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Supporting Information

Molecular dynamics simulations

Purely classical molecular dynamics were performed using the LAMMPS code
[1]. The system consisted of a Ag(100) slab modeled by three layers (4.09 Å thick-
ness), an ensemble of 470 water molecules, and the Ag+ ion initially located in
the bulk of the water. Periodic boundary conditions were used only in the xy–
directions. The dimensions of the box were 23.14 × 23.14 × 32.09 Å3. The correc-
tion for the electrostatic long–range interactions was done by using a pppm/cg
solver. The temperature was set to 300 K using the NVT canonical ensemble.

The following interactions were used: the parameters for the interaction be-
tween the water molecules with the silver surface have been taken from a previ-
ous work [2]; the interactions between the water molecules in the bulk and be-
tween the silver ion with the water were specified by well–established Lennard–
Jones potentials. For the water, we used the SPC/E model and the corresponding
parameters for the oxygen and hydrogen have been taken from Yoshida et al. [3].
The parameters for Ag+/O interaction have been taken from Spezia et al. [4].
The Weighted Histogram Analysis Method (WHAM) code developed by Gross-
field [5] was used to obtain the potential of mean force from a series of umbrella
sampling simulations. A total of 40 umbrella samplings were performed. First we
carried out an equilibration run of 500 ps and then each sample ran for 200 ps,
with a time step of 2.0 fs.

Figure 1: Snapshot of a Ag+ ion positioned in the potential minimum near the
surface. Left panel: side view; right panel: top view without the metal atoms.

Figure 1 show a snapshot from the molecular dynamics calculations for the
case where the ion is at the minimum of the potential of mean force. As can be
seen from the two views presented, at this position it is surrounded by a stable
solvation cage.
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Technicalities of the DFT Calculations

All quantum chemical calculations were performed using the DACAPO code [6],
which utilizes an iterative scheme to solve the Kohn–Sham equations of density
functional theory self–consistently. A plane-wave basis set is used to expand the
electronic wave functions, and the inner electrons were represented by ultrasoft
pseudopotentials [7], which allows the use of a low energy cut–off for the plane–
wave basis set. An energy cut–off of 400 eV, dictated by the pseudopotential of
the metal, was used in all calculations. The electron–electron exchange and cor-
relation interactions were treated with the generalized gradient approximation
(GGA) in the version of Perdew, Burke and Ernzerhof [8]. The Brillouin–zone in-
tegration was performed using a 8× 8× 1 k–points Monkhorst–Pack grid [9] cor-
responding to the (1× 1) surface unit cell. The surfaces were modeled by a (2× 2)
supercell with four metal layers and eight layers of vacuum. Dipole correction
was used to avoid slab–slab interactions [10]. The first two layers were allowed
to relax, while the bottom two layers were fixed at the calculated nearest-neighbor
distance. The optimized surfaces (pre-relaxed) in the absence of the Ag atom were
used as input data to carry out the calculations to study the approach of the silver
atom to the metal electrode. For each system, we performed a series of calcula-
tions for a single silver atom adsorbed on a four-fold hollow site, and varied its
separation from the surface. The pre-relaxed surface was kept fixed while the
Ag atom was allowed to relax in the xy-coordinates during these calculations. At
each position we calculated the adsorption energy, and the DOS projected onto
the 5s orbital of silver.

The energy to detach an atom from the kink site position and to move it to the
terrace was obtained from the nudged elastic band method [11]. To perform this
calculation the surface was modeled by a (4 × 4) supercell with four layers. The
top layer was used to create the defect. All other parameters are the same as for
the DFT calculations.

Interaction of the silver 5s orbital with the silver Ag(100) surface.

In order to understand the details of the interaction between the silver ion and the
silver surface, we have calculated the density of states (DOS) of the Ag atom’s 5s
orbital as it approaches the surface (see Fig. 2). Over the range shown in the fig-
ures, the atom is not spin-polarized. At larger distances the DOS is centered at
the Fermi level and is half-filled, as is to be expected. However, even at a distance
of 3.5 Å it is substantially broadened and exhibits a tail extending to lower ener-
gies caused by the interaction with the sp band. At a distance of 2.5 Å the DOS
has already become very broad, and largely follows the sp band. The DOS of the
adsorbed atom is very similar to the sp band, and shows the same peak near -5.6
eV with respect to the Fermi level. These densities of states show no visible inter-
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Figure 2: Left: Electronic density of states of a Ag atom at various distances from
the Ag(100) surface; the Fermi level has been taken as the energy zero. Right:
Coupling constants with the silver d and the sp bands.

action with the silver d band, which lies well below the Fermi level. From these
DOS we evaluated the coupling constants, or rather their square |V |2, of the 5s
orbital with the sp and with the d band of silver (see Fig. 2). The coupling to the
d band is very small, but the interaction with the sp band is very strong and long
ranged.

Interaction with the d band

As noted in the main text, the 5s orbital of the silver atom interacts only very
weakly with the d band of silver. However, the 4d orbital of the silver atom inter-
acts with the silver d band, and there is some interest in studying this interaction.
Figure 3 shows the density of states of a silver atom approaching a Ag(100) sur-
face. When the atom is at a distance of 3 Å, its DOS is substantially broadened,
and has roughly a Lorentzian shape. As expected, its center lies well below the
Fermi level. When the atom is adsorbed, its d orbital merges with the d band of
the substrate. Since all of the DOS lies well below the Fermi level, there is no
sizable contribution of the d orbital to the adsorption bond.

Calculation of the free energy surface

We consider only the 5s valence orbital of silver, which bonds to the silver surface.
The problem is therefore equivalent to the adsorption of hydrogen on metals, for
which we have developed our own theory [13]. The electronic part of the problem
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Figure 3: Density of states of a silver atom above a Ag(100) surface at a distance
of 3 Å and in the adsorbed state.

is the same, but the treatment of the solvent is different. To make this supplement
self-contained, we briefly state the Hamiltonian. We denote with the index a the
silver 5s orbital, by εa its energy, and by na the corresponding number operator;
the metal states are labeled k and thus have energies εk and number operators
nk. The reaction takes place so close to the surface that spin polarization plays no
role. We can therefore write the electronic part of the Hamiltonian in the form:

Hel = εana +
∑
k

εkck +
∑
k

[
Vkc

+
k ca + V ∗

k c
+
a ck
]

(1)

The last term effects electron exchange between the metal and the reactant; c+

denotes a creation and c an annihilation operator. Of course, the 5s orbital can
take up two electrons.

The solvent terms of our Hamiltonian are:

Hsol =
1

2

∑
ν

h̄ων(q
2
ν + p2

ν) + (1− na)
∑
ν

h̄ωνgνqν (2)

where ν labels the phonon modes, qν and pν are the dimensionless coordinate
and momentum operators, and in the last term gν is the interaction constant of
the charge with the mode ν; na is the occupation operator for the 5s orbital of
silver. After transformation to a single generalized solvent coordinate q and nor-
malization these terms are transformed to [12]:

Hsol = λ(q2 + p2) + 2λq(1− na) (3)
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where λ is the energy of reorganization familiar from Marcus theory. In electron
transfer theory, the solvent modes are divided into a slow (nuclear) part and a
fast (electronic) part. The energy of reorganization comprises only the slow part.
The interaction with the fast part is [13]:

Vf = (1− 〈na〉)λf (4)

where λf is the interaction energy with the fast part. Note that the fast part cou-
ples via the expectation value of the occupation operator na. The sum of the two
terms gives the free energy of solvation: λ+λf = ∆Gsolv. The division in two parts
is given by the Pekar factor, which for water is practically 1/2. Therefore we have
set: λ = λf = ∆Gsolv/2. Our simulations give the free energy of solvation, and
hence λ and λf as a function of the distance, and we have used these in the calcu-
lation of the free energy surfaces. Thus the rough estimates for λ as a function of
the distance that we employed in our previous works have been replaced by the
values calculated from molecular dynamics. Finally, the electrode potential cou-
ples to the charge on the reactant, and gives an extra term (1− 〈na〉)e0φ, where φ
is the potential difference between the potential in the solution and the metal.

The electronic part of the Hamiltonian can be solved by Green’s function tech-
niques familiar from Anderson-Newns theory. In particular, this gives a formal
expression for the density of states (DOS) of the silver atom’s 5s orbital in front
of the silver surface. We obtain the electronic parameters of our model by fitting
this expression to the DOS obtained from DFT.

While the Anderson-Newns model gives a consistent description of the sys-
tem, it suffers from the neglect of many-body terms. To compensate for this de-
fect, we calculate the energy of the silver atom as a function of the distance both
from DFT and from our model. The difference ∆E is the error of our model for
an occupation of 〈na〉 = 1, which is in equilibrium with a solvent configuration
of q = 0. During the reaction the occupation changes from 0 to 1. We assume that
the error in the electronic energy is proportional to the occupation of the valence
orbital: ∆E(q) = ∆E(q = 0) × 〈na〉. This linear interpolation is obviously correct
for the two limits 〈na〉 = 1 and 〈na〉 = 0.
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