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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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In most engineering fields, numerical simulators are used to model complex

phenomena and obtain high-fidelity analysis. Despite the growth of computer capabilities,

such simulators are limited by their computational cost. Surrogate modeling is a popular

method to limit the computational expense. It consists of replacing the expensive model

by a simpler model (surrogate) fitted to a few chosen simulations at a set of points called a

design of experiments (DoE).

By definition, a surrogate model contains uncertainties, since it is an approximation

to an unknown function. A surrogate inherits uncertainties from two main sources:

uncertainty in the observations (when they are noisy), and uncertainty due to finite

sample. One of the major challenges in surrogate modeling consists of controlling and

compensating for these uncertainties. Two classical frameworks of surrogate application

are used as a discussion thread for this research: constrained optimization and reliability

analysis.

In this work, we propose alternatives to compensate for the surrogate model errors in

order to obtain safe predictions with minimal impact on the accuracy. The methods are

based on different error estimation techniques, some based on statistical assumptions and

some that are non-parametric. Their efficiency are analyzed for general prediction and for

the approximation of reliability measures.
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We also propose two contributions to the field of design of experiments in order to

minimize the uncertainty of surrogate models. Firstly, we address the issue of choosing

the experiments when surrogates are used for reliability assessment and constrained

optimization. Secondly, we propose global sampling strategies to answer the issue of

allocating limited computational resource in the context of RBDO.

All methods are supported by quantitative results on simple numerical examples and

engineering applications.
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CHAPTER 1
INTRODUCTION

In the past decades, scientists have benefited from the development of numerical tools

for the help of learning, prediction and design. The growth of computational capabilities

has allowed the consideration of phenomena of constantly increasing level of complexity,

which results in better understanding and more efficient solutions of real-life problems.

Complex numerical simulators can be encountered in a wide range of engineering

fields. The automotive industry has developed numerical models for the behavior of

cars during crash-tests, which involve highly non-linear mechanical modes, in order to

integrate it to the design of car structures. In geophysics, flow simulators are used for the

prediction of the behavior of CO2 sequestration into natural reservoirs, or the prediction of

oil recovery enhancement, based on a complex mapping of ground characteristics.

The increasing computational power has also allowed the incorporation of uncertainty

information into system analysis. In particular, reliability analysis aims at quantifying

the chance that a system behaves as it is required, when a set of the problem parameters

are uncertain [Rackwitz (2000), Haldar & Mahadevan (2000)]. In structural analysis,

uncertainty typically comes from material properties (due to manufacturing) and actual

working conditions. For obvious reasons, reliability assessment has been intensively

explored in aerospace and nuclear engineering.

However, the gain in realism makes the use of numerical models extremely challenging.

Indeed, the complexity of the simulators makes them highly expensive computationally,

limiting systematic learning or design process. Also, the number of parameters (or input

variables) that explain the phenomenon of interest can potentially be very large, making

difficult the quantification of their influence on the simulator response.

To overcome computational cost limitations, surrogate models, or metamodels, have

been frequently used on many applications. The idea of surrogate models consists of

replacing the expensive model by a simpler mathematical model (or surrogate) fitted to a
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few chosen simulations at a set of points called a design of experiments (DoE). Surrogate

models are then used to predict the simulator response with very limited computational

cost [Box & Draper (1986), Myers & Montgomery (1995), Santner et al. (2003), Sacks

et al. (1989a)].

By definition, a surrogate model contains uncertainties, since it is an approximation

to an unknown function. A surrogate inherits uncertainties from two main sources:

uncertainty in the observations (when they are noisy), and uncertainty due to the

lack of data. Indeed, a simulator is an approximation to a real phenomenon, and the

confidence one can put in its responses depends on the quality of the numerical model.

The properties of the surrogate strongly depend on the accuracy of the observations.

Secondly, in most applications, the number of simulations runs is severely limited by

the computational capabilities. The information on which the surrogate is fitted is

insufficient to obtain an accurate approximation of the simulator behavior. One of the

major challenges in surrogate modeling consists of controlling and compensating for these

uncertainties.

The present work considers as a discussion thread the classical framework of

reliability-based design optimization (RBDO), for which the issues associated with

uncertainty in surrogate modeling are particularly crucial. RBDO is a popular way

to address uncertainty in the design process of a system. It consists of optimizing a

performance function while ensuring a prescribed reliability level. RBDO problems are

computationally challenging, since they require numerous calls to reliability measures

that are most of the time expensive to estimate, hence being a natural candidate for

surrogate application [Rajashekhar & Ellingwood (1993), Venter et al. (1998), Kurtaran

et al. (2002)]. Surrogate modeling can be used at two levels of the RBDO: (1) during

the optimization process, by approximating the reliability constraint, and (2) during the

reliability estimation itself.
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The challenges in using surrogate modeling in RBDO are various. Indeed, a poor

approximation of the reliability level can severely harm the optimization process:

overestimation leads to non-optimal designs, and underestimation to weak designs.

Reliability assessment methods are generally based on sampling methods (such as

Monte-Carlo simulations) that only provide estimates of the actual reliability levels.

Quantification of the uncertainty on both reliability estimates and a surrogate based on

such data is needed to limit the risk of poor designs. Ramu et al. (2007) show that the use

of surrogates for reliability assessment is particularly challenging, since small errors in the

model could result in large errors in the reliability measure. In addition, for computational

reasons, the number of reliability estimates is limited to a small value, and efficient

sampling strategies must be used to ensure an acceptable accuracy of the surrogate.

It is possible to compensate for the lack of accuracy with extra safety margins.

Such approach is often referred as conservative, and a conservativeness level quantify

the chance that an approximation is on the safe side for the analysis. For example,

Starnes Jr & Haftka (1979) replaced the linear Taylor series approximation with a

tangent approximation biased to be conservative in order to reduce the chance of

unconservative approximations to buckling loads. Many engineering applications have

adopted conservative estimation. For instance, Federal Aviation Administration (FAA)

defines conservative material property (A-basis and B-basis) as the value of a material

property exceeded by 99% (for A-basis, 90% for B-basis) of the population with 95%

confidence. FAA recommends the use of A-basis for material properties and a safety factor

of 1.5 on the loads. Traditionally, safety factors have been extensively used to account for

uncertainties, even though their effectiveness is questionable [Elishakoff (2004), Acar et al.

(2007)].

Estimating the uncertainty in data or the metamodel is crucial for the effectiveness of

most surrogate-based approaches. Uncertainty and error quantification is a classical theme

of surrogate modeling. Most metamodels contain by construction error estimates [Cressie
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(1993), Isaaks & Srivastava (1989), Box & Draper (1986)]. These estimates are based on

statistical assumptions; for instance, linear regression assumes normality and independance

of the errors. In practice, such assumptions can be violated, making those error measures

questionable. Alternatively, numerical techniques are available to quantify the error [Stine

(1985), Efron (1982), Goel et al. (2006)].

Uncertainty quantification allows compensating mechanisms, for instance in order to

set the conservativeness to a prescribed level. However, little information is available on

the effect of error compensation on the surrogate application. Furthermore, conservative

estimates are biased to be on the safe side, so the conservativeness comes at a price of

accuracy. One goal of present work is to propose alternatives to compensate for the

surrogate model errors, based on different error estimation techniques, and demonstrate

their efficiency for safe prediction and design of engineering systems.

In many applications, sampling strategies can be chosen by the user. Then,

experiments can be designed such that the uncertainty of surrogate models are minimized.

When safe prediction is desired, reduced uncertainty allows to obtain conservativeness

with a minimal impact on accuracy. The choice and effectiveness of the sampling

strategies has been widely explored and discussed in the surrogate literature [Steinberg

& Hunter (1984), Sacks et al. (1989b), Fedorov & Hackl (1997)]. This work proposes two

contributions to this field. Firstly, we address the issue of choosing the experiments when

surrogates are used for reliability assessment and constrained optimization. Secondly, we

propose global sampling strategies to answer the issue of allocating limited computational

resource in the context of RBDO.

Outline of the dissertation:.

Chapter 2 reviews several aspects of surrogate modeling.

Chapter 3 addresses the issue of generating conservative predictions using surrogate

models. Two alternatives are proposed: (1) using statistical information provided by the

surrogate model and (2) using model-independent techniques (bootstrap, cross-validation)
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to obtain statistical information. Different metrics are defined to measure the trade-off

between accuracy and safety. The analysis of the different techniques is supported with

the help of an analytical and a structural problem that uses finite elements analysis.

Chapter 4 considers the application of surrogate modeling to reliability-based design,

where surrogates are used to fit probability distributions. We focus on the case when

low probabilities are estimated from a small number of observations obtained by

Monte-Carlo simulations (MCS). By using biased-fitting techniques and resampling

methods (bootstrap), we compensate for the uncertainty in the analysis by being on

the conservative side, with reasonable impact on the accuracy of the response. An

application to the optimization of a laminate composite with reliability constraints is used

for demonstration, the constraint being approximated conservatively using bootstrap.

In Chapter 5, we propose an objective-based approach to surrogate modeling, based

on the idea that the uncertainty may be reduced where it is most useful, instead of

globally. An original criterion is proposed to choose sequentially the design of experiments,

when the surrogate needs to be accurate for certain levels of the simulator response. The

criterion is a trade-off between the reduction of overall uncertainty in the surrogate, and

the uncertainty reduction in target regions. The effectiveness of the method is illustrated

on a simple reliability analysis application.

Chapter 6 considers the framework of simulators whose fidelity depends on tunable

factors that control the complexity of the model (such as MCS-based simulators, or

RBDO framework). For each simulation run, the user has to set a trade-off between

computational cost and response precision. When a global computational budget for the

DoE is given, one may have to answer the following questions: (1) is it better to run a few

accurate simulations or a large number of inaccurate ones, (2) is it possible to improve the

surrogate by tuning different fidelities for each run. Answers are proposed for these two

questions. For polynomial regression, it joins the well-explored theory of design optimality.
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For kriging, both numerical and analytical results are proposed; in particular, asymptotic

results are given when the number of simulation runs tends to infinity.

Chapter 7 recapitulates major conclusions and results, and draw perspectives from

this work.

21



CHAPTER 2
ELEMENTS OF SURROGATE MODELING

In this chapter, we introduce the important notions relative to surrogate modeling.

We detail two types of models: linear regression models, and Kriging models. We also

describe the problematic of design of experiments, and present several popular sampling

strategies.

2.1 Surrogate Models

Strategies involving surrogate modeling are recognized in a wide range of engineering

fields to efficiently address computationally expensive problems. The aim of this section

is to briefly present the notation and main steps in surrogate modeling. Among the

numerous types of surrogate models available in the literature, we emphasize two of the

most popular ones: linear regression and Kriging. Linear regression, also referred as

polynomial response surface in the engineering literature, has been initially developed

for statistical inference based on physical experiments. Kriging was developed by

geostatisticians to model spatial correlations of the physical characteristics of ground.

Both models are now used in many applications, even though the hypotheses on which the

models are based are not necessarily guaranteed.

A major notion in surrogate modeling is the design of experiments, or sampling

strategy, since it is crucial to the quality of the surrogate analysis. In this chapter, we

briefly describe three classical sampling strategies: space-filling, model-based designs and

adaptive designs. More advanced notions are addressed in Chapter 5 for adaptive designs

and Chapter 6 for model-oriented optimal designs.

2.1.1 Notation And Concepts

Let us first introduce some notation. We denote by y the response of a numerical

simulator or function that is to be studied:

y : D ⊂ Rd −→ R

x 7−→ y(x)

(2–1)
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where x = {x1, ..., xd}T is a d-dimensional vector of input variables, and D is the design

space. In order to build a metamodel, the response y is observed at n distinct locations X:

X = [x1, ...,xn]

Yobs = [y(x1), ..., y(xn)]
T = y(X)

(2–2)

X is called the design of experiments (DoE), and Yobs is the observations. Since the

response y is expensive to evaluate, we approximate it by a simple model, called the

metamodel or surrogate model, based on assumptions on the nature of y and on its

observations Yobs at the points of the DoE.

The metamodel can interpolate the data (splines, Kriging) or approximate it (linear

regression, Kriging with nugget effect). In the latter case, it is assumed that the function

of interest is observed through a noisy process, so the observation differs from the true

function by an additive error term:

yobs,i = y(xi) + εi (2–3)

with εi the error. In most of the metamodel hypotheses, the error is considered as a white

noise normally distributed with zero mean. In this section, we will always consider this

hypothesis true.

2.1.2 The Linear Regression Model

In linear regression, the response is modeled as a linear combination of basis functions

observed with an additive error term:

y(x) =

p∑
j=1

βjfj(x) (2–4)

yobs,i =

p∑
j=1

βjfj(x) + εi (2–5)

where fj(x) are the basis functions (for instance polynomial), βj the weights, and εi the

error at xi.
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Given a set of design points, the linear regression model, in matrix notation, is defined

as follow:

Yobs = fT (X)β + ε (2–6)

where: F =



f(x1)
T

f(x2)
T

...

f(xn)
T


β =



β1

β2

...

βp


ε =



ε1

ε2
...

εp


and: f(x)T =

[
f1(x) f2(x) . . . fp(x)

]
.

Typically, the fi can be chosen as polynomial functions; in that case the model is

often called polynomial response surface (PRS).

Since in practice the error is unknown, we estimate the response by:

ŷ(x) = f(x)T β̂ (2–7)

where β̂ is an estimate of β and is chosen by minimizing the mean square error (MSE)

between the estimates and the actual responses at all design points:

MSE =
1

n

n∑
i=1

[ŷ((xi))− y(xi)]
2 (2–8)

Using the standard linear regression, the value of β̂ that minimizes the MSE is given

by:

β̂ =
(
FTF

)−1
FTYobs (2–9)

β̂ = M−1FTYobs (2–10)

The quantity M = FTF is called the Fisher information matrix.

In addition to the best predictor ŷ, the linear regression model provides a prediction

variance, given by:

var [ŷ(x)] = f(x)TM−1f(x) (2–11)

When the error is heteroskedastic, that is, when the error distribution differ from one

point to another, the ordinary least square estimator of β is not appropriate. Instead, we
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estimate the coefficients by the generalized least square estimator β∗:

β∗ =
(
FTΓ−1F

)−1
FTΓ−1Yobs (2–12)

with: Γ = [cov (y(xi), y(xj))]1≤i,j≤n. In that case, the Fisher information matrix is:

M = FTΓ−1F (2–13)

Note that if the errors are uncorrelated, Γ reduces to diag [var(ε1), var(ε2), ..., var(εn)].

For calculation details, see for instance Box & Draper (1986), Khuri & Cornell (1996)

or Myers & Montgomery (1995).

2.1.3 The Kriging Model

The Kriging metamodel was initially developed in the geostatistic framework

[Matheron (1969), Cressie (1993)] to predict values based on spatial correlation considerations.

Kriging can also be found on the literature under the name of Gaussian Process regression

[Rasmussen & Williams (2006)], or regression with spatially correlated errors [Fedorov &

Hackl (1997)]. The main hypothesis behind the Kriging model is to assume that the true

function y is one realization of a Gaussian stochastic process Y :

y(x) = Y (x, ω) (2–14)

where ω belongs to the underlying probability space Ω. In the following we use the

notation Y (x) for the process and y(x) for one realization. For Universal Kriging, Y is of

the form:

Y (x) =

p∑
j=1

βjfj(x) + Z(x) (2–15)

where fj are linearly independent known functions, and Z is a Gaussian process with zero

mean and covariance k(u,v).

The covariance function (or kernel) k contains all the information of spatial

dependency, and depends on parameters Θ. There exists many types of covariance

functions; two of the most popular ones are the isotropic gaussian and exponential
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covariances:

Isotropic Gaussian covariance: k(u,v) = σ2 exp

[
−
(
∥u− v∥

θ

)2
]

(2–16)

Isotropic Exponential covariance: k(u,v) = σ2 exp

[
−
(
∥u− v∥

θ

)]
(2–17)

For these covariances, the parameters Θ are the process variance σ2 and range θ.

Anisotropic covariance functions can also be defined by attributing a different θ in each

direction:

Anisotropic Gaussian covariance: k(u,v) = σ2 exp

[
−

d∑
j=1

(
|uj − vj|

θj

)2
]

(2–18)

In Chapter 3, we also use the rational quadratic covariance function[Rasmussen &

Williams (2006)]:

k(u,v) =

(
1 +

∥u− v∥2

2αl2

)−α

(2–19)

with Θ = {α, l}.

In the geostatistic literature, three terminologies are used, depending on the linear

part considered:

• simple Kriging (SK): the linear part reduces to a known constant β1

• ordinary Kriging (OK): the constant β1 is unknown

• universal Kriging (UK) is the general case.

The parameters Θ are usually unknown and must be estimated based on the

observations, using maximum likelihood, cross-validation or variogram techniques for

instance [see Rasmussen & Williams (2006), Stein (1999) or Cressie (1993)]. However, in

the Kriging model they are considered as known. To account for additional variability

due to the parameter estimation, one may use Bayesian Kriging models [see Martin &

Simpson (2004) and Oakley & O’Hagan (2004)], which will not be detailed here.
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2.1.3.1 Kriging with noise-free observations

First, we consider the most classical framework, where the function is observed

without noise:

yobs,i = y(xi) (2–20)

Under such hypothesis, the best linear unbiased predictor (BLUP) for y, knowing the

observations Yobs, is given by the following equation:

mK(x) = E [Y (x)|Y (X) = Yobs]

= f(x)T β̂ + c(x)TC−1
(
Yobs − Fβ̂

) (2–21)

where:

• f(x) =
[
f1(x) . . . fp(x)

]T
is p× 1 vector of bases,

• β̂ =
[
β̂1 . . . β̂p

]T
is p× 1 vector of estimates of β,

• c(x) =
[
cov(x,x1) . . . cov(x,xn)

]T
is n× 1 vector of covariance,

• C = [cov (xi,xj)]1≤i,j≤n is n× n covariance matrix, and

• F =
[
f(x1) . . . f(xn)

]T
is p× n matrix of bases.

β̂ is the vector of generalized least square estimates of β:

β̂ =
(
FTC−1F

)−1
FTC−1Yobs (2–22)

In addition, the Kriging model provides an estimate of the accuracy of the mean predictor,

the Kriging prediction variance:

s2K(x) = k(x,x)−c(x)TC−1c(x)+
(
f(x)T − c(x)TC−1F

) (
FTC−1F

)−1 (
f(x)T − c(x)TC−1F

)T
(2–23)

Note that the Kriging variance does not depend on the observations Yobs, but only on the

design of experiments. Derivation details can be found in Matheron (1969), Cressie (1993),

or Rasmussen & Williams (2006). We denote by M(x) the Gaussian process conditional on
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the observations Yobs:

(M(x))x∈D = (Y (x)|Y (X) = Yobs)x∈D = (Y (x)|obs)x∈D (2–24)

The Kriging model provides the distribution of M at a prediction point x:

M(x) ∼ N
(
mK(x), s

2
K(x)

)
(2–25)

Figure 2-1 shows a Kriging model with a first-order trend (β = β1, simple Kriging)

and five equally-spaced observations along with the 95% confidence intervals, which are

calculated from mK ± 1.96sK . On this example, the confidence interval contains the actual

response.

Figure 2-1. Example of Simple Kriging model. The 95% confidence intervals (CI) are equal
to mK ± 1.96× sK . The DoE consists of five points equally spaced in [0, 1].

The Kriging mean mK interpolates the function y(x) at the design of experiment

points:

mK(xi) = y(xi), 1 ≤ i ≤ n (2–26)

The Kriging variance is null at the observation points xi, and greater than zero

elsewhere:

s2K(xi) = 0, 1 ≤ i ≤ n and s2K(x) ≥ 0, x ̸= xi (2–27)
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Besides, the Kriging variance function increases with the distance of x to the

observations.

2.1.3.2 Kriging with nugget effect

When noisy observations are considered, a diagonal matrix must be added to the

covariance matrix:

C∆ = C+∆ (2–28)

with: ∆ = diag ([var(ε1), var(ε2), . . . , var(εn)]) the variances of the observations.

Equations for mK and s2K are the same as in Eqs. 2–21 and 2–23 but using C∆

instead of C. For theoretical details and bibliography, see for instance Ginsbourger (2009)

(Chap. 7). The main difference with the classical Kriging is that best predictor is not

an interpolator anymore; also, the Kriging variance is non-null at the observation points.

Figure 2-2 shows a Kriging model based on noisy observations. Each observation has a

different noise variance.

Figure 2-2. Example of Simple Kriging model with noisy observations. The bars represent
± two times the standard deviation of the noise. The Kriging mean does not
interpolate the data and the Kriging variance is non-null at the observation
points.
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2.2 Design Of Experiment Strategies

Choosing the set of experiments X plays a critical role in the accuracy of the

metamodel and the subsequent use of the metamodel for prediction, learning or optimization.

In this section, we detail three families of design of experiments: classical and space-filling

designs, model-oriented (or optimal) designs, and adaptive designs.

2.2.1 Classical And Space-Filling Designs

The first family of DoE consists of designs based on geometric considerations. In a

full-factorial (FF) design, the variables are discretized into a finite number of levels, and

the design consists of all the possible combinations of the discrete variables. Two-level

FF designs, where the input variables are taken only at their minimum and maximum

values, are typically used for screening in order to identify the most significant variables

and remove the others. Although extensively used historically, such type of DoEs suffer

from several drawbacks among the following:

• it requires a large number of observations in high dimensions (a FF design with
q levels in d dimensions is made of qd observations), making them impractical for
computationally expensive problems

• they do not ensure space-filling in high dimensions

• the number of observation points collapses when projecting on the subspaces (when
some variables are removed for instance).

Figure 2-3. Examples of full-factorial and central composite designs.

There exists classical alternatives to FF designs, such as central-composite designs

(that consist of 2d vertices, 2d axial points and p repetitions of central point), or fractional
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designs (that are subsets of FF designs). See for instance Myers & Montgomery (1995)

for details. Figure 2-3 shows a three-level FF design and a central composite design for a

two-dimensional domain.

A popular alternative to the geometrical designs is Latin Hypercube sampling (LHS)

[McKay et al. (2000)]. LHS is a random DoE that insures uniformity of the marginal

distributions of the input variables.

To generate a DoE of n points, each variable range is divided into n equal intervals,

for instance for the range [0, 1]:
{
[0, 1

n
], [ 1

n
, 2
n
], ..., [n−1

n
, 1]
}
. Then, the DoE is constructed

by picking n points so that all the intervals for each variable is represented once. Figure

2-4 shows a nine-point LHS design for a two-dimensional domain. In a d-dimensional

space, the total number of combinations is nd−1, which increases very rapidly with both

sample size and dimension. The variable values can be chosen deterministically as the

centre of the interval for instance, or randomly inside the interval.

LHS can also be optimized to ensure better space-filling. Space-filling criteria include:

• maximum minimum distance between sampling points (maximin designs),

• maximum-entropy designs [Shewry & Wynn (1987)],

• minimum discrepancy measures, etc.

Figure 2-4. A nine-point LHS design. The projections on the margins are non redudant
and equally-spaced if the design points are centered in each cell.
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Finally, low-discrepancy sequences are also often used for space-filling strategies, such

as Sobol, Halton, Harmmersley, Niederreitter or Faure sequences. See Niederreiter (1992)

or Sobol (1976) for details.

2.2.2 Model-Oriented Designs

The previous sampling strategies were built independently of the metamodel to be

fitted to the observations. Alternatively, when the choice of the metamodel is made a

priori, it is possible to choose the observation points in order to maximize the quality of

statistical inference. The theory of optimal designs has originally been developed in the

framework of linear regression, and was extended later to other models such as Kriging

since the 80’s.

Let ϕ be a functional of interest to minimize that depends on the design of experiments

X. A design X∗ is called ϕ-optimal if it achieves:

X∗ = argmin [ϕ(X)] (2–29)

A- and D-optimality aim at minimizing the uncertainty in the parameters of the

metamodel when uncertainty is due to noisy observations. In the framework of linear

regression, D-optimal designs minimize the volume of the confidence ellipsoid of the

coefficients, while A-optimal designs minimize its perimeter (or surface for d > 2).

Formally, the A- and D-optimality criteria are, respectively, the trace and determinant of

Fisher’s information matrix [Khuri & Cornell (1996)]:

A(X) = trace(M(X)) (2–30)

D(X) = det(M(X)) (2–31)

In linear regression, these criteria are particularly relevant since minimizing the

uncertainty in the coefficients also minimizes the uncertainty in the prediction (according

to the D-G equivalence theorem, which is developed further in Chapter 6).
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For Kriging, uncertainties in covariance parameters and prediction are not simply

related. A natural alternative is to take advantage of the prediction variance associated

with the metamodel. The prediction variance allows us to build measures that reflect the

overall accuracy of the Kriging. Two different criteria are available: the integrated mean

square error (IMSE) and maximum mean square error (MMSE) [Santner et al. (2003),

Sacks et al. (1989a)]:

IMSE =

∫
D

MSE(x)dµ(x) (2–32)

MMSE = maxx∈D [MSE(x)] (2–33)

µ(x) is an integration measure (usually uniform) and

MSE(x) = E
[
(y(x)−M(x))2

∣∣ obs] (2–34)

When the function to approximate is a realization of a gaussian process with

covariance structure and parameters equal to the ones chosen for Kriging, the MSE

coincides with the prediction variance s2K . Note that the above criteria are often called

I-criterion and G-criterion, respectively, in the regression framework. The IMSE is a

measure of the average accuracy of the metamodel, while the MMSE measures the risk

of large error in prediction. In practice, the IMSE criterion essentially reflects the spatial

distribution of the observations. For dimensions higher than two, the MMSE is not very

relevant since the regions of maximum uncertainty are always situated on the boundaries,

and MMSE-optimal designs consist of observations taken on the edges of the domain only,

which is not efficient for Kriging.

Optimal designs are model-dependent, in the sense that the optimality criterion is

determined by the choice of the metamodel. In regression, A- and D-criteria depend on

the choice of the basis functions, while in Kriging the prediction variance depends on

the linear trend, the covariance structure, and parameter values. A fundamental result,

however, is that assuming a particular model structure (and covariance parameters for
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Kriging), none of the criteria depends on the response values at the design points. The

consequence is that the DoEs can be designed offline before generating the observations.

However, in practice this statement has to been moderated, since the Kriging covariance

parameters are most of the time estimated from the observations.

2.2.3 Adaptive Designs

The previous DoE strategies choose all the points of the design before computing any

observation. It is also possible to build the DoE sequentially, by choosing a new point as

a function of the other points and their corresponding response values. Such approach

has received considerable attention from the engineering and mathematical statistic

communities, for its advantages of flexibility and adaptability over other methods [Lin

et al. (2008), Scheidt (2006), Turner et al. (2003)].

Typically, the new point achieves a maximum on some criterion. For instance,

a sequential DoE can be built by making at each step a new observation where the

prediction variance is maximal. The algorithmic procedure is detailed in Table 2-1.

Table 2-1. Sequential DoE minimizing the maximum prediction variance at each step.

X = {x1, . . . ,xn}
for i = 1 to k

xnew = argmax
x∈D

s2K (x)

X = {X,xnew}
end

Sacks et al. (1989b) uses this strategy as a heuristic to build IMSE-optimal designs for

Kriging. Theoretically, this sequential strategy is less efficient that the direct minimization

of the IMSE criterion. The advantage of sequential strategy here is twofold. Firstly, it

is computational, since it transforms an optimization problem of dimension n × d (for

the IMSE minimization) into k optimizations of dimension d. Secondly, it allows us to

reevaluate the covariance parameters after each observation. In the same fashion, Williams

et al. (2000), Currin et al. (1991), Santner et al. (2003) use a Bayesian approach to derive

sequential IMSE designs. Osio & Amon (1996) proposed a multistage approach to enhance
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first space-filling in order to accurately estimate the Kriging covariance parameters

and then refine the DoE by reducing the model uncertainty. Some reviews of adaptive

sampling in engineering design can be found in Jin et al. (2002).

In general, a particular advantage of sequential strategies over other DoEs is that they

can integrate the information given by the first k observation values to choose the (k+ 1)th

training point, for instance by reevaluating the Kriging covariance parameters. It is also

possible to define response-dependent criteria, with naturally leads to surrogate-based

optimization. One of the most famous adaptive strategy is the EGO algorithm (Jones

et al. (1998)), used to derive sequential designs for the optimization of deterministic

simulation models. At each step, the new observation is chosen to maximize the expected

improvement, a functional that represents a compromise between exploration of unknown

regions and local search:

EI (x) = E (max [0,min (Yobs)−M (x)]) (2–35)

where M(x) is the Kriging model as described in Eq. 2–25.

Kleijnen & Van Beers (2004) proposed an application-driven adaptive strategy using

criteria based on response values. Tu & Barton (1997) used a modified D-optimal strategy

for boundary-focused polynomial regression. In Chapter 5, we detail an original adaptive

design strategy for target region approximation.
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CHAPTER 3
CONSERVATIVE PREDICTIONS USING SURROGATE MODELING

3.1 Motivation

In analyzing engineering systems, multiple sources of error - such as modeling error or

insufficient data - prevent us from taking the analysis results at face value. Conservative

prediction is a simple way to account for uncertainties and errors in a system analysis, by

using calculations or approximations that tend to safely estimate the response of a system.

Traditionally, safety factors have been extensively used for that purpose, even though their

effectiveness is questionable [Elishakoff (2004), Acar et al. (2007)].

When surrogate models are used for predicting critical quantities, very little is known

in practice to provide conservative estimates, and how conservative strategies impact

the design process. Most surrogates are designed so that there is a 50% chance that the

prediction will be higher than the real value. The objective of this work is to propose

alternatives to modify the traditional surrogates so that this percentage is pushed to the

conservative side with the least impact on accuracy.

Since conservative surrogates tend to overestimate the actual response, there is a

trade-off between accuracy and conservativeness. The choice of such trade-off determines

the balance between the risk of overdesign and the risk of weak design. The design of

conservative surrogates can be considered as a bi-objective optimization problem, and

results are presented in the form of Pareto fronts: accuracy versus conservativeness.

The most classical conservative strategy is to bias the prediction response by a

multiplicative or additive constant. Such approaches are called empirical because

the choice of the constant is somehow arbitrary and based on previous knowledge of

the engineering problem considered. However, it is difficult to predict how efficient

its application is to surrogates, and how it is possible to design those quantities.

Alternatively, it is possible to use the statistical knowledge from the surrogate fitting

(prediction variance) to build one-sided confidence intervals on the prediction.
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For this study, we consider two types of surrogate models: polynomial response

surfaces (PRS) and Kriging. We propose three alternatives to provide conservative

estimates: using cross-validation to define constant margins, using confidence intervals

given by the surrogate model, and using the bootstrap method. The methods differ

in the sense that one assumes a particular distribution of the error, while the others

(cross-validation and bootstrap) does not. Different metrics are defined to analyze the

trade-off between accuracy and conservativeness. The methods are applied to two test

problems: one analytical and one based on Finite Element Analysis.

3.2 Design Of Conservative Predictors

3.2.1 Definition Of Conservative Predictors

Without any loss of generality, we assume here that a conservative estimator is an

estimator that does not underestimate the actual value. Hence, a conservative estimators

can be obtained by simply adding a positive safety margin to the unbiased estimator:

ŷSM (x) = ŷ (x) + Sm (3–1)

Alternatively, it is possible to define a conservative estimator using safety factors,

which are more commonly used in engineering:

ŷSF (x) = ŷ (x)× Sf (3–2)

In the context of surrogate modeling, safety margins are more convenient. Indeed,

when using a safety factor, the level of safety depends on the response value, while most

surrogates model assume that the error is independent of the mean of the response. Hence,

in this work we use only safety margins to define a conservative estimator.

The value of the margin directly impacts the level of safety and the error in the

estimation. Hence, there is a great incentive to find the margin that ensure a targeted

level of safety with least impact on the accuracy of the estimates. The safety margin can

be constant, or depend on the location, hence written Sm (x) (pointwise margin). In the
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following sections, we provide several ways to design the margin, using parametric and

non-parametric methods, for pointwise and constant margins.

3.2.2 Metrics For Conservativeness And Accuracy

As discussed in introduction, conservative estimates are biased, and a high level

of conservativeness can only be achieved at a price in accuracy. Thus, the quality of a

method can only be measured as a trade-off between conservativeness and accuracy. In

order to assess a global performance of the methods, we propose to define accuracy and

conservativeness indexes.

The most widely used measure to check the accuracy of a surrogate is the root mean

square error (eRMS), defined as:

eRMS =

∫
D

(ŷ (x)− y (x))2dx

 1
2

(3–3)

The eRMS can be computed by Monte-Carlo integration at a large number of ptest test

points:

eRMS ≈

√√√√ 1

ptest

ptest∑
i=1

e2i (3–4)

where ei = (ŷi − yi), ŷi and yi being the values of the conservative prediction and

actual simulation at the i-th test point, respectively.

We also define the relative loss in accuracy, in order to measure simply by how much

the accuracy is degraded when high levels of conservativeness are targeted:

lα =
eRMS

eRMS|ref
− 1 (3–5)

where eRMS is taken at a given target conservativeness; and eRMS|ref is the eRMS

value of reference. In most of the study, which we take equal to the value of eRMS when

the target conservativeness is 50%.
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There are different measures of the conservativeness of an approximation. Here we use

the percentage of conservative errors (i.e. positive):

%c = 100

∫
D

I [ŷ (x)− y (x)]dx (3–6)

where I(e) is the indicator function, which equals 1 if e > 0 and 0 otherwise. %c can

be estimated by Monte-Carlo integration:

%c ≈ 100

ptest

ptest∑
i=1

I (ei) (3–7)

Ideally, for most surrogate models, %c = 50% when the approximation is unbiased.

The percentage of conservative errors provides the probability to be conservative.

However, it fails to inform by how much it is unconservative when predictions are

unconservative. Thus, an alternate measure of conservativeness is proposed; that is,

the maximum unconservative error (largest negative error) :

MaxUE = max (max (−ei) , 0) (3–8)

This index can also be normalized by the index of the unbiased estimator:

MaxUE% =
MaxUE

MaxUE|ref
− 1 (3–9)

where MaxUE|ref is the value of reference, which we take equal to the value for the

unbiased estimator.

A value of MaxUE% of 50% means that the maximum unconservative error is reduced

by 50% compared to the BLUE estimator.

Alternative measures of conservativeness can be defined, including the mean or the

median of the unconservative errors. However, the maximum error decreases monotonically

when target conservativeness is increased, while mean and median can increase when we

increase conservativeness, for instance when we have initially very small and very large

errors.

39



3.2.3 Constant Safety Margin Using Cross-Validation Techniques

Here, we consider the design of conservative surrogates, when the same safety margin

is applied everywhere on the design domain. In the following, we call such estimators CSM

estimators (for Constant Safety Margin), and denote it ŷCSM .

In terms of the cumulative distribution function (CDF) of the errors, Fe, the safety

margin Sm for a given conservativeness, %c, is given as:

Sm = F−1
e

(
%c

100

)
(3–10)

The objective is to design the safety margin such that the above equation is ensured.

The actual error distribution is, in practice, unknown. We propose here to estimate it

empirically using cross-validation techniques in order to choose the margin.

Cross-validation (XV) is a process of estimating errors by constructing the surrogate

without some of the points and calculating the errors at these left out points. The process

is repeated with different sets of left-out points in order to get statistically significant

estimates of errors. The process proceeds by dividing the set of n data points into subsets.

The surrogate is fitted to all subsets except one, and error is checked in the subset that

was left out. This process is repeated for all subsets to produce a vector of cross-validation

errors, eXV . Usually, only one point is removed at a time (leave-one-out cross-validation),

so the size of eXV is equal to n.

The empirical CDF FXV , defined by the n values of eXV , are an approximation of the

true distribution Fe. Now, in order to design the margin, we replace Fe in Eq. 3–10 by

FXV :

Sm = F−1
XV

(
%c

100

)
(3–11)

For instance, when n = 100 and 75% conservativeness is desired, the safety margin is

chosen equal to the 25th highest cross-validation error.
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3.2.4 Pointwise Safety Margin Based On Error Distribution

Conservative estimates can also be obtained assuming the error distribution is known

as provided by the surrogate analysis. Classical regression provides a confidence interval

for the predicted model. A unilateral confidence interval of level α for the response y(x) is

given by [see Khuri & Cornell (1996)]:

CI =
]
−∞, fT (x) β̂ + t−1

n−p−1 (1− α) s
]

(3–12)

where tn−p−1 is the Student’s distribution with n− p− 1 degrees-of-freedom, and:

s = σ̂
√
1 + fT (x)M−1 (X) f (x)

σ̂2 =
1

n− p− 1

n∑
i=1

(yi − ŷi)
2

We define the conservative estimator of level (1 − α) as the upper bound of the

confidence interval:

ŷED (x) = fT (xnew) β̂ + t−1
n−p−1 (1− α) s (3–13)

This conservative estimate has the form of a margin added to the unbiased prediction; the

margin depends on the prediction location and is equal to:

Sm(x) = t−1
n−p−1 (1− α) σ̂

√
1 + fT (x)M−1 (X) f (x) (3–14)

Kriging also provides confidence intervals for the prediction, assuming that the

prediction error is normally distributed with mean mK and variance s2K . Then, we can

define the conservative estimator of level (1− α) as:

ŷED (x) = Φ−1
mK(x),m2

K(x)
(1− α) (3–15)

where Φ−1
mK(x),s2K(x)

is the inverse normal cumulative distribution function of mean mK(x)

and variance s2K(x).
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In the following, these estimators are referred as ED (error distribution) estimate.

They are called parametric estimates since they assume a particular form of the

distribution of the error. Note that confidence intervals given by kriging have a different

interpretation than the ones given by regression. Indeed, in regression the interpretation of

the CI is that there is a probability that an observation taken at x falls into the interval.

In kriging, it means that (1− α)% of the realizations of the gaussian processes conditional

to the observations will stay within the interval bounds.

3.2.5 Pointwise Safety Margin Using Bootstrap

Error distribution estimators rely on the fact that the hypothesis behind the surrogate

model are satisfied in practice. In particular, normality of the error distribution is always

assumed. It is obvious that, when such hypothesis is violated, the safety margin designed

with error distribution can be very inaccurate. In this section, we propose the use of

bootstrap to obtain confidence intervals without assumptions on the error distribution.

3.2.5.1 The Bootstrap principle

The bootstrap method can provide an efficient way of estimating the distribution of a

statistical parameter θ based on samples {u1, . . . , un} of the random variable U using the

re-sampling technique [Efron (1982), Chernick (1999)]. The idea is to create many sets of

bootstrap samples by re-sampling with replacement from the original data.

This method only requires the initial set of samples. Figure 3-1 illustrates the

procedure of the bootstrap method. The size of the initial samples is n and the number

of bootstrap re-samplings is p. Each re-sampling can be performed by sampling with

replacement n data out of the n initial samples (hence, the bootstrap samples contain

repeated values from the initial samples and omit some of the initial values). Since the

re-sampling process draws samples from the existing set of samples, it does not require

additional simulations. The parameter θ (for instance, the mean or standard deviation

of U), is estimated for each bootstrap samples. Since the re-sampling procedure allows

selecting data with replacement, the statistical properties of the re-sampled data are
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different from that of the original data. Then, the set of p bootstrap estimates θboot defines

an empirical distribution of θ. This approach allows us to estimate the distribution of any

statistical parameter without requiring additional data, and without any assumption on

the distribution of the parameter.

Figure 3-1. Schematic representation of bootstrapping. Bootstrap distribution of θ
(histogram or CDF of the p estimates) is obtained by multiple re-sampling (p
times) from a single set of data.

3.2.5.2 Generating confidence intervals for regression

In this section, we present the application of bootstrap to regression, as proposed by

Stine (1985). Calculations and methodology to obtain confidence intervals come from this

paper. The main idea is that resampling with replacement is conducted on the regression

residuals.

First, the regression model is estimated using the standard equations. Then, the

observations are perturbed by resampling the residuals:

Y∗ = Xβ̂ + ε∗ (3–16)

ε∗ is the bootstrap vector of residuals, obtained by sampling with replacement from the

empirical distribution of the residual vector ε.
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Note that the bootstrap model assumes that the mean of the true function is equal to

the best predictor of the regression model, that is, the true function is assumed to be of

the form:

y∗ (x) = fT (x) β̂ + ε∗ (3–17)

where ε∗ follows the empirical distribution of ε∗.

Then, the model is built based on the bootstrap observations:

β∗ =
(
fT (X) fT (X)

)−1
fT (X)Y∗ (3–18)

Using bootstrap, we account for the variability in β̂ through various bootstrap

estimates β∗
1,β

∗
2,β

∗
3, ..., and also for the noise ε at the predicted point.

The structure of the noise leads to valuable computational shortcut. Indeed, the error

E∗ for the bootstrap model consists of two additive components:

E∗ = ε∗ + b∗ (3–19)

with ε∗ taken from the initial vector of residuals and b∗ is the error due to uncertainty in

β̂:

b∗(x) = fT (x)β∗ − fT (x) β̂

= fT (x)M−1fT (X) ε∗ (3–20)

Since b∗ and ε∗ are independent, the distribution of E∗ is their convolution. Then, the

distribution F ∗
e of the error can be approximated by:

F ∗
e (u) =

1

N

N∑
j=1

Fn

(
u− b∗j(x)

)
(3–21)

with:

• Fn the empirical distribution of the (initial) residuals ε

• u a scalar
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• b∗j(x) the error of the jth bootstrap model at x

• N the number of bootstrap replicates.

F ∗
e (u) is the probability, computed by bootstrap, that the error at x exceeds u.

Then, the pointwise safety margin p1−α needed to achieve (1− α)% conservativeness is

defined as the inverse of F ∗
e taken at (1− α)%:

p1−α = (1− α) (3–22)

However, F ∗−1
e cannot be known analytically. In practice, we choose a finite number

of values of u for which we compute F ∗
e (u) for a given x; then we obtain the inverse of the

distribution (as shown in Figure 3-2) by interpolation.

Figure 3-2. Percentile of the error distribution interpolated from 100 values of u.

Finally, the bootstrap conservative predictor is defined as:

ŷBS = xpredβ̂ + p1−α (3–23)

In the following, these estimators are called BS (bootstrap) estimators and denoted by

ŷBS.
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3.2.6 Alternative Methods

In the context of conservative predictions, we proposed two other alternatives.

The first is called biased fitting: it consists of adding constraints to the least square

minimization problem in order to bias the surrogate to be on one side of the observations.

The second is Indicator Kriging (IK), which is a non-parametric method that estimates

probabilities of exceeding a particular threshold. However, these methods were found to be

less efficient than the other methods to produce conservative predictions. Hence, we do not

present it here. They can be found in Appendix A.1 and A.2.

3.3 Case Studies

3.3.1 Test Problems

3.3.1.1 The Branin-Hoo function

The first test function is a deterministic two-dimensional function, which is often used

to test optimization methods [Dixon & Szego (1978)]. The input variable domains are:

x ∈ [−5 10] and y ∈ [0 15]. The expression of the Branin-Hoo function is given as:

f(x, y) =

(
y − 5.1x2

4π2
+

5x

π
− 6

)2

+ 10

(
1− 1

8π

)
cos(x) + 10 (3–24)

The range of the function is between zero and 300. Large values are located on the bounds

of the domain.

Figure 3-3. Branin-Hoo function.
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3.3.1.2 The torque arm model

This second example was originally presented by Bennett & Botkin (1986). It consists

of the shape design of a particular piece from automotive industry called a torque arm.

The toque arm model, shown in 3-4, is under a horizontal and vertical load, Fx = −2789N

and Fy = 5066N, respectively, transmitted from a shaft at the right hole, while the left

hole is fixed. The torque arm consists of a material with Young’s modulus, E = 206.8GPa

and Poisson’s ratio, ν = 0.29.

Figure 3-4. Initial design of the Torque arm.

The objective of the analysis is to minimize the weight with a constraint on

the maximum stress. Seven design variables are defined to modify the initial shape.

Figure 3-5 and Table 3-1 show the design variables and their lower and upper bounds,

respectively. The lower and upper bounds are selected such that the topology of the design

is unchanged.

Table 3-1. Range of the design variables (cm).

Design variable Lower bound Upper bound
1 -2.0 3.5
2 -0.2 2.5
3 -2.0 6.0
4 -0.2 0.5
5 -0.1 2.0
6 -1.5 2.0
7 -0.1 2.0
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Figure 3-5. Design variables used to modify the shape.

The stress analysis is performed using a commercial finite element analysis (FEA)

software, ANSYS. Convergence analysis is performed to find an appropriate mesh size.

Smaller mesh size is used for the region that has possibility of having maximum stress.

Figure 3-6 shows a typical stress contour plot from FEA results. The contour lines

represent the von Mises stress. For the initial design, the von Mises stress range is between

10 kPa and 196 MPa. The maximum stress occurs at the end of the cutout. However, the

location of maximum stress may change for different designs. In fact, the maximum stress

is discontinuous function of design variables. However, we assume that it is a continuous

function, and the optimum design must be inspected carefully.

Figure 3-6. Von Mises stress contour plot at the initial design (Color bar indicates stress
values in 104 Pa).
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The FEA is computationally expensive; thus, a surrogate model is used to approximate

the maximum stress on the design domain. Here, we do not focus on the optimization but

on the quality of the surrogate prediction.

3.3.2 Numerical Procedure

3.3.2.1 Graphs of performance

We dispose of several techniques to increase the conservativeness of surrogate models;

our objective is to determine, through the examples, if some of them are better than

others. Moreover, it is possible that some techniques are more efficient for low levels of

conservativeness, and other for high levels of conservativeness. For each method, the level

of bias can be modified by changing the level of the confidence interval (1− α) (from 50%

to 100%).

Then, the indices of performance defined in Section 3.2.2 can be calculated for each

method at each level. In order to analyze and compare the different methods, we use the

following graphs:

• %c against lα: the first indicator of performance is the evolution of conservativeness
level (%c) against the loss in accuracy (lα). It can be considered as a Pareto front,
and can be used to design trade-offs between these quantities. Also, it allows us to
compare the different methods by looking at partial or global dominations.

• %c against MaxUE%: this curve allows to check the consistency of the two
conservativeness indices lα and MaxUE% when %c increases.

• Target conservativeness against %c: for all estimates except biased fitting models,
the level of bias is designed using a target level of %c. Then, it is of crucial interest
to measure the adequacy to the actual %c to the expected on. To analyze this
performance, we draw the QQ-plot of the target conservativeness (1 − α) vs. the
actual conservativeness %c.

3.3.2.2 Numerical set-up for the Branin-Hoo function

Two DoEs are used for this function, that consist of the four corners of the design

region plus 13 and 30 points, respectively, generated using Latin Hypercube Sampling

(LHS) with maximum minimum distance criterion; i.e., a total of 17 and 34 observations,

respectively. The test points are generated using a 32×32 uniform grid (total 1024 points).
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The eRMS is weighted such that the points inside the domain have a weight 1, the points

on the edges a weight 1/2 and the points on the corners 1/4 .

The PRS is a cubic polynomial. For Kriging, an ordinary kriging (OK) with

rational quadratic covariance function is used, which is provided by the GPML Toolbox

[Rasmussen & Williams (2006)].

LHS are random designs, which allows us to repeat the procedure a large number of

times. We present the results as the average over 500 repetitions. In addition, we use error

bars to represent 95% confidence intervals on lα and MaxUE% for a given level of %c, and

on %c for a given level of target conservativeness.

The unbiased polynomial response surfaces are computed using MatLab function

regress; the kriging estimates are computed using the GPML toolbox for MatLab.

3.3.2.3 Numerical set-up for the Torque arm model

The DoE consists of 300 points generated from LHS with maximum minimum

distance criterion; 1000 test points are generated using LHS. For each point, the ANSYS

code is run and returns the maximum stress. The response values are of the order of 102

MPa. For the PRS, a third order polynomial is used. For Kriging, several covariance

functions were tested, and it was found that a sum of a rational quadratic covariance

function (Eq. 2–19) and nugget effect reflected accurately the covariance structure.

Since the finite element analysis is computationally expensive, it is impractical to

generate a large number of DoEs for variability analysis, as we do for the Branin-Hoo

function. In order to obtain some confidence intervals, we randomly choose 300 points out

of the 1300 points generated (300 training + 1000 test points), and use the remaining 1000

as test points. This procedure is repeated 500 times. On the graphs, the average curve

correspond to the original DoE and the error bars to the variability estimation procedure.
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3.4 Results And Discussion

3.4.1 Branin-Hoo Function

3.4.1.1 Analysis of unbiased surrogate models

First, we look at the performance of the unbiased surrogate models on the Branin-Hoo

function. Table 3-2 reports the eRMS, %c and MaxUE for both PRS and Kriging.

Table 3-2. Mean values of statistics based on 1,024 test points and 500 DoEs for the
unbiased surrogates based on 17 observations. Number in parenthesis are
standard deviations of the quantities.

Surrogate eRMS %c MaxUE
PRS 8.1 (4.6) 53.1 % (8.4) 25.3 (15.7)

Kriging 9.1 (1.2) 55.8 % (5.8) 22.6 (8.1)

On average, PRS and Kriging perform similarly on the Branin-Hoo function. Kriging

is less sensitive to the DoE, since the standard deviations of eRMS and MaxUE are

smaller than for PRS. The MaxUE is relatively small compared to the range of the

function ([0 300]). Both surrogates have an average percentage of conservative errors

slightly larger than 50%, which shows that some hypothesis of the model may be violated.

3.4.1.2 Comparing Constant Safety Margin (CSM) and Error Distribution
(ED) estimates

Now, we compare, for each metamodel, constant and pointwise safety margins using

error distribution. Figure 3-8 shows the results corresponding to PRS, and Figure 3-7 to

Kriging. For both graphs, the range of the safety margin is chosen in the interval [0; 15];

the target conservativeness is chosen between 50% and 99%.

For PRS, we see in Figure 3-8 A) that the two methods are equivalent in terms of

accuracy and variability. 95% conservativeness is obtained for an eRMS twice as large as

the eRMS of the unbiased response surface. However, there is a substantial difference for

the maximum unconservative error. For the same proportion of conservative results, this

error is more reduced with ED than with CSM.

For Kriging, the CSM estimator clearly outperforms the ED estimator in terms

of accuracy vs. conservativeness (Figure 3-7 A)). The same level of conservativeness is
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obtained with less effect on the error, especially for the 70-90% range. Moreover, the

variability is much larger for the statistical estimator.

Figure 3-7. Average results for CSM (plain black) and ED (mixed grey) for Kriging based
on 17 points. A) %c vs. lα; B) %c vs. MaxUE%.

Figure 3-8. Average results for CSM (plain black) and ED (mixed grey) for PRS based on
17 points. A) %c vs. lα; B) %c vs. MaxUE%.

The loss in accuracy of the CSM estimator increases very slowly with %c (Figure 3-7

A)). Up to 70% conservativeness is achieved with very little effect on eRMS. This behavior

can be imputed to the nature of the Kriging model. Since Kriging is an interpolation,

errors are very small at the vicinity of the training points. Thus, adding a small constant

is sufficient to be conservative but has little effect on the accuracy.
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On the other hand, ED estimator appears to be much better to reduce the maximum

unconservative error. As shown in Figure 3-7 B), the ED curve (grey) is always higher

than the CSM one (black), which means, for a equivalent proportion of conservative

results, the maximum unconservative error is more reduced with ED than with CSM.

This behavior is amplified when Kriging is based on a larger DoE. Figure 3-9

shows the graphs of performance for the Kriging fitted from 34 design points. The

CSM estimator curve has a very flat portion up to 75% conservativeness, while the ED

estimator curve increases rapidly. A longer flat portion is logical because the region

where errors are small, at the vicinity of the DOE points, is larger since there are more

points. The variability is much higher for the ED estimator. On the other hand, the CSM

estimator does not prevent large unconservative errors: the maximum error remains almost

the same even for large proportions of conservative results. The ED estimator performs a

lot better according to this indicator.

Figure 3-9. Average results for CSM (plain black) and ED (mixed grey) for Kriging based
on 34 points. A) %c vs. lα; B) %c vs. MaxUE%.

Now, we compare the fidelity to target conservativeness of both CSM and ED

estimators, when the constant margin is designed with the help of cross-validation. Figure

3-10 shows the results for PRS, and Figure 3-11 for Kriging.
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Figure 3-10. Target vs. actual %c for PRS using CSM with cross-validation (plain black)
and ED (mixed gray) based on 17 points.

For PRS, both ED and CSM estimators show poor fidelity to target conservativeness.

For the ED estimator, the mean actual %c is 5% higher than the target, and the errorbars

show a variability of the order of ±5%. The assumptions of regression may be violated

with the Branin-Hoo function; for the unbiased PRS, the actual conservativeness is 55%

where 50% is expected.

The CSM designed by cross-validation is inaccurate and has very large variability.

The poor performance of cross-validation can be explained by the size of the DoE. Indeed,

removing one observation out of 17 can modify substantially the quality of the surrogate,

so cross-validation overestimates the error amplitude. Then, the CSM is chosen from 17

values only, which is not enough to ensure a good precision.

For Kriging, in average the ED estimator shows good fidelity since the trend is almost

equal to the straight line. For the higher levels, the actual conservativeness is a less than

the target. This is due to the fact that Kriging assume normality of errors, while for the

Branin-Hoo function this assumption may be at a certain degree violated. When looking

at the variability, the confidence interval is about ±20%, which is very large. In particular,

when 97% conservativeness is expected, the actual conservativeness can be as low as 70%.
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Figure 3-11. Target vs. actual %c for Kriging using CSM with cross-validation (plain
black) and ED (mixed gray) based on 17 points.

As well as for PRS, the CSM estimator shows both inaccuracy and large variability.

In addition to the reasons exposed above, cross-validation suffers here from the interpolating

nature of Kriging in low dimension. Indeed, there are regions of small errors (in the

vicinity of training points) and regions of large errors. Since the observations are

chosen according to a space-filling DoE, training points are away from each other, and

cross-validation estimates the error in regions of high uncertainty of the model, which

explains why here CSM is overconservative.

3.4.1.3 Comparing Bootstrap (BS) and Error Distribution (ED) estimates

We have seen for PRS that ED estimates perform a little bit better than CSM on the

Branin-Hoo function, but show poor fidelity to target level of conservativeness, which leads

for this example to unnecessarily large margins. Now, we compare this estimator to the

estimator based on bootstrap.

Before analyzing the results for the Branin-Hoo function, we propose to illustrate

the advantage of bootstrap over classical confidence intervals on a test case where the

bootstrap is supposed to show better accuracy. This is the case in particular when the

assumption of normality of residuals is violated [Stine (1985)].
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The experimental setup is as follow:

• the function to approximate is a second order polynomial y = x− x2

2

• the DoE consists of 100 observations uniformly taken on [0, 1]

• the noise follows a lognormal distribution, with µ = 0 and σ = 1. The distribution
is shifted by − exp (µ+ σ2/2) so the mean is zero, and divided by two to reduce the
amplitude.

Figure 3-12 shows the observations, polynomial response surface and 95% confidence

intervals (CI) computed using both classical formula and bootstrap.

Figure 3-12. Confidence intervals (CI) computed using classical regression and bootstrap
when the error follows a lognormal distribution. Bootstrap catches the
asymetry of the distribution and provides accurate confidence intervals.

First, we see that the observations are not evenly distributed around the true function

(70% are below). The heavy tail shape of the distribution of the noise is clearly apparent

with the few large positive noises.

Since it is based on a large number of observations, the regression best predictor is

correct even if assumption of normality is violated. However, the confidence intervals are

inaccurate: they are symmetric while the noise is not. So, (in absolute values) the lower

bound is overestimated, and the upper bound is underestimated. On the other hand,

the bootstrap confidence interval is accurate: it is strongly asymmetric and matches the

distribution of the residuals.
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In this example bootstrap is very accurate since it is based on a lot of observations

and the regression model is very simple. Now, we compare BS and CSM estimators on the

Branin-Hoo function. The graphs of performance are given in Figure 3-13, and Figure 3-14

shows the fidelity of both estimators to target %c.

Figure 3-13. Average results for BS (plain black) and ED (mixed grey) for PRS based on
17 points.. A) %c vs. lα; B) %c vs. MaxUE%.

Figure 3-14. Target vs. actual %c for Kriging using CSM and cross-validation (plain
black) and ED (mixed gray) based on 17 points.

First, we see that the evolution of the loss in accuracy with the percentage of

conservative results is the same for the two estimators (Figure 3-13 A)). ED is a more
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efficient than bootstrap to reduce the maximum unconservative error (Figure 3-13 B)). For

the fidelity to target conservativeness, on average, BS performs a little bit better than ED

but their variability are similar. On this example, bootstrap does not provide substantially

better results than ED.

3.4.2 Torque Arm Model

3.4.2.1 Analysis of unbiased surrogate models

First, we look at the performances of the unbiased surrogate models for the torque

arm stress analysis. Table 3-3 reports the eRMS, %c and MaxUE for both PRS and

Kriging.

Table 3-3. Statistics based on 1,000 test points for the unbiased surrogates.

Surrogate eRMS %c MaxUE
PRS 16.3 52.0% 77.5

Kriging 14.5 51.6% 60.7

Kriging performs better in terms of error. Both surrogates have approximately 50%

negative errors. Their eRMS are reasonable compared to the mean value of the stress

(210 MPa). However, we see that the maximum error is very large, especially for PRS.

Designing the torque arm based on these surrogates would result in a great risk of poor

design.

3.4.2.2 Comparing Constant Safety Margin (CSM) and Error Distribution
(ED) estimates

Figure 3-15 shows the results corresponding to PRS, and Figure 3-16 to Kriging.

For PRS, we see the same behavior for the Branin-Hoo function and torque arm

analysis: CSM and ED are similar when comparing the loss in accuracy when the

percentage of conservative results increases, but ED reduces better the maximum

unconservative error. Here, it is important to notice that even when %c is higher than

95%, the MaxUE is reduced by less than 50% in the best case.
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Figure 3-15. Average results for CSM (plain black) and ED (mixed grey) for PRS on the
torque arm data. A) %c vs. lα; B) %c vs. MaxUE%.

Figure 3-16. Average results for CSM (plain black) and ED (mixed grey) for Kriging on
the torque arm data. A) %c vs. lα; B) %c vs. MaxUE%.

For Kriging, again CSM performs better in terms of loss in accuracy lα, but reduces

very poorly the MaxUE. ED performs better regarding this indicator, but as well as for

PRS, high levels of %c only correspond to about 50% reduction of MaxUE.

Now, we look at the fidelity to target %c. Figure 3-17 shows the results corresponding

to PRS, and Figure 3-18 to Kriging.

On both figures, we see that using constant margin and cross-validation results

in a great fidelity to target conservativeness. ED estimators are a little bit biased

regarding fidelity: PRS slighlty underestimates %c for all probability range, and Kriging

59



overestimates conservativeness for high probabilities. These errors can be imputed to the

parametric (gaussian) form of the error model.

Figure 3-17. Target vs. actual %c for PRS using CSM and cross-validation (plain black)
and ED (mixed gray) on the torque arm data.

Figure 3-18. Target vs. actual %c for Kriging using CSM and cross-validation (plain
black) and ED (mixed gray) on the torque arm data.

In contrast, cross-validation does not assume any form for the error. The quality

of cross-validation margins are a lot better than in the previous test cas, which can be

explained by the larger number of observations. Firstly, with 300 observations, leaving one
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observation out has very little impact on the accuracy of the surrogate, so the error vector

given by cross-validation is more realistic. Secondly, the CSM is based on a large number

of values (300 instead of 17 previously), which allows to design it with better accuracy.

3.4.2.3 Comparing Bootstrap (BS) and Error Distribution (ED) estimates

Figure 3-19 shows the results of BS and ED estimates. For those indicators, the two

methods are similar.

Figure 3-19. Average results for BS (plain black) and ED (mixed grey) for PRS on the
torque arm data. A) %c vs. lα; B) %c vs. MaxUE%.

Figure 3-20. Target vs. actual %c for PRS using BS (plain black) and ED (mixed gray) on
the torque arm data.
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Figure 3-20 shows the fidelity of both estimators to target %c. Here, bootstrap does

not perform as well as ED. It is interesting to notice than they have opposite bias, since

ED is overconservative and BS overconfident.

3.5 Concluding Comments

In this chapter, we explored the alternatives to obtain conservative predictions using

surrogate modeling. First, we showed that conservativeness could be obtained using

parametric methods, by taking advantage of error distribution measures given by the

model, or non-parametric, such as bootstrap or cross-validation. Then, a Pareto front

methodology was introduced to measure the quality of the different methods. Finally, the

methods are implemented for two test problems: one analytical and one based on Finite

Element Analysis. Results showed that:

• The use of safety margins and error distribution lead to very comparable results
when the trade-off between accuracy and conservativeness are considered

• ED estimators, for an equivalent level of conservativeness and accuracy, prevent
better than CSM from the risk of large unconservative errors

• ED estimators are based on assumptions that may not be violated in order to obtain
acceptable fidelity of conservativeness level.

• When the model hypothesis are violated, bootstrap offers an efficient alternative to
obtain accurate fidelity

• Cross-validation is an efficient technique to design constant margins when the
number of observations is high.

More generally, it has been shown that measuring the conservativeness of a method

is not easy and can be very problem-dependant. Indeed, the chance of being conservative

and the risk of large unconservative errors are two measures of conservativeness that do

not behave identically. One may choose a conservative strategy based on the trade-off

between these two quantities and the global measure of accuracy.
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CHAPTER 4
CONSERVATIVE PREDICTIONS FOR RELIABILITY-BASED DESIGN

4.1 Introduction And Scope

When an engineering system has uncertainty in its input parameters and operating

conditions, the safety of the system can be evaluated in terms of reliability. Many methods

have been proposed to estimate the reliability of a system, such as Monte Carlo simulation

(MCS) method [Haldar & Mahadevan (2000)], First and Second-order Reliability Method

[Enevoldsen & Sørensen (1994), Melchers (1987)], importance sampling method [Engelund

& Rackwitz (1993)), tail modeling (Kim et al. (2006)], or inverse methods [Qu & Haftka

(2004)]. MCS is often used to estimate the reliability of the system that has many random

inputs or multiple failure modes, because its accuracy is independent of the complexity

of the problem. In this paper, reliability analysis using MCS method is considered. The

comparison between different reliability analysis methods is beyond the scope of this

chapter and can be found in the literature [Rackwitz (2000), Lee et al. (2002)].

When the cost of simulation is high, engineers can afford to have only a limited

number of samples, which is not sufficient to estimate the reliability with acceptable

accuracy [Ben-Haim & Elishakoff (1990), Neal et al. (1992)]. In such a case, it is often

required to compensate for the lack of accuracy with conservative approaches. For

example, anti-optimization [Elishakoff (1991), Du et al. (2005)] and possibility-based

design [Du et al. (2006), Choi et al. (2005)] are used to compensate for the lack of

knowledge in the input distribution by seeking the worst case scenario for a given design.

Such approaches have been found to lead to conservative designs [Nikolaidis et al. (2004)].

Bayesian reliability-based optimization [Youn & Wang (2008)] uses Bayesian theory to

ensure to produce reliable designs when only insufficient data is available for the inputs.

In this chapter, we focus on the case when the probability of failure, Pf , of a system

is estimated from a limited number of samples. The objective is to find a conservative

estimate, P̂f , that is likely to be no lower than the true Pf . Pf is estimated using
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particular types of surrogate models, which are distribution function models. To provide

such estimation, two alternatives are considered: the first method is based on biasing the

process of fitting the distribution used to compute the estimator of Pf . The second is the

use of bootstrap method [Efron (1982), Chernick (1999)] for quantifying the uncertainty

in probability of failure estimations, and defining conservative estimators based on

bootstrapping. As well as in the previous chapter, a trade-off analysis between accuracy

and the level of conservativeness is proposed with the help of numerical examples.

In the next section, we discuss how we use sampling techniques to estimate the

probability of failure. Section 4.3 shows how to use constraints to obtain conservative

estimators. Section 4.4 describes how to use the bootstrap method to define conservative

estimator. The accuracy of such estimators is analyzed using a simple numerical example

in Section 4.5, and an analysis of the effects of sample sizes and target probability of

failure on the quality of the estimates conservative estimators is given in Section 4.6.

Finally, the conservative approach is applied to an engineering problem in Section 4.7,

followed by concluding remarks in Section 4.8.

4.2 Estimation Of Probability Of Failure From Samples

4.2.1 Limit-State And Probability Of Failure

Failure of a system can usually be determined through a criterion, called a limit-state,

G. The limit-state is defined so that the system is considered safe if G ≤ 0 and fails

otherwise. Typically, the limit-state of a structure can be defined as the difference between

response, R, (e.g., maximum stress or strain) and capacity, C, (e.g., maximum allowable

stress or strain):

G(x) = R(x)− C(x) (4–1)

Due to uncertainties in input parameters, the limit-state is random. Thus, one can

estimate the safety of the system in terms probability of failure, which is defined as

Pf = Prob(G ≥ 0) (4–2)
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There are many methods for calculating the failure probability of a system [Haldar

& Mahadevan (2000), Enevoldsen & Sørensen (1994), Melchers (1987)]. Some of them

use the relation between input random variables and the limit-state (e.g., first and

second-order reliability methods) and some consider the limit-state as a black-box output

(e.g., MCS). When the number of input random variables is large, and the limit-state is

complex and multi-modal, MCS has a particular advantage as its accuracy is independent

of the problem dimension or complexity of the limit-state function. MCS generates

samples of the limit-state {g1, g2, , gn} and counts the number of failed samples [Melchers

(1987)]. The ratio between the numbers of failures and the total number of samples

approximates the probability of failure of the system:

Pf ≈ P̂f =
1

N

n∑
i=1

I [gi ≥ 0] (4–3)

The variance of MCS estimates is inversely proportional to the square root of the number

of samples times the probability of failure (for large N ):

var(P̂f ) ≈
Pf (1− Pf )

N
(4–4)

Thus, the accuracy is poor when the number of samples is small or when the

probability of failure is low. For instance, if a probability of failure of 10−4 is estimated

(which is a typical value in reliability based design), 106 samples are needed for 10%

relative error.

In this chapter, we focus on situations where only small samples are available

regarding the probability of failure; by small is meant from ten to 500, for probabilities of

failure going from 1% to 10−6. In such a case, the direct use of MCS (counting the number

of failed samples) is unrealistic, since the probability estimate would most probably be

zero.
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An alternative is to approximate the cumulative distribution function (CDF) FG of

the limit-state by a continuous function and estimate the probability of failure using:

P̂f = 1− FG(0) (4–5)

In general, FG is unknown and is approximated by a parametric distribution Fθ,

which is defined by distribution parameters, θ. Fθ can be considered as a one-dimensional

surrogate model that must be fitted from the data {g1, g2, , gn}. Fθ can be a logistic

regression model, or the CDF of the normal distribution (hence θ = {µ, σ}), defined by:

Fθ(g) =
1

σ
√
2π

g∫
−∞

exp

[
−(u− µ)2

2σ2

]
du (4–6)

The samples of limit states can be obtained by generating input random variables

and propagating through the system. However, the proposed method can be applied to

the case when input random variables and uncertainty propagation are unknown. For

example, the samples of limit states can be obtained from experiments.

In the following section, two methods of estimating distribution parameters from a set

of samples are discussed.

4.2.2 Estimation Of Distribution Parameters

There exists several alternatives to estimate the distribution parameters. The

difficulty here is to define a fitting criterion, since the usual assumptions of surrogate

models are not met (for instance, normality of the residuals). When possible (for example

for the normal distribution), they can be estimated using moment-based methods. Here,

we propose to define criteria based on the adequacy of the parametric model to the

empirical CDF.
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Consider n limit-state samples arranged in increasing order: {g1, g2, , gn}. The

empirical CDF Fn is defined as:

Fn(g) =


0 for g ≤ g1

k/n for gk ≤ g ≤ gk+1

1 for g ≥ gn

(4–7)

It is then possible to estimate the parameters θ of the CDF that approximates Fn

best. Two different approximation methods are discussed here:

• minimizing the root-mean-square (RMS) error,

• minimizing the Kolmogorov-Smirnov distance [Kenney & Keeping (1954)].

To minimize the RMS difference between the empirical and the estimated CDF, errors

are calculated at the sample points. In order to have an unbiased estimation, the values

of the empirical CDF are chosen at the middle of the two discrete data, as (see Figure 4-1

A)):

F n(gk) =
k − 1

2

n
, 1 ≤ k ≤ n (4–8)

Then the estimated parameters θ̂ are chosen to minimize the following error:

θ̂ = argmin
θ

√√√√ n∑
k=1

[
Fθ(gk)− F n(gk)

]2
(4–9)

The estimate based on Eq. 4–9 is called an RMS estimate.

The Kolmogorov-Smirnov (K-S) distance is the classical way to test if a set of samples

are representative of a distribution. The K-S distance is equal to the maximum distance

between two CDFs (see Figure 4-1 B)). The optimal parameters for the K-S distance are:

θ̂ = argmin
θ

[
max
1≤k≤n

(∣∣∣∣Fθ(gk)−
k

n

∣∣∣∣ , ∣∣∣∣Fθ(gk)−
k − 1

n

∣∣∣∣)] (4–10)

Figure 4-1 A) shows the empirical CDF from ten samples and the data points that

are used in Eq. 4–8. Figure 4-1 B) shows the K-S distance between a normally distributed

CDF and an empirical CDF from 10 samples.
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In the cases we consider in this work, it is found that the two criteria give equivalent

results. K-S distance links to classical statistical framework, but can be difficult to

minimize because it is non-smooth. The RMS error minimization appears to be more

robust.

Figure 4-1. Criteria to fit empirical CDFs: A) Points (circles) chosen to fit an empirical
CDF (line) with RMS criterion. B) K-S distance between an empirical CDF
with ten samples and a normal CDF (continuous line). Data is obtained by
sampling ten points from N(0, 1)

s

The choice of the distribution Fθ is critical for accurate estimation of the probability

of failure. Wrong assumption on the form of the distribution can lead to large bias in the

estimate, for instance, if the distribution is assumed to be normal while it is heavy-tailed.

Statistical techniques are available to test if a sample belongs to a given distribution type

(goodness-of fit tests), such as the Kolmogorov-Smirnov (for any distribution), Lilliefors

or Anderson-Darling tests (for normal distributions) [Kenney & Keeping (1954)]. Some

statistical software also offers automated procedures to choose from a benchmark of

distributions which fits best the data.

4.3 Conservative Estimates Using Constraints

In the spirit of the biased fitting estimates proposed in Appendix A.1, we propose to

add constraints to the fitting problem in order to make the estimates more conservative.
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A conservative estimate of the probability of failure should be equal or higher

than the actual one. Hence, a conservative estimate can be obtained by constraining

the estimated CDF to be lower than the true CDF when the parameters are found

through the optimization problems in Eqs. 4–9 or 4–10. Besides, we consider only small

probabilities, so the failure occurs in the upper tail region of the distribution. Hence, the

constraints will be applied to only the right half of the data. When the failure occurs in

the lower tail region, the constraints should be applied on the left half of the data.

The first conservative estimate of the CDF is obtained by constraining the estimate

to pass below the sampling data points. A second can be obtained by constraining the

estimated CDF below the entire empirical CDF. They will be called, respectively, CSP

(Conservative at Sample Points) and CEC (Conservative to Experimental CDF). The

latter is more conservative than the former. Obviously, both methods introduce bias,

and the choice between the two constraints is a matter of balance between accuracy and

conservativeness.

CSP constraints:

Fθ(gi)−
i

n
≤ 0 for

n

2
≤ i ≤ n (4–11)

CEC constraints:

Fθ(gi)−
i− 1

n
≤ 0 for

n

2
≤ i ≤ n (4–12)

To illustrate these conservative estimators, ten samples are generated from a random

variable G whose distribution is N(2.33, 1.02). The mean is chosen in such a way that the

probability of failure P (G ≥ 0) is equal to 1%. Figure 4-2 shows the empirical CDF along

with the three estimates based on minimum RMS error: (1) with no constraint, (2) with

CSP constraints, and (3) with CEC constraints. Table 4-1 shows the parameters of the

three estimated distributions and the corresponding probabilities of failure.

The effect of the constraints is clear from the graph. The CSP estimator is shifted

down to the ninth data point; hence, the CDF at the tail is decreased. The CEC estimator
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Figure 4-2. Example of CDF estimators based on RMS error for a sample of size 10
generated from N(−2.33, 1.02)

Table 4-1. Comparison of the mean, standard deviation, and probability of failure of the
three different CDF estimators for N(−2.33, 1.02). Exact value of Pf is 1%
(same sample as Figure 4-2).

No constraint CSP CEC
µ̂ 2.29 2.34 2.21
σ̂ 0.84 0.97 1.31

P̂f 0.32% 0.77% 4.65%

is shifted even further down. Since the conservative estimators are unconstrained on the

left half of the distribution, their CDF curves cross the empirical curve on that side.

For this illustration, we chose a sample realization that is unfavorable for conservativeness.

As a consequence, the estimate with no constraint is strongly unconservative (0.32%

compared to 1.0%) even though the estimation is unbiased. The CSP estimate is

unconservative, but substantially less than the unbiased estimate. The CEC estimate is

conservative. In order to generalize these results and derive reliable conclusions, statistical

experiments based on large number of simulations will be performed in Section 4.5.

4.4 Conservative Estimates Using The Bootstrap Method

An alternative to biased fitting is to obtain confidence intervals for the probability of

failure estimates in order to determine the margin needed to be conservative. However,
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analytical derivation of confidence intervals for the probability of failure is very challenging.

To overcome this problem, we propose to obtain confidence intervals using numerical

procedures, i.e. bootstrap.

The bootstrap principle is described in section 3.2.5.1. When only limited samples are

available, the bootstrap method can provide an efficient way of estimating the distribution

of statistical parameter θ. Regardless of its construction, the probability of failure is

estimated from samples of the limit-state {g1, . . . , gn}. Hence, it is possible to resample

with replacement from {g1, . . . , gn}, and for each set of bootstrap re-samples, fit the CDF

and compute Pf .

The standard error or confidence intervals of the statistical parameter can be

estimated from the bootstrap distribution. However, the bootstrap method provides only

an approximation of the true distribution because it depends on the values of the initial

samples. In order to obtain reliable results, it is suggested that the size of the samples

should be larger than 100 (i.e., n) [Efron (1982)]. The number of bootstrap re-samplings

(i.e., p) is chosen large enough so that it does not affect the quality of the results (the

major source of uncertainty being the initial sample). The value of p is typically taken

from 500 to 5,000.

For illustrating the process, the following case is considered: n = 100 and p = 5, 000.

That is, 100 samples of a random variable G are generated from the normal distribution

N(−2.33, 1.02). The true probability of failure is 1%. Pretending that the statistical

parameters (mean µ, standard deviation σ, or probability of failure Pf ) are unknown,

these parameters as well as their confidence intervals will be estimated using the bootstrap

method.

Using the given set of 100 initial samples, 5,000 bootstrap re-samplings are performed.

Similar to the conservative estimations in the previous section, the distribution type is first

assumed to be normal. Using each set of bootstrap re-samples, the mean µ and standard

deviation σ are estimated, from which the estimated probability of failure P̂f is calculated.
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The 5,000 P̂f values define the empirical bootstrap distribution of the estimator P̂f ,

represented in Figure 4-3 in a histogram form.

Figure 4-3. Conservative estimators of Pf from bootstrap distribution: 95th percentile
(p95) and mean of the 10% highest values (CVaR).

The empirical bootstrap distribution can be used to minimize the risk of yielding

unconservative estimate. In other words, we want to find a procedure that calculates the

following quantity:

α = P
(
P̂f ≥ Pf

)
(4–13)

A procedure that satisfies Eq. 4–13 is called an α-conservative estimator of Pf . For

example, if α = 0.95 is desired, then P̂f is selected at the 95th percentile of the bootstrap

distribution of the estimated probability of failure. This estimator will be referred to

’Bootstrap p95’ (see Figure 4-3). Due to the finite sample size, however, Eq. 4–13 will be

satisfied only approximately.

Besides this α-conservative estimator, the mean of the δ-highest bootstrap values

(conditional value-at-risk CVaR [Holton (2003))] is also used as a conservative estimate.

Here δ = 10% is used, so the estimator consists of the mean of the 10% highest bootstrap

values. Since CVaR is a mean value, it will be more stable than the α-conservative

estimator. However, it is difficult to determine the value of δ that makes Eq. 4–13 satisfied
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precisely. This estimator will be referred to ’Bootstrap CVaR 90’ (see Figure 4-3). Note

that any bootstrap percentile higher than 50% will be a conservative estimator. A very

high α or low δ will increase the value of P̂f and will yield over-conservative estimation.

4.5 Accuracy And Conservativeness Of Estimates For Normal Distribution

The goal of this section is to evaluate the accuracy and the conservativeness of the

estimators presented in Sections 4.3 and 4.4, when the actual distribution is known to

be normal. Statistical measures of the estimators are evaluated by estimating Pf a large

number of times.

We also introduce here the reliability index, which is denoted by β and related to the

probability of failure as:

β = −Φ−1 (Pf ) (4–14)

where Φ is the CDF of the standard normal distribution.

The reliability index is often used instead of Pf in reliability based design because the

range of β values (typically between one and five) is more convenient and its variability

is lower than Pf . It is important to note that since −Φ−1 is a monotonically decreasing

function: a low probability corresponds to a high reliability index. Thus, a conservative

estimation of β should not overestimate the true β (since a conservative estimation

should not underestimate the true Pf ). In the following, we present the results for both

probability of failure and reliability index.

First, 100 samples of G are randomly generated from the normal distribution with

mean -2.33 and standard deviation 1.0. The failure is defined for G ≥ 0, which corresponds

to an actual probability of failure of 1.0%. For a given set of samples, different estimators

are employed to estimate Pf . Five different estimators are compared: the unbiased

fitting, CSP, CEC, Bootstrap p95, and Bootstrap CVaR90 estimators. This procedure

was repeated 5,000 times in order to evaluate the accuracy and conservativeness of

each estimator. For the unbiased, CSP and CEC estimators, we tested both RMS and

Kolmogorov-Smirnov distance criteria and found that their performance was comparable
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but using K-S distance slightly increases variability. So, results are presented for RMS

criterion only.

Most of the estimated values will exceed the actual probability of failure, but it is

desirable to maintain a certain level of accuracy. Thus, the objective is to compare each

estimator in terms of accuracy and conservativeness.

Table 4-2 shows the statistical results from 5,000 repetitions. Results are presented

in the form of the mean value and the 90% symmetric confidence interval [5% ; 95%].

For the probability of failure estimates, the lower bound of the confidence interval

shows the conservativeness of the estimator; the mean and the upper bound show the

accuracy and the variability of the estimator. A high lower bound means a high level

of conservativeness, but a high mean and upper bound mean poor accuracy and high

variability. For the reliability index estimates, the upper bound shows the conservativeness

and the mean and lower bound the accuracy.

Table 4-2. Means and confidence intervals of different estimates of P (G ≥ 0) and
corresponding β values where G is the normal random variable N(−2.33, 1.02).
The statistics are obtained over 5,000 simulations.

Estimators Pf (%) β % of cons.
90% C.I. Mean 90% C.I. Mean results

Unbiased [ 0.37 ; 2.1 ] 1.02 [ 2.0 ; 2.7 ] 2.34 48
CSP [ 0.63 ; 3.6 ] 1.86 [ 1.8 ; 2.5 ] 2.12 82
CEC [ 0.95 ; 5.5 ] 2.97 [ 1.6 ; 2.3 ] 1.96 94

Boot. p95 [ 0.83 ; 3.7 ] 2.06 [ 1.8 ; 2.4 ] 2.07 92
Boot. CVaR90 [ 0.88 ; 3.8 ] 2.15 [ 1.8 ; 2.4 ] 2.05 93

Actual 1.00 2.33

First, the confidence interval of the unbiased estimator illustrates the risk of

unconservative prediction: indeed, the lower bound is 0.37%, which means there is a

five per cent chance to underestimate Pf by a factor of at least 2.7 (1.0/0.37 = 2.7).

This result provides an incentive for finding a way to improve the conservativeness of the

probability estimate.
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The CSP and CEC estimators are biased on the conservative side. As expected, the

CEC is more conservative than the CSP. As a consequence, CEC is more biased and the

risk of large overestimate is increased. The CEC confidence interval shows that there is

a five per cent chance to overestimate Pf by at least a factor of 5.5, while this value is

3.6 for the CSP estimator; on the other hand the CEC leads to 94 percent conservative

results, while the CSP estimator leads to only 82 percent conservative results. The

choice between the CSP and CEC estimators will be a choice between accuracy and

conservativeness.

The Bootstrap p95 estimator achieves 92 percent conservativeness and the Bootstrap

CVaR90 93 percent conservativeness. From the upper bounds of both estimations, we find

that the risk of overestimating Pf by at least a factor of 3.7 is five percent.

The amplitude of error in the reliability index β is much lower than the amplitude

in the probability of failure. For the CEC estimator, the lower bound of the confidence

interval corresponds to 31% error ([2.33− 1.6]/2.33 = 0.31). For the bootstrap estimators,

this error is reduced to 23%. The mean errors are respectively 16% and 11%.

Bootstrap methods appear to be more efficient than the biased fitting (CSP

and CEC) in terms of accuracy and conservativeness. For the equivalent level of

conservativeness (92-94 percent), the level of bias is reduced and the risk of overestimations

is lower when the bootstrap method is used. However, as mentioned earlier, the bootstrap

method needs a minimum sample size to be used. It has been observed that when very

small samples are available (10 to 50 data), the accuracy of the bootstrap method drops

dramatically. In such a case, the optimization based methods should be used instead.

4.6 Effect Of Sample Sizes And Probability Of Failure On Estimates Quality

In the previous section, we showed that the bias in the conservative estimate can

lead to large overestimations of the probability of failure. The magnitude of such an error

mainly depends on two factors: the sample size and the value of the true probability.

Indeed, increasing the sample size will reduce the variability of CDF fitting and, as a
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consequence, the upper bound of the confidence interval. Meanwhile, in order to estimate

a lower value of the probability of failure, we need to use the tail of the CDF, which

increases the variability of the estimation.

Controlling the level of uncertainty is crucial in optimization in order to avoid

over-design. In this section, we quantify a measure of the uncertainty in the conservative

estimates as a function of the sample size and the value of the actual Pf . Such a measure

can help in deciding on the appropriate sample size to compute the estimate.

Bootstrap p95 performed well based on the previous example. Thus, in this section

we consider only this estimator. We study two distribution cases: standard normal

distribution and lognormal distribution with parameters µ = 0 and σ = 1 (mean and

standard deviation of the logarithm of the variable). Three sample sizes are considered:

100, 200 and 500 and seven probabilities of failure are estimated: (1× 105, 3× 105, 1× 104,

3× 104, 1× 103, 3× 103 and 1× 102) 1 .

For a given distribution, sample size and Pf , the mean and 90% confidence intervals

are calculated using 5000 repetitions. Results are presented in Figure 4.6 for normal

distribution and in Figure 4.6 for lognormal. The accuracy is measured in terms of ratios

for the estimate over the true probability of failure.

As expected, the variability of P̂f increases when the sample size and actual Pf

decrease. Here, the most unfavorable case is when the sample size is equal to 100 and

the actual Pf is equal to 105. In such a case, for both distributions there is a five percent

chance to overestimate Pf by more than 25 times its actual value! On the other hand,

the case with 500 samples leads to a very reasonable variability. For the three sample

sizes and all target probabilities, the lower bound of the ratio is equal to one, which

1 For the normal distribution, the failures are defined for G greater, respectively, than
4.26, 4.01, 3.72, 3.43, 3.09, 2.75 and 2.33; for the lognormal case, the values are 71.2, 54.6,
41.2, 30.5, 22.0, 15.3 and 10.2.
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means that the 95% conservativeness do not depends on these factors. The bootstrap

estimates performances are remarkably similar for the two distributions, even though the

distribution shapes are very different.

Figure 4-4. Mean and confidence intervals of the bootstrap p95 conservative estimators for
Normal distribution based on (a) 100, (b) 200, and (c) 500 samples. x-axis is
the true probability (lognormal scale), and y-axis is the ratio between the
estimate and the true probability. Variability increases when target probability
or sample size are smaller.

Figure 4-5. Mean and confidence intervals of the bootstrap p95 conservative estimators for
lognormal distribution based on (a) 100, (b) 200, and (c) 500 samples. Results
are almost identical to the normal distribution case.

For any given reliability analysis problem, careful attention needs to be given to the

accuracy of probability of failure estimates. The graphs in Figures 4.6 and 4.6 address
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this issue. They show the confidence intervals and therefore define adequate sample sizes

needed to compute reliable estimates. In terms of cost-effectiveness, the figures indicate

that it may be smart to allocate greater number of simulations to low probability designs

than to high probability design in order to get constant level of relative accuracy.

4.7 Application To A Composite Panel Under Thermal Loading

In this section, conservative estimates are obtained for the probability of failure of a

composite laminated panel under mechanical and thermal loadings. The panel is used for

a liquid hydrogen tank. The cryogenic operating temperatures are responsible for large

residual strains due to the different coefficients of thermal expansion of the fiber and the

matrix, which is challenging in design.

Qu et al. (2003) performed the deterministic and probabilistic design optimizations of

composite laminates under cryogenic temperatures, using response surface approximations

for probability of failure calculations. Acar & Haftka (2005) found that using CDF

estimations for strains improves the accuracy of probability of failure calculation. In

this chapter, the optimization problem addressed by Qu et al. (2003) is considered. The

geometry, material parameters and the loading conditions are taken from their paper.

4.7.1 Problem Definition

The composite panel is subject to resultant stress caused by internal pressure (Nx =

8.4 × 105N/m and Ny = 4.2 × 105N/m) and thermal loading due to the operating

temperature in the range of 20K - 300K. The objective is to minimize the weight of the

composite panel that is a symmetric balanced laminate with two ply angles [±θ1,±θ2]s

(that means an eight-layer composite). The design variables are the ply angles and

the ply thicknesses [t1, t2]. The geometry and loading condition are shown in Figure

4-6. The thermal loading is defined by a stress free temperature of 422K, and working

temperature of 300K to 20K. The material used in the laminates composite is IM600/133

graphite-epoxy, defined by the mechanical properties listed in Table 4-3.
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Figure 4-6. Geometry and loading of the cryogenic laminate.

Table 4-3. Mechanical properties of IM600/133 material. Quantities with ∗ are
temperature dependent; the numerical values in the bracket are the range for T
going from 20 to 300 K.

Elastic properties E1 (GPa) 147
ν12 0.359

E∗
2 (GPa) [14 8]

G∗
12 (GPa) [8 4]

Coefficients of α∗
1 (K−1 [−5× 10−7,−1.5× 10−7]

thermal expansion α∗
2 (K−1 [1× 10−5, 3× 10−5]

Stress-free temperature Tzero (K) 422
Failure strains εU1 0.0103

εL2 -0.013
εU2 0.0154
γU
12 0.0138

The minimum thickness of each layer is taken as 0.127 mm, which is based on the

manufacturing constraints as well as for preventing hydrogen leakage. The failure is

defined when the strain values of the first ply exceed failure strains.
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The deterministic optimization problem is formulated as:

Minimize
t1,t2,θ1,θ2

h = 4 (t1 + t2)

s.t.

t1, t2 ≥ 0.127

εL1 ≤ SF ε1 ≤ εU1

εL2 ≤ SF ε2 ≤ εU2

SF |γ12| ≤ γU
12

(4–15)

where SF is chosen at 1.4.

The analysis of the structural response is based on classical lamination theory using

temperature-dependent material properties. E2, G12, α1 and α2 are function of the

temperature. Since the design must be feasible for the entire range of temperature, strain

constraints are applied at 21 different temperatures, which are uniformly distributed from

20K to 300K. Details on the analysis and the temperature dependence of the properties

are given in Qu et al. (2003). Their solutions for the deterministic optimization problem

are summarized in Table 4-4. For those results, t1 and t2 were chosen only as multiples of

0.127 mm. Three optima are found with equal total thickness but different ply angles and

ply thicknesses.

Table 4-4. Deterministic optima found by Qu et al. (2003).

θ1 (deg) θ2 (deg) t1 (mm) t2 (mm) h (mm)
27.04 27.04 0.254 0.381 2.540
0 28.16 0.127 0.508 2.540
25.16 27.31 0.127 0.508 2.540

4.7.2 Reliability-Based Optimization Problem

Given the material properties and the design variables, the ply strains can be

calculated using Classical Lamination Theory [Kwon & Berner (1997)]. Due to the

manufacturing variability, the material properties and failure strains are considered

random variables. All random variables are assumed to follow uncorrelated normal

distributions. The coefficients of variation are given in Table 4-5. Since E2, G12, α1 and α2
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are function of the temperature, the mean values of the random variables are calculated

for a given temperature, and then, a set of random samples are generated according to

their distributions.

Table 4-5. Coefficients of variation of the random variables.

E1, E2, G12, ν12 α1, α2 Tzero εL1 ,ε
U
1 εL2 ,ε

U
2 ,γ

U
12

0.035 0.035 0.03 0.06 0.09

The critical strain is the transverse strain on the first ply (direction 2 in Figure

4-6), the effect of other strains on the probability of failure being negligible. Hence, the

limit-state is defined as the difference between the critical strain and the failure strain:

G = ε2 − εU2 (4–16)

Then, the probability of failure is defined in Eq. 4–5 using the distribution FG of the

limit-state.

In order to determine which distribution type fits the best the limit-state G, we

generated 1,000 samples at each of the three first optimum designs. Using a Lilliefors test

[Kenney & Keeping (1954)], we found that all the samples belong to a normal distribution.

Hence, we assumed that the limit-state G is normally distributed for any design.

One might prefer not to assume a single distribution type over the design domain and

test, every time a new design is considered, several distributions to find the one that fits

best the data. Such a procedure is necessary for instance when the limit-state distribution

varies from normal to heavy-tail within the design domain; assuming a single distribution

can lead to large error in the reliability estimation. More generally, one has to keep in

mind that the method proposed here can become hazardous if the determination of the

distribution type is uncertain.

In our case, since the three designs considered are quite different from one another

and have the same limit-state distribution, it is reasonable to assume that the limit-state

distribution is always normal, hence reducing the computational burden.
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The reliability-based optimization replaces the constraints on the strains in Eq. 4–15

by a constraint on the probability of failure. The target reliability of the cryogenic tank

is chosen as 10−4. Since the probability of failure can have a variation of several orders of

magnitude from one design to another, it is preferable to solve the problem based on the

reliability index:

Minimize
t1,t2,θ1,θ2

h = 4 (t1 + t2)

s.t.
t1, t2 ≥ 0.127

β (t1, t2, θ1, θ2) ≥ −Φ−1
(
10−4

)
= 3.719

(4–17)

4.7.3 Reliability Based Optimization Using Conservative Estimates

By solving Eq. 4–17 with a sampling-based estimate of reliability, we face the problem

of having noise in the constraint evaluation, which can severely harm the optimization

process. To address this issue, we chose to fit a polynomial response surface (PRS) to

approximate the reliability index everywhere on a region of the design space and solve the

optimization with the response surface. We have then two levels of surrogate modeling:

one surrogate to approximate the reliability index of a given design, and one surrogate to

approximate the reliability index for all the design region.

The PRS is based on the estimation of the reliability index for a selected number of

designs: {β1, . . . , βp}. All the estimates are done before the optimization process. The

range of the response surface is given in Table 4-6. The number of training points is

taken as 500; the points are generated using Latin hypercube sampling to ensure a good

space-filling property. Each estimate of the reliability index is based on the same n = 200

samples, which gives us a total number of 100,000 simulations to fit the response surface.

Table 4-6. Variable range for response surface.

Variables Range
θ1, θ2 (deg) [20 30]
t1, t2 (mm) [0.127 0.800]
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With the 3,000 simulations used to determine the distribution of the limit state,

the total number of simulations is 103,000. This number is a reasonable total budget

for solving the RBDO problem: indeed there is no further simulation run during the

optimization, the reliability being estimated by the PRS. To compare this number to

classical MCS estimates, in order to achieve reasonable noise for a probability of failure

of 104, at least 106 samples are needed for a single evaluation, and the reliability is

reestimated at each optimization step. It is more difficult to compare to FORM and

SORM methods, but due to the large number of random parameters in the problem, they

would not be efficient.

The reliability indexes are calculated using two methods: the unbiased fitting and

the bootstrap conservative estimation with 95% confidence. The estimates are denoted

respectively β̂
(i)
unb and β̂

(i)
cons. Figure 4.6 B) shows that with 200 samples, the confidence

interval of the conservative estimator for a probability of 10−4 is [10−4; 8 × 10−4], which

corresponds to an error in β between 0 and 20%. Since the number of observations is

much larger than the number of coefficients (500 compared to 70), the noise is filtered by

the PRS.

A different response surface is fitted to each set of data. For both, we found that a

fourth order polynomial provided a good approximation for the reliability index. Table

4-7 shows the statistics of each response surface. Both R2 values (percentage of variance

explained) are very close to one, and p-values show that both models are very significant.

In addition, we computed accurate estimates of the reliability index at 22 designs

uniformly chosen in the design space using separable Monte-Carlo method (SMC)

[Smarslok et al. (2008)] with 40,000 samples for each design. Table 4-8 shows the statistics

based on the test points: the root mean square error (eRMS) between the 22 accurate

responses and the response surface, error mean and number of unconservative predictions.

Based on the test points, we can see that the first PRS is unbiased: the error mean is

approximately zero and there are ten unconservative errors for twelve conservative. On
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the other hand, the second PRS has large bias since the error mean is 0.34 and all the

predictions at test points are conservative.

Table 4-7. Statistics of the PRS for the reliability index based on the unbiased and
conservative data sets.

Data sets R2 F p-value{
β̂
(1)
unb, . . . , β̂

(p)
unb

}
0.96 138 < 10−6{

β̂
(1)
cons, . . . , β̂

(p)
cons

}
0.96 136 < 10−6

Table 4-8. Statistics of the PRS based on 22 test points

Data sets eRMS Error mean Nb of unconservative
predictions{

β̂
(1)
unb, . . . , β̂

(p)
unb

}
0.081 -0.01 10{

β̂
(1)
cons, . . . , β̂

(p)
cons

}
0.354 -0.34 0

Remark 1. Since we have two levels of surrogate models, it is possible to apply

conservative strategy to either one one them, or both of them, by applying to the PRS one

of the methods proposed in Chapter 3. Here, we found that using a conservative strategy

only on the reliability index estimation was sufficient to guarantee safe design, and more

efficient than using unbiased estimation of β and conservative PRS.

Remark 2. The balance between the number of MCS by design n and the number

of design points p is an open question. Here, we chose a small number of MCS since we

were able to compensate efficiently for it. Chapter 7 deals with this question and provide

theoretical answers to choose this balance for PRS and Kriging.

4.7.4 Optimization Results

We present the results for the two probabilistic optimizations based on the response

surfaces fitted on unbiased and conservative estimates. To compare deterministic and

probabilistic approaches, the deterministic optimization as stated in Eq. 4–15 is also

performed for the same range of the ply angles ([20 30] degrees). The optimization is

performed using MATLAB’s function fmincon repeated 20 times with different initial

points to ensure global convergence. The optimal designs (best over the 20 optimizations)
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are given in Table 4-9. For these designs, an accurate estimate of the probability of failure

is computed using SMC with 40,000 samples.

Table 4-9. Optimal designs of the deterministic and probabilistic problems with unbiased
and conservative data sets.

t1 t2 θ1 θ2 h β
from

Actual Pf

from
Actual
Pf

PRS β PRS (SD)*
Unbiased 0.127 0.507 22.2 30.0 2.536 3.72 3.61 10-4 1.51e-4
data set (2.28e-6)
95% cons. 0.127 0.582 21.9 30.0 2.835 3.72 3.98 10-4 3.50e-5
data set (6.3e-7)
Determ. 0.127 0.416 20.0 30.0 2.170 x 2.97 x 15.0e-4
optima (9.6e-6)

The three optima are similar in terms of ply angles, and for all the first ply thickness

t1 is the lower bound; the significant difference is in the second ply thickness t2. Both

probabilistic designs are heavier than the deterministic optimum. The optimum found

using unbiased dataset is substantially lighter than the other (h = 2.54 compared

to 2.84); however, the accurate estimate of reliability shows that the optimum design

using unbiased dataset violates the constraint. On the other hand, the design found

using conservative dataset is conservative; the actual probability is 3 times smaller than

the target probability of failure. The deterministic design is very unconservative, its

probability of failure being 15 times the target.

The fact that an unbiased strategy leads to an unconservative design is not surprising.

Indeed, optimization is biased to explore regions where the error is ’favorable’; that is,

where the constraint is underestimated. Using the conservative approach, the level of bias

is sufficient to overcome this problem, but at the price of overdesign: since the probability

of failure is three times the target, the actual optimum is lighter than the one we found.

We have shown that despite a very limited computational budget (103,000 MCS to

solve the RBDO problem), it was possible to obtain a reasonable design by compensating

the lack of information by taking conservative estimates.
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4.8 Concluding Comments

The estimation of the probability of failure of a system is crucial in reliability analysis

and design. In the context of expensive numerical experiments, or when a limited number

of data samples are available, the direct use of Monte Carlo Simulation is not practical,

and estimation of continuous distributions is necessary. However, classical techniques of

estimation of distribution do not prevent dangerous underestimates of the probability of

failure.

Several methods of estimating safely the probability of failure based on the limited

number of samples are tested, when the sample distribution type is known. The first

method constrains distribution fitting in order to bias the probability of failure estimate.

The second method uses the bootstrap technique to obtain distributions of probability of

failure estimators, and these distributions define conservative estimators.

In the case of samples generated from normal distribution, the numerical test case

shows that both methods improve the chance of the estimation to be conservative.

Bootstrap based estimators outperformed constrained fits to the experimental CDF. That

is, for the same confidence in the conservativeness of the probability estimate, the penalty

in the accuracy of the estimate was substantially smaller. However, optimization based

methods can be used when the sample size is very small, where the bootstrap method

cannot be used.

We also explored the influence of sample sizes and target probability of failure on

estimates quality. We found that larger sample sizes are required to avoid large variability

in probability of failure estimates when that probability is small. The results indicated

that when sampling at different points in design space it may be more cost effective

to have different number of samples at different points. Such approach is addressed in

Chapter 6.

Finally, we have applied the conservative estimation procedures to perform the

optimization of a composite laminates at cryogenic temperatures. We compared the
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optimization results found where response surfaces are fitted to unbiased and conservative

estimates respectively. We found that the unbiased response surfaces led to unsafe designs,

while the conservative approach returned an acceptable design.
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CHAPTER 5
DESIGN OF EXPERIMENTS FOR TARGET REGION APPROXIMATION

The accuracy of metamodels is crucial for the effectiveness of their use in prediction,

design or propagation of uncertainty. In Chapters 3 and 4, we proposed some alternatives

to compensate for the error in surrogate models. In this chapter, we aim at minimizing the

uncertainty of the models. The design of experiment strategy is one of the most important

factors that affect the quality of the metamodel. In many practical problems, the total

number of function evaluations is drastically limited by computational cost; hence, it is of

crucial interest to develop methods for selecting efficiently the experiments.

Sampling strategies have been extensively studied over the past decades. In

Chapter 2, we described some of the most popular strategies that aim at optimizing

the global accuracy of the metamodels. The scope of the present research is to propose an

objective-based approach to design of experiments, based on the idea that the uncertainty

in surrogates may be reduced where it is most useful, instead of globally. In particular,

we aim at finding efficient strategies for two applications of metamodeling: reliability

estimation and constrained optimization.

5.1 Motivation And Bibliography

Most sampling strategies are developed to achieve the best global performances of

the metamodel. Such approach is fully justified when the model is used for prediction

over all the domain of interest, inference of global behavior of the phenomenon studied, or

when all the design of experiment is generated at the same time without prior information

on the response behavior, for instance when series of physical experiments or parallel

computation are involved.

However, many metamodel applications focus on the value of the function response.

For instance, when a metamodel is used for optimization purpose, it is obvious that the

metamodel accuracy is much more important for low values of the response rather than
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large values. Hence, global strategies do not appear as the most efficient responses to such

application.

The present research focuses on applications where metamodels are used in a way

that their accuracy is crucial for certain level(s) of the response function. Such situation

appears in particular in two popular frameworks:

In constrained optimization. The constraint function often relies on expensive

calculations. For instance, a typical structural optimization formulation is to minimize a

weight function such that the maximum stress, computed by finite element analysis, does

not exceed a certain value. When using a metamodel to approximate the constraint, it

is of utmost importance that the approximation error is minimal on the boundary that

separates the feasible designs from infeasible ones. Substantial errors for values far from

the boundary, on the other hand, are not detrimental.

In reliability analysis. We consider the case where the metamodel is used to

approximate the limit state function of a system, G (x). As well as for constraint

approximation, the metamodel discriminates between samples that are below and above

a critical value, in this case zero. When the limit state is far from zero, the chance of

misclassification is negligible even if the metamodel poorly approximate the true function,

while the accuracy is crucial for values close to zero.

The present chapter presents a methodology to construct a design of experiments such

that the metamodel accurately approximates the vicinity of a boundary in design space

defined by a target value of the function approximated by the surrogate. This problem

has been addressed by several authors. Mourelatos et al. (2006) used a combination of

global and local metamodels to first detect the critical regions and then obtain a locally

accurate approximation. Shan & Wang (2004) proposed a rough set based approach to

identify sub-regions of the design space that are expected to have performance values

equal to a given level. Oakley (2004) uses Kriging and sequential strategies for uncertainty

propagation and estimation of percentiles of the output of computer codes. Ranjan et al.
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(2008) proposed a modified version of the EGO algorithm to sequentially explore the

domain region along a contour line. Tu & Barton (1997) used a modified D-optimal

strategy for boundary-focused polynomial regression. Vazquez & Piera-Martinez (2006)

proposed an iterative strategy to minimize the classification error when computing a

probability of failure based on Kriging.

5.2 A Targeted IMSE Criterion

In this chapter, we consider only probabilistic metamodels - that associate a

distribution to a prediction point instead of a single value. Kriging is explicitly a

probabilistic metamodel, but most of the other models can have a probabilistic interpretation,

such as regression and splines for instance. However, we limit our investigation to the

kriging model here.

We gave the definition in Section 2.2.2 of the IMSE criterion, which sums up the

uncertainty associated with the Kriging model over the entire domain D. However,

when one is more interested in predicting y accurately in the vicinity of a contour line

u = y−1(T) (T a constant), such a criterion is not suitable since it weights all points in D

according to their Kriging variance, which does not depend on the observations Yobs, and

hence does not favor zones with respect to properties concerning their y values but only on

the basis of their position with respect to DoE.

We propose to change the integration domain from D to a neighborhood of y−1(T ).

Two approaches are proposed that differ by the definition of the neighborhood of the

contour line. The neighborhood is defined with the help of an indicator function and a

gaussian distribution, respectively, which can be encountered in the literature under the

denomination of desirability functions.

5.2.1 Target Region Defined By An Indicator Function

We define a region of interest XT,ε (parameterized by ε) as the subset in D whose

image is within the bounds T − ε and T + ε:

XT,ε = y−1 ([T − ε, T + ε]) = {x ∈ D| y (x) ∈ [T − ε, T + ε]} (5–1)
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Figure 5-1 illustrates a one-dimensional function with the region of interest being at

T = 0.8 and ε = 0.2. Note that the target region consists of two distinct sets.

Figure 5-1. One-dimensional illustration of the target region. The level-set T is equal to
0.8, and ε to 0.2. The target region consists of two distinct sets.

With the region of interest, the targeted IMSE criterion is defined as follows:

imseT =

∫
XT,ε

s2K(x)dx =

∫
D

s2K(x)1[T−ε,T+ε] [y (x)] dx (5–2)

where 1[T−ε,T+ε] [y (x)] is the indicator function, equal to 1 when y (x) ∈ [T − ε, T + ε]

and 0 elsewhere.

Finding a design that minimizes imseT would make the metamodel accurate in the

subset XT,ε, which is exactly what we want. Weighting the IMSE criterion over a region

of interest is classical and proposed for instance by Box & Draper (1986), pp.433-434.

However, the notable difference here is that this region is unknown a priori.

Now, we can adapt the criterion in the context of Kriging modeling, where y is a

realization of a random process Y (see Section 2.1.3).
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Thus, imseT is defined with respect to the event ω:∫
D

s2K(x)1[T−ε,T+ε] [Y (x, ω)] dx = I(ω) (5–3)

To come back to a deterministic criterion, we consider the expectation of I (ω),

conditional on the observations (which is the best approximation in the L2 sense):

IMSET = E [I(ω)|obs] = E

∫
D

s2K(x)1[T−ε,T+ε] [Y (x, ω)] dx|obs

 (5–4)

Since the quantity inside the integral is positive, we can commute the expectation and

the integral:

IMSET =

∫
D

s2K(x)E
[
1[T−ε,T+ε] [Y (x, ω)] |obs

]
dx (5–5)

=

∫
D

s2K(x)E
[
1[T−ε,T+ε] [M (x)]

]
dx (5–6)

=

∫
D

s2K(x)W (x) dx (5–7)

According to Eq. 5–7, the reduced criterion is the average of the prediction variance

weighted by the function W (x). Besides, W (x) is simply the probability that the response

is inside the interval [T − ε, T + ε]. Indeed:

W (x) = E
[
1[T−ε,T+ε] [M (x)]

]
(5–8)

= P
(
M(x) ∈ [T − ε, T + ε]

)
(5–9)

= P
(
Y (x) ∈ [T − ε, T + ε] |obs

)
(5–10)

The Gaussian process interpretation of Kriging adopted here (see Section 2.1.3)

allows us to explicitly derive the conditional distribution of M(x) = (Y (x) | obs) at any

prediction point:

For any x ∈ D : M (x) ∼ N
(
mK (x) , s2K (x)

)
(5–11)
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We can obtain a simple analytical form for W (x):

W (x) =

T+ε∫
T−ε

gN(mK(x),s2K(x)) (u) du (5–12)

where gN(mK(x),σ2
K(x))(u) is the probability density function (PDF) of M(x). By integrating

the PDF we obtain:

W (x) = Φ

(
T + ε−mK (x)

sK (x)

)
− Φ

(
T − ε−mK (x)

sK (x)

)
(5–13)

where Φ is the CDF of the standard normal distribution.

Remark. It is possible to define a weight function with ε → 0. To do so, we have to

divide first W (x) by the constant 2ε. Then, we obtain:

lim
ε→0

1

2ε

[
Φ

(
T + ε−mK (x)

sK (x)

)
− Φ

(
T − ε−mK (x)

sK (x)

)]
= φ

(
T −mK (x)

sK (x)

)
(5–14)

where φ is the probability density function (PDF) of the standard normal distribution.

5.2.2 Target Region Defined By A Gaussian Density

Defining the region of interest as XT,ϵ is intuitive and makes it easy to derive the

weight function. However, it might not always correspond exactly to our objective.

Indeed, if we consider an ideal case where the function is exactly known, the indicator

function will yield a weight 1 to a point x where M (x) − T = ε, but 0 if M (x) − T =

ε + 10−9. Also, it will not discriminate between a point where the difference is equal to ε

and another one where this difference is equal to zero.

Instead, we prefer a criterion that continuously increases the importance of the

location when the response approaches the threshold. For instance, we can choose a

triangular function (with a maximum at T ) or a sigmoid function. Here, we choose to use

the probability density function of a normal distribution which leads to a simple analytical

form of the weight function. In the spirit of Eq. 5–8, the Gaussian-based weight function
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is therefore defined as follows:

W (x) = E [gε (M (x)− T )] (5–15)

where gε (u) is the PDF of N (0, σ2
ε).

When M(x) stands for the Kriging model, we can obtain a simple form for the weight

function:

W (x) =

+∞∫
−∞

gε (u− T )gN(mK(x),s2K(x)) (u) du (5–16)

Since gε is symmetric:

W (x) =

+∞∫
−∞

gε (T − u)gN(mK(x),s2K(x)) (u) du (5–17)

This integral is the convolution of the two Gaussian densities, which is well-known to

be the density of a sum of independent Gaussian variables. Hence, we obtain:

W (x) =
1√

2π (σ2
ε + s2K (x))

e

(
− 1

2

(mk(x)−T)2

σ2
ε+s2

K
(x)

)
(5–18)

This new weight function depends on a single parameter σϵ that allows us to select

the size the domain of interest around the target level of the function. A large value of

σϵ would enhance space-filling, since the weight function would tend to a constant and

the weighted IMSE to a uniform IMSE criterion. On the contrary, a small value would

enhance the accuracy of the surrogate on a narrow region around the contour line of

interest.

5.2.3 Illustration

We consider a one-dimensional case, where the function y to approximate is a

realization of a Gaussian process with Gaussian covariance structure. y is defined on [0, 1];

the design of experiments consists of five observations equally spaced in this interval.

The level-set of interest T is chosen as 1.3, and both ε and σε are taken as 0.2. Figure

5-2 represents the true function, the Kriging metamodel and corresponding weights. The
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weight function in Eq. 5–13 is shown as ”interval”, while that in Eq. 5–18 is shown as

”Gaussian” in the figure.

Figure 5-2. Illustration of the weights functions. Upper graph: true function, observations,
Kriging mean and confidence intervals, and target region. Lower graph: weight
functions. Both weights are large where the true function is inside the target
region, but also signaling regions of high uncertainties (around x = 0.65 and
0.85).

Among the five observations, one is substantially closer to T than the others. As

a consequence, the weight functions are large around this observation point. For the

indicator-based weight function, the weights are null at the observation points, since for

this example no observation is inside the target value interval. For the Gaussian-based

weight, it is also very close to zero. For both functions, high weights are given to regions

for which the actual function is inside the target interval. Both weight functions are also

non-zero where the uncertainty is high, even if the Kriging mean is far from T (around

x = 0.65 and 0.85).

5.3 Sequential Strategies For Selecting Experiments

Without any observation, the weight function W (x) is, assuming stationarity, a

constant (the probability is the same everywhere). Every time a new observation is

performed, the weight function will more precisely discriminate the regions of interest from
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the others. Hence, the procedure to build an optimal DoE is necessarily iterative. If we

add one observation at a time we can use the procedure shown in Table 5-1.

Table 5-1. Procedure of the IMSET -based sequential DoE strategy.

Create an initial DoE, Xk, and generate observations Yk = y(Xk)
For i going from one to the total number of additional observations n:

Fit the Kriging model to the data {Xk+i−1,Yk+i−1}
Find a new training point xnew that minimizes the criterion IMSET ({Xk+i−1,xnew})
Compute the new observation ynew = y(xnew)
Update the DoE and observations:

Xk+i = {Xk+i−1,xnew}
Yk+i = {Yk+i−1, ynew}

End of loop

The Kriging parameters can be reevaluated after every new observation, or only from

the initial DoE before the iterative procedure. Note that the evaluation of the parameters

is critical to obtain a good Kriging model. Besides, the parameters affect the criterion:

underestimation of the range makes the weight function flatter and enhances space-filling;

on the contrary, overestimation of the range leads to a very discriminating (over-confident)

weight function. However, in the numerical examples used in this work, we found that the

parameter re-evaluation had a negligible impact on the efficiency of the method.

Finding the new training point requires an inner optimization procedure. When the

classical IMSE criterion is considered, the optimization can be expressed as:

min
xnew∈D

IMSE (Xk+1) = IMSE ({Xk,xnew}) (5–19)

where

IMSE ({Xk,xnew}) =
∫
D

s2K (x| {Xk,xnew}) dx

s2K (x| {Xk,xnew}) is the variance at x of the Kriging based on the design of

experiments X augmented with the training point xnew. Since the Kriging variance

does not depend on the observation, there is no need to have y(xnew) to compute the

IMSE.
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In contrast, the weighted IMSE depends on the observations through the weight

function W (x). The weight function cannot take into account the new observation, since

the response is not available. Hence, when expressing the weighted IMSE as a function of

xnew, we update only the variance part under the integral:

IMSET (Xk,Yk,xnew) =

∫
D

s2K (x| {Xk,xnew})W (x|Xk,Yk) dx (5–20)

where s2K (x| {Xk,xnew}) is the same as in Eq. 5–19 and W (x|Xk,Yk) is the weight

function based on the existing DoE. Using this expression, we have the simple formulation

for the inner optimization problem:

min
xnew∈D

IMSET (Xk,Yk,xnew) (5–21)

5.4 Practical Issues

5.4.1 Solving The Optimization Problem

Finding the new observation xnew by solving the optimization problem of Eq. 5–21 is,

in practice, challenging. Indeed, the IMSET criterion in Eq. 5–20 must be evaluated by

numerical integration, which is computationally intensive. Besides, for any candidate

xnew, the Kriging model must be reevaluated with this new observation to obtain

s2K (x| {Xk,xnew})). Therefore we propose here some alternatives that may be used to

reduce the cost.

A popular heuristic to minimize sequentially the IMSE is to find the point where

the prediction variance is maximum [Sacks et al. (1989a), Williams et al. (2000)], which

can be used here with the weighted prediction variance. This strategy has the advantage

of saving both the numerical integration and the inversion of a new covariance matrix.

However, the prediction variance is likely to have many (local or global) maximizers,

which are not equivalent in terms of the IMSE. In particular, many optima are located

on the boundaries, which is very inefficient for the IMSE minimization. To compensate

for this issue, one may in a first time get a large number of local optima using adapted
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optimization strategies (multi-start, etc.), and in a second time evaluate those optima in

terms of the weighted IMSE criterion, and perform a local optimization on the best point.

A valuable computational shortcut can be achieved in the update of the inverse of

the covariance matrix when adding an observation. Let us call Ck the covariance matrix

corresponding to a DoE with k observations. Then, the covariance matrix of the DoE

augmented with the k + 1th observation can be written:

Ck+1 =

 σ2 cTnew

cnew Ck

 (5–22)

with:

• σ2 = k (xnew,xnew) (process variance), and

• cTnew = [k (xnew,x1) , . . . , k (xnew,xk)] a 1× k vector.

Using Schur’s complement formula, we get:

Ck+1
−1 =

 1 0

−C−1
k cnew Ik


 1

σ2−cTnewC−1
k cnew

0

0 C−1
k


 1 −C−1

k cnew

0 Ik

 (5–23)

This formula allows to compute Ck+1
−1 from Ck

−1 without doing any matrix

inversion, and compute s2K (x| {Xk,xnew}) at reasonable cost. More detailed calculations

on this topic can be found in Marrel (2008).

In general, the criterion has several local minimizers. Then, it is necessary to use

global optimization methods, such as population-based methods, multi-start strategies,

etc. In the test problems presented in this chapter, we optimize the criterion on a fine

grid for low dimensions, and using the population-based CMA-ES algorithm [Covariance

Matrix Adaptation Evolution Strategies, Hansen & Kern (2004)] for higher dimensions.

Experimentation showed that due to the numerical integration precision, the targeted

IMSE strategy becomes inefficient for dimensions higher than ten.
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5.4.2 Parallelization

It is often of interest to produce algorithms that allow to compute several observations

at a time, for instance when the numerical simulator can be run in parallel on several

computers. The criterion we propose is fully adaptable to parallel strategies. Indeed, the

targeted IMSE consists of two parts: the weight function that depends on the response

values, and the prediction variance, that only depends on the observation locations. The

later quantity can be updated with several observations without the need of calculating

the response. The weight function, on the other hand, remains the same.

Let p be the number of observations to be computed in parallel. The criterion to be

minimized can be written:

IMSET

(
Xk,Yk, {x(1)

new, . . . ,x
(p)
new}

)
=

∫
D

s2K
(
x|
{
Xk, {x(1)

new, . . . ,x
(p)
new}

})
W (x|Xk,Yk) dx

(5–24)

This strategy is less accurate than the sequential strategy, since the weight function is

updated only every p evaluations. However, we observed that for low values of p (≤ 5), the

parallelization has little impact, in particular when the kriging uncertainty is initially high.

The parallel optimization problem is of dimension d × p (where d is the design space

dimension). The dimension of the numerical integration remains the same as in Eq. 5–20.

The optimization can be solved directly, or, in order to reduce the problem dimension, by

finding one point at a time.

5.5 Application To Probability Of Failure Estimation

As mentioned in the beginning of this chapter, when approximating the limit-state,

it is clear that a particular effort must be given to the regions where it is close to zero,

since error in that region is likely to affect the probability estimate. Naturally, the critical

region is where the value of limit state is close to zero.

The targeted IMSE criterion allows us to sample in target regions. However,

substantial improvement can be given, by taking into account the distribution of the
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input variables. Indeed, let us consider the case of two distinct failure regions, one of it

dominating the other (that is, the probability that the input falls onto the first region is

much larger than the probability that it falls onto the other). Instead of exploring equally

the two critical regions, it will be more efficient to spend more computational effort on

the one that will affect most the probability estimate. In the same sense, when learning a

single critical region, it is efficient to explore it only where the samples are more likely to

be.

Instead of using the indicator function on the Kriging mean, we use the full Kriging

information by computing, at each sampling point, the probability that the response

exceeds the threshold:

P̂f =
1

N

N∑
i=1

Φ
(i)
k (0) (5–25)

where Φ
(i)
k denotes the cumulative distribution function (CDF) of the Kriging model at xi

(N (mk (xi) , s
2
k (xi))).

If the Kriging variance is small, the CDF becomes equivalent to the indicator

function, being 1 if the Kriging mean exceeds the threshold and 0 otherwise. On the

other hand, when the variance is high or the predicted response close to the threshold,

using the Kriging distribution offers a smoothing effect by giving a number between zero

and one instead of a Boolean number.

To address the probability distribution of input variables, we modify the weighted

IMSE criterion by integrating the weighted MSE not with a uniform measure, but with

the PDF of the input variables:

IMSET =

∫
D

s2K (x)W (x) dµ (x) =

∫
D

s2K (x)W (x) f (x) dx (5–26)

where f(x) is the PDF of the law µ with respect to the Lebesgue measure.
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5.6 Numerical Examples

In this section, we evaluate the accuracy and efficiency of the method through

numerical examples. We consider the fitting of analytical test functions and realizations

of random processes with known covariance structures. In the latter case, there is no

modeling error when using a Kriging approximation; the error is only due to the lack of

information.

5.6.1 Two-Dimensional Example

The first example is the approximation of a two-dimensional parametric function

from the optimization literature (Camelback function, Chipperfield et al. (1994)). The

original function is modified (bounds are different and a negative constant is added) and

the target is chosen in order to have two failure regions, one dominating the other. The

two-dimensional design space is given as [1, 1]2. The performance function is defined as

f(u, v) =

(
4− 2.1ū2 +

1

3
ū4

)
ū2 +

2

3
ūv̄ +

16

9

(
−4 +

16

9
v̄2
)
v̄2 − 0.7 (5–27)

where ū = 1.2u− 0.1 and v̄ = 0.9v.

For both numerical integration and optimization, the design space is divided by a

32× 32 grid. We present the results for the following configuration:

• Target value T is chosen as 1.3,

• Gaussian-based weight function is used, with parameter σε = 0.2,

• Initial DoE consists of the four corners and the center of the domain,

• 11 points are added iteratively to the DoE as described in the previous section.

An isotropic Gaussian covariance function is chosen for the Kriging model. The covariance

parameters (process variance σ2 and range θ) are estimated from the initial 5-point

DoE, and re-estimated after each new observation, using the MatLab toolbox GPML

[Rasmussen & Williams (2006)]. The final results are presented in Figure 5-3.

Figure 5-3 A) is the plot of the true function, and Figure 5-3 B) is that of the Kriging

mean. In the contour plot in Figure 5-3 C), it is shown that there are two critical regions.
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Figure 5-3. Optimal design after 11 iterations. A) True function. B) Kriging expectation.
D) Kriging variance. C) Contour lines of the true function at levels
[T − σε, T + σε], which delimit the target regions; the bold line corresponds to
the target contour. Most of the training points are chosen close to the target
region. The Kriging variance is very small in these regions and large in
non-critical regions.

After 11 iterations, the sequential strategy used four points to explore the first critical

region, three points to explore the second region, and four points for space-filling. As

shown in Figure 5-3 D), the Kriging variance becomes small near the critical regions, while

it is relatively large in the non-critical region.

Figure 5-4 shows the evolution of the target contour line for the kriging expectation,

which is a good indicator of the quality of the surrogate. We see that because the first

four iterations (Figure 5-4 B)) are used for space-filling, the Kriging contour line is very

different from the actual one. After eight iterations (Figure 5-4 C)), the two target regions

are found and additional sampling points are chosen close to the actual contour line. Final

state (Figure 5-4 D)) shows that the kriging contour line is close to the actual one.
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Figure 5-4. Evolution of Kriging target contour line (mixed line) compared to actual (plain
line) during the sequential process: A) Initial, B) after four iterations, C) after
eight iterations, D) final.

5.6.2 Six-Dimensional Example

In the second example, we consider a realization of a six-dimensional isotropic

Gaussian process with Gaussian covariance function. Here, the error in the Kriging model

is only due to the lack of data: there is no error in estimating the covariance parameters,

and asymptotically (with very large number of observations) the Kriging fits exactly the

realization of the Gaussian process. The design space is [−1, 1]6. In order to limit the

complexity (number of non-connected target regions) of the target region, we add a linear

trend to the Gaussian process. We take σ2 = 1, θ = 0.1 and β = [1 . . . 1].

The weighted IMSE criterion is computed by Quasi Monte-Carlo integration. The

integration points are chosen from a Sobol sequence [Sobol (1976)] to ensure a good space

filling property. At each step, the optimization is performed using the population-based

optimizer CMA-ES [Hansen & Kern (2004)].
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We present the results for the following configurations:

• Target value is chosen as 2

• Gaussian-based weight function is used, with σε = 0.05.

• Initial DoE consists of 20 points chosen from Latin-hypercube sampling (LHS)

• 70 points are added iteratively to the DoE.

For comparison purpose, we generate a classical space-filling DoE that consists of 90

LHS points with maximum minimum distance criterion.

First, we represent the error at 10,000 (uniformly distributed) data points (Figure

5-5). The classical space-filling DoE leads to a uniform error behavior, while the optimal

DoE lead to large errors when the response is far from the target value, while small errors

when it is close to the target.

In order to analyze the error in the target region, we draw the boxplots of the errors

for the test points where responses are inside the domains [−σε,+σε] (Figure 5-6 A)) and

[−2σε,+2σε] (Figure 5-6 B)). Compared to the space-filling strategy, the optimal design

reduces significantly the error. In particular, on both graphs the lower-upper quartiles

interval is 2.5 times smaller for the optimal DoE.

5.6.3 Reliability Example

The limit state function is taken as the Camelback function used in the previous

section. Let U and V be independent Gaussian variables with zero mean and standard

deviation taken at 0.28; i.e., U, V ∼ N
(
0, 0.282

)
. Then, the failure is defined when f

becomes greater than 1.3. Thus, the limit state is defined as

G = f (U, V )− 1.3 (5–28)

For this example, we generate two adaptive designs: the first is generated sequentially as

described previously, with uniform integration measure (Eq. 5–7); the second is generated

using the input distribution as integration measure (Eq. 5–26). Both use the four corners

and the center of the domain as starting DoE and 11 iterations are performed. For
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Figure 5-5. Comparison of error distribution for two DoEs: A) optimal DoE and B)
classical LHS. The x-axis is the difference between the true function and the
threshold, the y-axis is the error. Five vertical bars are drawn at −2σε, −σε, 0,
+σε and +2σε for the target region. The error is on average smaller for the
LHS design, but the optimal DoE reduces substantially the error in the target
region.

comparison purpose, a 16-point full factorial design is also used. It is found that a Simple

Kriging model (UK without linear trend) with isotropic Gaussian covariance function

approximates well the function. The covariance parameters are computed using the

toolbox GPML for all the DoEs.

Figure 5-7 draws the two optimal designs obtained and the full factorial designs. Both

optimal designs concentrate the computational effort on the failure regions and the center

of the domain. With uniform measure integration in Figure 5-7 A), the DoE is more

space-filling than the one based on the distribution (shown in Figure 5-7 D)). By taking

the input distribution into account in Figure 5-7 B), we see that all the observations are

located relatively close to the center of the domain. Part of each target regions is not

explored, since it is far from the center.

Finally, we perform 107 MCS on the three metamodels to compute the probability

of failure estimates. 107 MCS are also performed directly on the test function to obtain

the true probability of failure. Results are reported in Table 5-2. The full-factorial
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Figure 5-6.
and [−2σε,+2σε].]Boxplots of errors for the LHS and optimal designs for the test points
where responses are inside the domains A) [−σε,+σε] and B) [−2σε,+2σε]. Error at these

points is substantially smaller for the optimal designs for both intervals.

design leads to 77% error, while both optimal designs lead to a small error. Substantial

improvement is obtained by taking the input distribution into account.

Table 5-2. Probability of failure estimates for the three DoEs and the actual function
based on 107 MCS. The standard deviation of all estimates is of the order of
2× 10−5.

DoE Full Factorial Optimal
without input
distribution

Optimal
with input
distribution

Probability
estimate based
on 107 MCS

Probability of
failure (%)

0.17 0.70 0.77 0.75

Relative error 77 % 7 % 3 %

5.7 Concluding Remarks

In this chapter, we have proposed to improve the accuracy of surrogate models by

generating designs of experiments adapted to the model application. In particular, we have

addressed the issue of choosing a design of experiments when the Kriging metamodel was

used to approximate a function accurately around a particular level-set, which occurs in

constrained optimization and reliability analysis. We defined an original criterion, which is

106



Figure 5-7. Optimal design with A) uniform integration measure, B) input distribution
integration measure; C) Full factorial designs with 16 points; D) Input
distribution.

based on an explicit trade-off between exploration of regions of interest and reduction of

uncertainty of the model, and an sequential procedure to build the DoEs.

Through numerical examples, we showed first that the adaptive DoE was effective

for detecting the target regions (where the response was close to the target level-set) and

improve locally the accuracy of the surrogate model. Then, the method was applied to a

reliability example, and it was found that improving locally the accuracy resulted in great

improvement of the accuracy of the reliability estimation.

However, it has been found some limitations to the method, which were not solved

here and requires future work to apply the method to a wide range of problems:
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• Since it relies on numerical integration, the method can become computationally
expensive if a large number of integration points is needed to compute the criterion.
We found that for dimensions higher than ten, the criterion minimization becomes
critical without the use of complex and problem-dependent numerical procedures,
such as dimension reduction or adapted numerical integration.

• Secondly, it is important to recall that it is a model-believer strategy, since the
criterion is entirely based on the Kriging model. Although sequential strategies
allow some correction of the model during the process (through re-estimation of
the parameters for instance), the success of the method will strongly depend on the
capability of the Kriging model to fit the actual response.

Finally, it seems that the idea of weighted IMSE and sequential strategies to

construct DoEs can be applied to many other purposes where there is a need for trade-off

between exploration of regions of interest and reduction of the global uncertainty in the

metamodel. Here, we defined a weight function to account for the proximity to some

target value. Potential applications could be found in optimization, or detection of regions

of high variations, etc., the difficulty being in an adapted definition of the weight function.
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CHAPTER 6
OPTIMAL ALLOCATION OF RESOURCE FOR SURROGATE MODELING

6.1 Simulators With Tunable Fidelity

A numerical simulator is an approximation to a real phenomenon and is by definition

a source of error. The way a simulator response follows the real function of interest is

often called fidelity. Many engineering applications use two types of simulators, a low-

fidelity model and a high-fidelity model. A typical low-fidelity model is based on great

simplification of the system geometry and physics (for instance bars or beams modeling),

and a high-fidelity model is typically a finite elements model. High-fidelity models provide

an accurate approximation to the function of interest, but are computationally expensive,

while low-fidelity models are easy to run but contain large error.

However, many numerical simulators can offer a large range of fidelities, by tuning

factors that control the complexity of the model. For instance, the precision of the

response of a finite element analysis (FEA) can be controlled by the meshing density

or element order. Another example is when the response is obtained using Monte-Carlo

methods: the accuracy (measured by the standard deviation or confidence intervals) is

inversely proportional to the square root of the number of MC simulations. For both

examples, the gain in fidelity is at a price of computational time. This topic has been

addressed only recently in the computer experiment community and is usually found under

the name of stochastic simulators [Kleijnen & van Beers (2005), Boukouvalas & Cornford

(2009), Iooss et al. (2008), Ginsbourger (2009)].

When fitting a metamodel to such type of simulators, the sampling strategy may take

into account the tunable fidelity. Indeed, when the computational resource is limited, one

has to trade-off the fidelity and the number of simulations. Lower fidelity allows a better

exploration of the design space, while higher fidelity provides more trust in the simulator

responses. Besides, having tunable fidelity is to be considered as an additional degree of

freedom: by allocating different computational time for each simulation, the quality of
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the surrogate can be improved without additional cost compared to a uniform fidelity

situation.

The optimal DoE formulation, as presented in Chapter 2, consists of selecting

the points to maximize a criterion of quality for a metamodel construction. Here, we

dispose of additional degrees of freedom, since we can choose the number of training

point, and tune the model fidelity for each training point (under the constraint of a total

computational budget). Elfving (1952) pioneered work in the area of optimal allocation.

For a linear model he proposed to repeat experiments at some training points, and allocate

a different number of repetitions to each point according to an optimality criterion. Kiefer

(1961) generalized this idea of proportioning experiments in order to obtain the most

accurate regression coefficients. Fedorov (1972) proposed a continuous version of the

problem, and developed iterative strategies to find optimal designs.

This objective of this chapter is to provide efficient strategies for designing the

experiments of simulators with tunable fidelity. First, we describe three examples of such

type of simulators that model engineering systems. After formalizing the problem of

optimal allocation of resource, we review some of the important results of optimal designs

for regression. Finally, we propose an original approach for optimal allocation when

Kriging models are considered.

6.2 Examples Of Simulators With Tunable Fidelity

6.2.1 Monte-Carlo Based Simulators

We consider functions of the form f(x, µΘ), that depends on both deterministic

variables x and the distribution µΘ of some random parameters Θ. The function f(x, µΘ)

is deterministic, but it is, generally, not known analytically. Hence, we estimate it using

Monte-Carlo simulations (MCS). For a given design x, we write:

f̂(x, θi=1...k) = f̂ (x;θ1, θ2, ..., θk) (6–1)

where f̂ is the estimator of f and θ1, θ2, ..., θk are realizations of Θ.

110



The estimation of the probability of failure of a system is a typical example of a

Monte-Carlo simulator. The limit state G (x,Θ) is computed for several realizations of Θ,

and the probability of failure estimate P̂f (x), which corresponds to f̂(x, θi=1...k) in Eq. 6–1

is given by:

P̂f (x) =
1

k

k∑
i=1

I [G (x, θi) ≥ 0] (6–2)

where I is the indicator function.

Monte-Carlo methods converge with the square root of the sample size k. That is,

when k is chosen sufficiently large, the estimator f̂ is normally distributed and its variance

is inversely proportional to k:

var
(
f̂ (x)

)
= E

[
f̂ (x)− f (x)

]
=

cst

k
(6–3)

For the reliability example, P̂f (x) follows a binomial law with parameter p = Pf (x),

hence its variance is given by:

var
[
P̂f (x)

]
=

Pf (x) (1− Pf (x))

k
(6–4)

6.2.2 Repeatable Experiments

Repeatable experiments are not in themselves a numerical simulator with tunable

fidelity, but can be considered as a discrete version of the problem. Some numerical

simulators, and most physical experiments, benefit from repetitions. This is not the case

of a finite element analysis for instance: repeating two times the same simulation will

give the exact same answer and will not provide any additional information. A numerical

simulator that benefits from repetition has typically a response of the form:

yobs (x) = y (x) + ε (x) (6–5)

where y(x) is the actual response and the error term ε(x) is a random variable. Hence:

var [yobs (x)] = var [ε (x)] (6–6)
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Now, say the experiment is repeated k times. Assuming that the noise is independent

from one observation to another, we define yeq as the single observation equivalent to the k

observations yobs
(j) (x), which is the mean of the k observations:

yeq (x) =
1

k

k∑
j=1

yobs
(j) (x) (6–7)

The variance of yeq is inversely proportional to the number of repetitions:

var [yeq (x)] =
var [ε (x)]

k
(6–8)

6.2.3 Finite Element Analysis

The quality of a finite element analysis mostly depends on the meshing chosen to

model the structure. The meshing complexity is defined by the element type and the

element size, or meshing density. Increasing the element complexity or the density results

in a gain in accuracy, but at a price of computational time.

Figure 6-1 shows an example of the evolution of a FEA response when the complexity

of the model is tuned to different levels. The FEA used is the torque arm model presented

in Chapter 3. The response considered is the maximum Von Mises stress on the structure.

The mesh density is a tunable parameter that defines the complexity of the meshing. A

density of one corresponds to a crude mesh, while a density of 25 corresponds to a very

complex and expensive model. The response for density 25 can be considered as the actual

value of the maximum stress.

The graph shows that the simulator error (to the 25-mesh-density reference) decreases

with the model complexity. The lowest fidelity model has an error of 24%, while for

densities greater than 15 the error is less than 5%. As well as for previous examples, it is

possible to relate the error amplitude to the computational effort given for the simulation

run and obtain an equation of the form:

var [ε (x)] = f (x, t) (6–9)
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Figure 6-1. Evolution of the response of the FEA for the torque arm example, when the
complexity of the model (mesh density) increases.

where f is a function to determine, x the design parameters and t the computational time.

However, the relations between mesh density, computational effort and error

amplitude are complex and problem dependent. It depends on the choice of the elements,

the meshing technique, the finite element software method of resolution of the system, etc.

Hence, it is impossible to provide a general simple relation between the response variance

and the computational time in the general case, and this relation has to be found for a

given problem.

6.3 Optimal Allocation Of Resource

A classical design of experiments formulation consists of finding a sampling strategy

that maximizes a criterion of interest. The design of experiments is then defined by the

sampling point locations. In our framework, the design of experiment must be defined as

the combination of training points and computational resource allocated to that point.

Then, a design ξ with n points is defined as:

ξ =

 x1, . . . ,xn

t1, . . . , tn

 (6–10)
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The xi’s are training point locations, and the ti’s are real positive numbers that

represent the computational time allocated for each training point. The sum of the ti’s is

bounded by a constant:

0 ≤ ti,

n∑
i=1

ti ≤ Ttotal (6–11)

Ttotal represents the total computational time available for the design of experiments.

Let Φ be a functional of interest to minimize that depends on both training points and

computational time. A design ξ∗ is called optimal if it achieves:

ξ∗ = argmin [Φ (ξ)] (6–12)

Such that:
n∑

i=1

ti ≤ Ttotal

Finding an optimal design is a difficult and complex problem that has been widely

addressed in the literature in the framework of regression with repeatable experiments.

When the relation between the computational time t and the simulator response variance

is unknown or complex, the optimization problem can become very challenging, and no

general answer is provided in the literature. In the following, we focus on simulators for

which the response variance is inversely proportional to the computational time. This is

the case, as seen in Section 6.2.1, of reliability estimates.

In the two following sections, we consider the frameworks of regression and kriging.

Results for regression are well-known and its section is mostly devoted to review and

bibliography. On the contrary, very little is known for the kriging area, and the approaches

we propose are original.

6.4 Application To Regression

6.4.1 Continuous Normalized Designs

In this section, the observations are assumed to be repeatable, and that noise in all

observations has the same variance (homoscedastic case). We call n the number of training

points and N the number of experiments (counting repetitions), N ≥ n.
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Let ri be the number of observations at xi, all observations are denoted yij (i =

1, 2, ..., n; j = 1, 2, ..., ri). The design ξN consists of the collection of training points xi and

numbers of repetitions ri:

ξN =

 x1, . . . ,xn

r1, . . . , rn

 , 0 ≤ ri,
n∑

i=1

ri = N (6–13)

For a given training point xi, the equivalent observation (see Section 6.2.2) is denoted

by ȳi:

ȳi = r−1
i

ri∑
j=1

yij (6–14)

Let σ2 be the variance of a single observation; assuming independance of the observations,

the variance of ȳi is:

var (ȳi) = r−1
i σ2 (6–15)

Then, the Fisher’s information matrix becomes:

M (ξN) = f (X)T ∆−1f (X)

= f (X)T
[
diag

(
σ2r−1

1 , σ2r−1
2 , ..., σ2r−1

n

)]−1
f (X)

= σ−2f (X)T [diag (r1, r2, ..., rn)] f (X) (6–16)

Normalizing by N ,

M (ξN) = Nσ−2f (X)T [diag (r1/N, r2/N, ..., rn/N)] f (X) (6–17)

The Fisher information matrix is proportional to N , and following Fedorov (1972), it

is possible to define, without any loss of generality, a normalized design ξ as a collection of

support points xi and their corresponding proportions of experiments pi (with pi = ri/N):

ξ =

 x1, . . . ,xn

p1, . . . , pn

 , 0 ≤ pi,

m∑
i=1

pi = 1 (6–18)
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Furthermore, a continuous normalized design is defined when pi can take any real value

between 0 and 1. Continuous designs are good approximations of reality for large N . The

corresponding Fisher’s information matrix is:

M (ξ) = f (X)T [diag (p1, p2, ..., pn)] f (X) =
n∑

i=1

pif (xi)
T f (xi) (6–19)

It is important to notice here that such normalization is possible only when the observation

noise variance is inversely proportional to computational time. The results described in

the following sections only stand when this relation is true.

6.4.2 Some Important Results Of Optimal Designs

At this point, we introduce the dispersion function for linear regression for a

prediction point x:

d (x, ξ) = f (x)T M(ξ)−1f (x) (6–20)

The dispersion function directly relates to the prediction variance by:

var (ŷ) = σ2N−1d (x, ξ) (6–21)

An important result in design optimality is the famous equivalence theorem

demonstrated by Kiefer & Wolfowitz (1960). It states that the three following problems

are equivalent:

min
ξ

det (M (ξ)) (6–22)

min
ξ

max
x

d (x, ξ) (6–23)

find ξ such that: max
x

d (x, ξ) = p (6–24)

p being the number of regression coefficients to estimate.

In practice, it means that D-optimal designs are also G-optimal (and vice-versa),

that is designs that minimize the uncertainty on the regression coefficients also minimize

the maximum prediction variance, and for normalized optimal designs the value of the

maximum prediction variance value is equal to p. However, these results are restricted to
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continuous designs; when the total number of observations N is not a lot larger than the

number of training points n, the pi take discrete values and the above theorem does not

hold in general.

Another result of great practical relevance is that there exists an optimal design ξ∗

that contains no more than n0 points [see Fedorov (1972)]:

n0 =
p (p+ 1)

2
+ 1 (6–25)

Such results are very useful in practice, when algorithms are used to construct

optimal designs. With the D-G equivalence, we get the intuition that support points may

be taken where the prediction variance is maximal. The latter theorem states that, for

linear regression, optimal sampling strategies consist of concentrating the computational

resource on a limited number of (well-chosen) training points, rather than using a large

number of points.

6.4.3 An Illustration Of A D-Optimal Design

Now, we illustrate D-optimal designs when the response is a second order polynomial

with interactions in two dimensions:

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 (6–26)

The optimal design consists of the full-factorial design with nine points, with the

following weights (Fedorov, 1972):

• 14.6 % at the corners

• 8.0 % at the middles of the edges

• 9.6 % at the center

Figure 6-2 represents the optimal design and corresponding prediction variance

profile. It can be seen that G-optimality is achieved, since the prediction variance attains

its maximum p = 6 (see Eq. 6–24) on several locations (center, corners, and middles of the

edges). For this model, optimality is achieved by allocating approximately two times more

117



computational resources to the training points on the corners than to the other training

points. Indeed, the corners of the domain are the regions where the uncertainty is likely

to be maximal, so it seems logical to compensate for this uncertainty by allocating more

resources there.

Figure 6-2. A) D-optimal design for a second-order polynomial regression and B)
corresponding prediction variance. The vertical bars represent the proportion
of computational effort given to each training point.

Figure 6-3 represents the full-factorial design but with homogeneous resource

allocation and the corresponding prediction variance. The prediction variance profile

shows that such design is not optimal, since the variance is much higher on the corners

than on the center of the domain. The maximum prediction variance is 7.25, while it is

equal to p = 6 for the optimal design.

Finally, Figure 6-4 represents a design with a large number of points uniformly spread

on the design region, which is a natural alternative to small designs. Here, we chose a

36-point FF design; the observation noise is very high since only 1/36 of computational

time is allocated to each training point. Such design does not appear to be a good

solution, since the prediction variance has very high values on the edges of the domain.

The maximum prediction variance is 13.45.
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Figure 6-3. A) Full-factorial design with homogeneous allocation of computational effort
and B) corresponding prediction variance.

Figure 6-4. A) 36-point Full-factorial design with homogeneous allocation of
computational effort and B) corresponding prediction variance.

6.4.4 An Iterative Procedure For Constructing D-Optimal Designs

Many algorithmic procedures have been proposed in the past to generate optimal

designs. Here, we detail the first-order algorithm presented by Fedorov in his 1972 book.

More refined techniques can be found in Cook & Nachtsheim (1980) Fedorov & Hackl

(1997), Wu (1978), Molchanov & Zuyev (2002).

The principle of Fedorov algorithm is to add points sequentially to the design, and

to transfer a proportion α of experiments from the existing points to the new one. The

procedure is as follows:
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Starting from a current design ξs obtained after s iterations, the first step is to find

one point where the prediction variance is maximal, that is:

xnew = argmax [d (x, ξ)] (6–27)

Then, the new design ξs+1 is:

ξs+1 = (1− α) ξs+1 + αξ (xnew) (6–28)

The proportion of experiments for the new point (α) is chosen such that det [M (ξs+1)]

is maximal, showing the formula [Fedorov & Hackl (1997), p.47]:

αopt =
d (x, ξS)− p

(d (x, ξS)− 1) p
(6–29)

The sequence {ξs} is called optimal in the sense that its criterion value converges to

the optimum value:

lim
s→∞

Φ (ξs) = Φ (ξ∗) (6–30)

When a very large number of iterations is performed, the resulting design can contain

a lot of points. Then, we can reduce the number of points by:

• discarding points with small weights not close to any group of points with high
weights

• agglomerating points close to each other (the new point is the barycenter of the
points, the weight is the sum of the weights)

6.4.5 Concluding Remarks

The problem of optimal allocation of resource has been widely studied in the

regression framework. The remarkable properties of optimal designs allow proposing

efficient algorithms to generate such designs. The results are developed for repeatable

experiments, but fully apply to any simulator with tunable fidelity that has a response

variance error inversely proportional to computational time. When D- or G-optimality

are considered, optimal sampling strategies consist of concentrating the computational
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resource on a limited number of training points, with non-uniform allocation of resources

between points.

6.5 Application To Kriging

6.5.1 Context And Notations

In this section, we consider continuous designs, but with weights pi’s bounded by a

constant not equal to one:

0 ≤ pi,
n∑

i=1

pi =
1

τ 2
(6–31)

We will see later that in contrast to the regression case, the quantity 1
τ2

cannot

be normalized since it has an non-linear impact on the results. It represents the

computational resource available for the design ξ. Here, the weights are the inverse of

the variances of the measurement error at xi:

pi =
1

var [ε (xi)]
(6–32)

Assuming that the error variance is proportional to computational time, Eqs. 6–31 and

6–32 reflects the fact that computational resources remain constant for all ξ. If the design

consists of a single support point, the error variance is τ 2; if the design consists of n

distinct points with uniform weights, the error variance is uniform, equal to:

var (εi) = nτ 2 (6–33)

In this section, we always consider that the variances are equal.

The kriging model studied is the simple kriging (SK), which trend consists of a known

constant µ (see Section 2.1.3). Then, the SK best predictor is given by the equation:

mK (x) = µ+ k(x)TK∆
−1 (Y − µ1) (6–34)

and the SK prediction variance is:

sK
2 (x) = σ2 − kT (x)K∆

−1k (x) (6–35)

121



Considering a computational budget 1/τ 2 and equal variances, the covariance matrix K∆

is given by:

K∆ = K+∆ = (k (xi,xj)) +


nτ 2 0

. . .

0 nτ 2

 (6–36)

To analyze the quality of a model fit, we consider the IMSE criterion:

IMSE =

∫
D

sK
2 (x) dν (x) (6–37)

ν being an integration measure, usually taken uniform.

6.5.2 An Exploratory Study Of The Asymptotic Problem

The objective of this study is to quantify the evolution of the quality of the SK model

when the number of observations increases, while the computational resource remains the

same. In other words, we want to see if it is better using a few accurate observations, or

many inaccurate ones.

An exploratory study is performed first. We consider the fit of a two-dimensional

stationary processes in D = [0, 1]2. The first process has a Gaussian covariance function

(smooth), the second has an exponential covariance function (irregular).

We choose σ2 = 1 and τ 2 = 10−3 for both processes, a range of θ = 3.1 for the

gaussian covariance and θ = 2 for the exponential. We consider several sample sizes n

from 10 to 150. For each sample size, we generate 500 designs ξ
(p)
n , the xi being uniformly

taken in D, the pi being equal to nτ 2. Then, we compute the IMSE criterion for each ξ
(p)
n ,

using numerical integration on a 32× 32 grid. Figure 6-5 shows the evolution of the mean,

90% confidence interval and minimum IMSE criterion (over the 500 designs) with respect

to m, for both covariance functions. Note that the IMSE criterion is independent of the

observations, so the results depend only on the covariance structure and parameters.

We see that the mean and minimum IMSE decrease when the number of observations

increases. Both quantities seem to converge to a non-zero constant. The confidence
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Figure 6-5. Evolution of the IMSE with respect to the number of observations for uniform
random designs with A) Gaussian covariance, B) Exponential covariance.

interval width also decreases. Hence, we can conclude, for these two examples, that it is

preferable for a constant computational budget to have a large number of points with large

variances spread all over the design domain, rather than a few accurate ones.

Besides, the designs with large number of points are more robust, since the confidence

interval decreases when the number of observations increases. This is logical since, with a

small number of points, having an observation at a wrong location has a strong influence

on the global accuracy of the model.

Thus, the goal is to study the behavior of s2K(x) and the IMSE when n tends to

infinity, the xi being uniformly spread onto the design domain D. In particular, we

aim at finding analytical expressions of both variance and IMSE, which can be used for

comparison to designs with a finite number of support points.

6.5.3 Asymptotic Prediction Variance And IMSE

We assume that the observations are taken randomly according to the measure µ.

µ can be either continuous on the design domain D, or discrete. Typically in the first

case, µ is the uniform measure on D; then, each training point is taken randomly with

uniform distribution on D (which is the case of the example of the previous section).

Asymptotically, when the number of observations n tends to infinity, the training points
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are taken everywhere on D. Inversely, a discrete measure µ is defined as the sum of Dirac

functions, with positive weights such that their sum equals one:

µ = p1δx1 + . . .+ pkδxk
(6–38)

With: pi ≥ 0, 1 ≤ i ≤ k and
∑

pi = 1.

Each observation is taken randomly on the set {x1, . . . ,xk} with probability pi. When

n tends to infinity, the design of experiments is equivalent to a continuous normalized

design with training points {x1, . . . ,xk} and noise variances τ 2/pi.

6.5.3.1 General result

Theorem. The observations are taken randomly according to the measure µ. When

the number of observations m tends to infinity, the prediction variance and IMSE tend to:

s2K∞(x) = σ2 −
∞∑
p≥0

λp
2

τ 2 + λp

(ϕp (x))
2 (6–39)

IMSE∞ = σ2 −
∞∑
p≥0

λp
2

τ 2 + λp

∫
D

(ϕp (x))
2dν (x) (6–40)

where λp are the eigenvalues of the Hilbert-Schmidt integral operator associated with

the covariance function k (x,y) (see appendix B), and ϕp are the natural representatives of

the eigenfunctions ϕ̃p of the operator, defined by:

ϕp(x) =
1

λp

∫
D

k(x,y)ϕ̃p(y)dµ(y), x ∈ D

We recall that the spectral decomposition has the following properties:

• k (x,y) =
∑
p≥0

λpϕ̃p (x) ϕ̃p (y), µ⊗ µ almost everywhere

•
(
ϕ̃p

)
p
an orthonormal family:

∫
D

(
ϕ̃p (x)

)2
dµ (x) = 1,

∫
D

ϕ̃p (x) ϕ̃q (x) dµ (x) = 0 p ̸= q

• λpϕ̃p(x) =
∫
D
k(x,y)ϕ̃p(y)dµ(y), x ∈ supp(µ)
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If µ and ν coincide:. The IMSE∞ expression reduces to:

IMSE∞ = σ2 −
∞∑
p≥0

λp
2

τ 2 + λp

(6–41)

Proof:. Two different proofs are proposed depending on the nature of the kernel. (1)

If the kernel can be defined as a finite sum of basis functions and coefficients:

k(u,v) = σ2
1f1(u)f1(v) + . . .+ σ2

l fl(u)fl(v)

Then, the number of non-null eigenvalues of the spectral decomposition is finite and the

proof is algebraic.

(2) The general case, to which belong the usual Kriging kernels, requires a more

complex proof. The proofs are given in Appendix B.1 and Appendix B.2, respectively.

Remarks:. Finding the spectral decomposition of the covariance function is

a classical problem. Depending on the kernel considered, the decomposition can

be well-known, easy to derive or inexistent (in particular, an analytical form of the

decomposition of the Gaussian covariance function seems not to exist). In many case, the

series (λp)p decrease rapidly, so the series for s2K∞ and IMSE∞ are well approximated by

its first q terms, typically: 10 ≤ q ≤ 100.

6.5.3.2 A direct application: space-filling designs

We consider the case where the user wants to learn the function uniformly on D; the

measure ν of integration for the IMSE is the uniform measure. Typically, space-filling

designs are used for that purpose, so the measure µ of distribution of the observations is

also the uniform measure on D. In that case, the asymptotic MSE and IMSE have simple

form:

s2K∞(x) =
∑
p≥0

τ 2λp

τ 2 + λp

(ϕp (x))
2 (6–42)

IMSE∞ =
∞∑
p≥0

τ 2λp

τ 2 + λp

(6–43)
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In that case, they can be easily computed numerically. This value constitutes the

limit of the IMSE of a space-filling DoE, when the number of observations tends to

infinity, and can be used for a stopping criterion when building the design.

Let (xn)n∈N∗ be a space-filling series, for instance a Sobol or a Niederreiter sequence,

k an initial number of points and α a positive number. Then, we can build a space-filling

design by adding points of the series to the DoE until the corresponding IMSE is close

enough to the asymptotic value, as we show in the following examples.

6.5.4 Examples

6.5.4.1 Brownian motion

We consider the fitting of a one-dimensional Brownian motion in the space . The

covariance function associated with the Brownian motion is:

k (x, y) = σ2min(x, y) (6–44)

Note that this covariance function is not stationary (since it depends on x and y and

not only |x− y|). However the kriging model remains the same. The eigenvalues and

eigenfunctions associated with the covariance are:

λp =

(
2σ

π(2p+ 1)

)
ϕp(x) =

√
2 sin

(2p+ 1)πx

2
(6–45)

Thus, the asymptotical prediction variance and IMSE are:

s2K∞(x) = τ 2
∑
p≥0

2

1 +
(
τ
σ

)2[π(2p+1)
2σ

]2 sin2

(
(2p + 1)πx

2

)
(6–46)

IMSE∞ = τ 2
∑
p≥0

σ2

σ2 +
[
πτ(2p+1)

2σ

]2 (6–47)

We illustrate this result on a numerical example. We take µ = 0, σ2 = 1 and

τ 2 = 2× 10−3. Figure 6-6 shows one realization of a Brownian motion, two Kriging models

based on four and 19 noisy data, respectively, and the prediction variance for the two

models, and the analytical function (using the 50 first terms of the series) for an infinite

126



dataset. The variances of the observation noises are equal to nτ 2, that is, 0.008 and 0.038,

respectively.

Figure 6-6. Illustration of the MSE function for a Brownian motion (σ2 = 1, τ 2 = 0.002).
A) Realization of a Brownian motion and the Kriging model based on 4 noisy
data; B) Kriging based on 19 noisy data; C) prediction variance function for
the two models, and asymptotic value.

Since the noise variance is small, the 4-observation based Kriging (Figure 6-6 A))

almost interpolates the true function. However, the Kriging mean is very inaccurate when

away from the observation. As a consequence, the prediction variance (Figure 6-6 C))

is close to zero at the observation points and is maximal at mid-distances between two

observations. Since the response is known at x = 0 (g(0) = 0), the prediction variance is

equal to zero.

The 19-observation based Kriging (Figure 6-6 B)) is a better approximation to the

real function, even though the observation noise is much higher to satisfy the constraint

of a constant computational budget (see Eq. 6–31)(indeed, some observation points [black
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cross] are not close to the true function). When increasing the number of observations, the

prediction variance tends to a constant (except on the boundaries), which is logical since

the information is uniformly spread into the domain.

Table 6-1 shows the IMSE values for the three models. We can see that for a

constant computational budget, the IMSE can be considerably reduced by spreading

the information uniformly on the prediction domain. The IMSE for the 4-point model is

two times larger than the asymptotic value. On the other hand, the difference between

the 19-point model and the asymptotic value is only 4%. Since having more observations

increases the computational burden, one can decide that a DoE with 19 observations is

sufficient in terms of IMSE.

Table 6-1. IMSE values for the two Kriging models and the asymptotic model.

Kriging based on 4
observations

Kriging based on
19 observations

Asymptotic

IMSE 0.0461 0.0233 0.0224

6.5.4.2 Orstein-Uhlenbeck process

Now, we consider the fitting of a one-dimensional Gaussian process in the space

D = [0, 1], with the following covariance function:

k (x, y) = σ2 exp

(
−1

θ
|x− y|

)
(6–48)

The associated decomposition is (see appendix C for calculations):

ϕp (x) = Cp (θρp cos (ρpx) + sin (ρpx)) (6–49)

With: ρp =
√

2θ−λp

θ2λp
.

The ρp are the roots of the equation:

2uθ cos (u) +
(
1− θ2u2

)
sin (u) = 0 (6–50)
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Figure 6-7. Illustration of the MSE function for a Gaussian process (GP) with exponential
covariance function (σ2 = 1, θ = 0.2 and τ 2 = 0.002). A) Realization of a GP
and the Kriging model based on 80 noisy data; B) MSE function based on the
80 data, and asymptotic value.

Such equation does not have explicit analytical solutions and must be solved

numerically. However, when p is large (> 10), the roots are well approximated by:

ρp = (p− 1)π (6–51)

The eigenvalues are obtained from the roots of the equation:

λp =
2θ

1 + θ2ρ2p
(6–52)

The constant Cp is chosen so that ϕp is normalized:

Cp =
2ρp

ρp
(
1 + ρ2pθ

2
)
−
(
1 + ρ2pθ

2
)
sin (ρp) cos (ρp) + 2ρpθ(sin (ρp))

2 (6–53)
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Figure 6-7 illustrates this result for the parameter values σ2 = 1, θ = 0.2 and τ 2 = 0.002.

For comparison, a model based on 80 data is represented, which is found to be a good

approximation to an infinite dataset.

6.5.5 Application To The Robust Design Of Gears With Shape Uncertainty

In this section, we apply the asymptotic results on Kriging to the optimization of

gears under shape uncertainty. For the sake of equilibrium and homogeneity, the study is

only briefly described here. All the details can be found in Appendix D.

Although gears have been designed for a long time, controlling gears performance

under teeth shape uncertainties is a recent, difficult and important design objective: teeth

shape variations result from manufacturing (e.g., heat treatment) and from wear and

induce, in particular, noise. The objective of this study is to design gears so that the noise

is minimum when there is shape uncertainty.

Gear design typically involves a large number of geometrical parameters (see Figure

6-8) and several performance measures. In this study, gear analysis is done with the

help of the Filengrene software [Meyer (2008)], which provide many outputs as well as

shape modification capabilities. Uncertainties can be taken into account by using classical

Monte-Carlo techniques. Here, departures from the theoretical shape profile are defined

with the use of Gaussian processes and given as inputs for the analysis. Multiple runs with

different shape departures allow the propagation of uncertainty to the outputs.

Minimizing the noise when the shape is uncertain is computationally intensive: even

though the computational time for a given profile is small (about 2 CPU seconds per

gears analysis) it is not possible to directly include the Monte Carlo simulations inside

an optimization loop because the computational costs are multiplied by each other:

for 100 Monte Carlo simulations and 1,000 optimization steps, a single run would take

100*1,000 = 56 CPU hours. To alleviate the computational issue, we use a Kriging model

to approximate the objective function. We take advantage of the asymptotic study by

generating a design of experiment as large as possible.
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Figure 6-8. Gears parameters definitions.

The objective function is chosen as the 90th percentile of the Static Transmission

Error (STE, returned by Filengrene). To ensure good properties of the percentile estimate

(in particular, normality), a minimum of 25 samples is needed. Due to computational

limitations, the number of calls cannot exceed 90,000. So we choose to compute 3,000

responses based on 30 MCS each. However, the design space being of six dimensions, 3,000

observations is not enough to fill it densely, so this DoE is sub-optimal. This illustrates

well the trade-off to be made between theoretical results and practice.

Results showed that the Kriging-based strategy allowed to find acceptable designs

even if the observation noise was very high due to limited computational resources. The

Kriging-based design is depicted in Figure 6-9. The chosen sampling strategy allowed to

perform global optimization and detect the region of optimality, but failed to achieve fine

convergence (which may require adaptive sampling).

Figure 6-9. Optimum robust design found using the kriging metamodel.
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6.5.6 Concluding Comments

In this section, we found empirically that using a very large number of observations

with very low fidelity was an optimal solution to minimize the uncertainty in the simple

kriging model, when space-filling designs are used. We found that this kind of designs

asymptotically converge to a bound. However, it has to be kept in mind that this sampling

strategy is not yet proven to be optimal. Anyway we can conclude that, contrarily to

regression where optimal designs have a finite number of support points, it seems better to

spread as much as possible the computational resource rather than concentrate it on a few

training points.
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CHAPTER 7
CONCLUSION

7.1 Summary And Learnings

The use of surrogate modeling as a helping tool for learning, prediction and design

of engineering systems is an efficient and computationally attractive solution. However,

dealing with the uncertainties associated with a surrogate model is a challenging but

crucial issue to the success of the surrogate-based strategy.

The two primary objectives of this work were the following: (1) Propose and discuss

alternatives to compensate for the error and uncertainty in surrogate models in order

to provide safe estimates that limit the risk of weak design; (2) Explore the sampling

strategies in order to minimize the uncertainty of surrogate models.

First, it was showed that uncertainty can be compensated by adding bias to the

surrogate models in order to increase the chance that they are safe, using constant or

pointwise margins, designed by taking advantage of error distribution measures given

by the model, or by model-independent measures of accuracy of the model. Since the

conservative predictions are biased, the problem can be considered as a multi-objective

optimization, and results are presented in the form of Pareto fronts between accuracy

and conservativeness. It was found that the efficiency of the different methods depend on

the ability of the surrogate model to reflect the system response. When error measures

given by the model are reasonably accurate, their use outperforms model-independent

measures to reduce large unsafe errors. On the other hand, model-independent measures,

in particular cross-validation, are found to be more robust and efficient when the number

of observations is sufficiently large (regardless of sparsity).

Then, a simple methodology was proposed to estimate the uncertainty in a reliability

measure based on Monte-Carlo simulations. Using the bootstrap method, we were able to

quantify the level of bias needed to ensure a prescribed probability to be on the safe side

for the analysis. The procedure was applied to the design of a laminate composite under
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cryogenic and mechanical stress. It was found that fitting a surrogate based on datasets

that were biased to compensate for their uncertainty allowed to obtain a satisfying

design, even when the available information was very limited by computational resources.

Compared to traditional methods of reliability estimates, equivalent levels of safety was

obtained with a reduction of computational cost of several orders of magnitude.

The choice of the observations used to fit the model (design of experiment) was

addressed by two different ways. In a first time, it was shown that substantial gain can

be obtained by considering the surrogate model in an objective-based approach. In

particular, a methodology was proposed to construct designs of experiments adapted

to the frameworks of reliability assessment and constrained optimization, so that the

model accurately approximates the vicinity of a boundary in design space defined by a

target value of the function approximated by the surrogate. The method was applied to a

reliability example, and it was found that improving locally the accuracy resulted in great

improvement of the accuracy of the reliability estimation.

Finally, a global approach to uncertainty reduction in surrogate modeling was

proposed to address the issue of surrogates based on simulators with tunable fidelity.

This situation is, in particular, encountered in the framework of reliability-based

design optimization. Solutions differ depending on the surrogate model considered.

For regression models, classical results of design optimality show that substantial reduction

of uncertainty can be achieved by allocating different computational resources - hence

different uncertainty levels in the responses - to a few chosen simulations. For kriging

models, it was found that the best way to reduce uncertainty in the model is to spread

the information as much as possible, by using very large datasets with very large levels

of uncertainty. This result was supported by theoretical asymptotic studies of the kriging

model.
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7.2 Perspectives

Ensuring high levels of conservativeness is, as we have seen, at a price of a substantial

increase of error, which leads to overdesign. In an engineering context, such approach

is recommended for preliminary analysis, which would be followed by more refined

(and expensive) procedures. More generally, the efficiency of conservative strategies are

very dependent on the sampling strategies used to generate the observations. Possible

prolongation of this work might include a combined use of conservative predictions and

sequential strategies in order to limit the risk of overdesign.

The adapted design strategy proposed in Chapter 5 was tested on academic problems

of reasonable complexity. Its application on real-life problems might lead to additional

problems and discussion, which were only mentioned here. In particular, one might think

of measuring the influence of the quality of the metamodel on the efficiency of the method,

the combined use of space-filling and adapted strategies for increased robustness, or

numerical solutions to overcome computational issues. Secondly, it seems that the idea of

weighted IMSE and sequential strategies to construct DoEs can be applied to many other

purposes where there is a need for trade-off between exploration of regions of interest and

reduction of the global uncertainty in the metamodel. Here, we defined a weight function

to account for the proximity to some target value. Potential applications could be found

in optimization, or detection of regions of high variations, etc., the challenge being in an

adapted definition of the weight function.

We discussed in Chapter 6 optimal strategies of allocation of resource for simulators

with tunable fidelity. We showed that, in particular, reliability analysis belongs to this

framework. It is also potentially applicable to a wide range of problems, in particular

Finite Element Analysis or Computational Fluid Dynamics codes. Future research may

aim at relating this work to studies of convergence of numerical models (depending

on meshing, complexity of elements, etc.), in order to estimate the relation between

computational time and error and propose optimal strategies for these problems. In
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addition, we proposed in this work some links to functional analysis and spectral theory

when considering optimal allocation for the Kriging model. It seems that this way offers

many potential prolongations for the theory of design of experiments, which might lead to

exactly optimal strategies, or numerical methods to generate designs.
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APPENDIX A
ALTERNATIVES FOR CONSERVATIVE PREDICTIONS

In this appendix, we detail two alternatives to produce conservative predictions using

surrogate modeling.

A.1 Biased Fitting Estimators

A.1.1 Biased Fitting Models

We propose here to include bias during the fitting process in order to produce

conservative predictions. To do so, we constrain the predicted response to be on one

side of the DOE responses; that is, the errors between prediction and actual response

are positive at DOE points. Such method do not apply to interpolation techniques since

the error is by definition null at data points. For polynomial regression, the conservative

coefficients β̂cons are the solution of the following constrained optimization model:

Minimize
β̂cons

MSE =
1

n

n∑
i=1

[ŷ (xi)− y (xi)]
2

s.t. ŷ (xi)− y (xi) > 0, i = 1, ..., n

(A–1)

Then, the biased fitting conservative estimate is given by:

ŷBF (x) = fT (x) β̂cons (A–2)

In order to control the level of bias, we propose two alternatives. The first is

constraint relaxation, that allows a given amount of constraint violation denoted as

δ:

Minimize
β̂cons

MSE

s.t. ŷ (xi)− y (xi) + δ > 0, i = 1, ..., n

(A–3)

A positive δ will reduce the bias in the fitting. δ can also be chosen negative in order

to be more conservative than with no constraint relaxation.

The second alternative is to reduce the number of constraints, that is, to constrain

the errors to be positive only at a selected number of points (constraint selection). The
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constraints selected are those a priori easier to be satisfied, that is, where the error from

the unbiased fit is minimal.

The procedure to select these points is as follow:

• Compute the unbiased estimates using classical regression

• Compute the errors and sort them by ascending order

• Select the points corresponding to the k smallest errors

• Solve the following optimization problem:

Minimize
β̂cons

MSE

s.t. ŷ (xi)− y (xi) + δ > 0, i = 1, ..., k

(A–4)

where the xi are sorted in ascending order according to errors and 1 ≤ k ≤ n.

In the following, the two above-referenced biased-fitting alternatives are entitled

constraint relaxation and constraint selection, respectively.

Remark. The biased fitting strategy requires the solving of a constrained optimization

problem to obtain the coefficients β̂ instead of using an analytical function. However, this

optimization problem is quite simple to solve, since the criterion is convex (least squares),

and the constraints are linear.

A.1.2 Results And Comparison To Other Methods

Here, we compare the two biased fitting strategies to the constant safety margin

(CSM) strategy on the Branin-Hoo function, in the experimental setup described

in Section 3.3.2.2. First, we compare the two strategies for biased fitting estimates.

The range of the constraint relaxation is chosen as [-3; 15]; the proportion of selected

constraints is chosen between 0 and 1. The graphs of performance are shown in Figure

A-1.

Both methods seem to provide similar results; the difference for high percentiles on

the left figure is here due to numerical noise. Using constraint selection does not allow
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Figure A-1. Average results for Biased fitting with constraint relaxation (plain black) and
constraint selection (mixed grey) on the Branin-Hoo function. A) %c vs.
lalpha; B) %c vs. MaxUE%.

obtaining very conservative estimates: indeed, using all the 17 constraints leads to a

85% conservativeness. On the other hand, with constraint relaxation, using a negative

shift allows to be more conservative. On the right graph, we see that a high proportion

of conservative estimates does not prevent for having large unconservative errors: for

instance, for a 90% conservativeness, the maximum unconservative error is reduced by 40%

only.

Now, we compare biased fitting and CSM strategies. Figure A-2 shows the graphs

of performance for the CSM estimator and the biased fitting estimator with constraint

relaxation.

The two estimators have similar trends, but biased fitting results with higher

variability. Indeed, this method is a lot more sensitive to the DOE, since a single

constraint can have a large influence on the shape of the response.

A.2 Indicator Kriging

A.2.1 Description Of The Model

Indicator Kriging (IK) is a surrogate-based alternative to provide conservative

estimates. Instead of estimating the value of response, IK estimates the probability that

the response exceeds a given value (cut-off). In other words, IK provides an estimate of
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Figure A-2. Average results for CSM (plain black) and Biased fitting with constraint
selection (mixed grey). A) %c vs. lalpha; B) %c vs. MaxUE%.

the conditional cumulative distribution function (CCDF) at a particular cut-off c. The

key idea of IK is to code the observed responses into probabilities of exceeding the cut-off.

When the response is deterministic (without observation noise), the probability is either 0

or 1. The indicator coding at a sampled location xi is written:

Ii = I (c;xi| {y1, y2, ..., yn}) = P (y(xi) > c)

=

 1 if y(xi) > c

0 otherwise

(A–5)

At an unsampled location x, the probability is estimated by the Kriging prediction

based on the indicator data:

P̂ (y (x) > c) = ŷIK (x) (A–6)

where ŷIK is the Kriging estimate based on {I1, I2, ..., In} instead of {y1, y2, ..., yn}.

For a given set of cut-offs {c1, c2, ..., cq} and prediction location x, we obtain a

corresponding set of probabilities {P1, P2, ..., Pq}. We use these discrete probabilities

to fit a continuous approximation of the CCDF of the response at and build confidence

intervals. IK is often qualified as a ’non-parametric’ approach since it does not rely on a

pre-specified distribution model. Note that it is an expensive procedure compared to a

classical kriging model since it may require a large number of kriging models.
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Post-processing is necessary to transform the IK set of values into a usable discrete

CDF. Indeed, there is no constraint during the procedure to have values only inside [0, 1]

or that CDF estimates vary monotonically with cut-offs. We use here one of the methods

proposed in the GSLIB user’s guide [Deutsch & Journel (1997)]. First, values out of

the interval [0, 1] are replaced by 0 or 1. Then, the original IK-derived percentiles are

perturbed by running an optimization that minimizes the perturbation while ensuring all

order relations.

The (1 − α)% conservative estimator is the (1 − α)th percentile of this distribution,

given by the inverse of the CDF. This percentile is interpolated from the set of probability

(like for the bootstrap method). Here, we use linear interpolation.

A.2.2 Application To The Torque Arm Analysis

Since it requires a large number of points, IK is applied to the analysis of the torque

arm only. A rational quadratic function is used for covariance; the parameters of the

function are re-estimated for each cut-off using the toolbox GPML. A total of 100 cutoffs

are used for the distribution estimation.

In this section, we compare IK to the regular Kriging with error distribution (ED).

First, we compare the performances of the unbiased metamodels: without margin for

Kriging and with a target of 50% conservativeness for IK. Table A-1 reports their eRMS,

%c and MaxUE based on the 1,000 test points.

Table A-1. Statistics based on 1,000 test points for the unbiased surrogates.

Surrogate eRMS %c MaxUE
IK 22.9 45.6% 228.9

Kriging 14.5 51.6% 60.7

For unbiased predictions, IK has an error a lot larger than Kriging. The eRMS is two

times larger and the MaxUE almost three times. Here, it appears that the IK procedure,

with conversion into boolean number, CDF normalization and interpolation, results in

substantial loss in accuracy.
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In order to have a fair comparison between IK and Kriging, we compare unscaled

quantities, eRMS and MaxUE, instead of lα and MaxUE%. Figure A-3 shows the graphs

of performance for the two conservative estimators.

Figure A-3. Average results for Indicator Kriging (IK, plain black) and ED with Kriging
(UK, mixed grey). A) %c vs. lα; B) %c vs. MaxUE%.

On the left graph (Figure A-3 A)), we see that the rate of increase of eRMS of the IK

is very small up to %c = 70%. However, it is not enough to compensate for the initial

value of eRMS and be competitive with the UK estimator. Figure A-4 shows the fidelity to

target conservativeness for both estimators. Despite very large errors compared to classical

Kriging, Indicator Kriging is found to be very accurate regarding fidelity.

Figure A-4. Target vs. actual %c for IK (plain black) and Kriging with ED (mixed gray).
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APPENDIX B
DERIVATION OF THE ASYMPTOTIC KRIGING VARIANCE

This appendix shows the derivation of the asymptotic formula of the kriging variance

described in Chapter 6.

On all these calculations, we assume that the observations are distributed according

to the probability µ. If µ is the uniform measure on the design region D, it means that the

observations are uniformly spread on D. If µ is a Dirac function, all the observations are

taken on a single location.

We propose two different proofs, depending on the nature of the kernel. For kernels of

finite dimension, the proof is algebraic. The general case is more complex, and the proof is

formal.

B.1 Kernels Of Finite Dimension

The covariance kernel is assumed to be of the form of a finite sum of basis functions

and coefficients:

k(u,v) = f(u)Γf(v)T (B–1)

With: f(u) = [f1(u), . . . , fp(u)].

Γ can be diagonal for instance, hence the kernel is of the form:

k(u,v) = σ2
1f1(u)f1(v) + . . .+ σ2

pfp(u)fp(v) (B–2)

For simplification purpose, we will assume in the following that Γ is always diagonal.

We recall the equation of the kriging prediction variance, based on m observations

with homogeneous nugget effect equal to mτ 2:

sK
2 (x) = k(x,x)− kT (x) (K+∆)−1k (x) (B–3)
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With:

K+∆ = (k (xi,xj))1≤i,j≤m +


mτ 2 0

. . .

0 mτ 2


Then, with covariance function as defined in Eq. B–1, the kriging variance can be

expressed as:

s2K(x) = f(u)Γf(u)T − f (x)Γf (X)T
[
mτ 2Im + f (X)Γf (X)T

]−1

f (X)Γf (x)T (B–4)

with the convention:

f (X) =


f1 (x1) . . . fp (x1)

...

f1 (xm) . . . fp (xm)

 .

Then, by factorization we obtain:

s2K(x) = f (x)

[
Γ− Γf (X)T

[
mτ 2Im + f (X)Γf (X)T

]−1

f (X)Γ

]
f (x)T (B–5)

So the prediction variance is of the form:

s2K(x) = f (x)M−1f (x)T (B–6)

with:

M−1 = Γ− Γf (X)T
[
mτ 2Imf (X)Γf (X)T

]−1

f (X)Γ.

M−1 is of dimension p× p.

Using the equality [Fedorov & Hackl (1997), p. 107]

(
A+BBT

)−1
= A−1 −A−1B

(
I+BTA−1B

)−1
BTA−1, (B–7)

with A = 1
mτ2

Γ and B = f (X)T , M−1 can be simplified to:

M−1 =

(
1

mτ 2
f (X)T f (X) + Γ−1

)−1

(B–8)
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The prediction variance is then:

s2K(x) = f (x)

(
1

mτ 2
f (X)T f (X) + Γ−1

)−1

f (x)T (B–9)

Now, we want to consider the case when m → +∞. We have by definition:

1

m
f (X)T f (X) =

(
1

m

m∑
i=1

fk (xi) fl (xi)

)
1≤k,l≤p

(B–10)

When m → +∞, we get by the strong law of large numbers:

1

m
f (X)T f (X) →

(
⟨fk, fl⟩µ

)
1≤k,l≤p

(B–11)

where:

⟨fk, fl⟩µ =

∫
D

fk (x) fl (x) dµ (x)

We define the Gram matrix Gµ such that:

Gµ =
(
⟨fk, fl⟩µ

)
1≤k,l≤p

(B–12)

By continuity, we obtain:

s2K(x) → s2K∞(x) = f (x)

[
Gµ

τ 2
+ Γ−1

]−1

f (x)T (B–13)

Equation B–13 shows that, even if the number of observations tends to infinity, the

prediction variance can be expressed as a function of the inverse of a p× p matrix. Hence,

the complexity of the calculations is driven by the dimension of the kernel instead of

the number of observations, which is counter-intuitive regarding the original form of the

prediction variance (Eq. 2–23).

Now, we introduce the Hilbert-Schmidt integral operator Tk,µ associated with the

kernel k and measure µ:

Tk,µ : L2 (µ) → L2 (µ)

g 7→ Tk,µg : x 7→
∫
D

k (x,y) g (y) dµ (y)
(B–14)
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By using Eq. B–2:

Tk,µg(x) =

∫
D

k(x,y)g(y)dµ(y)

=

p∑
k=1

σ2
k

∫
D

fk(y)g(y)

 fk(x)

=

p∑
k=1

σ2
k⟨fk, g⟩µfk(x) (B–15)

Equation B–15 shows that the image of Tk,µ is generated by p functions fk(x).

Hence, Tk,µ is an operator of finite rank r, r ≤ p and it admits a spectral decomposition

ϕ1, ϕ2, . . . ϕr and λ1 ≥ λ2 ≥ . . . ≥ λr such that:

• (ϕj)j an orthonormal family:∫
D

(ϕj (x))
2dµ (x) = 1 and

∫
D

ϕi (x)ϕj (x) dµ (x) = 0, i ̸= j

• Tk,µϕj = λjϕj

Remark:. The rank r depends on both (fi)i and µ. In particular, when µ is a

weighted sum of Dirac functions, L2(µ) is of dimension q = Card (supp (µ)). The image

of Tk,µ being a vector subspace of L2(µ), its dimension r is bounded by q. For the extreme

case where µ = δx∗ (single Dirac function), we have r = 1, even if the covariance is defined

by a large number p of basis functions. In practice, most of the time r = min (p, q).

Now:

λjϕj(x) =

∫
k(x,y)ϕj(y)dµ(y)

=

p∑
k=1

σ2
k⟨fk, ϕj⟩µfk(x) (B–16)

We define the p× r matrix A = (ajk)1≤j≤p,1≤k≤r such that:

ajk = ⟨fk, ϕj⟩µ
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Then:

λjϕj(x) =

p∑
k=1

σ2
kakjfk(x) (B–17)

Λϕ(x)T = ATΓf(x)T (B–18)

With: Λ = diag ([λ1, . . . , λr]).

We multiply both sides of Eq. B–18 by ϕ(x), and integrate with respect to the

measure µ: ∫
Λϕ(x)Tϕ(x)dµ(x) =

∫
ATΓf(x)Tϕ(x)dµ(x)

Since (ϕj)j is an orthonormal basis, the left-hand-side reduces to Λ. Then, we obtain the

equality:

Λ = ATΓA (B–19)

Similarly, by multiplying both sides of Eq. B–18 by f(x) and integrating, we obtain:

ΛAT = ATΓGµ

Gµ = AAT (B–20)

Now, using the equality of Eq. B–7 we obtain:

M−1 =

(
1

nτ 2
ATA+ Γ−1

)−1

= Γ− ΓA
[
τ 2Ir +ATΓA

]−1
ATΓ

= Γ− ΓA
[
τ 2Ir +Λ

]−1
ATΓ (B–21)

Then:

s2K∞(x) = f (x)Γf (x)T − f (x)ΓA
[
τ 2Ir +Λ

]−1
ATΓf (x)T

= k (x,x)− ϕ(x)Λ
[
τ 2Ir +Λ

]−1
Λϕ(x)T (B–22)
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Now:

Λ
[
τ 2Ir +Λ

]−1
Λ = Λ

(
diag

(
1

τ 2 + λk

))
Λ

= diag

(
λk

2

τ 2 + λk

)
(B–23)

Finally:

s2K∞(x) = k (x,x)−
r∑

k=1

λ2
k

λ2
k + τ 2

ϕk(x)
2 (B–24)

B.2 General Case

The demonstration is organized as follow: first, the classical kriging equations are

given for a finite number of observations m. After transformations, the kriging variance is

expressed when m tends to infinity using the law of great numbers. Then, the theory of

Hilbert-Schmidt operators and their spectral decomposition are introduced. Finally, the

kriging variance expression is simplified using the spectral decomposition to obtain the

formula.

First, we recall the equation of the kriging prediction variance, based on m observations

with homogeneous nugget effect equal to mτ 2:

sK
2 (x) = σ2 − kT (x) (K+∆)−1k (x) (B–25)

With:

K+∆ = (k (xi,xj))1≤i,j≤m +


mτ 2 0

. . .

0 mτ 2


We decompose (K+∆)−1 in Taylor series, using:

(I+H)−1 = I−H+H2 −H3 + ... =
∞∑
p=0

(−1)pHp

Here we have:

K+∆ = mτ 2
[
I+

K

mτ 2

]
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Hence:

(K+∆)−1 =
1

mτ 2

∞∑
p=0

(−1)p
Kp

(mτ 2)p
(B–26)

Note that this decomposition is correct when the spectral radius of K is smaller than

mτ 2. However, it has been found empirically that the results of this proof stand when this

asumption is not met. Yet, we have not found how to relax this hypothesis.

Using the decomposition of Eq. B–26, the prediction variance in Eq. B–25 becomes:

sK
2 (x) = σ2 −

∑
p≥0

(−1)p
1

(mτ 2)p+1k
T (x)Kpk (x)

We expand the quadratic form on the right-hand side:

kT (x)Kpk (x) =
∑
i,j

k (x,xi)(K
p)ijk (xj,x)

=
∑

i1,...,ip+1

k (xi,xi1) k (xi1 ,xi2) ...k
(
xip ,xip+1

)
k
(
xip+1 ,x

)
When m → +∞, we obtain, by the law of large numbers:

1

mp+1

∑
i1,...,ip+1

k (x,xi1) k (xi1 ,xi2) ...k
(
xip ,xip+1

)
k
(
xip+1 ,x

)
→

∫
Dp+1

k (x,u1) k (u1,u2) ...k (up,up+1) k (up+1,x) dµ (u1) ...dµ (up+1)

Thus:

sK
2
∞ (x) = σ2−

∑
p≥0

(−1)p
1

(τ 2)p+1

∫
Dp+1

k (x,u1) k (u1,u2) ...k (up,up+1) k (up+1,x) dµ (u1) ...dµ (up+1)

Let us introduce the notation:

κp+2 (x,x) =

∫
Dp+1

k (x,u1) k (u1,u2) ...k (up,up+1) k (up+1,x) dµ (u1) ...dµ (up+1) (B–27)

Then:

sK
2
∞ (x) = σ2 −

∑
p≥0

(−1)p
κp+2 (x,x)

(τ 2)p+1 (B–28)
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At this point, we introduce the Hilbert-Schmidt integral operator Tk,µ associated with

the kernel k:

Tk,µ : L2 (D) → L2 (D)

f 7→ Tk,µf : x 7→
∫
D

k (x,y) f (y) dµ (y)
(B–29)

Mercer’s theorem states that the kernel function k can be represented on L2 (µ⊗ µ)

in an orthogonal basis (ϕn)n of L2 (µ) consisting of the eigenfunctions of Tk,µ such that the

corresponding sequence of eigenvalues {λn}n is nonnegative [Riez & Nagy (1952), p. 242]:

k (u,v) =
∑
n≥0

λnϕn (u)ϕn (v), u,v ∈ supp (µ) (B–30)

With:

• (ϕn)n an orthonormal basis:∫
D

(ϕn (x))
2dµ (x) = 1 and

∫
D

fi (x) fj (x) dµ (x) = 0, i ̸= j

• λn ≥ 0, λ1 ≥ λ2 ≥ λ3 ≥ ...

• Tk,µϕn = λnϕn

The pth power of Tk,µ (Tk,µ applied p times) has the same eigenfunctions and its

eigenvalues are λn
p. Its associated kernel is (for p > 1):

κp (u,v) =

∫
Dp−1

k (u,u1) k (u1,u2) ...k (up−2,up−1) k (up−1,v) dµ (u1) ...dµ (up−1)

For instance, for p = 2:

T 2
k,µ = Tk,µ (Tk,µf) (x) =

∫
D

k (x,u1)Tk,µf (u1) dµ (u1)

=

∫
D

k (x,u1)

∫
D

k (y,u2) f (u2) dµ (u2)

 dµ (u1)

=

∫ ∫
D2

k (x, u1) k (u1,u2) f (u2) dµ (u2) dµ (u1)
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=

∫
D

∫
D

k (x,u1) k (u1,u2) dµ (u1)

f (u2) dµ (u2)

=

∫
D

κ2 (x,u2) f (u2) dµ (u2)

For u,v ∈ supp (µ), we have the spectral decomposition of the kernel κp:

κp (u,v) =
∑
n≥0

λn
pϕn (u)ϕn (v) (B–31)

Now, from Eq. B–27:

κp+2 (x,x) =

∫
Dp+1

k (x,u1) k (u1,u2) ...k (up,up+1) k (up+1,x) dµ (u1) ...dµ (up+1)

=

∫
D2

k (x,u1)

 ∫
Dp−1

k (u1,u2) ...k (up,up+1) dµ (u2) ...dµ (up)

 k (up+1,x) dµ (u1) dµ (up+1)

=

∫
D2

k (x,u1) [κp (u1,up+1)] k (up+1,x) dµ (u1) dµ (up+1)

The kernel κp is evaluated on the support of µ, we can replace it by its spectral

representation (Eq. B–31):

κp+2 (x,x) =

∫
D2

k (x,u1)

[∑
n≥0

λn
pϕn (u1)ϕn (up+1)

]
k (up+1,x) dµ (u1) dµ (up+1)

=
∑
n≥0

λn
p

∫
D2

k (x,u1)ϕn (u1)ϕn (up+1) k (up+1,x) dµ (u1) dµ (up+1)

=
∑
n≥0

λn
p

∫
D

k (x,u1)ϕn (u1) dµ (u1)

∫
D

ϕn (up+1) k (up+1,x) dµ (up+1)


By definition, we have:

Tk,µϕn (x) = λnϕn (x) and

∫
D

k (x,y)ϕn (y) dµ (y) = λnϕn (x)

Finally:

κp+2 (x,x) =
∑
n≥0

[λn
p (λnϕn (x)) (λnϕn (x))]
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κp+2 (x,x) =
∑
n≥0

λn
p+2(ϕn (x))

2 (B–32)

Then, we put Eq. B–32 into Eq. B–28:

sK
2
∞ (x) = σ2 −

∑
p≥0

(−1)p
1

(τ 2)p+1

∑
n≥0

λn
p+2(ϕn (x))

2

sK
2
∞ (x) = σ2 −

∑
n≥0

λn(ϕn (x))
2
∑
p≥0

(−1)p
λn

p+1

(τ 2)p+1

The second sum corresponds to a Taylor extension:

∑
p≥0

(−1)p
λn

p+1

(τ 2)p+1 =
∑
p≥0

(−1)p
(
λn

τ 2

)p+1

= 1− 1

1 + λn

τ2

Hence:

sK
2
∞ (x) = σ2 −

∑
n≥0

λn

(
1− 1

1 + λn

τ2

)
(ϕn (x))

2

sK
2
∞ (x) = σ2 −

∑
n≥0

(
λn

2

τ 2 + λn

(ϕn (x))
2

)
(B–33)

B.3 The Space-Filling Case

In the space-filling case, µ is the uniform measure on D. When uniform accuracy over

the design domain is wanted, the integration measure used for the IMSE is also uniform:

IMSE =

∫
D

sK
2 (x) dµ (x)

In the case when the two measures coincide, the IMSE can be expressed in simple form.

For any x in supp(µ), we have:

∑
n≥0

λn(ϕn (x))
2 = σ2

Here, supp(µ) = D, so this equality is correct for any x ∈ D. Then:

sK
2
∞ (x) = σ2 −

∑
n≥0

λn

(
1− 1

1 + λn

τ2

)
(ϕn (x))

2

152



= σ2 −
∑
n≥0

λn(ϕn (x))
2 +

∑
n≥0

(
λn

1 + λn

τ2

)
(ϕn (x))

2

= =
∑
n≥0

τ 2λn

τ 2 + λn

(ϕn (x))
2 (B–34)

Besides: ∫
D

(ϕn (x))
2dµ (x) = 1

When integrating the prediction variance to compute the IMSE, we obtain:

IMSE∞ =

∫
D

sK
2
∞ (x) dµ (x)

=
∑
n≥0

τ 2λn

τ 2 + λn

∫
D

(ϕn (x))
2dµ (x)

=
∞∑
n≥0

τ 2λn

τ 2 + λn

(B–35)
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APPENDIX C
SPECTRAL DECOMPOSITION OF THE ORSTEIN-UHLENBECK COVARIANCE

FUNCTION

We consider the following kernel:

k (x, y) = σ2 exp

(
−1

θ
|x− y|

)
An eigenfunction f with corresponding eigenvalue λ for that kernel verifies:

Kf (y) = σ2

y∫
0

exp

(
−y − x

θ

)
f (x) dx+ σ2

1∫
y

exp

(
−x− y

θ

)
f (x) dx = λf (y)

By differentiating this equation two times with respect to y we find:

Kf” (y) =
1

θ2
Kf (y)− 2σ2

θ
f (y)

However:

Kf (x) = λf (x)

Kf” (x) = λf” (x)

Thus:

λf” (x) =
λ

θ2
f (x)− 2σ2

θ
f (x)

f” (x) = −
(
2σ2θ − λ

λθ2

)
f (x)

We deduce that f is of the form:

f (x) = A cos (ρx) +B sin (ρx) (C–1)

And:

ρ =

√
2σ2θ − λ

λθ2
(C–2)

Now, we replace f by its trigonometric form of Eq. C–1 in the integral equation, and λ by:

λ =
2σ2θ

1 + ρ2θ2
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We have:

Kf (x)−λf (x) = σ2

1∫
0

exp

(
−|x− y|

θ

)
[A cos (ρx) +B sin (ρx)] dx− 2σ2θ

1 + ρ2θ2
[A cos (ρx) +B sin (ρx)]

After simplifications, we obtain:

Kf (x)− λf (x) =
σ2θ

1 + ρ2θ

[
αe−

x
θ + βe

x
θ

]
With:  α = −A+Bρθ

β = e−
1
θ [A (ρθ sin (ρ)− cos (ρ))−B (sin (ρ) + ρθ cos (ρ))]

This expression is null for any x only if both α and β are equal to zero:

θ
1+ρ2θ

[
αe−

x
θ + βe

x
θ

]
= 0 ⇔

 α = 0

β = 0

We deduce from α = 0 that:

A = ρθB

So, the eigenfunction is of the form:

f (x) = C (θρ cos (ρx) + sin (ρx))

C is a normalization constant so that
1∫
0

f 2 (x) = 1.

Besides, from β = 0 we obtain:

ρθ (ρθ sin (ρ)− cos (ρ))− (sin (ρ) + ρθ cos (ρ)) = 0

2ρθ cos (ρ) +
(
1− θ2ρ2

)
sin (ρ) = 0 (C–3)

The roots of this equation define all the eigenvalues and eigenfunctions of the

problem. However, this equation does not have analytical solution and must be found

numerically.
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Figure C-1 represents the function g (u) = 2uθ cos (u) + (1− θ2u2) sin (u). We see that

g(u) is pseudo-periodic. When u is relatively large (θ2u2 − 1 ≫ 2uθ), the roots are well

approximated by:

u∗ = nπ, n ∈ N (C–4)

Finally, the spectral decomposition associated with the exponential covariance is:

fp (x) = Cp (θρp cos (ρpx) + sin (ρpx)) λp =
2σ2θ

1 + θ2ρ2p
(C–5)

With:

ρp =

√
2σ2θ − λp

θ2λp

Cp =
2ρp

ρp
(
1 + ρ2pθ

2
)
−
(
1 + ρ2pθ

2
)
sin (ρp) cos (ρp) + 2ρpθ(sin (ρp))

2

The ρp are the roots of the equation:

2uθ cos (u) +
(
1− θ2u2

)
sin (u) = 0

Figure C-1. Representation of the function g (u) = 2uθ cos (u) + (1− θ2u2) sin (u). The
roots of this equation are the eigenvalues of the exponential covariance kernel.
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APPENDIX D
GEARS DESIGN WITH SHAPE UNCERTAINTIES USING MONTE-CARLO

SIMULATIONS AND KRIGING

This appendix proposes an engineering application to the theoretical results found

in Chapter 6. In particular, it uses an optimal design strategy for Kriging to help the

optimization of an expensive simulator based on Monte-Carlo methods. The objective is

the optimization of helical involute gears for geometrical feasibility, contact ratio, teeth

sliding velocity, stresses and static transmission error (STE), with teeth shape subject to

random perturbations due to wear.

D.1 Introduction

Gears are a fundamental mechanical system involved when torques must be

transmitted with high efficiencies, which is the case of transmissions in cars, windmills,

and other special machines. Although gears have been designed for a long time, controlling

gears performance under teeth shape uncertainties is a recent, difficult and important

design objective : teeth shape variations result from manufacturing (e.g., heat treatment)

and from wear and induce, in particular, noise.

The applicative objective of this article is to design helical gears so as to account

for teeth shape inaccuracies. Computational challenges that are familiar in Reliability

Based Design Optimization (RBDO) accompany this problem: the teeth in gears are

moving solids in contact with each other whose detailed simulation by finite elements is

computationally intensive. With the added computational cost of accounting for shape

uncertainties (through Monte Carlo simulations, reliability index calculation or polynomial

chaos expansion), the robust design of these systems requires careful methodological

developments.

Gears design is traditionally approached by parameterizing the shape of the teeth as

helical and involute Colbourne (1987). Most gears in use today are chosen in standardized

tables and are non-optimal. In Kapelevich & Kleiss (2002), helical involute gears are

designed for geometrical feasibility and large contact ratio by semi-analytical approaches.
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In Li et al. (1996), the size of helical gear sets is minimized where the gears stress analysis

is based on standardized AGMA formula. A finite element analysis of the gears was

implemented in Li et al. (2002) and served to optimize the pressure angle for minimum

von Mises stresses. Modified teeth shapes were proposed in Li et al. (2002) to make the

gears less sensitive to shape and positions perturbations. The gears performance criteria

were bearing contact, transmission error and stress state.

In the present article, gears are designed for geometrical feasibility, contact ratio,

teeth sliding velocity, stresses and Static Transmission Error (STE). Efficient stress and

STE analyses are performed using Hertz contact formula and beam theory. Teeth wear

is described by superposing Archard’s wear model Kahraman et al. (2005) and random

material removal. Gears design is decomposed into i) the optimization of the 11 involute

parameters for deterministic responses ii) the optimization of the crowning to control

teeth shape random perturbations, i.e., to minimize the 90th percentile of the STE

variation, ∆STE. ∆STE is one of the primary origins of the noise made by gears Driot &

Perret-Liaudet (2006).

From a methodological standpoint, it is not computationally affordable to calculate

the ∆STE percentile by simple Monte Carlo simulations at each optimization step. A

Kriging metamodel of the percentile is built before the optimization. The optimization

uses the Kriging prediction of ∆STE instead of the computationally intensive Monte

Carlo simulations, but other optimization criteria, which are not subject to uncertainties,

are calculated with the original gears model.

The contributions of this work are twofold: firstly, a complete formulation of the

gears optimum design problem, involving the 90th percentile of the STE variation, is

solved; secondly, a methodology for robust design based on Kriging as a substitute

for the Monte-Carlo simulations is proposed. The noise in the statistical estimator of

the performance is taken into account in the Kriging metamodel through its ”nugget”

intensity. The Kriging approach is compared to an alternative method where the STE
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variation for the average wear is minimized. The comparison is made in terms of the

achieved 90% percentile of the STE variation.

D.2 Problem Formulation

D.2.1 Gears Analysis

Geometrical gears analysis is based on classical involute helical representation

[Colbourne (1987), Meyer (2008)]. Twelve design variables are considered, some of which

are illustrated in D-1: Zp, the number of teeth of pinion 1; xp and xr the addendum

modification coefficients of the two pinions; ha0p and ha0r the cutting tool addendum of

the two pinions, hf0p and hf0r the cutting tool dedendum of the pinions; ρap and ρar the

tip fillet radiuses, ρfp and ρfp the root fillet radiuses; β0 the helix angle.

Figure D-1. Gears parameters definitions.

The optimization criteria are:

• the contact ratio, rc, i.e., the average number of teeth in contact, which is related to
gears silence;

• the specific slip ratio, gs, which is a measure of the tangential velocity of a tooth
with respects to the tooth in contact and which is related to wear;

• the maximum contact pressure between teeth, F (using Hertz’s model for contact
between cylinders) ;

• σvm, the maximum von Mises stresses (at the teeth root);
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• ∆STE, the difference between the maximum and the minimum of the Static
Transmission Error.

The STE describes the gears position errors due to teeth deformations under loads

and due to teeth shape errors. It is estimated by a fast model based on Hertz contact and

beam theories. All these aspects of gears analysis were implemented in the Filengrene

software Meyer (2008).

Wear profiles are perturbed Archard’s profiles. They are generated by multiplying

Archard’s profile (proportional to F ∗ V , where F is the contact pressure and V the

relative sliding velocity) by a Gaussian random processes Cressie (1993), Θ, as described

in D-2. The Gaussian processes have mean 1, a range of 0.2 rad and a variance of 0.01.

The randomness in the wear profiles represents uncertainties in the load and number

of cycles each gear will endure, hence inducing deviations (in amplitude and shape) from

the nominal Archard’s profile. Shape perturbations due to wear mainly affect the STE

amplitude, ∆STE, which is therefore a random function of the design variables, x, and

the wear profiles, ∆STE(x,Θ). All other gears design criteria (contact and specific slip

ratios, stresses, etc.) are deterministic functions of x since they are marginally affected by

shape variations of the order of 1 m. A deterministic optimization criterion is obtained

from ∆STE by taking its 90th percentile, P 90
∆STE(x). Such a criterion is natural when

optimizing a random response because it ensures that 90% of the actual systems (gears

here) will achieve the declared P 90
∆STE(x) performance. Computing this percentile involves

Monte-Carlo simulations (MCS), which will be detailed in Section D.3.

D.2.2 Gears Optimization Formulation

Even though the Filengrene gears simulator is rapid (about 2 CPU seconds per gears

analysis) it is not possible to directly include the Monte Carlo simulations inside the

optimization loop because the computational costs are multiplied by each other: for 100

Monte Carlo simulations and 1,000 optimization steps (which is an underestimation of the

needed cost for globally optimizing in 11 dimensions), a single run would take 100*1,000
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Figure D-2. Profile wear (mm) vs. angle (rad). The central continuous line corresponds to
−0.1 ∗ F ∗ V , i.e. wear according to Archard’s model. F is the contact
pressure and V the relative sliding velocity. Wears (dashed lines) are Gaussian
random processes multiplied by Archard’s model : Θ ∗ (−0.1 ∗ F ∗ V ) . Wear
is then proportional to F ∗ V curves with a maximum of 5µm.

= 56 CPU hours. To tackle the computational cost barrier, designing gears is first

formulated as a deterministic problem in 11 variables, and then as a robust optimization

problem in 6 variables. The initial deterministic optimization permits to fix 11-6=5

variables and provides an entry-level design to compare to.

D.2.2.1 Deterministic Sub-problem

The gears teeth involute shape is described by the 12 variables introduced earlier :

Zp, xp, xr, ha0p, ha0r, hf0p, hf0r, ρap, ρar, ρfp, ρfp and β0. Zp, the number of teeth of the

pinion, is the only integer variable. It is taken out of the formulation by setting its value

a priori : with only one integer variable, optimizing the number of teeth boils down to

repeating the procedure described in this article for various values of Zp.

Let therefore x be the 11 design variables of the deterministic problem,

x = [xp, xr, ha0p, ha0r, hf0p, hf0r, ρap, ρar, ρfp, ρfr, β0] (D–1)

The deterministic gears design problem is,

Min∆STE (x) (D–2)
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such that there is no teeth interference and

rc > 1.25, gs < 2, σvm < Re, F < Pmax
hertz, (D–3)

−1 ≤ xp, xr ≤ 2, 0.8 ≤ ha0p, ha0r, hf0p, hf0r ≤ 1.7,

0 ≤ ρap, ρar ≤ m0, 0.05m0 ≤ ρfp, ρfr ≤ m0 and0 ≤ b0 ≤ 30

The number of teeth of the second pinion and the module are not part of the

variables vector because they are solved by satisfying two equality constraints. The

gears ratio (0.9) yields

Zr = integer (Zp/0.9) (D–4)

m0, the module (a scale factor) is calculated by solving a non linear equation stating that

the distance between the gears centers is equal to 110 mm. The details of this equation

are beyond the scope of this article. Other working data are : pressure angle α0 = 18deg,

the torque transmitted by the pinion is 200 Nm, the material is a 20 NC 6 cemented steel

(E = 200GPa, ν = 0.29, Re = 980MPa, Pmax
hertz = 1550MPa) and the gears thickness is 10

mm.

The deterministic sub-problem is handled with the Covariance Matrix Adaptation

Evolution Strategy, CMA-ES Hansen & Kern (2004), which is the state-of-the-art

evolutionary optimizer. Constraints are treated by a static linear penalization of the

objective function, i.e., by minimizing

fp (x) =
∆EST

∆ref

+p×

[(
1− rc

1.25

)+
+
(gs
2
− 1
)+

+

(
σvm

Re

− 1

)+

+

(
F

Pmax
hertz

− 1

)+
]

(D–5)

where (...)+ = max(0, ...) and p = 10. CMA-ES is a stochastic optimizer, it is therefore

not sensitive to the slope discontinuity at 0 introduced by our penalization scheme. This

penalization scheme has, on the other hand, the advantage when compared to quadratic

penalty functions of allowing convergence to feasible solutions at a finite, reasonably small

values of p Le Riche & Guyon (2002).
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Gears simulations are not possible for every choice of the design variables: for

example, there are configurations when the involute equation cannot be solved. These

cases are handled by setting the objective function equal to a large number (100 here),

which makes the final penalized objective function non-continuous. This is another reason

for using a zero order optimizer such as CMA-ES. Note that other evolutionary optimizers

(CMA-ES only handles continuous variables) are also often applied to gears design because

the number of teeth is an integer variable [Missoum et al. (1999), Deb & Jain (2003)].

Bounds on the variables are handled by repeating the probabilistic CMA-ES point

generations until an in-bound point is proposed. Of course, out-of-bounds points are

rejected without further analysis, so the numerical cost of this strategy is negligible when

compared to gears analyses.

D.2.2.2 Robust Optimization Sub-Problem

The robust optimization sub-problem is much more computationally intensive than

the deterministic sub-problem because it involves estimating at each optimization step the

90% percentile of ∆STE. Two strategies are proposed to decrease the computational cost

: reducing the design space dimension and approximating percentiles with Kriging (see

Section 3). The reduction in dimension is achieved by considering the 6 design variables

x = [xp, xr, ha0p, ha0r, hf0p, hf0r], while the rest of the variables, ρap, ρar, ρfp, ρfr and β0,

are set equal to their deterministic optimal values. The reasons for this reduction are that

i) the fillet radiuses have a more local influence than the addendum and dedendum and ii)

the effect of the helix angle is almost completely decoupled from the effects of the other

parameters (it acts in another dimension) : 0 could eventually be tuned a posteriori.

The effect of teeth shape fluctuations due to wear is controlled by solving:

MinP 90
∆STE (x) (D–6)

by changing x = [xp, xr, ha0p, ha0r, hf0p, hf0r] such that there is no teeth inference and

rc > 1.25, gs < 2, σvm < Re, F < Pmax
hertz, (D–7)
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−1 ≤ xp, xr ≤ 2, 0.8 ≤ ha0p, ha0r, hf0p, hf0r ≤ 1.7

The next section describes how we proceed to calculate the 90th percentile.

D.3 Percentile Estimation Through Monte-Carlo Simulations And Kriging

D.3.1 Computing Percentiles Of ∆STE

In Section D.2, we described wear profiles as random processes modifying Archard’s

profiles. Hence, ∆STE is a random variable, whose distribution can be estimated by

Monte Carlo simulations (MCS). To do so, we first generate a large number (k) of wear

profiles, θ1, θ2, ..., θk (again, details of the random wear profiles generation were given in

D-2. For each of these profiles, we compute the corresponding ∆STE (x, θi). Then, the

90th percentile P 90
∆STE(x) is estimated from the sample {∆STE (x, θ1) , ...,∆STE (x, θk)}.

We call P̂ 90 (xi; θ1, θ2, ..., θk) such an estimate. A preliminary study is performed on

four designs to choose k, the number of MCS (see D-1). For each design, 500 MCS are

performed. Using a Lilliefors test Kenney & Keeping (1954), we find that all the samples

{∆STE (xi, θ1) , ...,∆STE (xi, θk)} , i = 1, . . . , 4, follow normal distributions. Hence, we

assume that ∆STE is normally distributed for any design x.

Table D-1. Preliminary statistical analysis of four designs.

Design xp xr ha0p ha0r hf0p hf0r Mean(∆STE) SD(∆STE) P̂ 90

1 0.49 0.49 1.20 1.11 1.00 1.09 5.82 0.41 6.34
2 0.00 0.20 1.02 1.00 0.90 1.00 6.22 0.66 7.06
3 1.10 1.00 1.30 1.40 0.90 0.90 7.30 0.44 7.87
4 0.40 -0.40 1.70 1.00 0.90 1.60 6.66 0.45 7.24

The normality of the samples allows us to increase the accuracy of the estimated

percentile. Indeed, an unbiased estimate P̂ 90 of P 90
∆STE(x) is then

P̂ 90 = m+ 1.28s (D–8)

where

m =
1

k

k∑
i=1

∆STE (x, θi) , and
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s =

√
1

k − 1

∑
i

[∆STE (x, θi)−m]2.

The variance of P̂ 90 can now be expressed analytically. Since m and s are independent

random variables,

var
(
P̂90
)
= var (m) + 1.282var (s) (D–9)

Let σ2
∆STE denote the actual variance of ∆STE (x, θ). We have Kenney & Keeping

(1954):

var (m) =
σ2
∆STE

k
(D–10)

var
(
s2
)

=
2σ4

∆STE

k − 1
(D–11)

It can be shown using a first order Taylor expansion that the variance of s is

approximately equal to

var (s) =
σ2
∆STE

2

(
1−

√
k − 3

k − 1

)
(D–12)

Finally,

var
(
P̂ 90
)
= σ2

∆STE

[
1

k
+

1.282

2

(
1−

√
k − 3

k − 1

)]
(D–13)

Estimating a percentile requires a large number of calls to the gears simulation. To

reduce this computational cost, we approximate the percentile by a Kriging metamodel

based on noisy observations (see Section 2.1.3.2). We make the assumption that the P̂ 90

estimate is equal to the true function P 90
∆STE(x) plus a random noise (due to the Monte

Carlo sampling process):

P̂ 90
(
xi; θ1, θ2, ..., θk

)
= P 90

∆STE

(
xi
)
+ εi (D–14)

The variance of εi is defined here as the variance of the estimated percentile as in Eq.

D–13.
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D.3.2 Design Of Experiments

We have seen that each observation P̂ 90 requires k calls to the gears simulator.

Hence, a design of experiments (DoE) of size n requires k × n calls. Due to computational

limitations, the number of calls cannot exceed 90,000. Both numbers must be chosen to

ensure best trade-off between:

• Space-filling

• Reasonable variance of each estimate

• Affordable computational time.

A larger n ensures a better filling of the design space, while a larger k reduces the variance

of each observation. We showed in Chapter 6 that for the Kriging model, it is more

accurate to have large variance and large DoEs. Hence, we choose k as small as possible.

However, the hypothesis of normality of the error do not stand for very small samples

(k < 25), so we choose k = 30, and n = 3, 000.

The preliminary analysis already discussed in D-1 provides us with large ∆STE

samples at four design points, which can be used to validate our choice of k. D-2 shows

the variability of the percentile estimates, var
(
P̂ 90
)
, from D–13 assuming only 30 MCS

are performed (the true variance σ2
∆STE is replaced by its accurate estimate based on 500

MCS).

Table D-2. Variability of percentile estimates based on k = 30 Monte Carlo simulations.

Design var
(
P̂ 90
)

SD
(
P̂ 90
)

P̂ 90

1 0.010 0.10 6.34
2 0.027 0.16 7.06
3 0.012 0.11 7.87
4 0.013 0.11 7.24

For all four designs, we see that the standard deviations are very small compared to

the mean value, so k = 30 is sufficient.

To ensure good space-filling properties, the training point locations are chosen from a

Latin Hypercube Sampling (LHS) optimized for a maximum minimum distance (maximin)
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criterion. To each training point corresponds three response values: the ∆STE with no

wear, the ∆STE with wear taken from the nominal Archard’s profile (written ∆STEA),

and the 90th percentile of ?STE with random wear (estimated by P̂ 90
∆STE). Out of the

3,000 points, 825 are found as infeasible designs by the Filengrene software, so the final

DoE consists of 2,175 observations. D-3 summarizes the values taken by the observations.

Table D-3. Observation values of the DoE.

Mean Range
∆STE (no wear) 4.83 [ 0.49 ; 42.70 ]

∆STEA (Archard’s profile) 7.31 [ 1.47 ; 37.75 ]

P̂ 90
∆STE 8.20 [ 2.12 ; 39.67 ]

D.3.3 Data Analysis: Is A Robust Optimization Approach Really Necessary?

First, to validate our approach, we look at the correlations between the responses.

Indeed, there is no evidence a priori that the optimal design for the deterministic problem

D–2 is different from the robust optimal design D–6.

Figure D-3. ∆STE without wear vs. ∆STE with Archard’s wear profile (∆STEA, A),
and vs. the 90% percentile of ∆STE with randomly perturbed Archard’s
wear (B).

From D-3, we see that the ∆STE with no wear differ in shape and amplitude from

the ∆STE with wear. Hence, the deterministic and robust optimizations are likely to

have different solutions. On the contrary, ∆STE from the nominal Archard’s profile and
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Figure D-4. ∆STEA (with Archard’s wear profile) vs. P̂ 90
∆STE (30 Monte Carlo

simulations). A: full scale, B: zoom.

the percentile from the stochastic profile are strongly correlated, the percentile being

shifted by a margin. So it seems that for large scale optimization, the two problems are

equivalent. However, for small values of ∆STE (D-4, A), the correlation is weaker. It is

difficult to determine if the difference is due to the noise in P̂ 90 or not.

To refine the analysis, we pick six points out of the 2,175 observations that have

similar values of ∆STE with Archard’s wear (∆STEA between 2.4 and 2.5) but

correspond to different designs. At each design, we run 500 MCS to have an accurate

estimate of the percentile (so the noise is negligible). The values of the accurate percentile

estimates and the ∆STE with deterministic wear are reported in D-4.

Table D-4. Comparison of six designs with similar ∆STEA.

Design xp xr ha0p ha0r hf0p hf0r ∆STE(Archard) P 90

1 0.25 1.37 1.37 0.85 1.31 0.80 2.42 3.03
2 0.18 0.69 1.54 1.01 1.08 1.05 2.44 3.07
3 -0.21 1.11 0.90 1.23 1.61 0.90 2.46 3.34
4 -0.02 1.10 1.03 0.81 1.41 1.00 2.42 3.21
5 0.15 0.71 1.44 1.07 1.63 1.16 2.48 2.88
6 -0.12 -0.08 1.25 1.19 1.63 1.61 2.45 2.84

From D-4, we see that P 90 and ∆STE do not always behave similarly. For instance,

designs 1 and 4 have the same best ∆STEA out of the 6 selected designs, but they have
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the third and fifth P 90. Design 5 is the worst design in terms of ∆STEA, but the second

best in terms of P 90. This shows that optimizing ∆STE with nominal (Archard) and

stochastic wear is likely to lead to different solutions.

D.4 Optimization Results

D.4.1 Optimization Without Wear

The penalized objective function fp(x) [Eq. D–5] has been minimized with the

CMA-ES algorithm. The penalty parameter p was set to 10 and ∆ref = 0.5. The 11 design

variables were scaled by their range, the initial CMA-ES ”step size” was 0.3, there were 10

parents and 5 child designs at each CMA-ES iteration, and the runs were 12,000 analyses

long with a restart (taking the best-so-far design as new starting point and re-setting the

step size to 0.3) at 6,000 analyses. The optimization was repeated from three initial points

randomly chosen inside the bounds. One of these initial (therefore non optimal) design

point is presented in D-5. The best performing gear out of the three optimizations, which

we consider as the optimum of the deterministic gears design formulation, is given in D-6.

Comparison of the starting and optimal designs show that, at the deterministic optimum,

the teeth mesh has no play and the helix angle is at its upper bound. Large helix angles

induce forces in the gears axes direction, but the induced axis force is not a criterion of

the current design formulation [Eq. D–2]. The optimum STE profile has four modes

(i.e., four maxima) for one mesh period, versus one for the starting design shown in D-5.

Each mode corresponds to a teeth pair entering or leaving contact. It is likely that larger

teeth numbers would be optimal for minimizing the static transmission error variation by

enabling more modes in a mesh period.

D.4.2 Optimization With Wear Based On A Kriging Metamodel

Designing gears while accounting for probabilistic wear has been formulated in

Eq. D–6 by replacing the variation in static transmission error, ∆STE, by its 90th

percentile, P̂ 90
∆STE. Section D.3 has explained how P̂ 90

∆STE(x) can be estimated by Monte

Carlo simulations at a reasonable number (n = 2175) of design points x’s and then
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Figure D-5. Example of an optimization run starting design. Gears cross-section (A) and
static transmission error (STE) in µm (B). xp = −0.2, xr = 0.2, ha0p =
1.5, ha0r = 1.4, hf0p = 1.3, hf0r = 1.17, ρap = 0.2, ρar = 0.1, ρfp = 0.05, ρfr =
0.1, β0 = 10,rc = 2, gs = 592, σvm = 1556, F = 11683,∆STE = 2.45. Although
there are no teeth interferences, this design is infeasible w.r.t. the maximum
slip ratio, the maximum von Mises stress and the contact pressure. All
dimensions but the STE are in mm, stresses are in MPa. The STE is plotted
for one meshing period.

Figure D-6. Optimum design without wear. Gears cross-section (A) and STE in µm (B).
xp = 0.49, xr = 0.49, ha0p = 1.20, ha0r = 1.11, hf0p = 1.00, hf0r = 1.09, ρap =
0.0003, ρar = 0.19, ρfp = 0.64, ρfr = 0.23, β0 = 30.
rc = 1.66, gs = 1.47, σvm = 443, F = 938,∆STE = 0.38. The design is feasible.
All dimensions but the STE are in mm, stresses are in MPa. The STE is
plotted for one meshing period.
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approximated by an ordinary Kriging metamodel. A basic idea of our approach to robust

optimization with Kriging is, first, to make the costly Monte Carlo simulations before

the optimization iterations and estimate the percentiles at the sampled points, then

learn them with a Kriging metamodel which, finally, replaces the percentile estimation

during the optimization. Although Kriging provides a complete Gaussian probability

density function at each point x, we only use here the Kriging mean, mK(x), for two

reasons. Firstly, contrarily to global optimization methods based on Kriging such as EGO

Jones et al. (1998), we do not iteratively update the Kriging model. We are therefore not

interested in its uncertainty s2K(x). Secondly, the data points gathered in P̂ 90 and learned

by the Kriging model are noisy since estimated from 30 Monte Carlo simulations. The

Kriging mean with nugget effect, mK(x), acts as a filter of the observations noise.

All other optimization constraints, rc, gs, σvm and F , are calculated by a single call

to the gears simulator because they are mainly insensitive to wear. To sum up, the robust

optimization problem with Kriging solved is,

Min mOK (x) (D–15)

by changing x = [xp, xr, ha0p, ha0r, hf0p, hf0r] such that there is no teeth interference and

rc > 1.25, gs < 2, σvm < Re, F < Pmax
hertz, (D–16)

−1 ≤ xp, xr ≤ 2, 0.8 ≤ ha0p, ha0r, hf0p, hf0r ≤ 1.7,

Like in the deterministic optimization problem, the constraints were handled by

minimizing the penalized objective function D–5 where ∆EST was replaced by mK .

The problem was solved using the CMA-ES optimization algorithm with the same

settings as in the deterministic optimization of Section D.4.1, including the search length,

restart and variables bounds handling. However, there are only six unknowns in the
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robust problem, the other variables being fixed at their deterministic optimal value,

ρap = 0.0003, ρar = 0.19, ρfp = 0.64, ρfr = 0.23, β0 = 30.

The best design found when solving Eq. D–15 is described in D-7. We will henceforth

refer to it as the ”Kriging design”.

Figure D-7. Optimum robust design found using the kriging metamodel.

D.4.3 Optimization With Wear Based On A Deterministic Noise Representa-
tive

An alternative formulation of the gears design problem with wear is to solve replace

the percentile estimation by a single, deterministic, instance of wear. Here, this instance

is simply chosen as the average of the wear profiles, i.e., a non-perturbed Archard’s

wear profile since the perturbation are centered on it. The design problem solved with

Archard’s wear is,

Min ∆STEA (x) (D–17)

by changing x = [xp, xr, ha0p, ha0r, hf0p, hf0r] such that there is no teeth interference and

rc > 1.25, gs < 2, σvm < Re, F < Pmax
hertz, (D–18)

−1 ≤ xp, xr ≤ 2, 0.8 ≤ ha0p, ha0r, hf0p, hf0r ≤ 1.7,

Note that the numerical cost of evaluating the objective function ∆STEA involves two

calls to the gears simulator: a first call to evaluate the contact forces and sliding rates,
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and a second call to remove material from the teeth surfaces and recalculate all gears

performance criteria. This numerical cost is twice that of the deterministic formulation

but it is much lower than a complete Monte Carlo simulation. Equation D–17 is solved

with the CMA-ES optimizer is the same fashion as all other optimization problems

discussed in this article. The optimum design for this problem, called ”Archard’s design”,

is described in D-8.

Figure D-8. Optimum design with Archard’s wear. A) 2D cross-section, B) 3D drawing.

D.4.4 Comparison Of Approaches

The four methods that have been seen up to now for designing gears are now

compared :

• Neglecting wear and solving Eq. D–2. The solution to this deterministic problem
was shown in D-6. The numerical cost of the method is one call to the gears
simulator per optimization analysis (objective function and constraints).

• Replacing Monte Carlo simulations with a Kriging metamodel, as stated in Eq.
D–15. The obtained optimum design was described in D-7. The numerical cost
of the procedure is one call to the gears simulator plus one call to the metamodel
(negligible) per optimization analysis. In addition, there is an initial cost for
calculating the design of experiments (k × n simulations) and inverting the n × n
Kriging covariance matrix.

• Optimizing the static transmission error for a deterministic nominal wear profile
(Archard’s profile). This formulation is stated in Eq. D–17 and the resulting design
described in D-8. Each optimization analysis costs two calls to the gears simulator.
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• Designing the gears by selecting the best point of the initial maximin latin
hypercube design of experiments (DoE). There are n points where k Monte Carlo
simulations (MCS) are performed for a total cost of k × n simulations. Note that
this DoE was used to build the Kriging metamodel. The so-called ”empirical MCS
design” is described in D-9.

Figure D-9. Empirical MCS design, i.e., best design of the original latin hypercube set of
points with 30 Monte Carlo simulations per point.

D-5 summarizes the designs associated to each approach. The last column (P 90) is

the targeted design criterion, estimated with 500 Monte Carlo analyses. It is clear from

D-5 that neglecting wear from the ∆STE calculation (row 1) leads to designs with poor

∆STE performance in the presence of wear. Accounting for wear (compare rows 2 to

4 to row 1) decreases the pinion addendum modification coefficient xp and increases its

counterpart xr. It also increases the teeth heights (ha’s and hf ’s). Minimizing the Kriging

wear prediction is an improvement over neglecting wear. This method yielded a design

that was not present in the initial DoE, but its P 90 performance is similar to that of the

best design in the DoE. This is because the initial 6-dimensional design space is quite large

for fitting a metamodel with about 2000 data points.

The Kriging P 90 prediction at the Kriging optimum design is of poor quality (1.97

versus 3.37 µm). This is another piece of evidence that optimizing with a metamodel

requires an iterative enrichment of the DoE around the optimum design area (other

examples can be found in, e.g., Jones et al. (1998)). The overall best design was the

Archard’s design. For long optimization runs, it is also the most expensive method out of
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the ones considered here since each evaluation of the objective function needs two gears

simulations. Nevertheless, for the 3*12,000 analyses long optimization runs performed

here, this extra-cost remains inferior to that of building the Kriging database (3,000*30

analyses). In robust optimization problems where i) the number of variables is of the

order of 10 or less and ii) one knows a noise sample leading to a reliable design, the

representative noise sample approach is to be preferred.

Table D-5. Comparison of optimum gears for various formulations: without wear, with
Archard’s wear, with Kriging percentile approximation, and with Monte Carlo
simulations (best point of LHS). All these designs are feasible.

Design Numerical cost xp xr ha0p ha0r hf0p hf0r ∆STE P 90

(in simulation call)
Without wear 1 per analysis 0.49 0.49 1.20 1.11 1.00 1.09 0.38 6.38
Archard’s wear 2 per analysis -0.028 0.86 1.26 1.32 1.20 0.81 1.49 2.64

Kriging 1 per analysis 0.20 1.26 1.44 1.49 1.27 0.92 1.97 3.37
+ initial DoE

Monte Carlo Initial DoE -0.004 0.37 1.37 1.51 1.27 0.87 2.69 3.29

D.5 Conclusions And Perspectives

This article represents a first step in the optimization of gears while accounting for

random teeth wear through the static transmission error (STE). Two robust optimization

approaches have been proposed where the statistical estimation of the performance (here

a 90% percentile of the STE variation) is replaced either by a Kriging metamodel or by

fixing the noise to an adequate value (here the average wear profile). This study confirms

that the Kriging approach is feasible because we observed that it leads to reasonable

designs. However, it is seen that the Kriging metamodel needs to be updated to allow

a convergence to optimal designs. This is the methodological perspective of this article.

The optimization with the wear profile fixed at its average value leads to the overall best

design and is the currently advised method for solving the stated gears design problem.

Regarding gears design, the results presented here should be completed by varying the

number of teeth and considering teeth profile corrections.
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