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Abstract

In this paper we propose an exoskeleton control method for adaptive learning of assistive
joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt
the assistive joint torque behaviour in a way that the muscle activity is minimised. The user
can then relax while the exoskeleton takes over the task execution. If the task is altered and
the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to
the new task execution so that the increased muscle activity caused by the new desired
task can be reduced. The advantage of the proposed method is that it does not require bio-
mechanical or dynamical models. Our proposed learning system uses Dynamical Move-
ment Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated
using Locally Weighted Regression. Then, the learning system is combined with adaptive
oscillators that determine the phase and frequency of motion according to measured Elec-
tromyography (EMG) signals. We tested the method with real robot experiments where sub-
jects wearing an elbow exoskeleton had to move an object of an unknown mass according
to a predefined reference motion. We further evaluated the proposed approach on a whole-
arm exoskeleton to show that it is able to adaptively derive assistive torques even for multi-
ple-joint motion.

Introduction

The enormous potential of robotic mechanisms has been partially realised in industry where
they perform various repetitive tasks. While being very useful, these robots are designed to
mostly work separately from the humans. In future we expect to move the robots from the
structured industrial environments into the human daily lives. Two of the main research fields
pursuing this goal are service robotics and rehabilitation robotics where the robots are expected
to work with the humans and adapt to their behaviour. A promising direction in these areas
are exoskeleton assisting devices that have been developed in the last decades [1]. These robotic
mechanisms are designed to enclose the human limbs and augment their existing capabilities
or substitute the impaired ones by adding additional power to the joints.
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The development of powerful, efficient, adaptable, lightweight and low-cost mechanisms
[1-8] is imperative in achieving applicable exoskeletons and fulfilling the goal of integration of
robots into our daily lives. On the other hand, equally important are the control methods that
provide the necessary interface between the human user and robotic mechanism. The control
framework should be able to predict the human intentions and apply them to the mechanism
at the correct time to achieve the desired human-robot cooperation and co-adaptation.

Some researchers proposed control methods where the human intention was detected
through the use of human-robot interaction dynamics. In one such example, Pratt et al. [9]
built a knee exoskeleton called RoboKnee that was powered by series elastic actuators. They
measured the change of the spring element length in-between the load and the motor to deter-
mine the direction and magnitude of the motor force. Kong and Jeon [10] controlled the assis-
tive behaviour of lower-limb exoskeleton based on the pressure measured between the human
limb and exoskeleton frame. In another instance, Berkeley Lower Extremity Exoskeleton
(BLEEX) [3] was controlled by a hybrid approach [11] to achieve assistance in different phases
of the gait cycle. This method used inverse dynamics model in combination with positional
controller in stance phase, and positive-feedback based sensitivity amplification controller in
the swing phase. Tsagarakis and Caldwell [5] proposed an impedance control scheme for an
upper-limb rehabilitation exoskeleton. Ronsse et al. [12] and Gams et al. [13] used dynamical
models to support elbow and knee movements, respectively. One of the advantages of the
above-mentioned control methods is that they can operate based on the signals measured on
the exoskeleton.

Measuring interaction dynamics and using inverse dynamics models can be an effective exo-
skeleton control approach to assist the able-bodied human subjects. However, the nature of such
methods may not be suitable in certain cases, as the user must be able to produce a certain torque
in the joints to initiate the motion before the exoskeleton can offer support [14]. If the users are
unable to produce sufficient torques in their joints, the robot may not be successfully controlled.
This disadvantage can be avoided by measuring human intention from biological signals that
are sent from the central nervous system (CNS) to the motor units. A non-invasive surface elec-
tromyography (EMG) provides a convenient way to extract the muscle activation commands by
detecting the electrical potentials on the skin above the muscles. EMG signals have been success-
tully applied in exoskeleton control in the past [2, 14-20]. The crucial advantage of EMG-based
methods is that even if the subject is unable to produce sufficient joint torques, the intention of
the human user can still be read and consequently the exoskeleton can be controlled. This is
under the assumption that EMG signals with sufficient information can be extracted. Due to the
advantages of biological signals, we selected EMG-based biofeedback in our method.

Several EMG-based exoskeleton control methods are using biomechanical models to esti-
mate the output joint torque based on the muscle activity measured by EMG [14, 15, 18, 20].
As an alternative to biomechanical models, some researchers proposed the use of artificial neu-
ral networks to learn this complex relation [16, 21] or statistical learning algorithms for classifi-
cation of different action modes or motion patterns from the measured EMG signals [22, 23].
On the other hand, some studies [2, 17, 19] showed that a simple proportional mapping
between EMG-based muscle activity and control output can achieve satisfactory control results.
The concept of these methods is to amplify the current human behaviour, which requires a
continuous muscular effort even if the task is repetitive. In case of repetitive tasks, where the
joint motion is periodic, it is reasonable to offload the human user of some of the effort by
learning and repeating the desired motion.

If the joint motion is repetitive, it is convenient to encode it with trajectories and then repro-
duce them. Dynamical Movement Primitives (DMP) is one of the methods for parametric
representation of trajectories [24, 25]. Frequently, the phase and frequency of trajectories are
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extracted and controlled by Adaptive Frequency Oscillators [26-29]. The adaptive oscillators
have been also used in exoskeleton control. For example, Ronsse et al. [30] used adaptive oscil-
lators to adapt the frequency of the positional trajectories that were learnt according to the sub-
ject’s motion. The method estimated the assistive joint torque based on the difference between
the current position and predicted phase-shifted future position.

In other instances, researchers used adaptive oscillators to directly control the frequency of
predetermined feed-forward torque behaviour. Ronsse et al. [12] and Gams et al. [13] used
adaptive oscillators to control the phase of exoskeleton assistive torque estimated by inverse
dynamics models. Similarly, Aguirre-Ollinger [31] used adaptive oscillators to control the
phase of periodic hip joint torque profile that was previously estimated from the measured
human muscle activity. Aforementioned examples of periodic exoskeleton assistance used the
adaptive oscillators to drive the phase and reproduce the model-determined or pre-estimated
joint torque behaviour at a certain frequency. During the execution of the task, the robot
behaviour adapts to the human pace by modulation of frequency of given periodic torque pro-
file. However, if the human changes the behaviour, for which model or pre-estimated torque
trajectories do not exist, then the new models/trajectories need to be obtained. This requires
switching from human-assistance operation mode to a mode where the new models/trajecto-
ries can be estimated.

Contrary to [12, 13, 31], in this paper we propose an approach that is not based on just
repeating the pre-modelled or pre-estimated torque behaviour. Our control method dynami-
cally adapts the shape of the robot joint torque trajectories in accordance to the current human
behaviour. Rather than using muscle activity to estimate the torque profile as in [31], we use
muscle activity as an information in which direction should the controller adapt the learnt tor-
que trajectories to minimise that muscle activity in the corresponding phase of periodic cycle.
The key advantage of the proposed method compared to [12, 13, 31] is that it does not require
to switch from assisting to learning mode if a new exoskeleton behaviour is required. The new
exoskeleton feed-forward behaviours are gradually formed during the operation mode.

The proposed method is similar to positive-feedback controllers in a sense that both use
positive feedback signal. However, a crucial conceptual difference is in how the feedback is uti-
lised. In positive-feedback controllers the feedback is used in a direct fashion to control the
motion (measured torque amplification, EMG-to-torque mapping, etc.). On the other hand, in
our method it is the learnt feed-forward behaviour that controls the motion, while the feedback
is (only) used to gradually update the feed-forward behaviour. Therefore, the proposed method
primarily a feed-forward control scheme, while positive-feedback controllers are primarily a
tfeedback control scheme. As the proposed method is primarily a feed-forward control scheme
it inherits some of the robustness of the feed-forward control and is not as easily prone to feed-
back-related instabilities as positive-feedback controllers.

An advantage of the proposed method is that it does not simply amplify the effort (i.e. tor-
que, motion) produced by the user. Instead, it aims to take over the effort required for the task
execution and therefore allows the exoskeleton to move and execute the task even when the
human muscles are relaxed. Compared to positive-feedback control framework, where contin-
uous muscular effort is required to control the exoskeleton, our method requires less muscular
effort from the user in case of sustained periodic tasks. In addition, compared to methods that
require inverse dynamics models [3, 5, 7, 11-13] or EMG-to-torque estimation models [14, 15,
18, 20], our approach is model-free and does not require time-consuming and error-prone
modelling and calibration processes. The adaptation of the joint torque profile based on the
minimisation of human muscle activity feedback bypasses the need of human, robot and task
dynamics models. The method provides the means to acquire the desired trajectories even
when dynamical models are not available.
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We utilise periodic DMPs to encode torque-control trajectories and couple them with adap-
tive oscillators to control their phase and frequency. The existing DMP learning was modified
in order to achieve a mode of operation where the trajectory gradually adapts based on the
human biofeedback. The muscle activity feedback provides information on how the assistive
exoskeleton trajectory should be updated to minimise that feedback. This allows the human
user to adapt the periodic trajectories of motion during the task execution. The proposed learn-
ing approach aims at making the exoskeleton adapt to humans and assist them in a desired
repetitive task. Compared to the positive-feedback framework methods, in our approach the
user does not need to constantly produce high effort. Instead, the robot takes over the execu-
tion of the periodic task when no changes are required. The user only needs to make an effort
when the learnt behaviour is to be modified. The proposed method provides a human user
with the ability to update the trajectory in real-time through the use of biofeedback when the
circumstances call for modifications. Additional advantage is that the learnt behaviour can be
stored for their immediate reproduction in future.

The main goal of this paper is to propose and validate the exoskeleton control method. We
see a potential applicability of this approach in some power-assist and rehabilitation scenarios.
For example, suitable tasks in case of power-assist may include: walking, where in case of cov-
ering a longer distances the exoskeleton behaviour is periodic; repetitive household tasks such
as wiping a table; and industrial tasks such as picking heavy objects from a conveyor belt. Some
rehabilitation exercises include repetitive training [5-7, 32, 33] and could be performed using
the method proposed in this paper. To validate the method we designed several experiments
with a general task of moving an object with unknown mass. This task can relate to many daily
human arm tasks or rehabilitation exercises. The experiments included qualitative analysis
using a trained subject and a multi-subject analysis.

Hardware Setup

The experiments were performed on two different mechanical systems. First we tested a general
feasibility of the proposed approach by performing experiments on an elbow exoskeleton in
forearm motion assistance. To show that we can deal with more complex tasks, we then
expanded the setup to a whole-arm exoskeleton using two active degrees-of-freedom (DoF).
Both systems operated at a frequency of 250 Hz. In the end we performed a multi-subject anal-
ysis on the elbow exoskeleton to examine the applicability of the method on a wider range of
users.

The elbow exoskeleton [34] (see Fig 1, top) that we used in the initial series of experiments
was developed at BRI ATR and was mainly designed for rehabilitation. It was driven by two
antagonistically working Festo MAS-40 pneumatic artificial muscles (PAM), which were con-
nected to a rotational joint by string tendons. For the given weight lifting tasks only the upper
PAM was employed, considering the acceleration in downward direction beyond the gravity
was not required/desired. A load cell was fixed in-between the string and the muscle to measure
the torque induced into the joint. The radius of the joint was 0.024 m. The human forearm was
enclosed by a plastic base, which was previously shaped to fit the subject’s forearm. The length
of the exoskeleton main forearm segment was 0.3 m. The tip of the segment allowed mounting
of additional extension parts where the weights were fixed.

The whole-arm exoskeleton [35] (see Fig 1, bottom), developed at BRI ATR, had 3 active
joints: shoulder, elbow and wrist flexors/extensors. Each joint is actuated by two antagonisti-
cally working PAM:s located separately from the arm. The actuation was done through bowden
cables connected to the joints. The length of the arm segment was 0.263 m, the length of fore-
arm segment was 0.252 m and the length of artificial hand was 0.2 m. During the experimental
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Fig 1. Exoskeleton systems used in the experiments, developed at BRI ATR. The top photo shows the
elbow exoskeleton [34] and the bottom photo shows the whole-arm exoskeleton [35].

doi:10.1371/journal.pone.0148942.g001

evaluation we considered an end-effector at the human palm, approximately 0.055 m from the
robot wrist joint. The joint radius of shoulder joint was 0.05 m and of elbow joint 0.038 m. The
human arm was fixed to the robotic arm segments by straps.

We controlled the torque produced in the joints by the pressure inside PAMs. Previously
some researchers used complex feed-forward models to define the relation between air pressure
and resulting muscle force [36, 37]. The same internal pressure produces different forces at dif-
ferent muscle lengths due to the change in volume. The models must predict the necessary con-
trol pressure inside the muscle to produce the desired output force at different muscle lengths.
Modelling can be difficult due to the highly non-linear relation between these control variables
and influence of other mechanical effects. Deviations between the real and predicted behaviour
may cause errors and undesired behaviour in torque-control mode. A measured force feedback
may be implemented to compensate the errors in the feed-forward model [5, 38-41]. However,
additional force sensors may significantly increase the cost and applicability of exoskeletons. In
addition, the feedback loop may be prone to induce unwanted delays and oscillations if the
measured force is noisy.

By using the proposed control method, it is possible to bypass PAM pressure-to-torque
models by directly learning the pressure trajectories instead of torque trajectories. The
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adaptable nature of the proposed method shapes a pressure trajectory that produces the neces-
sary torque to minimises the muscle activity feedback signal. If the produced robot joint torque
deviates from the torque required to compensate the desired human joint behaviour (i.e.
human still has to produce some effort), the muscle activity feedback should update PAM pres-
sure to appropriately adapt the torque. To demonstrate this advantage we decided to directly
learn the pressure trajectories.

Control Method

The basic idea/concept of the proposed exoskeleton control approach is to minimise the
human muscle activity feedback by learning the appropriate assistive torque behaviour in the
joint. In this sense, the control approach is mainly feed-forward based, while the feedback from
the human user is used to adapt the learnt feed-forward control policy. We can describe the
single joint equilibrium dynamics as

() +1.(8) = 1(9), (1)

where 7,(¢) is a phase-dependant learnt feed-forward torque produced by the exoskeleton,
T(¢) is the torque produced by the human muscle and 7,(¢) is the torque of the load and other
dynamics at a given phase ¢.

The current torque 7,, produced by the muscle is a function of muscle properties y and mus-
cle activation level A [14]

T, = (1, A). (2)
A simplified single-muscle expression that describes the proposed control approach is given as
Ati(¢) = G(A™1(9)), (3)

where At* is the change of the learnt exoskeleton torque t* at a given phase ¢ in the current
cycle/iteration k based on the muscle activity A*™ in the previous cycle/iteration. Function G
maps the muscle activation level to the change of learnt torque.

According to the properly selected function G, this system will minimise the muscle activity
as measured by EMG. If the human muscle has to produce the torque 7, to compensate the
load 7, the activation level A is non-zero and Az, will be changing the exoskeleton learnt torque
T, until it compensates 7,,,. Assuming that t; is fully compensated by the exoskeleton, then the
muscle activation level A should be ideally zero. Since muscle activity related EMG reading is
non-zero even when muscles are relaxed, various bias or threshold techniques should be
applied to ensure A is zero when the muscle is relaxed. When A falls to zero, Az, should become
zero and the leant behaviour will endure until some non-zero A is produced either by the
change of load/conditions or by a voluntary intention of the human. For example, if the fre-
quency of the already learnt motion is increased then the currently learnt torque throughout
the phase will not match the new dynamical behaviour and the human muscles will have to
compensate until the torque trajectories are adapted.

Note that Eqs (1)-(3) describe a simplified single-muscle case for purpose of illustrating the
concept. Therefore, in this example the learnt torque can only increase since muscle activity
cannot be negative. For bi-directional change of the learnt torque, a signal composed of antago-
nistic pair of muscle activations is required. This is explained in the next section.

Assuming that the human motion and behaviour are stable, we can analyse the stability of
simplified model of our approach using Eqs (1)-(3). At the beginning, the human muscle has
to compensate the entire torque of load 7; while the learnt exoskeleton torque 7, is zero. Theo-
retically, our approach described by Eq (3) will be stable if the mapping function G updates the
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PHASE

exoskeleton torque 7, by less or equal the torque of load 7;. If the update is equal to the torque
of the load 7, then the exoskeleton torque 7, takes the entire load, the muscle activity A is zero
and the updating stops (system is settled down). If the exoskeleton torque 7, is larger than the
torque of the load 7; then the system could potentially become unstable. However, since human
is coupled with the exoskeleton, his/her reaction will trigger new torque updates, to perform
desired task and keep the system stable. To theoretically determine the exact value of G limit
one would require models of the system. Since in our method we do not have/use models, we
have to empirically determine the appropriate value range of G. This should be done on a con-
servative basis so that the adaptation is gradual and therefore the system operates well within
the stability limits.

The stability of the system can be also affected by the execution frequency (i.e. change of
phase ¢). Several factors should be considered when analysing the upper frequency bound.
Human neural feedback delay [42] and dexterity of the individual user limit the human
response time. The delay in pneumatic actuators limits the response time of the exoskeleton
[41]. Feasible execution frequency upper bound is also affected by the dynamical aspects, such
as task (especially motion range), load, exoskeleton limb, human limb and other conditions.
High execution frequency may result in very high inertial forces that cannot be physically pro-
duced or sustained by the robot or human. Without the exact models of the system under the
given task/conditions, the exact frequency bound cannot be obtained. Since in our method we
do not have/use the models, we have to determine this bound empirically on a conservative
basis.

The practical implementation of the proposed exoskeleton control system for periodic tasks
is shown in Fig 2. It is based on learning and updating the trajectories of motion in real-time.
Pressure trajectories are shaped through the human muscle activity feedback signals and con-
trol exoskeleton joint torques. To encode pressure trajectories we use periodic Dynamical
Movement Primitives [25] which offer parametric representation. Among the key advantages
of DMPs are that they can represent both point-to-point and rhythmic movements, are

ESTIMATION
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PHISICALLY COUPLED

MUSCLE
ACTIVITY

ESTIMATED
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2= ROBOT| |HUMAN

FEEDBACK

DMP
SYSTEM
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TRAJECTORY

BIOFEEDBACK

SENSORY SYSTEM

Fig 2. Schematic presentation of proposed adaptive exoskeleton control system. The human is included into the robot control loop through EMG-
based biofeedback and DMP learning system. DMP system was made to minimise the EMG-based biofeedback by generating appropriate periodic feed-
forward exoskeleton control trajectories. The adaptive oscillators are used to extract the phase and frequency information from human biofeedback and
modulate the phase and frequency of the learnt feed-forward trajectories.

doi:10.1371/journal.pone.0148942.9002
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learnable, are not explicitly dependant on time, are robust to perturbations, can include cou-
pling terms to realise closed-loop reactive behaviours, and can easily be modulated on-line to
change various movement characteristics [24]. Some of these properties can be achieved by
spline methods that use interpolation techniques to connect several stored via points. However,
they are time-based, susceptible to perturbations and their modulation is computationally
more costly compared to modulation of DMP where only a few parameters need to be updated
[24]. Another reason for choosing DMPs was the existence of extensive studies on their cou-
pling with Adaptive Frequency Oscillators [27-29].

Shaping and reshaping of the desired trajectories was done by Locally Weighted Regression
[43]. We employed Adaptive Frequency Oscillators [27, 28] to estimate periodic parameters of
the output trajectories. The adaptive oscillators allow the human user to control the phase and
frequency of the trajectories through the selected biofeedback signal.

Biofeedback-Based Control Signal

The biofeedback we used to adapt the pressure trajectories was obtained through surface EMG.
We attached EMG electrodes to the skin over the relevant muscles to extract the information
about the individual muscle activity in the antagonist pairs. Each measured EMG signal was
rectified and filtered by a 2nd-order Butterworth low-pass filter. The processed signals were
then normalised using a classical isometric Maximal Voluntary Contraction (MVC) method
[44, 45]. The amplitude normalisation minimises the effects of various variability factors, such
as electrode configuration, and enables comparison between EMG signals [45]. Muscle activa-
tion levels for each muscle in antagonistic pair were obtained by

EMG,(t) — B

0<At) :ﬁﬁl, (4)
1 1
EMG,(t) — B

0<a( —HEAl e (5)
2 2

where A(t) and A,(¢) are a pair of muscle activation levels, while EMG; () and EMG,(t) are a
pair of processed EMG signals extracted from agonist and antagonist muscle, respectively.
MVC is the EMG signal produced by the maximal voluntary contraction of the muscle and B is
the EMG signal measured when the muscle was relaxed. Bias B makes the muscle activation
feedback equal to zero when muscle is in a relaxed state, which in turn stops the trajectory
adaptation when exoskeleton takes over the task execution. Parameters MVC and B were
obtained by averaging the measured EMG signal over a period of 3 seconds [44].

We combined the two antagonistic pairs/sets of muscle activity signals into a single feedback
signal that was used to shape the control trajectory for the corresponding exoskeleton joint.
Activation level of each muscle in the antagonistic pair defines the update direction for the tra-
jectory of the corresponding joint. The adaptation feedback signal is defined as

U(t) = G,(A,(1) — Ay(1)), (6)

where G, is a scaling factor (related to function G from Eq (3)) that determines the intensity of
the DMP trajectory update.

Feedback signal U(t) becomes the update value in the proposed DMP learning system. The
goal is to adapt the joint torque trajectory and therefore gradually minimise the respective joint
muscle activity required to perform the desired task. If the muscle activation level is high at a
given phase of the trajectory, the feedback U(f) will adapt and reshape the trajectory in that
region in a way that the produced torque in the robot joint will assist the human muscle in the
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desired task. The direction of the change depends on the combined muscle activity feedback
signal acquired from Eq (6). If the agonist muscle has a predominant activation A;(t) > A,(t),
the feedback U(#) will be positive and trajectory will update in a positive direction at that phase.
In the opposite case, i.e. when the antagonist muscle has a predominant activation A,(t) >
A,(t), the negative change of the trajectory will occur.

In this case, we selected a constant gain G,, as the mapping function G between muscle acti-
vation A and feedback signal U used for adapting the trajectory. The mapping could follow
some other function G. For example, additional components could be added to damp the
potential abrupt changes of U. However, the recursive regression update formula (see Eq (15)
in the next section) and the DMP system dynamics inherently result in smooth trajectories and
act similarity to a low-pass filter, therefore additional components were not necessary.

For the purpose of validation of the proposed control method, we used MVC normalisation
based muscle activation model (descried by Eqs (4) and (5)). We relied on the human subject
to adapt and compensate/minimise any practical deviations from the model. Since the human
is inside the robot control loop, he/she can utilise the sensorimotor learning ability to adapt to
controlling the robot under the given conditions [29, 46]. The proposed exoskeleton control
approach actively adapts itself to the human behaviour through the use of human biofeedback.
In return, the human sensory information (visual, tactile, proprioceptive) provides the feed-
back about the impact of human control signals on the current robot behaviour, which allows
the subject to learn and correct the appropriate control policy within the given setup. However,
more complex models of human muscle activation can be employed to cope with limb configu-
ration related variations [47]. In addition, various techniques can be applied to further reduce
the effects of other common surface EMG problems, such as baseline drift, noise and move-
ment artefacts [48].

Trajectory Encoding and Updating

Dynamical Motion Primitives (DMPs) [25] are based on a second order differential equation
system described as

2 =Qapf(-y) —2) + 1), (7)

y =g, (8)

where y is the quantity we wish to encode with the DMP, Q is the frequency, fis the shape func-
tion, which appropriately modulates the second order differential equation, and o and 5 are
positive constants. In our case, the trajectory y is the desired pressure control trajectory p. We
selected parameters o = 8 and 8 = 2 according to [27]. The main difference between periodic
DMP and point-to-point DMPs is that the time constant related to trajectory duration is
replaced by the frequency of trajectory execution (refer to [24, 25] for details). In addition, the
periodic DMP must ensure that the initial point (¢ = 0) and the final point (¢ = 27) coincide in
order to achieve smooth transition during the repetitions. Shape fis defined with Gaussian ker-
nels according to the following equation
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Gaussian kernel y;(¢) is phase dependant and defined as
Yi(¢) = oS oma, (10)

where parameter h is the width of the Gaussian kernel, ¢; are the uniformly distributed centres
of the base functions within the phase range (i.e. between 0 and 27) and N is the number of
weights. The selection of the number of weights should be based on the desired resolution of
the trajectory. In our experiments we used 25 weights. Refer to [24, 25] for details.

We applied Locally Weighted Regression [43] to learn the trajectory. In a standard periodic
DMP setting [25, 27], the desired shape f; is approximated by solving

fo=2 (B - 3). )

where y, is some demonstrated input trajectory that needs to be encoded. Weights w; of Gauss-
ian kernel functions y; can be updated using the recursive least squares method [43] with for-
getting factor A based on the error between the desired trajectory shape and currently learnt
shape [27]

wi(t+1) = wi(t)+WLP(t+ Dre(t), (12)

e, (t) = fu(t) = w,(t)r, (13)

P(t+1) :%<Pi(t) —%) (14)

where the initial state of the parameters are w;(0) =0 and P,(0) =1 fori=1, 2, ..., N. The for-
getting factor was set to A = 0.9995. Refer to [43] for details on parameter setting. Parameter r
in the DMP system is used to modulate the amplitude of the periodic signal [25]. In our case
we set it to = 1 and do not change it afterwards.

The standard DMP learning approach as proposed by Gams et al. [27] approximates the
shape f4(t) of the input trajectory y, by changing the weights of Gaussian kernel functions. The
updating of the weights is performed in such a way that the difference between the reference
trajectory and the DMP is reduced at every control step. Instead of providing a reference trajec-
tory, Petric et al. [49] defined the desired direction of trajectory modification e,(f) through
pointing gestures, enabling the user to interactively alter existing DMPs. Here we modified this
approach so that instead of pointing gestures, the muscle activity feedback signal provides
information about the direction of joint torque change. With this we made a practical imple-
mented our proposed exoskeleton control approach based on minimisation of human muscle
activity feedback through trajectory adaptation. The human was included into the robot con-
trol loop by replacing the error calculation in Eq (13) with human muscle activity feedback U
(t) as defined by Eq (6)

wi(t+1) = w(t)+¥PL(t+ r(r)U(s), (15)

Eqs (7)-(10) and (14) remain as before, while Eqs (11)-(13) are not used. Instead, Eq (15) is
used to modulate the weights in Eq (9). Muscle activity U(t) closes the loop and now acts as an
adaptation factor for changing the weights of Gaussian kernels that define the shape of the tra-
jectory. A positive U(t) increases, while a negative U(f) decreases the values of weights at a
given section of periodic trajectory. If the shape of assistive trajectory does not provide enough
assistive power, the human has to exert muscle activity to produce the rest of the power
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required to achieve the desired task. In turn, muscle activity feedback then increases the magni-
tude of assistive trajectory until U(f) is minimised.

Adaptive State Estimation

The joint torque-control trajectories were then coupled with adaptive frequency oscillator. The
oscillator extracted the periodic parameters of the task (frequency, phase) from the task-related
biofeedback signal and applied them to the trajectory learnt by the DMP system. The adaptive
oscillator calculates phase ¢ and frequency Q as [27, 28]

¢ =Q—K-e-sin(¢), (16)

Q =-K-e-sin(¢), (17)

where parameter K is a positive-value coupling constant and e is a variable that contains an
input signal used for estimation. In our case, variable e is given as a difference between biofeed-
back signal U and an internal estimation of that signal U

e=U-U, (18)
where U is obtained by Eq (6) and is the input of adaptive oscillator from which the phase and
frequency are extracted. Estimation U is performed by the use of Fourier series [28]

M

U = Z(occ cos (cp) + f,sin (co)), (19)

=0

where M is the size of the Fourier series. Fourier series parameters are learnt in the following
manner

&, =ncos(co) -e, (20)

[3[ = nsin (co) - e, (21)

where parameter 7 is a learning constant. We selected K = 10, M = 10 and 1 = 2. Refer to [28]
for details. The estimated phase ¢ and frequency Q were used to control the currently learnt
DMPs (in Egs (7)-(10)). Alternatively, the phase and frequency could be controlled externally
by some other feedback modality.

Previously some researchers that utilised the adaptive oscillators in inverse dynamics based
exoskeleton control used positional signal (joint angle) as an estimation of the task phase and
frequency [12, 13]. In case of exoskeleton, the human limb and robotic mechanism are physi-
cally coupled. If the learnt assistive trajectory induces a torque into the joint, the human subject
has to produce an opposing torque to change the joint angle. In [12, 13] the exoskeleton com-
pensated only a portion of the task load and frequency estimation through the joint angle was
feasible. In our case however, the exoskeleton fully takes over the task load and the assistive tor-
ques are large. In such case the frequency control can be difficult. In addition, fighting large
assistive torques with the aim to control the frequency produces muscle activity that may
change the shape of the trajectory in undesirable way. In case of [12, 13] this was not the prob-
lem because muscle activity feedback was not used. We performed several preliminary experi-
ments with joint angle signal for frequency extraction. The subjects experienced difficulties in
altering the existing trajectories. Based on this and the above-mentioned specifics, we decided
to use muscle activity feedback U(#) itself as a frequency extraction signal.
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Overview of Experiments

In the experiments the task of the human was moving an object of an unknown mass from one
position to another position at a certain frequency, while the task of the exoskeleton was adapt
to the human and offload the muscular effort. In the first set of experiments an experienced/
trained subject was used to provide a qualitative analysis of the control method and highlight
the main features. The method was validated on the elbow exoskeleton and the whole-arm exo-
skeleton systems. In the second set of experiments we used multiple healthy subjects to esti-
mate its application in general use. These experiments were performed on the elbow
exoskeleton system. The obtained experimental data was used to perform a statistical analysis
regarding the method’s performance in terms of amplitude and frequency accuracy and adap-
tation time.

The feedback signal for updating each joint DoF trajectory was obtained according to Eqs
(4)-(6) through the measurement of EMG signals of antagonist pairs of muscles in the corre-
sponding joint. For the elbow exoskeleton we constructed the muscle activity feedback signal U
(t) using the information of the human elbow joint behaviour. The antagonist pair of muscles
that rotate the elbow joint and consequently forearm are biceps brachii and triceps brachii.
Biceps muscles are performing flexion (i.e. decreasing the angle between arm and forearm),
while triceps perform extension of the elbow joint (i.e. increasing the angle between arm and
forearm). We used one electrode for each muscle group in the antagonist pair of muscles (two
EMG channels altogether). We followed SENIAM [50] recommendations for the location of
electrode placements. Biceps activation corresponded to positive change of elbow joint torque
trajectory, while triceps corresponded to negative change.

In case of the whole-arm exoskeleton we used two active joints: elbow flexion/extension and
shoulder flexion/extension. For elbow joint we used the same antagonist muscle pair as in case
of elbow exoskeleton (two EMG channels). In case of shoulder joint control, we used the deltoid
muscles that are located around the human shoulder joint. The anterior fibres of the deltoid
are one of the primary flexors of the arm (i.e. lifting the arm). The activation signal from this
muscle group corresponded to a positive change of trajectory. On the other hand, the posterior
fibres of the deltoid are one of the primary extensors of the arm (i.e. lowering the arm). The
activation signal from this muscle group corresponded to a change of trajectory in negative
direction. We placed EMG electrodes to posterior and anterior deltoid (two EMG channels).
Altogether, four EMG channels were used for experiments on whole-arm exoskeleton. Elec-
trode placements were done in accordance with SENIAM recommendations [50].

Before the experiments we determined adaptation factor G, experimentally and set it manu-
ally. We first empirically determined the suitable local value range of the G,, for the given hard-
ware setup. We then defined several factors G, within that value range. For each subject we
performed preliminary trials using one of the predefined factors in each trial. Finally, we
selected one of the predefined factors based on subject’s preference.

Qualitative Validation Experiments
Elbow Exoskeleton

In the first experiment, the role of the exoskeleton was offloading the subject of muscular effort
during the execution of the selected task. We used elbow exoskeleton to assist the trained sub-
ject in positioning of an object of an unknown mass using forearm motion. The object was a
weight located at the subject’s hand. The task was to produce a reference motion defined at the
beginning of the experiment. The experiment plan, given to the subject, was composed of three
stages. In the first stage, the subject had to produce a motion amplitude in elbow joint between

PLOS ONE | DOI:10.1371/journal.pone.0148942 February 16,2016 12/26



el e
@ ' PLOS ’ ONE Adaptive Control of Exoskeleton Robots

L urm il MW\/\MWWWW

R ‘ W)

¥
kA
@
-80 I I I I
1.2 T T T T
11} 4
- 1.0 E
T 0.9} / i
a‘ 0.8 4
0.7} i
0.6}
0 10 20 30 40 50 60 70 80 90 100
time [s]

Fig 3. Results of experiment on elbow exoskeleton using a trained subject. The first graph shows commanded PAM pressure as it was learned by the
DMP system. The second graph shows the joint torque calculated based on the force measurement from the load cell. The third graph shows the human
muscle activity based feedback obtained from the measured EMG. The fourth graph shows the angle of the robot elbow joint as measured by the encoder in
the exoskeleton joint. The fifth graph shows the frequency of motion as extracted by the adaptive oscillator from the muscle activity feedback U. The given
referent states are highlighted by black lines.

doi:10.1371/journal.pone.0148942.g003

-30° and 0° at frequency of 0.8 Hz. Angle 0° corresponds to horizontal position of forearm
while the arm is parallel to the body. In the second stage, the reference amplitude was between
-50° and 0° and frequency 1 Hz. In the third stage, the reference amplitude was between -50°
and 20° and frequency 0.6 Hz. The state of amplitude and frequency with respect to the refer-
ence was displayed to the subject in real-time on a monitor in front. For clarity, these reference
states are highlighted by black lines in Fig 3. The state of the exoskeleton during the experiment
at the end of each stage is shown by a sequence of photos in Fig 4. Please refer to S1 Video for a
video of the experiment.

In the first stage, the subject had to start lifting the weight of the object to achieve the target
angle motion trajectory (see Fig 3, forth graph). At the beginning PAM pressure control trajec-
tory, as generated by the DMP system, was equal to zero throughout the entire phase (i.e. DMP
weights in Eq (9) were equal to zero). The pressure trajectory is plotted in the first graph of Fig
3. While the subject was executing the task, the proposed control system gradually adapted the
assistive behaviour of the exoskeleton to minimise the given muscle activity.
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Fig 4. Sequence of photographs taken during the experiment that illustrate the state of the
exoskeleton at the end of the 3 stages. Images in the first sub-row show the exoskeleton when it moved the
object to the lower reference position, while the images in second sub-row show it in the upper position.

doi:10.1371/journal.pone.0148942.9004

Initially, when the human started the effort of lifting the object the muscle activity feedback
U(t) was high due to the contraction of the biceps muscle that flexed the elbow joint to over-
come the gravitational force and other mechanical effects (see Fig 3, third graph). This feedback
then updated the values of the weights according to Eq (15), which reshaped the trajectory to
produce the assistive exoskeleton torque. When the human was lowering the object the muscle
activity of the biceps muscle decreased as the motion was assisted by the gravity. Consequently,
in this phase the DMP weights were updated considerably less as compared to the lifting phase.
This procedure was periodically repeated while the trajectory gradually adapted to reduce the
feedback signal.

The more assistive torque the exoskeleton produced, the less effort from the human muscles
was required and consequently lower the feedback signal was. The adaptation speed can be
controlled by the adaptation function G, from Eq (6). For this experiment we set it experimen-
tally to G, = 60. Alternatively, the subject can potentially control the update speed indirectly by
temporarily producing more/less effort than required for the given reference (i.e. temporarily
offsetting the reference), if that is possible within the given task. When the robot provided full
assistance (between 20 and 30 seconds), the feedback signal fell to zero and the trajectory
stopped updating. At that moment the subject was instructed to relax and let the robot perform
the learnt desired task until the reference changed in the transition to the second stage of the
experiment.

We can confirm the described behaviour by observing the measured force from the load cell
in-between PAM and the joint. We calculated the joint torque from the measured force and
plotted it in the second graph of Fig 3. When the human lifted the object unassisted during the
initial stage, the tendon between PAM and the joint was loosen and the force measured by the
load cell was zero (i.e. torque was zero). The control algorithm then adapted to the muscle
activity feedback by adding assistive power to the joint during the object-lifting phase. As PAM
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was gradually taking over the load, the tendon became stretched and the measured torque
increased. Measured torque reached the peak at the transitions between the object-lowering
and the object-lifting phase, as PAM had to compensate both gravitational force and inertial
force associated with the transition. In some cases, there is a decrease of the measured torque
as a result of non-ideal sine motion. For example, one such case was between 20 and 30 seconds
of the experiment where the lower-end motion angle had a slightly flatter shape. This cased a
momentary drop of angular acceleration, which caused a decrease of inertial torque and conse-
quently a decrease of measured torque.

The task was defined only by reference amplitude and frequency, while the shape of the
motion was not specifically prescribed. The subject successfully achieved the given task by pro-
ducing bell-shaped motion, which is known to be characteristic (optimal) for human motion
[51]. Thus, the learnt DMP successfully provided a reasonable torque to achieve the task
motion.

The last graph of Fig 3 shows the frequency as estimated by the adaptive oscillator from
EMG-based feedback. This frequency was used to control the execution frequency of the learnt
trajectory. We can notice that the frequency of the oscillator remains at the last value if the
muscle activity signal gradually falls to zero. We exploited this property of the adaptive oscilla-
tor to temporary keep the trajectory shape and make the exoskeleton reproduce the learnt
behaviour when the human effort was fully compensated by the robot.

After the first stage, we demonstrated the adaptability of the proposed system by instructing
the subject to change the existing trajectory. In the second stage, the subject had to expand the
motion angle range in the negative direction to reach the new amplitude reference. In this case,
the subject had to produce a negative muscle activity feedback. This was done by intuitively
pressing the forearm against the exoskeleton support base to produce a motion corresponding
to the new positional reference. The torque in the human elbow extension direction reflected
in the activation of triceps muscle. The feedback signal then gradually reshaped the trajectory
as seen in the time span between 30 and 40 seconds in the first graph of Fig 3. In addition, the
subject had to increase the execution speed to reach the new target frequency.

A similar task was then repeated in the third stage where the subject had to expand the
motion trajectory in positive direction to achieve the new angle reference. In this case, the
biceps muscle had to produce additional torque in the joint to increase the one that was already
produced by the robot in the lifting phase. At the same time, the execution frequency had to be
lowered to reach the new reference. This can be seen in Fig 3 between 60 and 85 seconds of
experiment time. The evolution of the trajectory updates during all three stages of the experi-
ment is shown in Fig 5, where the pressure trajectory is plotted as a function of phase.

Whole-Arm Exoskeleton

With additional DoF, the control of exoskeleton joint motion must be coordinated properly to
produce the desired arm end-effector motion. In cases of repetitive tasks, the frequencies of the
joint motion trajectories must be in synchrony to produce the desired periodic motion of the
end-effector. We used the robot’s shoulder and elbow joints to assist the corresponding human
joints in the object-moving task where a periodic point-to-point end-effector motion was
required. The object was a weight held in the human hand. The additional DoF allowed the
human to arbitrary move the arm’s end-effector in sagittal plane within the kinematic con-
straints of human and robot arm and perform the given task. Please refer to S1 Video for a
video of the experiment.

The human task in the experiment on the whole-arm exoskeleton was similar to the task in
the first experiment on elbow exoskeleton. We divided experiment into three stages and
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Fig 5. Control pressure trajectory updates as a function of phase. The graphs show trajectories as they were gradually learnt by the DMP system and
fed to PAM pressure controller. Each colour variation represents one periodic cycle. The time sequence is illustrated by the colour spectrum, where the
earlier trajectories are plotted with red and the later with violet colour. The left graph shows the first stage, the middle graph the second stage and the right
graph shows the third stage of the experiment.

doi:10.1371/journal.pone.0148942.9005

selected several reference points in the sagittal plane that the subject had to reach with the end-
effector (highlighted by the black points in Fig 6, second row graphs). In the first stage, the
lower reference point of the end-effector was set to (0.15, -0.55) m with respect to the shoulder
joint, while upper end-effector reference was set to (0.45, -0.25) m. In the second stage, the
lower reference changed to (0, -0.55) m, while the upper remained the same. In the third stage,
the lower reference remained as in the second stage, while the upper changed to (0.45, 0) m.
The reference frequency of end-effector motion for the entire experiment was set to 0.6 Hz
(highlighted with black line in Fig 7, last graph). The subject had a monitor in front to observe
the actual states with respect to the reference conditions. The adaptation factor G, was set
experimentally to 40.

In the first stage of this experiment, the subject had to start moving the weight of the object
to produce the end-effector trajectory that moved the object from one reference point to
another. Initially, the muscular effort (i.e. anterior deltoid for the shoulder and biceps for the
elbow joint) produced a high positive feedback signals Ug and U, which shaped the respective
assistive joint torque trajectories. In the second stage of the experiment, the subject was then
instructed to reach the new reference point in the lower end of the end-effector trajectory. Con-
sequently, the control method adapted the existing learnt trajectories to assist the subject in the
new motion. In the third stage, the task was to reach the new reference point in the upper end
of the trajectory. The angle readings in the fourth and eight graphs of Fig 7 confirm that the
subject was able to change the motion in joint space.

Fig 6 shows the results at different stages of the experiment. The graphs in the first row
show the end-effector motion at the end of each stage. Here the left graph shows the motion of
the end-effector at the end of the first stage of the experiment. In the middle graph there is the
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Fig 6. The three graphs in the first row show the end-effector motion at the end of there different stages of experiment (4 phases plotted for each).
The red colour represents the earlier while violet represents the later trajectories. The lower two graphs show the control pressure trajectories updated as a
function of phase for each joint.

doi:10.1371/journal.pone.0148942.9006

end-effector motion after the second stage. We can notice that the subject was able to adjust
the motion of the end-effector in accordance to the changing reference points within a certain
error range. This can also be confirmed by comparing the photographs taken during the exper-
iment in Fig 8. The change of the pressure trajectories for each joint as a function of phase are
shown in second and third row in Fig 6.

In the presented example, we used muscle activity feedback from a single joint (elbow) to
extract the control phase and frequency for both joints. We controlled both joint trajectories
with the extracted phase signal. With this we utilised the advantage of adaptive oscillators that
allows synchronisation of multiple task-related signals with a single phase-estimation signal.
Similarly, the human CNS can synchronise the different joint motion to produce a repetitive
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Fig 7. Results of experiment on whole-arm exoskeleton using a trained subject. The upper four graphs show the variables related to the shoulder joint.
The lower five graphs show the variables related to the elbow joint. The last graph shows the estimated frequency from the elbow joint muscle activity
feedback. Variable p corresponds to the commanded pressure learned by the DMP system, variable 7 to the joint torques calculated from measured forces in
the load cells, variables Us and Ug to muscle activity feedback signals from shoulder and elbow flexion/extension joints, variable © to measured joint angles
by the encoders and Q to the frequency estimated by the adaptive oscillator from Ug.

doi:10.1371/journal.pone.0148942.9007

behaviour of upper limb end-effector [52]. We tested a possibility of extracting the phase and
frequency for each joint individually. While the subject CNS was able to learn how to suffi-
ciently maintain the synchrony between the two joint frequencies after several experiments, it
imposes additional unnecessary effort on the exoskeleton operator.

Multi-Subject Analysis
Subjects and ethical statement

Eight healthy subjects participated in this study with an average age of 29.4 years (SD = 2.02
years), weight of 70.8 kg (SD = 2.01 kg) and height of 175.9 cm (SD = 1.29 cm). Prior to their
participation, the subjects were informed about experimental procedures, potential risks and
the aim of the study. Subjects signed an informed consent approved by Advanced Telecommu-
nication Research Ethics Committee (Nos. 730, 731). The study was approved by Advanced
Telecommunication Research Ethics Committee (Nos. 730, 731).

PLOS ONE | DOI:10.1371/journal.pone.0148942 February 16,2016 18/26



o ®
@ : PLOS | ONE Adaptive Control of Exoskeleton Robots

Fig 8. Sequence of photographs taken during the experiment that illustrate the state of the
exoskeleton at the end of the 3 stages. Images in the first sub-row show the end-effector when it moved the
object to the lower reference position, while the images in second sub-row show it in the upper position.

doi:10.1371/journal.pone.0148942.g008

Methods

The subjects were equipped with EMG electrodes as described in Overview of Experiments sec-
tion. The task of the experiment was to move an object using forearm and elbow joint accord-
ing to the predefined target amplitudes and frequencies. The first reference state was defined as
moving the object between the angle of -40° and 0° at frequency of 1 Hz. The second reference
state was defined as moving the object between the angle of -20° and 30° at frequency of 0.75
Hz. The reference and actual states were displayed to the subjects on a screen in real-time. To
avoid any effects between the performances of the two reference states that could affect the
comparison, we split the two reference states into two trials, with a fixed 10 minutes pause
interval in-between. In particular, we wanted to avoid a potential fatigue, caused by the execu-
tion of the first reference state, affecting the performance of execution of the second reference
state.

The experimental procedure was divided into two main modes: passive and active. In the
passive mode each subject was instructed to move the object unassisted (i.e. the exoskeleton
was passive) according to the two sets of reference states. In the active mode, the same was
repeated while the proposed exoskeleton control method was employed to assist and then take
over the motion. The subjects were first briefed about their experimental tasks. For each subject
we first performed a minimum of three preliminary training trials in order for them to adapt to
the exoskeleton system and control method. Adaptation factor G, was set experimentally and
tuned for each subject individually based on their preference.

In the analysis we compared the error between the given reference motion (i.e. amplitude
and frequency) and the actual motion produced by each subject during the experiments. The
amplitude error was defined as a deviation of the actual motion peaks from either the upper or
lower reference. We normalised the amplitude error to the reference motion range. The
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frequency error was defined as a deviation of actual frequency of motion from the reference
frequency for each sample time. We normalised frequency error to the given reference
frequency.

In the passive mode we averaged the amplitude and frequency errors over five sequential
periods of the experimental run. In the active mode, where the subjects controlled the exoskele-
ton using the proposed method, we averaged amplitude and frequency errors over five sequen-
tial periods after the muscle activity was minimised and the exoskeleton took over the
repetitive execution of the task. In active mode we also analysed the adaptation time that was
defined as a time from the beginning of the experiment to the moment where the subject’s
muscles were relaxed and the exoskeleton took over the execution of the task.

The average values of the error parameters from each subject and each reference state were
used in statistical analysis. A paired-samples t-test was used to determine whether there was a
significant difference between the means of amplitude and frequency errors in passive and
active mode. Differences between the errors were tested with post hoc t-tests with Bonferroni
correction. The level of statistical significance was set to 0.05.

Results

The results of experiments are shown in Fig 9. We define statistical parameters as: M is mean,
SE is standard error of mean; t and p are t-test parameters. On average, the amplitude error was
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Fig 9. Results of the experiment on multiple subjects. Graphs are showing normalised tracking error of amplitude and frequency with respect to the given
reference conditions in passive and active mode. Standard error of mean is marked with black.

doi:10.1371/journal.pone.0148942.9009
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larger in active mode (M = 8.26%, SE = 2.60%) compared to passive mode (M = 4.22%,

SE = 0.26%) for the first reference state. The difference —4.03% was statistically not significant:
#(7) = -2.32, p = .053. Comparing the amplitude error for passive (M = 4.53%, SE = 0.013%)
and active mode (M = 4.73%, SE = 0.28%) for the second reference state, the difference —0.20%
was statistically not significant: #(7) = -0.11, p = 91.

On average, the frequency was equally well maintained by the subjects in passive mode (1.
reference (M = 2.61%, SE = 0.58%) and 2. reference (M = 3.92%, SE = 0.39%)) and by the pro-
posed method controlling the exoskeleton in active mode (1. reference (M = 2.41%, SE = 0.46%)
and 2. reference (M = 2.38%, SE = 0.79%)). The difference between passive and active mode for
the first reference frequency 0.19% was not significant: #(7) = 0.18, p = .86. The difference for
the second reference frequency 1.54% was not significant either: #(7) = 1.34, p = .22.

Mean adaptation time in the active mode was 31.0 s (SE = 3.70 s) for the first reference state
and 31.3 s (SE = 3.29 s) for the second reference state. The adaptation time highly depends on
the selected adaptation factor G, which depended on the individual subject.

Discussion

The results of the experiments show that the proposed control method can be successfully
applied for solving the repetitive tasks. The users were able to utilise the control method to fol-
low the given reference motion amplitude and frequency with accuracy comparable to the
motion without the control method.

Results from multi-subject analysis indicate a larger amplitude error for the first reference
state compared to the second reference state when using the proposed control method (see Fig 9
graphs in the first row). One of the possible causes for this may be that the first reference state
experiments were performed first and consequently the subjects had less training compared to
the second reference state experiment. This could suggest that a human sensorimotor learning
was present during the experiments that allowed a co-adaptation between the human and the
exoskeleton system. The subjects could improve their use of the proposed control method in
terms of motion amplitude accuracy to a level comparable to the accuracy in passive mode.

The frequency error was roughly within the same range for passive and active mode. A
slightly worse performance in terms of reference frequency tracking was observed in passive
mode when subjects had to follow the second reference state (see Fig 9 graphs in the second
row). This might potentially be attributed to a slightly more challenging motion range
(between -20° and 30°) in the second reference state when subjects had to compensate the load
themselves (i.e. passive mode). The load torque is the highest around 0° as the gravity vector is
perpendicular to the lever (forearm). On other hand, the proposed method (active mode) can
maintain a stable frequency when the appropriate behaviour is learnt.

The adaptive nature of the method allows the user to change the learnt feed-forward exo-
skeleton motion in real time according to the changing reference conditions. The adaptation
rate of the exoskeleton is primarily defined by the adaptation factor G, of Eq (6). High G,
allows larger updates and consequently faster adaptation rate. However, larger updates corre-
spond to lower update resolution and may result in motion at lower accuracy. On the other
hand, lower G, yields higher update resolution and can be employed when more precise learn-
ing is required. However, this is at the expense of adaptation speed.

As of the current stage, the adaptation factor G, of Eq (6) was determined experimentally
and set manually. Future work will focus on developing more efficient methods to determine
and optimise this parameter for a given hardware setup and conditions. In addition, a supple-
mentary algorithm will be developed to enable automatic adjustment of this parameter based
on other possible feedback modality. Particularly interesting direction would be to investigate
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the possibility of using biofeedback based on electroencephalography (EEG) as an additional
command channel. This would give the user the ability to change the adaptation rate during
the task execution depending on the preference.

Due to primarily feed-forward nature, the proposed method inherits some of the drawbacks
related to feed-forward control, such as slow response to disturbances. While the method uti-
lises feedback control to dynamically adapt the feed-forward control, the trajectory adaptation
is gradual. For this reason the method is mainly suitable for tasks where gradual alterations are
required. On the other hand, it may not be responsive enough to handle some emergency situa-
tions and external disturbances on its own. One such emergency situation is the case where an
immediate stop at a certain point is required. This case can be solved by simply halting the con-
trol phase ¢ at that point [53]. A similar situation is the case of a sudden change of load (e.g.
object held in hand is suddenly dropped). If the proposed control method was used in a regular
mode, the user would have to exert an effort in the opposite direction of the previous load for
some time in order to gradually readapt and reduce the learnt trajectory. In such a case, it may
be more efficient to simply reset the trajectories by setting all DMP weights w to zero. Both sit-
uations can be potentially controlled by a higher-level controller or additional cognitive-level
modality (e.g. EEG, voice command, etc.). Another interesting direction for solving unpredict-
able non-periodic situations would be to integrate methods that can recognise different action
modes or motion patterns from the measured EMG signals [22, 23].

We shifted the frequency estimation from joint angle signal measured by the encoder to the
muscle activity feedback in order to achieve better controllability. However, there is still a con-
siderable coupling between the exoskeleton motion and muscle activity signal. Initially, some
of the the naive subjects in this study experienced some difficulties controlling the target fre-
quency using muscle activity feedback. Some training was required to become familiar with the
control using the proposed frequency adaptation subsystem. A future research direction will
focus on further improving the frequency estimation subsystem. The frequency can be also set
by some external phase-control signal [53]. For example, phase could be controlled by a cogni-
tive-level modality.

The method proposed in this paper mainly aims to solve and is best suited for exoskeleton
control during the execution of repetitive tasks where occasional modifications of execution
are required. This method could complement the control methods where muscle activity is
used to directly control the exoskeleton motion [14, 15, 17, 19]. These effort-amplification
methods are generally more responsive and provide a good control interface in cases of non-
repetitive tasks, sudden unexpected events and emergency situations. However, they require
continuous muscular effort even in case of repetitive tasks. On the other hand, our method
aims to minimise the user’s effort once the assistive trajectories are learnt. In addition, the
learnt trajectories can be stored for later reproduction. Compared to the control methods
based on dynamical models [3, 5, 7, 11-13], the proposed method does not require complex
models and adaptively derives the necessary feed-forward behaviour for specific tasks, hard-
ware and conditions. A trade-off between advantages/disadvantages should be considered
when selecting either method for specific tasks (refer to Table 1 for conceptual comparison
between different types of control methods). To exploit the advantages of different methods, a
higher-level controller would be required.

In our analysis we selected a task of moving an object of unknown mass as it can be consid-
ered as a basic and fundamental element of manipulation. It can relate to common activity-of-
daily-life tasks, such as object pick-and-place, table wiping, cutting vegetables, etc. While some
of the tasks, such as pick-and-place task, may usually not require periodic behaviour, the task
can still be learnt in a periodic manner and then the learnt trajectories can be repeated only
once whenever the same task has to be executed. On the other hand, table wiping or cutting
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Table 1. Conceptual comparison between different types of control methods.

responsive-ness model complexity continuous effort required adaptability
positive feedback high low/high' yes high
inverse dynamics low? high no? low®
proposed method low low no high

"Depending on whether biomechanical or other models are required.
2Assuming that the desired motion is controlled by a feed-forward trajectory.
3In case the existing model is not sufficient for a new task or conditions.

doi:10.1371/journal.pone.0148942.t001

vegetables tasks are generally periodic with minor corrections. While in table wiping or cutting
vegetables tasks, the gravity, object mass and changing arm configuration might not play as an
important role as in pick-and-place tasks, the load is similarly unknown and changing as a
result of interaction with the unstructured environment. Therefore, the adaptive nature of the
proposed method should be well suited for solving such tasks.

Conclusion

In the paper we proposed an approach for adaptive learning of exoskeleton joint torque behav-
iour. The approach uses EMG-based muscle activity feedback to include the human in the
robot control loop. Muscle activity is not an estimation of an output torque but rather an infor-
mation in which direction should the torque change to minimise the human muscular effort.
This essentially makes the robot joint torque behaviour adapt to the current human behaviour.
The proposed approach provides an interface between the human user and exoskeleton robot
in body motion tasks. We showed its feasibility on two different mechanical systems designed
for single and multiple DoF upper limb assistance.

The advantage of the proposed approach is that it can operate without predetermined
behaviour, EMG-to-torque models or inverse dynamics models. Instead, it dynamically forms
the joint torque trajectories to assist the operator in the desired task. If the task execution has
to be altered, the method can adapt the robot behaviour to the new conditions without the
need of breaking the operation. In case of using PAM actuators, the method can be used to
bypass the need of pressure-to-torque models. However, if a suitable torque control is available
or if different actuators are used, the method can be implemented to learn the torque directly.

Supporting Information

S1 Video. Video of qualitative validation experiments. The video shows the experiments on
elbow exoskeleton and whole-arm exoskeleton using a trained subject as described in the

paper.
(MP4)

Acknowledgments
We would like to thank Barry Ridge for narrating the supplementary video.

Author Contributions

Conceived and designed the experiments: LP TN TP AU JM JB. Performed the experiments:
LP. Analyzed the data: LP. Contributed reagents/materials/analysis tools: LP TN TP AU JM JB.
Wrote the paper: LP. Revised the manuscript: LP TN TP AU JM JB.

PLOS ONE | DOI:10.1371/journal.pone.0148942 February 16,2016 23/26


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148942.s001

@’PLOS ‘ ONE

Adaptive Control of Exoskeleton Robots

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

Dollar AM, Herr H. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-
Art. Robotics, IEEE Transactions on. 2008; 24(1):144—158. doi: 10.1109/TR0O.2008.915453

Kawamoto H, Sankai Y. Comfortable power assist control method for walking aid by HAL-3. In: Sys-
tems, Man and Cybernetics, 2002 IEEE International Conference on. vol. 4; 2002. p. 6.

Zoss AB, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton
(BLEEX). Mechatronics, IEEE/ASME Transactions on. 2006; 11(2):128-138. doi: 10.1109/TMECH.
2006.871087

Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H. Design
and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. Neural Systems
and Rehabilitation Engineering, IEEE Transactions on. 2007; 15(3):379-386. doi: 10.1109/TNSRE.
2007.903919

Tsagarakis NG, Caldwell DG. Development and Control of a Soft-Actuated Exoskeleton for Use in
Physiotherapy and Training. Auton Robots. 2003; 15(1):21-33. doi: 10.1023/A:1024484615192

Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, et al. Design and Control of
RUPERT: A Device for Robotic Upper Extremity Repetitive Therapy. Neural Systems and Rehabilita-
tion Engineering, IEEE Transactions on. 2007; 15(3):336—346. doi: 10.1109/TNSRE.2007.903903

Ugurlu B, Nishimura M, Hyodo K, Kawanishi M, Narikiyo T. Proof of Concept for Robot-Aided Upper
Limb Rehabilitation Using Disturbance Observers. Human-Machine Systems, IEEE Transactions on.
2014; PP(99):1-9.

Wang D, Lee KM, Guo J, Yang CJ. Adaptive Knee Joint Exoskeleton Based on Biological Geometries.
Mechatronics, IEEE/ASME Transactions on. 2014; 19(4):1268-1278. doi: 10.1109/TMECH.2013.
2278207

Pratt JE, Krupp BT, Morse CJ, Collins SH. The RoboKnee: an exoskeleton for enhancing strength and
endurance during walking. In: Robotics and Automation (ICRA), 2004 IEEE International Conference
on. vol. 3; 2004. p. 24302435 Vol.3. doi: 10.1109/ROBOT.2004.1307425

Kong K, Jeon D. Design and control of an exoskeleton for the elderly and patients. Mechatronics, IEEE/
ASME Transactions on. 2006; 11(4):428—432.

Kazerooni H, Steger R, Huang L. Hybrid Control of the Berkeley Lower Extremity Exoskeleton
(BLEEX). Int J Rob Res. 2006; 25(5—6):561-573. doi: 10.1177/0278364906065505

Ronsse R, Vitiello N, Lenzi T, van den Kieboom J, Carrozza MC, ljspeert AJ. Human-Robot Synchrony:
Flexible Assistance Using Adaptive Oscillators. IEEE Trans Biomed Engineering. 2011; 58(4):1001—
1012. doi: 10.1109/TBME.2010.2089629

Gams A, Petri¢ T, Debevec T, Babi¢ J. Effects of Robotic Knee Exoskeleton on Human Energy Expen-
diture. Biomedical Engineering, IEEE Transactions on. 2013; 60(6):1636—1644. doi: 10.1109/TBME.
2013.2240682

Fleischer C, Hommel G. A Human—Exoskeleton Interface Utilizing Electromyography. Trans Rob.
2008; 24(4):872-882. doi: 10.1109/TR0.2008.926860

Rosen J, Brand M, Fuchs MB, Arcan M. A myosignal-based powered exoskeleton system. Systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on. 2001; 31(3):210-222. doi:
10.1109/3468.925661

Kiguchi K, Kariya S, Watanabe K, Izumi K, Fukuda T. An exoskeletal robot for human elbow motion
support-sensor fusion, adaptation, and control. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on. 2001; 31(3):353-361. doi: 10.1109/3477.931520

Ferris DP, Gordon KE, Sawicki GS, Peethambaran A. An improved powered ankle-foot orthosis using
proportional myoelectric control. Gait & posture. 2006; 23(4):425—-428. doi: 10.1016/j.gaitpost.2005.05.
004

Cavallaro EE, Rosen J, Perry JC, Burns S. Real-Time Myoprocessors for a Neural Controlled Powered
Exoskeleton Arm. Biomedical Engineering, IEEE Transactions on. 2006; 53(11):2387-2396. doi: 10.
1109/TBME.2006.880883

Lenzi T, Rossi SMMD, Vitiello N, Carrozza MC. Intention-Based EMG Control for Powered Exoskele-
tons. IEEE Trans Biomed Engineering. 2012; 59(8):2180-2190. doi: 10.1109/TBME.2012.2198821

Noda T, Furukawa J, Teramae T, Hyon SH, Morimoto J. An electromyogram based force control coordi-
nated in assistive interaction. In: Robotics and Automation (ICRA), 2013 IEEE International Conference
on; 2013. p. 2657-2662.

Song R, Tong KY. Using recurrent artificial neural network model to estimate voluntary elbow torque in
dynamic situations. Medical and Biological Engineering and Computing. 2005; 43(4):473-480. doi: 10.
1007/BF02344728 PMID: 16255429

PLOS ONE | DOI:10.1371/journal.pone.0148942 February 16,2016 24 /26


http://dx.doi.org/10.1109/TRO.2008.915453
http://dx.doi.org/10.1109/TMECH.2006.871087
http://dx.doi.org/10.1109/TMECH.2006.871087
http://dx.doi.org/10.1109/TNSRE.2007.903919
http://dx.doi.org/10.1109/TNSRE.2007.903919
http://dx.doi.org/10.1023/A:1024484615192
http://dx.doi.org/10.1109/TNSRE.2007.903903
http://dx.doi.org/10.1109/TMECH.2013.2278207
http://dx.doi.org/10.1109/TMECH.2013.2278207
http://dx.doi.org/10.1109/ROBOT.2004.1307425
http://dx.doi.org/10.1177/0278364906065505
http://dx.doi.org/10.1109/TBME.2010.2089629
http://dx.doi.org/10.1109/TBME.2013.2240682
http://dx.doi.org/10.1109/TBME.2013.2240682
http://dx.doi.org/10.1109/TRO.2008.926860
http://dx.doi.org/10.1109/3468.925661
http://dx.doi.org/10.1109/3477.931520
http://dx.doi.org/10.1016/j.gaitpost.2005.05.004
http://dx.doi.org/10.1016/j.gaitpost.2005.05.004
http://dx.doi.org/10.1109/TBME.2006.880883
http://dx.doi.org/10.1109/TBME.2006.880883
http://dx.doi.org/10.1109/TBME.2012.2198821
http://dx.doi.org/10.1007/BF02344728
http://dx.doi.org/10.1007/BF02344728
http://www.ncbi.nlm.nih.gov/pubmed/16255429

@’PLOS ‘ ONE

Adaptive Control of Exoskeleton Robots

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Yang D, Zhao J, Gu Y, Wang X, Li N, Jiang L, et al. An Anthropomorphic Robot Hand Developed Based
on Underactuated Mechanism and Controlled by EMG Signals. Journal of Bionic Engineering. 2009; 6
(3):255—263. doi: 10.1016/S1672-6529(08)60119-5

Yang D, Zhao Jd, Jiang L, Liu H. Dynamic hand motion recognition based on transient and steady-state
EMG signals. International Journal of Humanoid Robotics. 2012; 09(01):1250007. doi: 10.1142/
S0219843612500077

lispeert AJ, Nakanishi J, Hoffmann H, Pastor P, Schaal S. Dynamical Movement Primitives: Learning
Attractor Models for Motor Behaviors. Neural Computation. 2013; 25(2):328-373. doi: 10.1162/NECO_
a_00393 PMID: 23148415

lispeert AJ, Nakanishi J, Schaal S. Learning rhythmic movements by demonstration using nonlinear
oscillators. In: Intelligent Robots and Systems (IROS), 2002 IEEE/RSJ International Conference on.
vol. 1;2002. p. 958-963.

Righetti L, Buchli J, ljspeert AJ. Dynamic Hebbian learning in adaptive frequency oscillators. Physica
D: Nonlinear Phenomena. 2006; 216(2):269-281. doi: 10.1016/j.physd.2006.02.009

Gams A, ljspeert A, Schaal S, Lenarci¢ J. On-line learning and modulation of periodic movements with
nonlinear dynamical systems. Autonomous robots. 2009; 27(1):3-23. doi: 10.1007/s10514-009-9118-y

Petri¢ T, Gams A, ljspeert AJ, Zlajpah L. On-line frequency adaptation and movement imitation for
rhythmic robotic tasks. The International Journal of Robotics Research. 2011; 30(14):1775-1788. doi:
10.1177/0278364911421511

Peternel L, Petri€ T, Oztop E, Babi€ J. Teaching robots to cooperate with humans in dynamic manipula-
tion tasks based on multi-modal human-in-the-loop approach. Autonomous robots. 2014; 36(1-2):123—
136. doi: 10.1007/s10514-013-9361-0

Ronsse R, Lenzi T, Vitiello N, Koopman B, van Asseldonk E, Rossi SMMD, et al. Oscillator-based
assistance of cyclical movements: model-based and model-free approaches. Med Biol Engineering
and Computing. 2011; 49(10):1173-1185. doi: 10.1007/s11517-011-0816-1

Aguirre-Ollinger G. Learning muscle activation patterns via nonlinear oscillators: Application to lower-
limb assistance. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on; 2013. p. 1182-1189.

Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strate-
gies for robot-aided treadmill training: first experimental results. Neural Systems and Rehabilitation
Engineering, IEEE Transactions on. 2005; 13(3):380-394. doi: 10.1109/TNSRE.2005.848628

Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and
stair climbing up and down in stroke patients. Journal of NeuroEngineering and Rehabilitation. 2010; 7
(1):30. doi: 10.1186/1743-0003-7-30 PMID: 20584307

Noda T, Sugimoto N, Furukawa J, Sato M, Hyon SH, Morimoto J. Brain-controlled exoskeleton robot for
BMI rehabilitation. In: Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference
on; 2012. p. 21-27.

Noda T, Teramae T, Ugurlu B, Morimoto J. Development of an Upper Limb Exoskeleton Powered Via
Pneumatic Electric Hybrid Actuators with Bowden Cable. In: Intelligent Robots and Systems (IROS),
2014 |IEEE/RSJ International Conference on. |IEEE/RSJ; 2014. p. 3573-3578. doi: 10.1109/IROS.
2014.6943062

Chou CP, Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles. Robot-
ics and Automation, IEEE Transactions on. 1996; 12(1):90—102. doi: 10.1109/70.481753

Hildebrandt A, Sawodny O, Neumann R, Hartmann A. Cascaded control concept of a robot with two
degrees of freedom driven by four artificial pneumatic muscle actuators. In: American Control Confer-
ence, 2005. Proceedings of the 2005; 2005. p. 680-685.

Sardellitti I, Park J, Shin D, Khatib O. Air muscle controller design in the distributed macro-mini (DM2)
actuation approach. In: Intelligent Robots and Systems (IROS), 2007 IEEE/RSJ International Confer-
ence on; 2007. p. 1822—-1827.

Beyl P, Van Damme M, Van Ham R, Vanderborght B, Lefeber D. Pleated Pneumatic Artificial Muscle-
Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. Mechatronics,
IEEE/ASME Transactions on. 2014; 19(3):1046—1056. doi: 10.1109/TMECH.2013.2268942

Peternel L, Ugurlu B, Babic J, Morimoto J. Assessments on the improved modelling for pneumatic artifi-
cial muscle actuators. In: Advanced Robotics (ICAR), 2015 International Conference on; 2015. p. 34—
39.

Ugurlu B, Forni P, Doppmann C, Morimoto J. Torque and Variable Stiffness Control for Antagonistically
Driven Pneumatic Muscle Actuators via a Stable Force Feedback Controller. In: Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on; 2015. p. 1633—1639.

PLOS ONE | DOI:10.1371/journal.pone.0148942 February 16,2016 25/26


http://dx.doi.org/10.1016/S1672-6529(08)60119-5
http://dx.doi.org/10.1142/S0219843612500077
http://dx.doi.org/10.1142/S0219843612500077
http://dx.doi.org/10.1162/NECO_a_00393
http://dx.doi.org/10.1162/NECO_a_00393
http://www.ncbi.nlm.nih.gov/pubmed/23148415
http://dx.doi.org/10.1016/j.physd.2006.02.009
http://dx.doi.org/10.1007/s10514-009-9118-y
http://dx.doi.org/10.1177/0278364911421511
http://dx.doi.org/10.1007/s10514-013-9361-0
http://dx.doi.org/10.1007/s11517-011-0816-1
http://dx.doi.org/10.1109/TNSRE.2005.848628
http://dx.doi.org/10.1186/1743-0003-7-30
http://www.ncbi.nlm.nih.gov/pubmed/20584307
http://dx.doi.org/10.1109/IROS.2014.6943062
http://dx.doi.org/10.1109/IROS.2014.6943062
http://dx.doi.org/10.1109/70.481753
http://dx.doi.org/10.1109/TMECH.2013.2268942

@’PLOS ‘ ONE

Adaptive Control of Exoskeleton Robots

42,

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. 4th ed. McGraw-Hill Medical;
2000.

Schaal S, Atkeson CG. Constructive Incremental Learning from Only Local Information. Neural Com-
put. 1998; 10(8):2047-2084. doi: 10.1162/089976698300016963 PMID: 9804671

Yang J, Winter DA. Electromyographic amplitude normalization methods: Improving their sensitivity as
diagnostic tools in gait analysis. Arch Phys Med Rehabil. 1984; 65:517-521. PMID: 6477083

De Luca CJ. The use of surface electromyography in biomechanics. Journal of Applied Biomechanics.
1997; 13(2):135-163.

Babi¢ J, Hale JG, Oztop E. Human sensorimotor learning for humanoid robot skill synthesis. Adaptive
Behavior—Animals, Animats, Software Agents, Robots, Adaptive Systems. 2011; 19:250-263.

Earp JE, Newton RU, Cormie P, Blazevich AJ. Knee angle-specific EMG normalization: The use of
polynomial based EMG-angle relationships. Journal of Electromyography and Kinesiology. 2013; 23
(1):238-244. doi: 10.1016/j.jelekin.2012.08.015 PMID: 23063912

De Luca CJ, Gilmore LD, Kuznetsov M, Roy SH. Filtering the surface EMG signal: Movement artifact
and baseline noise contamination. Journal of Biomechanics. 2010; 43(8):1573-1579. doi: 10.1016/.
jbiomech.2010.01.027 PMID: 20206934

Petri¢ T, Gams A, Zlajpah L, Ude A, Morimoto J. Online approach for altering robot behaviors based on
human in the loop coaching gestures. In: Robotics and Automation (ICRA), 2014 |IEEE International
Conference on; 2014. p. 4770-4776.

Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European Recommendations for
Surface Electromyography: Results of the Seniam Project (SENIAM). Enschede, The Netherlands:
Roessingh Research and Development; 1999.

Uno Y, Kawato M, Suzuki R. Formation and control of optimal trajectory in human multijoint arm move-
ment. Biological Cybernetics. 1989; 61(2):89—101. doi: 10.1007/BF00204593 PMID: 2742921

Todorov E, Jordan M. Optimal feedback control as a theory of motor coordination. Nature Neurosci-
ence. 2002; 5(11):1226-1235. doi: 10.1038/nn963 PMID: 12404008

Peternel L, Petri¢ T, Babi¢ J. Human-in-the-loop approach for teaching robot assembly tasks using
impedance control interface. In: Robotics and Automation (ICRA), 2015 IEEE International Conference
on; 2015. p. 1497-1502.

PLOS ONE | DOI:10.1371/journal.pone.0148942 February 16,2016 26/26


http://dx.doi.org/10.1162/089976698300016963
http://www.ncbi.nlm.nih.gov/pubmed/9804671
http://www.ncbi.nlm.nih.gov/pubmed/6477083
http://dx.doi.org/10.1016/j.jelekin.2012.08.015
http://www.ncbi.nlm.nih.gov/pubmed/23063912
http://dx.doi.org/10.1016/j.jbiomech.2010.01.027
http://dx.doi.org/10.1016/j.jbiomech.2010.01.027
http://www.ncbi.nlm.nih.gov/pubmed/20206934
http://dx.doi.org/10.1007/BF00204593
http://www.ncbi.nlm.nih.gov/pubmed/2742921
http://dx.doi.org/10.1038/nn963
http://www.ncbi.nlm.nih.gov/pubmed/12404008

