet d’effectuer la mesure 
électrique, et enfin la décharge jusqu’à la perte du contact entre la pointe et le plot de 
connexion. 

. Ce résultat est valable pour les différents déplacements verticaux étudiés. Parallèlement à 
cela, les influences des paramètres numériques tels que le maillage sont vérifiés et il est 
montré que le modèle est capable de reproduire fidèlement les conditions de chargement du 
test réel. 
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Figure 14. Appareil de mesure mis en place par Technoprobe pour obtenir les forces de réaction verticales et 
latérales. 

Figure 15. Forces de réaction mesurée et simulées pour un déplacement vertical de 50µm. 
 

III. Effet des paramètres de test et d’assemblage sur l’apparition des 
défaillances 
 

III.A. Paramètres critiques lié au test EWS 

III.A.1.a) Résultats expérimentaux 
Les paramètres décrits dans le paragraphe I.A.1 sont maintenant étudiés. Après avoir 

montré grâce à des simulations que les effets dynamiques (ex : la vitesse du plateau 
automatisé) sont négligeables dans le cas considéré, les 2 paramètres clés liés au tri des 
plaques sont évalués, à savoir le déplacement vertical (50µm et 90µm) et le nombre de 
passages (5 et 10 passages). Pour ce faire, des structures CMOS 120mn sont testées. 
L’endommagement de l’aluminium, c’est-à-dire la taille de la marque augmente fortement 
lorsque le déplacement vertical augmente, passant de 27µm à 40µm (Figure 16). L’effet du 
nombre de passage sur la longueur de la marque de test est négligeable. Cependant, il est 
montré que la largueur de la marque augmente en passant de 5 à 10 passages.  

Afin de pouvoir dénombrer les fissures, le test d’intégrité est réalisé sur 2 ou 4 puces (148 
pads par puce), afin d’avoir un échantillon représentatif. Les résultats sont montrés sur la 
Figure 17. L’augmentation de ces 2 paramètres conduit à une augmentation du pourcentage de 
pad présentant des fissures. Il est également démontré durant ces tests que les paramètres de 
test ont plus d’influence que ceux de design du pad, se référer également à [Roucou, 2010-A] 
pour plus de détails. 
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Figure 16. Vues de dessus par microscopie optique 
d’une marque suite au test avec un déplacement 
vertical de 50µm (a) et 90µm (b) pour 10 passages. 

Figure 17. Pourcentage de fissures observées pour les 
différentes conditions de test (et différentes épaisseurs 
d’aluminium et d’oxyde pad open, voir également section 
IV.A.1.a). 

 

III.A.1.b) Résultats numériques 
Durant l’étape de calibration, l’augmentation du déplacement vertical de la plaque 

automatisée portant le wafer a été reliée à une augmentation de la force de réaction verticale 
Durant les simulations numériques, il est montré que l’évolution des contraintes dans le pad 
peut être reliée à la force verticale appliquée, et de ce fait au déplacement vertical. De là, 
l’augmentation du déplacement vertical va induire une augmentation des contraintes 
compressives et Von Mises dans le pad [Roucou, 2010-A]. 

L’utilisation de propriétés élastiques pour l’aluminium en particulier limite l’étude au 
déplacement vertical puisque les contraintes dans les matériaux redeviennent nulles après un 
passage.  

III.B. Connexion électrique par fil de cuivre 
L’assemblage filaire est un mécanisme multi-étapes dont la représentation schématique des 

forces est montrée sur la Figure 18. Un film de cuivre enrobé de palladium est utilisé afin de 
limiter les problèmes liés à l’oxydation à l’air du fil, comme cela est démontré dans la 
publication de Vath et al. [Vath, 2009]. Le fil a un diamètre de 20µm, et ses propriétés 
mécaniques sont données dans l’article d’Uno et al. [Uno, 2009]. Les effets de la force de 
contact (notée également CF) ainsi que la puissance des ultrasons (notée également BP) sont 
évalués au cours d’un plan d’expérience qui comprend également des paramètres structuraux 
sur l’architecture des pads qui seront développés ultérieurement. Le premier paramètre varie 
entre 30mN et 50mN, tandis que le second varie entre 70mW et 90mW.  
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Figure 18. Représentation schématique des forces typiquement appliquées durant l’assemblage filaire. 
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Afin d’obtenir une bonne reproductibilité des résultats, les tests de traction sont effectués 
sur 3 puces contenant 15 fils et ceux de cisaillement sur 2 puces. Ainsi, 3240 fils sont tirés et 
2160 boules sont cisaillées. 

III.B.1.a) Observation et mesure des boules 
Le cuivre étant plus dur que l’or, au cours du soudage sur l’aluminium, une éclaboussure 

de ce dernier se produit. Ce phénomène n’est pas observé lorsque l’or est employé. La Figure 
19 montre l’éclaboussure obtenue au cours des assemblages. Il est remarqué que la 
déformation plastique de l’aluminium se produit suivant la direction d’application des 
ultrasons. Cette déformation peut induire plusieurs problèmes mécaniques (dus à la réduction 
de l’épaisseur de l’aluminium sur le pad) et électriques (courts circuits dus à des ponts créés 
par les éclaboussures entre 2 pads voisins). 

Au cours de cet assemblage filaire, les dimensions de la boule de cuivre (diamètre et 
hauteur) sont mesurées grâce à un microscope optique. L’incertitude sur les mesures (0.4µm) 
et le faible écart entre les valeurs obtenues font qu’il est difficile d’établir une corrélation 
entre les paramètres de soudage et la géométrie de boule, comme cela est montré sur la Figure 
20 dans le cas du diamètre de la boule. Dans la littérature, pour certaines études, les variations 
observées sont également très faibles [Shah, 2010], tandis que dans d’autres, l’effet des 
ultrasons induit une augmentation du diamètre de la boule et une réduction de sa hauteur 
[Zhong, 2007 ; Xu, 2008]. 
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Figure 19. Vue MEB de dessus de la déformation 
plastique de l’aluminium au cours du processus. 

Figure 20. Effet des paramètres de soudage sur le 
diamètre de la boule de cuivre soudée. 

 

III.B.1.b) Tests de traction et de cisaillement 
Suite aux mesures des boules, un test de traction est effectué sur les fils de cuivre. Deux 

modes de défaillance sont obtenus : d’une part, les ruptures du fil au niveau de la zone 
affectée thermiquement (97% des fils), et d’autre part, un arrachement de certaines couches 
du pad (3% des fils, ou 98 cas sur 3240 fils). Ce dernier type de défaillance nous intéresse 
particulièrement puisqu’il permet de distinguer les structures en fonction de leur robustesse 
mécanique. De plus ces arrachements d’une partie des interconnexions correspondent à des 
résistances à la traction plus faibles que les ruptures dans la zone affectée thermiquement (de 
l’ordre de 78mN à 88mN). La répartition des cas d’arrachement de la structure en fonction 
des différentes conditions de soudage est montrée en Figure 21. Ainsi, il est montré que 
l’augmentation de la puissance des ultrasons et la diminution de la force de contact entraînent 
une augmentation du risque d’obtenir des arrachements. L’augmentation de la force de 
contact entraîne probablement une augmentation de l’aire de contact entre la boule et le pad. 
De là, lors de l’application des ultrasons, les forces sont distribuées sur une aire plus 
importante, et donc moins de contraintes sont subies par le pad. Cette hypothèse concernant 
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l’effet de la force de contact est également soulignée dans des travaux de Qin et al. [Qin, 
2010] dans le cas de fils d’or. L’augmentation de la puissance des ultrasons peut être reliée à 
une augmentation de la contrainte de cisaillement dans le pad, ce qui est souligné par Shah et 
al. [Shah, 2009].  

Parallèlement à ces tests, des tests de cisaillement de la boule sont effectués. Le mode de 
défaillance obtenu correspond à un détachement de la boule du pad. Ce mode de défaillance 
est dû, entre autre, à la faible formation des composés intermétalliques dans le cas de 
l’assemblage filaire avec du cuivre. Cette force est également reliée à une contrainte de 
cisaillement appliquée au pad, afin de limiter les effets de géométrie de la boule sur la valeur 
mesurée. Ainsi, dans le cas présent, des contraintes comprises entre 136MPa et 171MPa sont 
obtenues (voir [Harman, 1997] pour la méthode de calcul). Au cours de ces tests, 
l’augmentation de la force de contact induit une diminution de la force mesurée et de ce fait 
une diminution de la qualité du soudage. De ce fait, un équilibre doit être trouvé en ce qui 
concerne la force de contact à appliquer. Le soudage du cuivre est donc à différencier de celui 
de l’or pour lequel, l’augmentation de la qualité de la soudure et souhaitée et non corrélée à 
des effets d’arrachement de la structure. 
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Figure 21. Nombre de cas d’arrachement de la structure 
observés pour les différentes conditions de soudage. 

Figure 22. Effet des paramètres de soudage sur la 
force de cisaillement mesurée.  

 
Dans le cas de la connexion électrique avec des fils de cuivre, les paramètres d’assemblage 

ont, comme dans le cas de l’EWS, plus d’influence sur les cas d’arrachement du pad que les 
paramètres de dessin de ces pads. 

 

IV. Effet de l’architecture des pads sur robustesse mécanique 
 
Dans le paragraphe précédent, l’effet des différents paramètres de test et d’assemblage a 

été souligné. Cependant, en raison de contraintes industrielles, leur modification n’est pas 
toujours possible, et la réduction des défaillances dans les architectures nécessite une 
optimisation de l’agencement de celles-ci. Dans ce paragraphe, les différentes modifications 
possibles au niveau de l’architecture des pads sont évoquées, de l’échelle la plus grande 
(épaisseur des couches), à la plus petite (design de la couche supérieure de cuivre). 

IV.A. Effet de l’épaisseur des couches supérieures 
La Figure 23 montre une représentation schématique de l’architecture étudiée. On 

considère durant cette étude les variations de l’épaisseur des deux couches supérieures du pad, 
à savoir l’aluminium et l’oxyde situé sous le pad (également appelé PO, pour « pad open 
oxide »). Les épaisseurs évaluées sont 0.88µm et 1.2µm pour l’aluminium et 0.5µm et 0.7µm 
pour l’oxyde.  
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Figure 23. Représentation schématique des pads CMOS 120nm étudiés. 

 

IV.A.1.a) Tests d’intégrité du pad et reconstruction en 3 dimensions 
Les pourcentages de défaillances en fonction des différentes structures sont présentés sur la 

Figure 17. L’augmentation de l’épaisseur de la couche d’aluminium et de celle d’oxyde 
permet une diminution des risques de défaillances dans la couche d’oxyde située sous le pad. 
D’autre part, cet effet est cumulatif, puisque l’amélioration conjointe des 2 couches permet 
d’avoir la structure avec la meilleure robustesse mécanique. Ainsi, le classement suivant est 
obtenu. Il permet ultérieurement une comparaison avec les autres méthodes d’analyse. 
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Une reconstruction du pad suivant la méthode décrite dans le paragraphe II.A.1.b) est 

réalisée. Cela permet d’une part d’obtenir des vues MEB en coupe du pad (Figure 24), et 
d’autre part de reconstruire et donc visualiser les couches en vue de dessus (Figure 25). Une 
importante déformation plastique est observée pour l’aluminium, menant à la formation d’un 
amas en front de pointe de test. Des fissures importantes sont observées dans l’oxyde PO 
(reconstruction a)), dans une zone ou l’aluminium du pad a été enlevé durant le test EWS. Des 
fissures de plus petite taille sont également observées au niveau des singularités géométriques, 
dans les couches d’oxyde situées plus profondément dans le pad. Enfin, la couche supérieure 
de cuivre (M4) est également déformée plastiquement à l’issue du test (reconstruction b)). De 
là, l’effet prouvant la ductilité de l’aluminium et du cuivre afin de réduire des contraintes 
mécaniques dans le pad est souligné. 
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Figure 24. Vue MEB en coupe du pad. 
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Figure 25. Images reconstruites suivant la technique FIB/MEB de la couche d’oxyde située sous le pad (a) et de 
la couche supérieure M4 du cuivre (b) 

 

IV.A.1.b) Résistance à la compression : nanoindentation 
L’application de la technique de nanoindentation aux architectures de pad est rendue 

difficile du fait de la présence d’un empilement multicouches. Néanmoins, des tests de 
nanoindentation sont effectués sur les architectures avec les pointes Berkovich et cube corner.  

L’utilisation de la pointe Berkovich permet la reproduction de défaillances similaires à 
celle du test EWS, comme cela est montré par la Figure 26. Les mêmes observations en 
termes de plasticité de l’aluminium et du cuivre peuvent également être faites. La fissure dans 
l’oxyde de la couche sous le pad apparaît à l’endroit où celui-ci est le plus courbé, et la 
localisation de cette fissure est probablement dépendante de l’épaisseur de l’oxyde et de la 
pointe utilisée pour le test. Les résultats de la pointe Berkovich sont semblables à ceux de la 
pointe cube corner, mais légèrement moins dispersés, et ne sont donc pas développés.  

Ensuite, 15 tests avec la pointe cube corner sont réalisés sur chaque structure afin de 
vérifier la reproductibilité du test, qui est obtenue comme cela est montré sur la Figure 28 a). 
La force appliquée est fixée à 15mN. Les déplacements atteints à la fin du chargement sont 
comparés pour chaque structure, considérant qu’ils représentent leur résistance à la 
compression. Cependant, la présence de l’aluminium fausse légèrement le classement des 
architectures de pad puisque la pointe pénètre très facilement au travers (voir les courbes sur 
la Figure 27). Sur ces courbes de nanoindentation avec la pointe cube corner, un léger 
décrochement de la courbe apparaît au niveau de l’oxyde. Ce petit plateau caractérise la 
présence d’une microfissure. De là, un nouvel indicateur est introduit : h*dh/dp, qui dépend 
donc de l’inverse de la pente, et permet une meilleure observation de ces fissures pour en 
extraire ensuite le chargement critique correspondant et la profondeur d’apparition, comme 
cela est montré sur la Figure 28 b). L’utilisation de ce nouveau paramètre permet de 
contrebalancer l’effet de l’aluminium et d’obtenir un classement en fonction de la capacité des 
structures à résister à la compression. Ce classement est le même que celui obtenu dans le cas 
des tests réels (EWS), avec une inversion entre les 2 structures avec une faible et une forte 
épaisseur. D’autres informations concernant cette méthode d’analyse sont également 
disponibles dans une précédente publication [Roucou, 2010-B].  
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Figure 26. Vue MEB en coupe du pad après coupe FIB suivant une arrête de l’indenteur, et zoom sur la 
localisation des fissures. 
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Figure 28. Courbe force déplacement pour une structure donnée (a), et courbe h*dh/dp en fonction de la force 
pour la structure correspondante (b). 

 

IV.A.1.c) Analyse des contraintes dans le pad : modèle numérique 
Il a été montré précédemment que la contrainte maximale dans le pad est obtenue durant le 

plateau à la fin de l’étape de chargement (cf. Figure 15). De là, les contraintes compressive et 
de Von Mises dans les différentes couches sont extraites durant une de ces sous-étapes de la 
simulation, et les résultats sont regroupés sur la Figure 30. Les contraintes dans les couches 
d’oxyde (PO et M3/IMD3) sont particulièrement étudiées puisque les fissures ont été 
localisées dans ces couches. L’augmentation de l’épaisseur des couches d’aluminium et 
d’oxyde PO implique une réduction des contraintes dans la structure, et de ce fait une 
réduction des risques d’apparition de fissures. Ainsi, un classement entre les différentes 
structures peut être établi sur la base des contraintes maximales simulées. Il est identique à 
celui des tests EWS (équation (1)). 
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Figure 29. Contraintes de Von Mises dans le pad. 
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Figure 30. Contraintes Von Mises maximales obtenues dans les couches supérieures pour les différentes 
structures. 

 
Ainsi, dans ce paragraphe, il a été montré que la nanoindentation et la simulation sont 

toutes deux capables de reproduire les résultats obtenus au cours de tests de tri des plaques, 
même si quelques limitations en ce qui concerne la nanoindentation ont été remarquées, et 
seront discutées ultérieurement. 

IV.B. Effets de la densité de cuivre et de la présence des vias 
Dans ce paragraphe, les effets de la densité de cuivre dans les couches inférieures de 

cuivre, ainsi que la présence de via entre les niveaux de cuivre et au niveau de l’oxyde situé 
sous le pad sont évalués au cours du plan d’expérience sur l’assemblage filaire avec du cuivre 
initié précédemment. 

IV.B.1.a) Description des architectures étudiées 
Les architectures étudiées comprennent 4 niveaux de cuivre (CMOS 120nm). La 

représentation schématique des différentes variétés d’architecture étudiées est décrite sur la 
Figure 31. Les différentes structures sont montrées dans la Tableau 1.  

 
Passivation

M4
M3
M2
M1

Aluminium

a)

Passivation

M4
M3
M2
M1

Oxyde POAluminium

b)

Figure 31. Représentation schématique de la structure sans via, ni via sous l’aluminium (a), et avec vias et vias 
dans l’oxyde sous le pad (b). 
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Structure de pad Densité de métal (M1 à 
M3) Présence de via Présence de via dans l’oxyde 

sous le pad 
A 30% Non Oui 
B 80% Oui Oui 
C 80% Non Non 
D 80% Non Oui 
E 30% Oui Non 
F 30% Non Non 
G 80% Oui Non 
H 30% Oui Oui 

Tableau 1. Plan d’expérience mis en place durant l’étude. 
 

IV.B.1.b) Tests de traction et observation des cas d’arrachement 
Afin d’obtenir des tendances fiables, pour chaque structure et chaque condition 

d’assemblage (voir paragraphe III.B), 45 fils sont tirés. Comme précédemment, l’objectif est 
d’obtenir des cas d’arrachement du pad afin de comparer la résistance mécanique des pads. 
Les résultats sont réunis dans le tableau ci-dessous. A partir de cela, un classement des 
diverses architectures peut être établi. Il est notamment montré que la présence de via sous le 
pad est particulièrement critique en ce qui concerne l’apparition des arrachements. A 
contrario, la densité des couches inférieures du pad, et la présence de via, n’est pas montré 
dans le cas présent comme étant un paramètre déterminant. Une des raisons pouvant expliquer 
cette dernière observation est liée à la présence d’une couche de cuivre de forte densité (80%) 
entre le pad et ces couches (c.-à-d. M4), et beaucoup plus épaisse, jouant un rôle d’écrantage. 

 
 CF/BP 30 

70 
30 
80 

30 
90 

40 
70 

40 
80 

40 
90 

50 
70 

50 
80 

50 
90 Total Pads  

A 0 2 10 0 1 6 0 0 0 19 
B 0 1 7 0 2 5 0 0 3 18 
C 0 0 2 0 0 1 0 0 0 3 
D 0 1 15 0 0 12 0 0 1 29 
E 0 0 0 0 0 0 0 0 0 0 
F 0 0 1 0 0 0 0 0 0 1 
G 0 0 0 0 0 1 0 0 0 1 
H 0 0 9 0 1 12 0 1 4 27 

Total 0 4 44 0 4 37 0 1 8 98 
Tableau 2. Nombre de cas d’arrachement du pad parmi les 45 fils tirés pour chaque paramètre étudié. 

 
Puis les arrachements sont observés au MEB et la composition des couches supérieures est 

analysée grâce à une analyse dispersive en énergie (communément appelé EDX pour 
« Energy dispersive X-ray spectrometry »). De là, il faut distinguer 2 cas, celui des pads 
contenant de l’oxyde et des vias sous le pad, des autres. Un exemple typique des cas 
d’arrachement pour le premier type de pad est montré sur la Figure 32. La delamination entre 
les couches s’est produite au dessus de M4, au niveau des interfaces Cu/SiO2 ou Cu/Si3N4. De 
ce fait, il semble que la présence des nombreuses singularités géométriques induites par la 
présence des vias et de l’oxyde est la raison du fort nombre d’arrachements observés. Au vue 
des pads arrachés, le mécanisme d’arrachement semble se produire en deux étapes : tout 
d’abord, une delamination se produit dans le pad, au niveau des interfaces incriminées, puis se 
propage pour atteindre la surface, ce qui explique le léger surélèvement des couches en bord 
d’arrachement. Pour les structures ne présentant pas ces singularités géométriques, 
l’arrachement se situe plus profondément dans la structure, plus précisément juste au-dessus 
ou au-dessous de la couche M3, comme cela est observé sur la Figure 33. Dans ce cas, le 
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même type de mécanisme est suspecté, mais s’initiant cette fois à l’interface entre le cuivre du 
niveau M3 et une des couches à proximité. 

 

Cuivre

SiN

Cu

SiO2, Cu
SiO2

Figure 32. Vue MEB de dessus d’un pad de type D : 
l’arrachement est observé au dessus de M4. 

Figure 33. Vue MEB de dessus d’un pad de type C, 
l’arrachement est situé au-dessus et au-dessous de M3. 

 

IV.B.1.c) Tests de nanoindentation 
Parallèlement aux tests de traction, des tests de nanoindentation sont effectués sur les 

architectures. Afin d’avoir une relativement bonne reproductibilité des résultats, 2 séries de 15 
tests sont effectués sur chaque structure, et les enfoncements maxima atteints à la fin du 
chargement pour les différentes structures sont montrés sur la Figure 34. De là, il est 
clairement montré que les structures ayant des vias dans l’oxyde sous l’aluminium résistent 
mieux à la compression. Cela est dû à la différence entre les propriétés matériaux (E, H) du 
cuivre et de l’oxyde. En effet, dans un cas, l’indentation évalue un empilement aluminium sur 
oxyde, tandis que dans l’autre cas, il s’agit d’un empilement aluminium sur cuivre. 
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Figure 34. Déplacements maxima atteints après le chargement pour les diverses structures étudiées. 

 
Ainsi, dans certains cas, en particulier lorsque différentes couches sont évaluées, il est 

difficile par des tests de nanoindentation de reproduire les résultats d’assemblage filaire. 
Néanmoins, il est montré en annexe de la thèse que des résultats coïncidents avec les 2 
techniques peuvent être obtenus. La nanoindentation constitue un chargement simplifié par 
rapport à l’assemblage filaire, puisqu’uniquement de la compression est appliqué au niveau du 
pad, tandis que les résultats des tests de traction mettent en jeu des contraintes de compression 
et de cisaillement durant le processus, puis des contraintes de traction (principalement) durant 
le test. 
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IV.B.1.d) Etude sur des architectures faibles permittivités 
Le besoin de miniaturisation dans l’industrie des semi-conducteurs s’accompagne de 

l’utilisation de nouveaux matériaux à faible permittivité (couramment appelés low-k en 
anglais), qui sont fragiles, et possèdent des propriétés matériaux très faibles [Moore, 2001 ; 
Wu, 2006]. A partir de ce constat, les paramètres étudiés précédemment le sont également 
grâce à la nanoindentation pour une technologie CMOS 45nm. Les tests faits avec la pointes 
Berkovich montrent d’une part que la présence de via dans l’oxyde sous le pad implique une 
réduction du déplacement maximum atteint à la fin du chargement. Dans le cas présent, le cas 
ne présentant pas de via comporte de l’oxyde entre l’aluminium et le cuivre. Il est donc 
montré que la présence de via sous le pad réduit la résistance de celui-ci à la compression.  

D’autre part, il est montré qu’augmenter la densité du cuivre entre les couches comprenant 
des oxydes basse permittivité (situé dans les premiers niveaux, proche du silicium) permet 
d’augmenter la résistance de la structure face à un chargement compressif. La différence entre 
les propriétés matériaux du cuivre et les matériaux basse permittivité explique cette inversion 
de tendance entre le cuivre et l’oxyde. 

IV.C. Effet de l’agencement de la couche de cuivre 

IV.C.1.a) Etude sur des architectures faibles permittivités 
L’effet de 2 types d’agencement de la couche supérieure du cuivre sur la robustesse du pad 

est étudié : des lignes de cuivre et des lignes larges dans lesquels des trous d’oxyde sont 
disposés à intervalle régulier (également appelés « slots »). Ces agencements, ainsi que les 
fissures typiques retrouvées à l’intérieur sont observés sur la Figure 35. Les pourcentages de 
défaillance dans les différentes structures sont montrés sur la Figure 36. Ainsi, il est montré 
que pour réduire le risque d’observer des fissures, il faut privilégier les structures avec des 
slots, de petite taille si possible, aux structures avec des lignes. Les effets des contraintes 
résiduelles et de la microstructure du cuivre sont suspectés comme étant à l’origine de ces 
différences. L’effet de la localisation des plateaux contenant les slots est également souligné, 
et il est préférable d’éloigner la ligne d’oxyde entre les plateaux de la zone de l’EWS. Ainsi le 
classement suivant est obtenu : 

décalés cuirve de plateaux  with Slots1µm   Slots1µm   Slots2µm Lignes <<<  (2) 
 

20µm20µm

cuivre

oxyde

a)

 
20µm20µm

b)

20µm20µm

c)

Figure 35. Vues de dessus, au microscope optique, des différents pads montrant des fissures dans l’oxyde : pour 
une structure avec des lignes (a), avec des trous d’oxyde de 1µm dans des plateaux de cuivre (b), et des trous de 
2µm (c). 

 - 221 -



0

20

40

60

80

100

C
ra

ck
 o

cc
ur

re
nc

e 
(%

)

Shifted slots 1µm
Slots 1µm
Slots 2µm
Lines

Alu 1.2
PO 0.7

Alu 1.2
PO 0.5

Alu 0.88
PO 0.5

Alu 0.88
PO 0.7

P
ou

rc
en

ta
ge

de
 fi

ss
ur

es
 (%

) Slots 1µm décal.

Figure 36. Pourcentage de fissures observées pour les différentes architectures. 
 

IV.C.1.b) Nanoindentation 
Parallèlement, de la nanoindentation avec la pointe cube corner est réalisée sur ces plots de 

connexion. A partir des indicateurs précédemment utilisés, à savoir la profondeur atteinte à la 
fin du chargement, le déplacement et la force caractérisant la fissure, un classement à partir 
des données de la nanoindentation peut être établi, et un classement similaire à celui des tests 
réels est obtenu hormis l’effet du décalage du plateau. L’analyse locale induite par la pointe 
cube corner est à l’origine de cette différence, ainsi que les effets de cisaillement induits par 
les tests réels. 
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Figure 37. Profondeur maximale atteinte pour les 
différents échantillons. 

Figure 38. Force et déplacement relatifs aux fissures 
dans l’oxyde. 

 

IV.C.1.c) Etude numérique 
Le modèle éléments finis est utilisé pour évaluer les contraintes dans les couches de la 

structure. Néanmoins, l’utilisation de propriétés homogénéisées pour le cuivre ne permet pas 
de distinguer les structures contenant des slots entre elle, puisqu’elles ont les mêmes densités 
de métal et répartition dans l’espace, ce qui implique des propriétés orthotropiques 
équivalentes. Il est donc uniquement possible de comparer les lignes de cuivre aux slots. Cette 
dernière structure est reliée a des contraintes plus faible dans le pad et donc un plus faible 
risque d’observer des fissures. 
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Figure 39. Contraintes Von Mises maximales dans les différentes couches dans le cas de l’empilement le plus 
épais. 
 

Finalement, dans cette partie, la capacité de la nanoindentation et du modèle éléments finis 
à reproduire les résultats des tests réels effectués sur les pads a été démontrée. Ces 2 méthodes 
constituent donc des alternatives moins coûteuse et plus rapide pouvant permettre une 
amélioration des architectures de pad. Des règles de dessin concernant les empilements et les 
agencements des différentes couches constituant le pad ont également été obtenues. 
 

V. Adaptation au contexte industriel  
 

Les travaux se déroulant dans un contexte industriel, il est nécessaire d’avoir des modèles 
rapides pouvant donner des indications fiables lors du développement technologique ou pour 
la résolution de crises. De ce fait, des règles de tests doivent être définies dans le cadre de la 
nanoindentation, et un nouveau modèle éléments finis, plus rapide et dédié à l’évaluation des 
architectures de pad doit être développé au niveau numérique. 

V.A. Méthodologie pour l’étude des architectures de pad 

V.A.1.a) Comparaison entre les pointes Berkovich et cube corner 
L’empreinte laissée par la pointe Berkovich est beaucoup plus grande que celle laissée par 

une pointe cube corner du fait de la géométrie des 2 pointes. Pour atteindre un enfoncement 
donné, la force à appliquer sur une pointe Berkovich est également plus importante (de l’ordre 
de 10 fois), comme cela est montré sur la Figure 40. De là, localement, la pointe cube corner 
va induire des contraintes et des déformations beaucoup plus importantes, comme cela a été 
démontré par Bucaille et al. [Bucaille, 2003]. Néanmoins le volume déformé plastiquement 
sera plus important dans le cas d’une pointe Berkovich. Ainsi, le choix de la pointe influe sur 
le volume indenté et donc fortement sur la réponse obtenue. La Figure 41 souligne cet effet 
puisque l’interface entre l’aluminium et l’oxyde est clairement marqué lors d’une indentation 
avec une pointe cube corner. Enfin, le retour élastique suite est plus important pour une pointe 
Berkovich (hf/hmax=0.86) que pour une pointe cube corner (hf/hmax=0.93).  
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Figure 40. Courbe donnant la force en fonction du 
déplacement pour les 2 types de pointe sur des 
échantillons de CMOS 45nm. 

Figure 41. Courbes force-déplacement précédentes 
normalisées 

 

V.A.1.b) Règles d’utilisation pour l’étude des pads 
Les différences entre les 2 pointes ont été soulignées dans les divers paragraphes 

précédents. Dans quelques cas, des réponses légèrement différentes ont été obtenues avec les 
2 pointes. De ce fait, il apparaît nécessaire de clarifier le choix de la pointe pour l’étude des 
pads. D’une manière générale, il est préférable de coupler les 2 études, cependant, lorsqu’un 
choix de pointe est nécessaire, il faut tenir compte de l’architecture de l’échantillon, et les 
règles décrites dans le diagramme suivant sont conseillées.  
 

Possibilité d’utiliser les pointes 
Berkovich et cube corner?

Présence of PO via ou 
d’agencement important dans les 

2 couches supérieures?

Utiliser les 2 pointes et les 
indicateurs précédemment décrits

Non Oui

Variation de l’épaisseur de 
l’aluminium? 

Non Oui

Utiliser la pointe Berkovich

Utiliser la pointe cube corner Utiliser la pointe cube corner 
mais ...

Se baser sur l’enfoncement 
maximal pour classer les 

structures

Non Oui

3 indicateurs, faire 
attention lors du classement

3 indicateurs, pas de 
limitations attendues

Figure 42. Diagramme indiquant le choix du type de pointe en fonction de l’architecture du pad étudiée. 
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V.B. Développement d’un nouveau modèle numérique reproduisant 
l’EWS 

V.B.1.a) Objectifs du modèle 
Il a été montré que le modèle explicite développé précédemment pour reproduire le tri 

électrique des wafers est capable de donner la plupart des tendances obtenues, qu’il s’agisse 
de paramètres liés au test ou à l’architecture. Cependant, ce modèle requiert un fort temps de 
calcul (environ 100 heures) et montre certaines limitations en ce qui concerne l’étude des 
designs de pad. De là, il est nécessaire de développer un nouveau modèle qui tient compte de 
tous les résultats expérimentaux et numériques démontrés. Ce modèle est dédié à l’étude des 
pads et doit par conséquent permettre d’introduire des détails très petits tels que les vias.  

D’autre part, afin de réduire le temps de calcul, le modèle élément fini avec un schéma de 
résolution implicite est requis. De même, uniquement le pad est représenté, ce qui permet de 
s’affranchir des problèmes de convergences liés au contact. L’utilisation d’un modèle en 3 
dimensions est justifiée par la complexité des designs du pad. 

V.B.1.b) Développement du modèle 3D 
Le développement du modèle en 3 dimensions, nécessite au préalable une étude en 2 

dimensions afin de définir les conditions de chargement. Le modèle est développé sous le 
logiciel ANSYS multiphysics [Ansys, rel. 11]. Ainsi, pour reproduire le chargement, un 
contact de Hertz est utilisé. L’utilisation de ce contact est justifiée par la déflexion de la pointe 
observée dans le modèle éléments finis explicite, accompagné d’une réduction de l’aire de 
contact au cours du chargement lors de l’EWS. De même des abaques, basées sur les tests 
expérimentaux servant à la calibration du modèle explicite sont utilisées afin d’obtenir les 
forces de réaction verticale et latérale pour les différents paramètres de test. Après application, 
il est montré que les conditions de chargement multi-étapes employées aboutissent à des 
maxima de contraintes dans l’oxyde sous le pad, conformément aux attentes. Le modèle 
symétrique maillé en 3 dimensions est montré sur la Figure 43.  
 

Aluminium

Oxyde PO
M4

IMD3

PMD
à

Silicium

Figure 43. Modèle éléments finis du pad en 3 dimensions 
 

Afin de reproduire les bonnes conditions de chargement, différents profils sont étudiés. 
Ainsi l’objectif est dans un premier temps de reproduire la marque de l’EWS, en conférant à 
l’aluminium des propriétés élasto-plastiques (limite d’élasticité : 200MPa et module tangent : 
6GPa). La marque reproduite à une longueur plus faible que la marque réelle, ce qui est 
probablement dû au fait que dans le cas des tests réels, la zone finale ne représente pas 
réellement le chemin de la pointe sur le pad, c’est-à-dire qu’une partie de l’aluminium en 
surface du pad n’est pas déformée plastiquement lors du passage de la pointe. Ce résultat a 
également été observé par Strom et al. [Strom, 1998]. 
 

 - 225 -



20µma) 20µm
b)

 
Figure 44. Déformation plastique cumulée dans l’aluminium (a) et vue de dessus d’une marque d’EWS (b). 
 

Les paramètres de tri des plaques sont ensuite évalués en gardant les propriétés élasto-
plastique pour l’aluminium. Il est montré que l’augmentation du déplacement vertical induit 
une augmentation de la zone déformée plastiquement, conformément aux mesures 
expérimentales. L’effet du nombre de passages est également étudié. Il est démontré que les 
variations dues au second passage pour le modèle défini sont faibles. Des contraintes 
résiduelles sont observées dans l’aluminium et l’oxyde à la fin du premier passage (voir 
Figure 45 b)). Les effets des variations de l’épaisseur de l’aluminium et le l’oxyde sous le pad 
sont également démontrées, en revenant aux propriétés élastiques qui sont beaucoup moins 
coûteuses en terme de temps de simulation.  
 

a) b)
Figure 45. Contraintes Von Mises (a) et résiduelles (b) à la fin du premier passage. 
 

Finalement, le modèle numérique 3D implicite est mis en place et s’est révélé capable de 
reproduire les divers paramètres de l’EWS et de l’architecture des pads. 

V.B.1.c) Comparaison des deux modèles numériques 
Dans ce paragraphe, les modèles explicite et implicite sont comparés, en se focalisant sur 

leur capacité à permettre d’étudier les différents paramètres de test et d’architecture des pads. 
Les modèles sont relativement complémentaires puisque le premier permet une meilleure 
étude des paramètres de test, mais moins bonne et beaucoup plus longue quand il s’agit de 
paramètres de dessins du pad. 
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 Modèle 3D explicite Modèle 3D implicite 

Paramètres de 
test EWS 

Dynamique de la 
pointe Très efficace Non disponible 

Vibrations et 
vitesse du plateau 
portant le wafer 

Très efficace Non disponible 

Déplacement 
vertical Très efficace Très efficace 

Nombre de 
passages 

Modéré, demande un long temps 
de calcul, possible uniquement 

via les forces de réactions 

Modéré, via l’utilisation de 
propriétés élasto-plastiques, pas de 

représentation du contact 
Autres paramètres 
de test (attentes 
générales) 

Efficace 
Modéré, lié aux conditions de 
chargement et à l’absence du 

contact 

Architectures 
de pad 

Effet des 
épaisseurs de 
couche 
(aluminium, 
oxyde…) 

Très efficace Très efficace 

Effet de design (ex. 
présence de vias) 

Bons résultats mais modéré dû à 
l’utilisation des propriétés 

homogénéisées 
Très efficace 

Agencement du 
pad (ex. lignes vs. 
slots) 

Modéré : même remarque Très efficace 

Autres paramètres 
d’agencement 
(attentes générales) 

Modérés dû à la non-
représentation des détails 

Très efficace : Modèle développé 
spécifiquement pour les 

comparaisons d’architecture de pad 
Tableau 3. Capacité des modèles numériques à reproduire les paramètres de test et de dessin. 
 

VI. Conclusions 
 

Au cours de cette thèse, les paramètres de test et d’assemblage situés au niveau du pad ont 
été étudiés. Ces processus s’incluent dans le schéma de réalisation, permettant de vérifier son 
bon fonctionnement (EWS) ou de relier la puce au boitîer (assemblage filaire). L’objectif final 
est de développer des méthodes visant à réduire le nombre de problèmes mécaniques au 
niveau des interconnexions. Dans un premier temps, des tests, accompagnés d’observations, 
sont réalisés afin d’avoir une meilleure compréhension de la localisation et des causes des 
défaillances. De là, les paramètres induisant les fissures principalement dans l’oxyde situé 
sous le pad sont identifiés. Dans un second temps, la nanoindentation, au moyen des pointes 
Berkovich et cube corner, est utilisée pour évaluer la résistance des pads face à la 
compression. En parallèle, un modèle numérique est développé et calibré. Une fois les 
paramètres de test et d’assemblages étudiés et les tendances déduites, différentes architectures 
de pads sont évaluées. En effet, les effets de l’épaisseur des couches d’aluminium et d’oxyde, 
de la densité de cuivre, la présence de via et l’agencement de la couche supérieure du cuivre 
sur la robustesse mécanique des pads sont évalués au moyen de ces tests réels, de la 
nanoindentation et de la simulation. Globalement, des tendances similaires sont obtenues avec 
les différents outils, ce qui permet d’avoir confiance en leur capacité à reproduire le test de tri 
des plaques et l’assemblage filaire. La thèse se déroulant dans un contexte industriel, la 
dernière partie à pour but de détailler les règles d’utilisation de la nanoindentation dans le 
cadre de l’étude des pads. D’autre part un modèle éléments finis est développé afin d’obtenir 
plus rapidement que le modèle précédent des tendances fiables pour évaluer les architectures 
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dans le cadre du développement technologique. Finalement, la nanoindentation et la 
modélisation numérique constituent des alternatives fiables et moins coûteuses aux tests et 
assemblages effectués au niveau des pads. De plus des règles de dessins sont démontrées dans 
l’optique de fabriquer des structures mécaniquement plus robustes.  

Les perspectives de ces travaux concernent la mesure des contraintes résiduelles dans les 
interconnexions liées à la fabrication des puces, mais également durant les étapes de tests 
(EWS) et d’assemblage. D’autre part, de nombreuses questions se posent encore en ce qui 
concerne l’initiation et la propagation des fissures durant l’EWS et la connexion filaire, que ce 
soit au niveau du mécanisme de leur apparition ou au niveau des seuils critiques à atteindre. 
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The diminution of the critical dimensions in the semiconductor industry and the 
introduction of new brittle dielectric materials raise questions on the mechanical resistance of 
the die and the pad architectures. Nowadays, pad structures are prone to crack. More 
precisely, the electrical wafer sort (EWS), which allows checking the electrical functionality 
of the die, and the assemblies such as the wire bonding to achieve the electrical connections 
with the packaging, are performed at the wafer level and introduce high levels of local 
mechanical stresses. Indeed, during these operations, failures in the oxide layers of the 
interconnections are observed. Experimental techniques (e.g. optical profilometry, FIB/SEM) 
are developed after EWS and bonding with gold and copper wires to gain insight on the root 
causes and localization of the failures. Some designs of experiments are set up to evaluate the 
influence of the test and process parameters (e.g. through wire pull and shear tests performed 
after bonding) and also of the various pad designs on the mechanical robustness of the 
structures. Thus, among others, the protective effect of the aluminium layer and the layout of 
the copper are demonstrated to be able to strengthen the structure. In addition, a novel 
analysis procedure, based on nanoindentation technique, is employed to compare various 
pads, which are complex multilayer systems. Moreover, several finite element models, using 
both explicit and implicit schemes are developed to mimic the EWS test. Indeed, these 
models have shown their ability to reproduce the loading conditions, the contact between the 
testing needle tip and the pad, and some inertial effect during the test. Finally, a 
comprehensive set of tools to evaluate and optimize the pad architectures is presented. 
Guidelines for pad layouts are also given, providing integration insights in the frame of the 
technology development. 
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Résumé : 

La diminution des dimensions critiques dans l’industrie du semi-conducteur requiert 
l’utilisation de nouveaux matériaux fragiles qui dégradent la résistance mécanique des puces. 
On s’intéresse plus particulièrement aux étapes précédant la mise en boîtier, à savoir les tests 
paramétriques qui permettent de vérifier la fonctionnalité électrique de la puce, et les 
assemblages tels la connexion filaire qui ont pour but d’établir les connexions avec le boîtier. 
Durant ces opérations, des défaillances mécaniques sont observées dans les interconnexions 
situées sous le pad. Des techniques expérimentales (par ex : FIB/MEB) sont mises en œuvre 
une fois les tests ou les assemblages avec des fils d’or et de cuivre réalisés afin de mieux 
comprendre les raisons d’apparition de ces défaillances ainsi que leur localisation. Des plans 
d’expériences sont mis en place pour évaluer l’influence des divers paramètres de tests et 
d’assemblage et également celle des architectures de pad, pour connaître ceux qui induisent 
les fissures dans l’oxyde. Ainsi, sont démontrés entre autres l’effet protecteur de l’aluminium 
et l’influence du design des architectures. En parallèle, une nouvelle méthode d’analyse basée 
sur la nanoindentation est utilisée pour comparer la robustesse mécanique de divers plots de 
connexion. Il s’agit ici d’étudier un ensemble multicouche, ce qui pose de nombreux 
challenges au niveau de la fiabilité des mesures et des résultats. D’autre part, plusieurs 
modèles éléments finis complexes, prenant en compte la gestion du contact entre la pointe de 
test et le pad ainsi que les effets inertiels associés, sont développés dans le but de reproduire 
les conditions de chargement sur les pads. Finalement, un ensemble d’outils adaptés à l’étude 
et l’optimisation des architectures de pad, dans une optique industrielle, est présenté de même 
que des règles de dessin permettant d’accompagner le développement technologique.  
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