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Abstract: 

Most of our knowledge of bone cell physiology is derived from experiments carried out in 

vitro on polystyrene substrates. However, these traditional monolayer cell cultures do not 

reproduce the complex and dynamic 3-dimensional (3D) environment experienced by cells in 

vivo. Thus, there is a growing interest in the use of 3D culture systems as tools for 

understanding bone biology. These in vitro engineered systems, less complex than in vivo 

models, should ultimately recapitulate and control the main biophysical, biochemical and 

biomechanical cues that define the in vivo bone environment, while allowing their 

monitoring. This review focuses on state of the art and the current advances in the 

development of 3D culture systems for bone biology research. It describes more specifically 

advantages related to the use of such systems, and details main characteristics and 

challenges associated with its three main components, i.e. scaffold, cells and perfusion 

bioreactor systems. Finally, future challenges for non-invasive imaging technologies are 

addressed. 

 

Keywords: Bone tissue engineering, Perfusion bioreactor, Cell culture, Scaffold, Experimental 

approaches, Mechanical stimuli 
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1. CONTEXT 

1.1. Tissue Engineering: concepts 

Tissue engineering is the application of the principles of biology and engineering to the 

development of artificial living tissues (1). It utilises specific combinations of cells, matrices 

(referred also as “scaffolds or constructs”), as well as cellular, chemical and mechanical 

signals. Generally speaking, current applications of tissue engineering can be divided into 

two categories. 

The first category consists of elaborating biological substitutes to restore, maintain or 

improve tissue functions (1). This therapeutic approach aims to replace/repair damaged 

human tissues with manufactured tissue-engineered products. This field is quickly expanding 

due to coordinated and converging technological developments in the creation and/or 

manipulation of biomolecules, biological materials, cells and tissues, with the goal of 

ultimately generating pseudo-tissues and organs for transplant. Such therapy will be 

drastically different from classical prosthesis implants, avoiding integration, interface and 

wearing-out problems, thus allowing for a longer lived tissue/organ substitution. 

The second category of applications of tissue engineering aims to understand the 

fundamental aspects of cells working in vivo in 3D controlled systems. In fact, in vivo cells 

reside in a complex three dimensional (3D) micro-environment, encompassing several cell 

types producing/exchanging many signals, interacting in a dynamic fashion amongst 

themselves. These cells also interact with an extracellular matrix whose rigidity varies in time 

and space with the nature and/or maturity of the cell type/tissue (2, 3). Moreover, in tissues 

like bone, cells experience various mechanical stresses (e.g. compression forces). Therefore, 

in vitro 3D systems, based on tissue engineering principles, strive to reproduce (at least 

partly) the in vivo environment of cells in a scaffold material. As it was recently 
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demonstrated by many studies (4, 5) for review), such systems implies the use of perfusion 

bioreactors to control and monitor biochemical and mechanical signals throughout cell 

culture.  

Such complex models represent the best approach to understand the bone (cell) biology 

since they allow study of a multicellular microenvironment whose structure, composition, 

topology and perfusion conditions are adaptable and more realistic, respective to the in vivo 

situation, than the current two dimensional (2D) standard cell culture method.  For instance, 

in these systems it will be possible to test the effects of chemical substances or characterise 

stimuli acting locally on cell metabolism in order to understand cellular and matrix changes 

involved in aging mechanisms and some diseases (e.g. osteoporosis); they will also provide 

tools for assessing drugs in development in toxicology or pharmacology studies. 

The knowledge gained from such experiments will advance our understanding of 

pathophysiology as well as the prevention, diagnosis and treatment of diseases. 

 

1.2. From 2D in vitro cell culture to native bone tissue, the missing link 

Bone tissue development and remodeling in living organisms are orchestrated by cascades of 

regulatory factors interacting at multiple levels, in both time and space. 

Animal models provide the full complexity of biological systems (at least within a given 

species), but they offer limited control of the local environment and scanty real time 

information. In contrast, traditional cell culture in 2D allows significant control of the cellular 

environment and a direct access to cellular processes. However, these culture conditions are 

drastically simplified and hardly reproduce the typical bone environment in the 

organ/organism, in which (bone) cells develop in a 3D structure subjected to mechanical 

stimulation. Moreover, it is well established that signal transduction and many other cellular 
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functions differ between 2D and 3D culture conditions (6-8). These differences are expected 

since on 2D substrates the cells have to adapt to an artificial flat and rigid surface.  For 

instance, Elsdale et al have shown that morphological changes in fibroblasts cultivated onto 

2D plastic or in 3D collagen gels are different. More precisely, cells cultivated in 3D gels are 

more similar to connective tissue cells in vivo than on 2D (9). These results highlight the 

relevance of 3D systems to reproduce in vivo environment. 

Cultivating cells in a scaffold provides 3D architecture and potentially mechanical 

stimulation, but it is only the first step towards 3D in vitro models reproducing the in vivo 

environment for long-term studies. Indeed, cells seeded in scaffolds and cultivated under 

static condition (in multiple well plates) tend to reach high concentration at the scaffold 

periphery, resulting in poor nutrient and waste exchange in the middle of the scaffold and 

thus cell necrosis in the center of the scaffold. Perfusion bioreactors were designed to avoid 

this drawback and establish a closely monitored and tightly controlled environment. The 

perfusion also permits to mechanically stimulate the cells via shear stress (10) for review). 

These bioreactors can be improved with the addition of a compression system dissociated 

from or combined with perfusion (11), which is particularly useful and relevant in bone cell 

studies (e.g. analysis of mechanotransduction (12)). 

Three-dimensional artificial models can thus overcome the limitation of current 2D models 

by providing robust spatial and temporal control of biophysical, biochemical and mechanical 

micro-environmental cues (13-15). Additionally, the development of such alternative 

methods follows the ethical regulation drive to reduce the use of animal models. 

 

In this review, we provide an overview of the main concepts, key points and challenges 

about in vitro 3D cultures dedicated to experimental/fundamental research in bone biology. 
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In particular, it focuses on the four main components of such strategy: the scaffold, the cells, 

the bioreactor and the none-invasive imaging technologies.  

 

2. SCAFFOLD 

2.1. Why use scaffolds? 

As mentioned previously, in vitro bone development requires 3D organization to simulate 

the structure, mechanical properties (i.e. stiffness and strength), composition as well as 

regulatory cues of the natural ECM (16, 17). 3D artificial models may provide a robust spatial 

and temporal monitoring of biophysical, biochemical and mechanical micro-environmental 

cues; this monitoring is unavailable in vivo (14). As such, they are crucial tools for identifying 

regulators and pathways of bone cell behavior and fate. 

 

2.2. Ideal scaffold properties 

While the success of an implanted scaffold in vivo will be based on its capacity to be invaded, 

degraded then replaced by host tissue, the purpose of a scaffold for in vitro experimental 

application is to provide a structural support for the culture of cells in a controlled 3D 

environment in vitro. This environment should meet as many as possible of the 

requirements of the cells used, and ideally mimic the dynamic native niche environment of, 

e.g. stem cells (18, 19). Even though there are no unique scaffold specifications for such 

experimental applications, scaffold needs to be at least biocompatible and osteoconductive 

to support cell attachment, growth and differentiation (20). Moreover, although the final 

features depend on the specific purpose of the in vitro study, several general characteristics 

and requirements need to be considered for all designs. Besides stiffness (14, 21), scaffolds 

must have adequate mechanical properties to support, if applicable, flow perfusion and 
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mechanical stimuli (e.g. compressive strength). Scaffolds for in vitro use do not necessarily 

have to be degradable (i.e. soluble and/or resorbable). However, the phase and chemical 

composition, as well as surface chemistry (cell-surface interface), are key parameters that 

affect cellular responses (22, 23). Similarly, architecture influences the interactions between 

the cells, the media and the material, ultimately controlling the rate and quality of new 

tissue formation (e.g. extracellular matrix deposition) (14). Both architecture and 

composition are very important features for this application (24) and are detailed in 

following subsections. 

 

2.3. Architecture: A key role 

For a 3D scaffold-based in vitro culture strategy, the scaffold architecture has to allow 

controlled and homogeneous cell seeding (25), cell response (26), mass transport (27), 

substrate degradation (28), and mechanical properties (29) throughout the experiment. The 

scaffold architecture (e.g. geometry, shape, size; as defined below) influences the cell fate 

both directly (e.g. nutrient accessibility) and indirectly (e.g. adsorption of proteins, local 

shear stresses). Macroscopic and microscopic architectural features are distinct (Fig. 1). They 

are generally defined as pore sizes greater than 100 µm and below 20 µm, respectively (for 

review (30)). Numerous studies have investigated the influence of macro- and micro-

architecture on cell response and fate, and both were proved to be of great importance (14). 

Macro-scale architecture can be split into macroscopic design (geometric structure) and 

internal pore structure/architecture, including the shape, size, distribution and 

interconnection of the macropores. Similarly, the micro-scale architecture consists in the 

shape (i.e. morphology), size (width and length), orientation (according to the way of 

perfusion flow for instance) and distribution (ordered vs random) of the micropores. 
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Since the 1990s, studies have emphasized the crucial effects of the micro-scale architecture 

of the constructs on cell seeding and response (26, 31, for review (32)). Micro-architecture 

has been shown to improve scaffold osteoconductivity (33, 34) and cause intrinsic 

osteoinductive activity (35, 36). These modification may be explained by (i) selective 

adsorption of proteins from biological fluids (37, 38), (ii) increase in specific surface area, 

promoting dynamic exchange at the biomaterial-matrix-cell interface (39), or (iii) the 

responsiveness of cells to substrate discontinuities  (40, 41). For a comprehensive review 

focused on calcium phosphate ceramics, see (23). 

According to the literature, the macro-scale architecture influences internal mass-transports 

(e.g. supply of nutrients, removal of deleterious waste compounds) (42), cell 

invasion/infiltration (e.g. seeding) (25, 43), tissue ingrowth (e.g. bone, blood-vessel) (44, 45), 

scaffold degradation (46, 47), inflammatory response (48), shear stress distribution (49, 50), 

and extensive mechanical properties of the scaffold (e.g. stiffness, compressive strength) 

(51). Likewise, the mechanical properties of the scaffold affect the intrinsic mechanical 

stimuli developed at the macroscopic (51) and microscopic cell level (49, 52) which, in turn, 

modify cellular response (20, 27, 53). 

Macropore size has been shown to influence bone cell response in vitro and in vivo (54, 55). 

However, from the literature its effects appear similar for sizes ranging from 100 to 1200 µm 

(56, 57). The reason for this lack of logic are most likely the pore size (and shape) uncertainty 

due to the random internal pore architecture/morphology of the scaffolds used, and the 

method used to assess macropore and interconnection size (and shape) (58). This indicates 

that most studies do not exert sufficient control of the macroporous architecture to ensure 

cell response homogeneity (i.e. cell response related to perfectly defined architectural 
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features), As a consequence, the “mean macropore size” (i.e. macropores and 

interconnections) remains a confounding variable (59), even though it appears as the main 

macroscopic determinant of the biophysical properties of scaffolds (25, 26). 

Advancements in engineering and materials has allowed for subtle tuning of scaffold 

features (e.g. macro-, micro-topography and surface chemistry). These improvements 

provided the opportunity to more accurately control the biophysical and biochemical micro-

environmental cues in 3D biomaterial-based culture systems (13, 60). Many engineering 

methods are used to design and produce 3D scaffolds for tissue engineering applications, 

including porogen leaching (61), phase separation (61), gas foaming (26), replication of 

polymer template (62, 63), bone machining (64), and others (65, 66). Even though the 

internal scaffold architectures produced from these conventional methods can be modified 

by changing the fabrication parameters (synthetic materials), or can provide anatomical 

features with macro- and micro-environmental cues (natural based materials) (24), they 

suffer from sample-to-sample variations (e.g. random pore distribution and size) and design 

limitations. Unfortunately, the limits of these conventional methods prevent the structure 

standardization, as well as the experiment reproducibility; so many detrimental points for 

the creation of in vitro physiological models. Indeed, biological observations (67), physical 

(68) and mechanical (69) features, or simulation based on reconstructed images (70, 71) are, 

in that case, valid for one scaffold but not one architecture, diminishing the predictability of 

results. However, new engineering developments combining computational methods, such 

as computer-aided design (CAD), and additive manufacturing technologies (AM) (72) are able 

to overcome these production limitation by providing higher level of control over the design 

of manufactured scaffolds, with customized external shapes as well as optimized and 

reproducible internal morphologies (e.g. pore interconnectivity, shape, size and distribution) 
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(25, 73, 74). Recent reviews provide exhaustive classification of the different AM techniques, 

design methodologies and their limitations for production of scaffold made of different 

materials (60, 75, 76). Additionally, Giannitelli et al. reviewed studies relating the influence 

of some intrinsic architectural features of scaffold (e.g. porous design, pore morphology), 

controlled by AM fabrication parameters, on their extrinsic properties (e.g. shear stress level 

and distribution, mass transport, biological behavior) related for instance to the selected cell 

type grown or the fluid flow perfusion characteristics (75). A conclusion is that a design 

strategy is needed to match the micro and macro-scale intrinsic architectural features of the 

scaffold to the conflicting mechanical, mass transfer and biological requirements that it has 

to fulfil in a given experimental setup. One way to achieve scaffolds with specific target 

properties is to use computational tools/models to design their structure and AM process for 

their production (75). This strategy has been used to optimize scaffold design for mass 

transport (77), mechanical load (78, 79), or both (80, 81), shear stress at the surface of the 

pore walls (49, 50) and scaffold degradation (21). 

Nevertheless, standard empirical approaches are not obsolete, quite the contrary! Recently, 

Bidan et al. proposed an elegant simple geometric model explaining the shape-dependence 

of growth in terms of tension and local curvature from static in vitro cell culture experiments 

and AM HA ceramics (82). In addition to confirm the model in a second article, they cleverly 

demonstrated that tissue growth into a porous scaffold is a function of pore geometry, 

specifically the local surface curvature (83); for other trial-and-error assessments on the 

influence of macroporosity, see (84, 85). 

Also, beyond the control of the initial scaffold properties, especially permeability and 

mechanical strength, it is also important to anticipate their evolution during in vitro 
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experiments since scaffold degradation processes (e.g. dissolution, resorption, cracks) as 

well as neo-tissue ingrowth can significantly affect them (28). 

Finally, the current limitations of the manufacturing processes result in geometrical 

discrepancies, generally anisotropic, between the fabricated and the designed scaffold (77, 

81). In order to evaluate qualitatively how the fabricated scaffold matches the designed 

structure, scaffolds should be analyzed by high resolution imaging techniques such as micro-

computed tomography (µCT, see section 5). Quantitatively, the high resolution µCT data 

should be used as input in the simulation in order to determine how these differences of 

geometry will influence the final scaffold properties (e.g. permeability) (86).  

 

2.4. Scaffold composition 

Material composition encompasses phase composition (i.e. amorphous or crystalline) and 

chemical composition (i.e. arrangement, type and ratio of atoms in material). Both 

associated to the chemical, mechanical and/or thermal treatments experienced by material 

during the manufacturing process govern the intrinsic chemical (e.g. thermodynamical 

solubility, hydrolysis susceptibility, chemical surface functional groups), physical (e.g. 

crystalline structure, wettability, surface charge), mechanical (e.g. stiffness, mechanical 

strength) and biological (e.g. toxicity, cell attachment) properties of scaffold. These intrinsic 

properties affect in turn the key early event of protein adsorption and subsequent cell 

adhesion, growth, differentiation, matrix deposition and function. Indeed, besides 

microarchitectural features such as roughness (see previous section), the type, conformation 

and density of adsorbed proteins depend mainly on the surface chemical functional groups, 

and on the ionic environment and pH value of the culture medium (for review (23, 86)). The 

latter can be significantly affected by the degradation mechanisms of the material. In vitro, 
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scaffolds can degrade via solution-mediated mechanisms (e.g. dissolution, hydrolysis), cell-

mediated mechanisms (e.g. resorption, phagocytosis), as well as the loss of mechanical 

integrity (e.g. surface cracking) (87, 88). As degradation products can affect cell fate, they 

must also exhibit biocompatibility. 

From a thermodynamic standpoint most calcium phosphates ceramics are faintly soluble in 

aqueous media, since their solubility products are low (89). However, John et al. emphasized 

a clear difference in MG-63 osteoblast-like cells attachment, spreading and growth between 

the quite insoluble hydroxyapatite (HA) and the more soluble β tricalcium phosphate (β TCP) 

ceramics, the former promoting cell adhesion and spreading and not the latter (90). These 

authors attributed the death of cell on β TCP ceramics to the high phosphate and low Ca 

levels in the material/media interface, resulting from dissolution/reprecipitation mechanism. 

An equivalent conclusion was reached by Detsch et al. to explain the inhibition of 

osteoclastic resorption (human monocyte-like cell line U-937) on highly soluble β TCP 

surface (91). Strangely, HA exhibits, as β TCP, negligible degree of resorption as well as low 

rate of bone ingrowth, despite its limited solubility compare to β TCP (91, 92). Thus, even if 

the degradation products of calcium phosphate bioceramics (calcium and phosphate ions) 

are naturally metabolized (93), their concentrations affect cells fate directly (e.g. cell death) 

and indirectly (e.g. proteins adsorption). These observations highlight that cell responses are 

very sensitive to the environment, and indicate that the performance of HA and TCP phases 

are not optimal. A relevant way to modulate/adjust the intrinsic properties of calcium 

phosphate (CaP) bioceramics, including solubility, and in turn the biological response 

consists of a partial replacement of the original constituting ions of the CaP lattice. For 

instance, the beneficial effects of carbonate ion substitution for phosphate and/or hydroxide 
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ions in HA lattice are widely established (92, for review (94)). Thus, managing carbonate 

content permits control of the rate of resorption and dissolution of synthetic carbonated 

hydroxyapatite (CHA) ceramics, which in turn enhance their bioactivity when compared to 

HA. 

Biodegradation of synthetic polymers releases a mixture of oligomers, monomers and other 

low-molecular products. The rate of degradation is governed by intrinsic properties of the 

polymer such as molecular weight, chemical structure, copolymer ratio, crystallinity and the 

proportion of unstable bonds (for review (95)). The degradation products can include 

harmful or acidic byproducts (e.g. PLA, PGA, puramatrix hydrogel) which are harmful to cell 

function/survival (95, 96). In parallel, other physical and chemical surface properties of 

biodegradable polymers appear to be detrimental for tissue formation such as hydrophobic 

surfaces (97) or low cell adhesion capacity (98). 

Cell fate is also driven by the mechanical properties of the scaffold and more particularly its 

stiffness. As in native tissue, cells within a construct respond and adapt to the mechanical 

and biological stimuli to which they are exposed (18, 99). It has been demonstrated by 

Engler et al., on polyacrylamide gels, that the substrate-level elasticity can specify the 

lineage specification of Mesenchymal Stem Cells (MSC, see section 3.1) (100). These results 

were confirmed recently by Zouani et al. (101); see also for review about effect of substrate 

rigidity on stem cells (102). Thus, scaffold used as hard tissue device, like bone, should 

exhibit high elastic modulus (103). Consequently, CaP ceramics, which have a stiffness 

similar to bone (23), have long been used for bone tissue engineering applications. In 

addition to considerable stiffness, CaP ceramics show biocompatibility, tunable bioactivity 

and biodegradability (94), and generally more bioactivity than synthetic polymers (104, 105). 

Yet, the brittle nature of these ceramics is a major issue especially for the application of 
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mechanical loading in a bioreactor (see section 4). However, this mechanical deficiency 

could be partly compensated by phase composition adjustment (85) and “topological 

optimization” (see section 2.3). 

The alternatives to inorganic materials for the composition of scaffolds are mainly synthetic 

organic polymers, as naturally derived polymers suffer high batch-to-batch variability (95). 

The main advantage of polymers over ceramic, is that scaffolds can be easily produce with 

tunable micro- and macroscale features. Unfortunately, most porous polymeric scaffolds 

lack sufficient mechanical strength to withstand mechanical loading (for review (106)).  

Combination of inorganic and organic components in a composite biomaterial could 

overcome their respective limitations, but it would make it extremely difficult to relate the 

scaffold physico-chemical properties to biological responses within the 3D model. Other 

materials such as metals (for review (107)) or carbon nanotubes (for review (108)) can 

display interesting properties for the development of 3D artificial models, provided that 

their toxicity and interaction with the biological in vitro environment (e.g. cells, proteins) can 

be controlled. 

The development of 3D in vitro models requires to know the influence of scaffold chemistry 

(e.g. composition, surface chemistry) on cell behavior, and reciprocally to anticipate the 

influence of culture medium chemistry and cell activity on the scaffold. Thus, an ill-defined 

scaffold (i.e. not accurately characterized) will never permit understanding and control in 

reproducible manner the interaction between cells and substrate through adsorbed proteins 

(98). Therefore, batch-to-batch reproducibility of scaffold chemistry is essential to establish 

correlation between scaffold features and cell responses. Our experience on in vitro 3D bone 

model shows that a basic CaP ceramic scaffold with optimized architecture can achieve the 
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right permeability, bioactivity and mechanical properties to seed, grow and mechanically 

stimulate primary cells in a reproducible manner (109). 

 

2.5. Future Challenges and strategy 

As already stated, robust spatial and temporal control of biophysical, biomechanical and 

biochemical micro-environmental cues through 3D biomaterial-based culture systems is 

essential for studying cell regulatory pathways and in vitro tissue regeneration. In this 

context, experimental models will have to increase progressively their complexity from basic 

to physiologically relevant structural and functional features (e.g dynamic and complex 

microenvironment of the native stem cell niche). A core challenge of this strategy will be to 

uncover the relationship between chemical (e.g. degradation), physical (e.g. microporosity) 

and mechanical (e.g. stiffness) scaffold properties, and cell signaling (32). This implies the 

accurate control and characterization of architectural, mechanical and physico-chemical 

biomaterial features, at micro- and macroscales, from synthesis, through shaping, until the 

sterilization steps. Unfortunately, physico-chemical properties (for review (104)) as well as 

architectural features (58) of scaffolds are still too often considered as non-significant 

parameters and thus become confounding variables; as evidenced by Kumar et al. speaking 

about the “unexpected sensitivity that cells have for scaffold structure” (67). In most cases, 

the whole scaffold manufacturing process (e.g. chemicals sourcing, phase synthesis, 

scaffolding method) is not enough accurate/standardized, and the final product not enough 

characterized to elucidate the link between scaffold features and biological response (38, 

110, 111). For instance in another study of Kumar et al., is the osteogenic differentiation of 

hBMSCs, seeded on etched poly(ε-caprolactone) scaffolds, induced by surface roughness or 

surface chemistry change (112) ? It is also unfortunate that series of studies on in vivo and in 
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vitro evaluation of silicon-substituted hydroxyapatite ceramics would have been published 

without any information about the real phase composition of the samples (110, 113), when 

it was recently shown that even small changes of silicon-substituted hydroxyapatite ceramic 

phase composition drastically modify cellular responses (114, 115). 

Defining the appropriate(s) composition(s) and the relevant architecture(s) of these new 3D 

systems for specific experimental goals remains a significant challenge (32). However, new 

design concepts and fabrication techniques currently available (e.g. additive manufacturing), 

even if they still display inherent feature limitations (81), provide alternatives for developing 

scaffolds with sufficient batch-to-batch similarity in geometrical, mechanical and physico-

chemical features to enhance our understanding of cell signaling (82, 83). To reach this goal 

both computational simulations and experimental studies are necessary, including extensive 

characterization of main scaffold features before and during in vitro tests in order to refine 

the numerical models. 

Therefore, we propose that, as an initial step, scaffold design should follow a simple -even 

simplistic- approach, comprising: 

(i) an isotropic macroporous architecture with continuous open pore geometry such as the 

one based on triply periodic minimal surfaces (TPMS) (50, 74). Compared to a random-pore 

architecture, this “basic” design could simplify both the identification of the variables 

affecting cellular response (by limiting assay variability and standardizing lab to lab assays), 

and the numerical simulations of the different physical variables which characterize the 3D 

biomaterial-based culture system (e.g. fluid flow profile experienced by cells). This 

architecture could also facilitate a dynamic monitoring of the cells by non-invasive imaging, 

for instance through confocal microscopy (50, 83). 
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(ii) a monophasic material with homogeneous and reproducible surface properties. The 

production of such material implies a perfect control of all production steps from chemical 

synthesis to sterilization. 

(iii) an accurate characterization of the actual chemical, physical, mechanical, architectural 

and biological properties of the manufactured scaffold by means of experimental techniques 

(e.g. µCT, spectroscopy, mechanical tests, osteoclast culture, degradation experiment), and 

computational methods (e.g. computer fluid dynamics simulation, finite element analysis). 

Since the properties of the scaffold are not only affected by cell activity, but also by culture 

conditions (e.g. mechanical stimulation, fluid flow, media composition), their evolution 

should be quantified in these conditions, i.e. without cell. 

 

3. CELL CULTURE 

3.1. Cell types and sources 

In bone biology, osteoblast-like cells are the most studied because they are easier to obtain, 

cultivate and use compared to osteoclast-like cells or osteocytes. For a comprehensive 

review focused on osteoclast-like cells or osteocytes, see (116) (these cells will not be 

discussed herein). Cells used for in vitro bone studies are either cell lines or primary cells 

isolated from human or animal tissue. In both cases, these cells display more or less 

differentiated features, ranging from stem-like cells to osteoblasts. Consequently, the choice 

of the cell type model (cell line or primary cells? Which cell lines? etc.) will depend on the 

goal of the study. 

A cell line is a homogeneous population of cells with the ability to proliferate in culture 

without limit, at least in theory, and therefore called “immortal” (117, 118). Cell lines are 
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obtained from cells isolated from bone tumors (cancer cell line) (119) or from primary bone 

cells which have undergone a spontaneous genetic change, such as p53 mutation (non-

transformed cell lines) (120). Primary cell can also be genetically/artificially modified to be 

"immortalised", they are then named “transformed cell lines” (121). The advantage of cell 

lines is the immediate availability of a large numbers of cells without the need for isolation, 

the ease of maintenance and the homogeneity of the cell cultures. Cell lines are less prone 

to the phenotypic variability observed in primary cell cultures, but at the cost of some 

functional characteristics that are lost after immortalisation. Thus, cell lines may not express 

all tissue-specific characteristics. 

For example, the non-transformed murine preosteoblasts MC3T3-E1 cell line (122) is 

commonly used for its high capacity of differentiation in response to materials (apatite), with 

or without differentiation medium (123). However, cultures of these cells have been shown 

to not mineralize as hydroxyapatite but in spots of a mineral of unknown form (124). Human 

osteosarcoma cell lines, such as MG-63 and SaOS-2, particularly useful in the study of 

interactions between osteoblasts and materials (125), as well as assessment of 

biocompatibility and osteoblast differentiation potential (126, 127), must also be used with 

caution. Indeed, the response obtained with these lines may differ from those obtained from 

healthy cells. As a case in point, Anselme team compared the deformation of the cell nuclei 

in response to substrate surface topography in “healthy” (HOP), cancerous (from 

osteosarcoma: OHS4, U2OS) and immortalised (F/STRO-1+A and FHSO6) (bone-forming) cells 

(128). Cancer cells displayed a strong deformation, immortalised cells showed reduced 

deformation, while healthy cells were deformed only after short incubation times. Along 

with other results (129, 130), this study highlights the impact of immortalization on the 

state/responsiveness of the cytoskeletal network, leading to a modified behaviour compare 
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to healthy cells (128). Overall (see also (116, 131)), cell lines are useful for specific studies 

such as cytocompatibility testing or various stages of osteogenesis investigation, but do not 

reflect the behaviour of primary cells. Additionally, many cell lines can become unstable with 

time, and subclones of these cell lines tend to develop in different laboratories, which can 

lead to different experimental outcomes and results no longer comparable between studies 

and/or laboratories.  

Primary cells provide an alternative to cell lines. They are “unadulterated/healthy” cells, 

cultivated directly from human or animal tissue. Populations of bone primary cells contain 

stem cells and osteoprogenitors (i.e. committed but undifferentiated cells). An evident 

advantage of primary cells is that they can be isolated from genetically modified animals in 

which the expression of a gene has been cancelled, forced or rendered conditional, as for 

instance BSP-/- mice used in our laboratory (132, 133). This avoids the direct manipulation of 

gene expression in the culture (e.g. RNA silencing), for which the transfection of the agent, 

as well as the efficiency and duration of its action are difficult to control.  

Many methods are available for the isolation of primary cells from bone. A common one is to 

digest small pieces of bone explants from long bone, calvaria (from rodent fetus or neonate), 

mandible or iliac crest with collagenase or other matrix-digesting enzymes (134, 135). 

Primary cells are also regularly isolated from the bone marrow (136).  

Bone marrow in adults harbours several types of stem and progenitor cells, hematopoietic 

(HSC) and non-hematopoietic, the latter including mesenchymal stem cells (MSC). MSC are 

undifferentiated cells with high proliferation capacity, able to self-renew and differentiate 

into different cell lineages, generating all mesenchymal tissues, such as bone, cartilage, 

tendons, muscles and fat (137). In vitro differentiation studies demonstrated the ability to 

isolate and multiply MSC from cartilage, trabecular bone, periosteum, adipose tissue and 
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periodontal ligaments (138-142). However, gene and protein profiles characteristic of these 

cells are still unclear. Recently, the European Genostem consortium elucidated the biology of 

stem cells from bone marrow, establishing that the native cells are localised on the 

abluminal side of endothelial cells of sinuses (143). They showed that stromal cells forming 

the niche of HSC and bone marrow MSC are the same entities, and that highly proliferating 

clonal cells, amplified in culture, are "true" stem cells since they display self-renewal and 

multipotency, similar to HSC (143). However, many questions remain unresolved. It is not 

clear, for instance, whether the self-renewal capacity of MSC is comparable to that of HSC 

(143). Thus, several important players in this field consider that the only true test of 

stemness is in vivo tissue/organ reconstitution from one single MSC, and they contest the 

notion of a universal MSC as opposed to tissue-specific (e.g. in the bone marrow, skeletal) 

stem cells (144). 

Anyway, the main practical disadvantage of the use of primary cells is that considerable 

variation may exist between cells of different tissue sources. Cell populations derived from a 

single tissue source may also be heterogeneous due to variations in the isolation and/or 

purification technique, or according to passage numbers. For instance, significant changes in 

contractile force were reported for chondrocyte after only three passages (145). In addition, 

primary cells are extremely sensitive to the batch of serum used (146-148), emphasizing the 

importance of the culture medium composition. The addition of certain factors, such as 

dexamethasone, ascorbic acid and β-glycerophosphate allows to direct these cells towards 

the osteoblastic differentiation pathway. Similarly, other inducing media exists to drive 

differentiation to adipocytes or chondrocytes. Also, in order to improve the homogeneity of 

marrow-derived populations, it is possible to sort and select cells with antibodies targeting 

cell type-specific membrane markers (149). 
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3.2. Complex 3D models: cell co-culture 

Tissue engineering mainly uses "minimalist" approaches using a single cell type. In contrast 

in vivo, the dynamics of the bone tissue – in particular, its remodelling - is based on an 

intimate cross-talk between different cell types: endothelial cells, matrix-embedded 

osteocytes, bone lining cells and more particularly osteoblasts and osteoclasts (150). 

In vitro osteoclast/osteoblast co-cultures on scaffolds allow the study of the remodeling 

process and, in particular, the crosstalk between resident osteoblasts and invading, 

differentiating, and resorbing osteoclasts. Tortelli et al. (151) developed a 3D model of bone 

by seeding primary murine osteoblasts and osteoclast precursors in a ceramic porous 

scaffold (placed in multiwell plate). Using this model, the team demonstrated through 

comparative analysis of transcriptional activities that the 3D environment stimulates 

osteoblast differentiation which, in turn, induces early differentiation of osteoclasts. Vacanti 

team also highlighted, in an osteoblast and osteoclast co-culture experiment, the formation 

of osteoclasts on polymer surfaces previously mineralized by osteoblasts Nakagawa (152). 

Osteoblasts and osteoclasts are not the only critical cells for bone remodeling. For a very 

long time, osteocytes have been ignored because it was assumed that they functioned as 

place holders in the bone matrix and that all the action took place on the bone surface. 

However, within the last decade these cells have been shown to act as orchestrators of bone 

remodeling (153, 154). More precisely, several experiments using conditioned medium (i.e. 

supernatant containing soluble factors from osteocytes) (155, 156) or different co-culture 

methodologies (155, 157, 158), in 2D substrate or in 3D gels (158, 159), support the concept 

that osteocytes regulate the function of both osteoblasts and osteoclasts. Moreover, 
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considerable convincing data emphasize the role of osteocytes as mechanosensors, 

integrating mechanical signals to regulate bone mass (153). Indeed, in experiments 

mechanically using parallel plate flow chambers, mechanically stimulated osteocytes inhibit 

osteoclastogenesis (160) and increase osteoblastic activity (laminar flow model, (161)). 

In vivo, angiogenesis and osteogenesis are closely linked and stringently regulated. Thus, 

interactions between osteoblasts and endothelial cells have been extensively studied. 

Complex cellular crosstalk between these cells have been reported in several in vitro studies 

(162, 163) using different co-culture models. Grellier et al. (164) made an inventory of these 

models, from the nature of the 2D and 3D substrates (e.g. spheroid or porous scaffolds with 

different compositions), to the cellular models used (e.g. rat long bone-derived osteoblast-

like cells, human umbilical vein endothelial cells or human bone marrow stromal cells) and 

the crosstalk between these different lineages. Co-culture of either osteoblasts or 

osteoprogenitor cells with vascular cells led to opposing conclusions about the ability of 

endothelial cells to induce or inhibit the expression of osteogenic genes (165). Indeed, such 

interactions depend on the origin and differentiation state of the two cell types, as well as 

the co-culture system used (2D or 3D substrates). However, when endothelial cells had an 

inducing effect, the in vitro concomitant mineralization of deposited matrix and formation of 

blood vessels have not been observed. Thus, there is much more to learn about the chemical 

and physical signals that drive the coordination of angiogenesis and osteogenesis in vitro. 

Recently, Papadimitropoulos et al. (166) developed a more complex in vitro model to mimic 

bone turnover by co-culturing osteoblasts, osteoclast and endothelial cells. To address the 

issue of the very short life of osteoclast cells, the authors developed a culture process in two 

steps. First, cells from the stromal-vascular fraction of adipose tissue, containing both 
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osteoprogenitors and endothelial lineage cells, were seeded then cultivated for a week in a 

perfusion bioreactor. In the second phase, CD14+ human peripheral blood cells were infused 

into the scaffold via the perfusion system. Non-invasive monitoring techniques (e.g. analysis 

of typical markers of bone remodeling in the culture medium) were used to quantify the 

bone matrix deposition and resorption processes, as well as to document the functional 

regulation of the system via osteoclastogenic and osteotropic factors (166). Unfortunately, 

these results do not allow to fully characterize the “quality” of the bone-tissue like formed 

(167). Bone quality encompasses several parameters such as bone remodeling level, matrix 

composition, bone mineralization degree, matrix and mineral composition. Monitoring of all 

these parameters are still missing in in vitro studies, which therefore do not established that 

the “bone-tissue like” material formed in the culture is comparable to “genuine bone”.  

Nonetheless, all co-culture studies, regardless the cell types used are useful to better 

understand the crosstalks regulating bone physiology. Most try to come closer to the 

physiological environment of the cells by using 3D matrices or mechanical stimulation. 

However, no study combines these two important conditions of the cell environment. It is 

thus a major issue to co-cultivate cells in 3D models allowing different type of mechanical 

stimulations. 

3.3. Cell seeding 

The cellular seeding of a porous scaffold is an important step in the setting up of a 3D 

culture. First, the initial seeding density impacts tissue formation. High cell densities are 

associated with stimulation of osteogenesis and increased bone mineralisation (168). 

Classically, a 30 mm3 macroporous biomaterial is inoculated with one million cells (169, 170). 

Second, the seeding protocol also affects the viability and distribution of cells within the 

scaffold, impacting the subsequent distribution of the tissue formed (171). Uniform cell 
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seeding is thus necessary to get uniform cell response within the scaffold and reproducible 

3D cell culture. 

3D cell seeding is generally performed under static conditions by placing a suspension of 

cells on top of the scaffold, which will penetrate within the material by capillary and gravity 

action. Although this standard method is widely used, it may result in low seeding efficiency 

and non-homogeneous distribution of cells in the scaffold (171-173). The seeding efficiency 

can be improved by placing the scaffolds in a stirred cell suspension. Spinner flask systems 

have been used for this purpose. However, the inefficient convection of the interior of the 

scaffolds can also lead to low cell densities  and non-homogeneous distribution of cells (171, 

174) with a higher density at the external surfaces (175). To further improve seeding 

efficiency, a flow of cells in suspension can be forced through the scaffold by means of a 

perfusion bioreactor. In this case, seeding and cell growth are successively performed 

without further manipulation, greatly reducing the risk of contamination. The use of 

perfusion bioreactor for cell seeding, developed in the next part of this review, allows a 

more homogeneous distribution of cells within the scaffold compared to static seeding or 

with spinner flask (171-173). However, the effective seeding conditions (e.g. seeding flow) 

have to be adjusted according to the type of perfusion bioreactor, the scaffold internal 

architecture, as well as the cell type(s) used. 

 

4. PERFUSION BIOREACTORS: the solution for in vitro 3D bone model(s) 

Nowadays, it is well established that a perfusion-based bioreactor is the most efficient 

culture system to homogenise nutrient transport, waste elimination as well as cell 

distribution, growth and differentiation in the interior of the scaffold (4, 176). These systems 

consist in forcing the culture medium through the cell-seeded scaffold. They are usually 
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composed of a scaffold chamber with a reservoir and a pump, all connected by tubing (Fig. 2 

A). Many perfusion bioreactors have been designed according to the goal of the study, using 

various scaffolds, cell types and perfusion modalities (i.e. mode and rate of fluid flow). These 

systems have been detailed in several interesting reviews (4, 5, 177). In addition to control 

and monitor many culture parameters throughout the tissue growth in vitro (e.g. pH, 

temperature, pressure, nutrient supply, waste elimination), perfusion bioreactors allow to 

study the role of mechanical cues on cell fate. Indeed, the perfusion and/or loading systems 

combined with the bioreactor can be used to mechanically stimulate the cells. 

 

4.1. The media: controlling and monitoring 

In order to live, a cell needs nutrients such as glucose, oxygen, amino acids, fatty acids, 

vitamins as well as specific factors. Among them, oxygen is much more than a required 

nutrient, it can act as signalling molecule to affect cell behaviour in several ways (178). Thus, 

high oxygen concentrations appear toxic to many cells, while low levels of oxygen can 

promote cell viability (179) and the differentiation of stem cells in vitro and in vivo (180-183). 

Moreover, while it is clear that the local oxygen pressure is a potent regulator of metabolism 

and viability of bone cells, the distribution profile of oxygen in bone is currently unknown. 

Nonetheless, mathematical models suggest that significant oxygen gradients exist between 

the cortical and cancellous bone, and that the partial pressure of oxygen (PaO2) can regulate 

the physical dimensions of trabeculae and osteons (184). Moreover, it is known that in vivo, 

the PaO2 is 5% in peripheral tissues, 6–7% in bone marrow and 1% in the endosteal niche 

(183). It should be noted that these values are low compared to the 21% PaO2 usually used 

in classical (2D) cell culture conditions. Apart from oxygen, a recent study showed that 

glucose concentration is an important factor in maintaining the viability and growth of MSC 
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in vitro (185). Deschepper et al. showed that MSC could sustain near-anoxia conditions only 

in the presence of glucose in vitro and in vivo (186).  

Thus, culture conditions and especially the chemical composition and homogeneity of the 

medium influence cell viability and behaviour. In static conditions, pure diffusive transport 

ensures oxygen and nutrients supply to the interior of the scaffold only to a distance of 

about 100 μm from the scaffold outer surface (187), similar to a 2D culture. In these 

conditions, cells are subjected to different oxygen and nutrient concentrations across the 

scaffold, leading to the formation by the outer cell layer of a tissue capsule in the periphery 

of the scaffold, further limiting penetration of culture medium inside the construct (176, 

188). More generally, the composition of the culture medium, including the availability of 

nutrients and the removal of waste products (e.g CO2, lactic acid, ammonia and products 

generated by oxidative stress), as well as the rate of exchange between the bulk medium 

and the construct interior are key parameters for 3D cell culture in vitro (4). Both parameters 

depend on the scaffold mass transfer properties (internal pore architecture discussed in 

section 2.3) and the culturing schemes (e.g. static vs perfused). As stated in introduction to 

this section, the perfusion bioreactor systems are currently unrivalled in terms of 

performance (e.g. cells activity and uniformity within the interior of the scaffold (176, 189, 

190). On the condition that the flow goes entirely through the scaffold and not around the 

edges, these systems allows an accurate control of the perfusion modalities of seeded cells 

(e.g. constant vs pulsatile) as well as their mechanical stimulation (see section 4.2), with the 

final aim to modulate stem cell fate (maintenance or differentiation) (4, 178).  

Finally, another advantage of perfusion bioreactor is the monitoring of crucial parameters 

like oxygen using invasive (embedded) or non-invasive (non-contact) sensing probes (191). 
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These monitoring tools/probes can also be used to follow the bone remodelling process as 

performed by Papadimitropoulos et al (see section 3.2) (166). 

 

4.2. Control of the mechanical stresses 

4.2.1. Mechanical bone environment 

In vivo, it is well known that bone remodelling is induced and controlled by endogenous and 

exogenous factors (192-194). Dynamic mechanical stresses are osteogenic within a range of 

load intensities; beyond and below this range tissue responses are different (195, 196).  

In weight bearing bone, individual cells are not subjected to a single force. Multiple physical 

signals are generated simultaneously and sensed/integrated by the cells through their 

membrane, cytoskeleton, focal points, etc. (Fig. 3). Consequently, there is no single 

parameter in the mechanical environment that reliably predicts bone remodelling in vivo or 

under experimental conditions (197). 

It is assumed that in vivo mechanical stimuli are mainly transmitted to bone cells through 

shear stress, that is to say forces whose vector is parallel to the cell surface (198). Bone 

tissue includes a significant fraction of interstitial fluid surrounding all cells. Movements of 

this fluid are induced by two different processes: an "internal" one, which is the differential 

pressure within the circulatory system (199, 200), and an "external" one consisting in the 

mechanical loads applied to the skeleton (201). Whenever a mechanical load is applied to 

bone, interstitial fluid is forced out of the areas of high compressive deformation, and flows 

back when the load is removed. Thus, the fluid flow generates an oscillating shear stress to 

which individual bone cells, and more especially the osteocytes, are sensitive (154).  

The different forces exerted on cells are integrated via several extracellular mechanosensor 

like integrins and associated proteins (203), ion channels (204), connexin (205), primary cilia 
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(206) and the actin cytoskeleton (207). These sensors take part in a set of cellular 

mechanisms that convert mechanical stimuli into biochemical signals (208) leading in 

changes of whole tissue metabolism (Fig. 3).  

In 3D models, many mechanical stresses can be generated and studied such as tension, 

torsion and different combinations of these. In fundamental bone in vitro models, two types 

of mechanical stresses are mostly studied: loading stress resulting from mechanical 

solicitation, and shear stress imposed by fluid movement from the perfusion and/or the 

scaffold deformation (27). 

Anyway, the control of these stresses is crucial to understand the transduction of mechanical 

signals by the bone cells or guide their fate. 

 

4.2.2. Fluid flow effects  

a) Shear stress in perfusion bioreactor  

In addition to overcoming poor nutrient and waste exchange associated with static culture 

conditions (188, 209), culture in a flow perfusion bioreactor provides a convenient way to 

mechanically stimulate cells seeded in the scaffold through fluid shear stress (198, 210). 

Indeed, it was proved in numerous 2D in vitro studies that cells involved in bone tissue 

remodeling are sensitive to shear stress (211-213). In scaffolds, fluid flow (shear stress) has 

been also shown to enhance bone formation activity of osteoblasts (214-216) and stimulate 

the expression of bone-specific genes (217). An unidirectional steady flow, commonly used 

in clinical studies (214, 215, 218), has been shown to have many biological effects on bone 

marrow stromal cells seeded in scaffolds, such as an enhancement of osteogenic 

differentiation (219) and an increased production of mineralized matrix (214, 220). However, 

since bone cells are mainly stimulated in vivo via dynamic (intermittent) mechanical loading 



 29

(221, 222), this dynamic regime is likely to be crucial for stimulating bone formation and 

enhancing the quality of bone tissue laid by osteoblast (223). Other studies revealed a 

favorable effect on bone tissue formation of dynamic unidirectional flow (224) or oscillatory 

fluid flow (170, 225). Lastly, a recent study showed that sequential application of steady (for 

2 weeks) and dynamic (for 3 weeks) fluid flow promotes bone formation by human adipose 

stem cells isolated from fat tissue and cultivated on porous silk fibroin scaffolds (226). 

These results suggest that there is a cellular mechanism detecting and responding to the 

level and duration of shear stress induced by fluid flow. The level of shear stress experienced 

by cells cultured in a flow perfusion system varies with the flow rate. The local shear stress 

felt by individual cells will thus depend on the flow rate used throughout the perfusion-

seeding (172, 227), as well as the scaffold architecture (see section 2.3). It remains unclear 

which flow profile is optimal for stimulating osteoblasts cultivated in a scaffold, and how it 

will regulates their activity and sensitivity. Such evaluation can be done using predictive tools 

(computational fluid dynamics technology (228, 229)).  

 

b) Biologically relevant shear stress  

Most culture systems and bioreactors are not yet optimized on a mechanical point of view 

(mechanical stimuli generation). In the design of the perfusion bioreactors (3D in vitro 

studies), parameters, such as rate of perfusion, flow design (unidirectional, oscillatory, 

intermittent, etc.) and scaffold architecture have often been determined through trial-and-

error (54, 230). Such empirical methods do not guarantee that these parameters are 

optimized. But computational tools are now available to determine the optimal values of 

these parameters. In order to improve the mechanostimulation of cells in bioreactors, it is 
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first necessary to determine which levels of shear stress are relevant, and secondly to be 

able to evaluate the shear stress levels on scaffolds surfaces. 

• Effective levels of shear stress in 2D cultures 

It is relevant to wonder about the levels of shear stress that provide the best stimulation in 

bone cell function. A first value of reference was given by Weinbaum et al. in 1994 (231) 

through a model based on Biot's porous media theory, which is used to relate the loads 

applied to bone to the flow of canalicular interstitial fluid. The model predicts that the flow 

of physiological fluid induces shear stresses in the range of 0.8 to 3 Pa when bones are 

submitted to physiological loadings. 

Many research teams analyzed experimentally the effect of shear stress on bone cell activity. 

To control the shear stress applied, parallel-plate flow chambers were developed and used in 

vitro with several types of cells and several shear stress regimens (e.g. frequency, time). A 

selection of the most relevant results is presented in Table 1. In these 2D experiments, shear 

stress levels between 0.1 and 2 Pa caused positive effects on cells such as release of nitric 

oxide and PGE2, phosphorylation of proteins ERK1/2 and p38, as well as up-regulation of the 

expression of some genes related to mechanotransduction and osteoblastic differentiation. 

• Levels of shear stress in 3D, numerical simulation and confrontation with 2D values 

Scaffolds used for bone tissue engineering applications provide, by definition, a 3D structure 

with generally complex geometries. It is then impossible to control and homogenise the 

levels of shear stress experienced by cells in such structure. But some numerical methods 

were developed to evaluate these levels. Nowadays, numerical simulation is very widely 

used by researchers to simulate mechanical and/or biological environment experienced by 

cells seeded in scaffolds, to become a crucial research field. For an extensive review of 
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current simulation techniques and strategies for dynamic bone tissue engineering in 

bioreactors we recommend a recent review by Vetsch et al. (239). Several research teams 

investigated the levels of flow-induced shear stress in their own system (i.e. bioreactor and 

scaffold (240-242)). A first step of modeling is generally achieved by analyzing the scaffold 

through micro-computed tomography in order to reconstruct its 3D architecture 

numerically. The reconstructed geometry of the scaffold can then be implemented in 

numerical simulations. Computational fluid dynamics methods for fluid simulation are used, 

such as Lattice Boltzmann (240, 243), finite volume (70, 241, 244) or finite element methods 

(71, 245, 246). Boundary conditions are implemented to reproduce the real fluid circulation. 

Then, calculation enables to determine the fluid velocity and the wall shear stress in the 

scaffolds. The shear stress levels calculated under certain hypotheses are listed in Table 2. 

We would like to emphasize that due to the highly randomized internal pore structure of the 

scaffolds used for these experiments, the shear stress distribution is very heterogeneous and 

we should retain the order of magnitude rather than the values themselves. It is very 

interesting to note that the calculated shear stress levels are in the range of 0.04 to 40 mPa 

with boundary conditions of the numerical models representing the experimental 

conditions. These values are two to three orders of magnitude lower than the values 

reported in the 2D experimental studies (Table 1). This gap has been reported and explained 

in several works (247, 248). When cells are seeded in highly porous scaffolds, approximately 

75% of them display a “bridging” morphology (i.e. they are suspended cells, as observed in 

Fig. 1 C), in contrast to the “flat” 2D morphology (i.e. in which cells lay flat on the substrate) 

(247). Even if this proportion could vary depending on internal pore architecture and cell 

type, these “bridging” cells exist and experience high levels of deformation compared to the 

“flat” cells; up to 500 times higher for the same flow configuration. This is very probably why 



 32

the osteogenic responses can be observed at lower levels of wall shear stress in scaffold 

structures containing mainly bridging cells than in 2D culture experiments or in other types 

of bioreactors where cells are mainly flatly attached. 

 

4.2.3. Effects of mechanical loading 

While shear stress has been extensively used to mechanically stimulate cells in 3D, little has 

been done on cell response induced by compression forces in vitro.  

Specially designed culture chambers are necessary to apply external mechanical signals 

combining shear and loading stresses (64, 109, 249, 250) (Fig. 2 A). This type of chamber 

makes possible to mimic in vitro the skeletal effects of physical activity. Mechanical loads 

generate substrate deformations inducing in parallel fluid flow shear stress (media 

movement within the scaffold). Both are more or less intense depending on the properties 

of the scaffold (see section 2). These deformations are experienced by the cells, through the 

ECM or directly through changes in cell shape or intercellular distances. Substrate elongation 

or compression can directly modify extracellular gradients, cell-cell communication or local 

concentrations of secreted ligands (251).  

Globally, bioreactor systems designed for applying mechanical loading have shown beneficial 

effects of mechanical load on proliferation, osteogenic differentiation and matrix formation 

(Table 3). Specifically, it has been shown that compressive strains of approximately 10% 

(amounting to a stress of about 12 kPa) are osteogenic (Table 3). Other bioreactors 

(prototypes) have been designed and technically validated but have not been yet used in 

routine for biological evaluations (255, 256). Some of the bioreactors listed in Table 3 are 

not perfused. This technical restriction limits their experimental applications due first to the 

negative points inherent in the nature of the unperfused systems and especially static 
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cultures (see section 4.1), and second to the impossibility to combine the effects of both 

compression and perfusion. 

Lastly, all these studies are currently done with osteoblast-like cells in order to determine 

the effect of mechanical forces on bone formation. The next step will be to study their 

effects on bone resorption using (pre)osteoclasts with the ultimate goal to co-cultivate 

either or both cell types with the bone mechanosensor, the osteocyte. 

 

5. PERSPECTIVES IN 3D IMAGING 

As the field of 3D tissue engineering progresses there is a growing need for non-invasive, 

label-free imaging technologies for detailed analysis of the inside of the scaffolds, with high 

resolution and real-time observation capabilities throughout the culture period. Two on-line 

imaging systems able to monitor the 3D morphological structure of the mineralized and 

unmineralized fractions of the cultures will be presented: Optical Coherence Tomography 

(OCT) and the micro/nano tomography.  

Operating under a principle similar to ultrasound imaging, with the exception that it 

measures delays in backscattered light instead of sound, OCT uses light in the near infrared 

part of the spectrum. OCT yields 3D tomographic images of biological tissues with a 

resolution of a few micrometres. This non-invasive, non-ionising method has been recently 

used for imaging a fixed human femoral trabecular bone sample (257). Without any staining, 

the lamellar structure of trabeculae and the cells in the marrow were visible, albeit with a 

penetration depth limited approximately to 1 mm (258, 259). To improve the capabilities of 

OCT several extensions have been proposed including polarization, phase and spectrally 

resolved OCT. Spectroscopic Optical Coherence Tomography (SOCT) is sensitive to both 

chromophores and structural changes of the tissue, which alter the incident light spectrum. 
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The performance of such approach has been tested for contrast enhancement in bovine 

osteo-articular cartilage. Specifically, when the tissue is loaded the different layers of 

cartilage get enhanced contrast due to optical clearing. During cartilage compression, water 

is expelled out of the tissue and the change of the collagen fibre composition in the different 

zones could be a reasonable explanation for the enhanced contrast due to spectroscopic 

features (260). Whether some interesting results on structural investigation of native bone 

have been gathered, the applications of these techniques to in vitro tissue-engineered bone 

are not yet very numerous at present (260). 

Micro-computed tomography (micro-CT) is often used to characterise scaffolds and bone 

growth in 3D (261). Micro-CT uses X-rays and provides a non-destructive 3D image of the 

interior of a sample, regardless of size, with a resolution ranging from 1 to 100 μm. The 

combination of micro-CT and recently developed microdiffraction,  x-ray techniques have 

facilitated qualitative and quantitative characterisation of dense scaffolds, as well as a 3D 

evaluation of the rate of bone growth in engineered tissue (262). More specifically X-ray 

microdiffraction provides information at the atomic scale, i.e. at the nanometre level, of 

both mineral and organic phases. Wide angle X-ray scattering (WAXS) informs mainly about 

the crystallographic structure and texture of the samples, while Small angle X-ray scattering 

(SAXS) is more about size, shape and orientation of both the mineral crystals and collagen 

fibrils (262) which compose the sample. Synchrotron radiation tomography (SRT) has 

enabled acquisition of even better results in terms of spatial resolution (under 1 μm) and 

signal/noise ratio (263). In addition to revealing the architecture of the sample, SRT also 

provides information about composition (i.e. the 3D distribution and degree of 

mineralisation) (264). However, equipment to perform this technique is only available in a 

few research centres around the world.  
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Micro-CT and SRT techniques allow visualisation and quantification of mineralised 

structures, including the possibility to investigate the influence of scaffold features, such as 

the internal pore architecture (e.g. size, distribution) with regard to the growth of bone 

within the scaffold. Unfortunately, this method does not yet allow to visualise the cells. "X-

ray synchrotron radiation pseudo-holotomography" was recently developed to visualise soft 

tissue and microvascular networks in 3D without the use of contrasting agents. The method 

is based on micro-CT and conventional holotomography techniques and was used to obtain 

quantitative structural data on a bioceramic/MSC composite implanted in mice for 24 weeks 

(265).  

If major improvements in mapping and monitoring 3D tissue growth have been achieved, 

progress is still required in quantifying changes in depth with the appropriate resolution for 

cellular analysis. Further bioreactor should be designed to allow for in situ imaging with the 

help of optical and/or x-ray transparent culture chambers or by placing transparent windows 

on the chamber walls.   

 

6. CONCLUSIONS 

Traditional cell culture, i.e. two-dimensional (2D), is unable to reproduce the tissue 

properties observed in organs (3D). Moreover, natural tissues, especially in weight-bearing 

organs such as bone, are subjected to mechanical stresses which are major regulating factors 

for cell fate. In vitro 3D culture models seem to be an effective solution to better understand 

the different aspects of cell function and bone remodeling in systems less complex than in 

vivo models. Create bone in vitro, using tissue engineering concepts, can be a somewhat 

elusive vision given the complexity of this tissue, encompassing spatial and temporal 

interactions between many types of components (e.g. cells, ECM, substrate, soluble factors). 
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However, new experimental, manufacturing, characterization and computational tools help 

to design a controlled environment more and more efficient to regulate cell fate. Even, if the 

influence of material properties, such as stiffness, permeability, or composition, in orchestrating 

cellular events is still poorly understood, the “design strategy” associated to an extensive scaffold 

characterization is a consistent approach to define relevant scaffold design/features. Perfusion 

based bioreactors have been shown to optimize cell culture in 3D with full and standardized 

control of cell environment (e.g. scaffold architecture and physico-chemical properties, 

medium composition and delivery, mechanical stimuli) (Fig. 4). This new way to cultivate 

cells requires a redefinition of standard cell culture methods applied in two dimensions (2D) 

starting with cell seeding techniques and growth conditions (e.g. O2 levels). The development 

and follow-up of such controlled and constrained systems also calls for a multidisciplinary 

knowledge, relying on close collaboration between researchers and engineers specialising in 

biology (molecular and cellular), chemistry, physics and mechanics (of solid and fluid 

matter).  

Development of advanced methods for real-time analysis is required to characterize and 

monitor the physical and chemical environment of the cells and their interactions with the 

construct. No 3D in vitro culture strategy can provide a "complete" model of bone tissue (i.e. 

its different components). For this reason, rather than attempting to build the perfect 

general 3D bone model, research should focus on developing specific tools for the purpose 

of solving one or several well thought biological questions. To conclude, this approach will 

serve basic research, provide a test bench for the development of active molecules targeting 

bone cell as well as therapeutic applications (implantations). The trial-and-error approach 

mostly used to validate scaffold/biomaterial properties for implantation (e.g. composition, 
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architecture) or implant manufacturing (e.g. rhBMP2 dose, preculture in bioreactor before 

implantation) could be guided by results obtained in these in vitro 3D culture systems. 
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Tables 

Table 1: Effects of shear stresses on bone cells seeded on glass in parallel plate flow 

chambers 

 

References Cell types 
Shear 

stress level 
Shear stress regimen Observations 

Bakker, 2001 

(232) 

Mouse primary cells from 

adult long bone 

0.4 Pa, 0.6 

Pa and 1.2 

Pa 

Pulsating fluid flow, 

3Hz, 5Hz or 9 Hz, 

15min 
 

NO and PGE2 production 

Alford, 2003 

(233) 

Mouse osteocyte-like cell 

line, MLOY-4 
 

1 Pa Oscillating fluid flow, 

1Hz, 1h 

Phosphorylation of Cx43 

Up-regulation of GJIC 

Kapur, 2003 

(234) 

Human primary 

osteoblasts from mandible 

bone chips 

2 Pa Steady fluid flow, 

30min 

Increase of [
3
H]thymidine incorporation, ALP 

activity, phosphorylation of ERK and expression 

of integrin β1 
 

Bacabac, 2004 

(235) 

Mouse pre-osteoblast cell 

line, MC3T3-E1 

0.7 Pa Steady and pulsating 

fluid flow, 5 or 9Hz, 

15min 
 

NO production (NO2
-
 accumulated in the 

conditionel medium) 

Knippenberg, 

2005 

(236) 

Goat primary 

mesenchymal stem cells 

from adipose tissue 
 

0.6 Pa Pulsating fluid flow, 

5Hz, 1h 

Increase of NO production and upregulation of 

Cox2 gene expression 

Kreke, 2005 

(237) 

Rat primary bone marrow 

stromal cell culture 

0.16 Pa Steady fluid flow, 

5min, 30min or 

120min 

Increase of ALP activity, increase of the 

expression of osteopontin and bone sialoprotein 

mRNA, increase of PGE2 
 

Mullender, 

2006 

(238) 

Mouse pre-osteoblast cell 

line, MC3T3-E1 

0.18 and 

0.64 Pa 

Steady and pulsating 

fluid flow, 1Hz, 5Hz or 

9Hz, 15min 
 

NO and PGE2 production increased 

Kreke, 2008 

(211) 

Rat primary bone marrow 

stromal cell culture 

0.23 Pa Continuous and 

intermittent (5min 

on/5min off) fluid 

flow, 24h 
 

Increase of the phosphorylation of ERK and p38 

Increase of PGE2 

Grellier, 2009 

(212) 

Human primary bone 

marrow stromal cell 

culture 

1.2 Pa Steady fluid flow, 

30min and 90min 

Gene expression : ALP increased, Cx43 increased, 

Col I decreased 

Phosphorylation of ERK1/2 and p38 
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Table 2: Numerical models prediction of shear stress values induced by flow within scaffolds 

References Scaffold Numerical method 
Calculated mean wall 

shear stress 

Porter, 2005 

(240) 
 

Human trabecular bone Lattice-Boltzmann 0.05 mPa 

Boschetti, 2006 

(245) 

Polylactic acid (PLLA) porous scaffold Finite element method 3.7mPa (« Reference 

model ») 
 

Cioffi, 2006 (241) Biodegradable polyestherurethane foam 

scaffold 

Finite volume method 3.94, 3.73, and 3.28 mPa vs 

model 

Cioffi, 2008 (70) Polyethylene glycol 

terephthalate/polybutylene 

terephthalate (PEGT/PBT) foam scaffold 
 

Finite volume method 2.56 and 0.256 mPa vs inlet 

flow 

Sandino, 2008  

(308) 

Porous and biodegradable scaffolds : 

caclium phosphate and glass 
 

Finite element method 0.05 mPa (Modal values) 

Milan, 2009 (71) PLLA-glass scaffold Finite element method Between 0.04mPa and 

40mPa vs inlet flow 
 

Melchels, 2011 

(50) 

2 PLLA scaffolds with gyroid pore 

architectures 
 

Finite volume method 31 and 27 mPa 

Yan 2011, (229) Chitosan-hydroxyapatite scaffolds with 

regular structure 
 

Finite element method Between 1 and 7 mPa 

VanGordon, 2011 

(243) 

PLLA porous foam scaffold and 

nonwoven fiber mesh scaffold 

Lattice-Boltzmann Between 12 mPa and 25 

mPa vs inlet flow and 

geometry 
 

Maes, 2012 (244) Titanium and hydroxyapatite scaffolds Finite volume method 1.41 and 1.09 mPa 
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Table 3: Direct mechanical loading of cells seeded scaffolds – Modalities and effects 

Bouet.Table3 
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Figures 

 

Figure 1. Images from micro-computed tomography (m-CT) and scanning electron 

microscopy (SEM) of CaP scaffolds manufactured through standard replication of PMMA 

(Polymethyl Methacrylate) template, (A) without micropore, with micropores (B) before and 

(C) after 7 days of culture in perfusion bioreactor with mouse calvarial cells (steady flow of 2 

µL/min); the yellow arrow on image B1 displays the interconnection pore magnified in image 

B2.  
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Figure 2. Models of bioreactors. (A) Example of perfusion bioreactor in which the culture 

medium is forced through the internal interconnected porous network of the seeded 

scaffold. This can override diffusion limitations and enhance nutrient delivery and waste 

removal from the cultured cells. The setup includes a medium reservoir, a pump and a 

tubing system which feeds the culture chamber; (B) Example of perfusion bioreactor 

allowing the application of controlled dynamic compression to the scaffolds perpendicularly 

to fluid flow in a dissociated or combined manner. 
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Figure 3. Actors and mechanisms of cellular mechanosensing. Mechanical forces can be 

sensed and transduced by different means through membrane and/or organelle 

deformation or cell/ECM interactions.  
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(A) At the cell membrane level, mechanosensitive ions channels and caveolae (not yet 

demonstrated in bone cell but in endothelial cells (202)) detect fluid flow or membrane 

stretching. Ion channels respond by gating, leading to the entry of ions inside cell (203) and 

caveolae by flattening and activation of specific signaling pathways. Moreover, bone cells 

possess a single microtubule-based primary cilium which projects from the cell surface and is 

deflected by fluid flow (206). Its membrane contains receptors and channels which 

participate in numerous signaling events and play an important role in the mediation of 

flow-induced calcium deposition by osteoblasts (206). 

(B) Mechanical stimulation leads to cell cytoskeletal deformation including actin (stress fiber) 

reorientation, microtubule polymerization/depolymerisation and intracellular protein 

displacement (concentration) permitting their interaction and effecting the signal 

transduction of the original force (207). 

(C) As the main cellular mechanical detection mechanism, the transmembrane receptors 

integrins bind to ECM proteins (e.g. collagen, fibronectin) and activate a mechanosensory 

protein complex (involving talin, vinculin and focal adhesion kinase (FAK) linked to a kinase 

cascade system (203). 

(D) Cell-cell adhesion, via tight (1) and adherens junctions (2) as well as desmosomes (3), 

precedes and controls intercellular communication via gap junctions (4), transcellular 

channels formed by the matching of connexin protein complexes between two neighboring 

cells. Gap junctions are involved in the propagation of intercellular calcium waves which 

activate mechanosensitive signal transduction pathways (205).  

(E) The multiple transduction signal pathways are integrated by the nucleus and induce 

changes in gene expression and protein production leading to cell behavior adaptation. 
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Figure 4. Schematic representation of the key elements of in vitro 3D culture model 

including: cell type choice depending on the goal of the study, main scaffold and bioreactor 

features needed, as well as characterization tools.  

Abbreviations: AA = ascorbic acid, βGP = β-glycerophosphate, ALP = alkaline phosphatase, 

CTX = carboxy-terminal collagen crosslinks, PINP = amino-terminal propeptide of type I 

collagen, OCT = optical coherence tomography, micro-CT = micro-computed tomography. 

 

 

 

 

 


