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REVIEW REVIEW

STEC: Clinical Aspects, Transmission and 
Epidemiology

The term Shiga toxin-producing E. coli (STEC) refers to E. coli 
pathotypes capable of producing Shiga toxin type 1 (Stx1), type 
2 (Stx2), or both, encoded by stx1 and stx2 genes, respectively.1 
STEC, also known as “verocytotoxin-producing E. coli”, are 
zoonotic pathogens that cause the vascular endothelial damage 
observed in patients with hemorrhagic colitis (HC) and hemo-
lytic uremic syndrome (HUS).2 HUS is characterized by acute 
renal failure, thrombocytopenia, and microangiopathic hemo-
lytic anemia and is a potentially fatal cause of acute renal failure 
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Shiga toxin-producing Escherichia coli (STEC) cause 
hemorrhagic colitis (HC) and hemolytic uremic syndrome 
(HUS) in humans. Outbreaks are linked to bovine food sources. 
STEC O157:H7 has been responsible for the most severe 
outbreaks worldwide. However, non-O157 serotypes have 
emerged as important enteric pathogens in several countries. 
The main virulence factor of STEC is the production of Shiga 
toxins 1 and 2. Additional virulence markers are a plasmid-
encoded enterohemolysin (ehxA), an autoagglutinating 
adhesin (Saa), a catalase-peroxidase (katP), an extracellular 
serine protease (espP), a zinc metalloprotease (stcE), a subtilase 
cytotoxin (subAB), among others. Other virulence factors are 
intimin and adhesins that had a roll in the adherence of STEC 
to bovine colon. This review focuses on the virulence traits of 
STEC and especially on those related to the adhesion to bovine 
colon. The known of the interaction between STEC and the 
bovine host is crucial to develop strategies to control cattle 
colonization.
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in children.3 In 1955, Gasser et al.4 first described hemolytic ure-
mic syndrome as a self-limited illness associated with a prodrome 
of diarrhea that resulted in spontaneous recovery. Typically, 
STEC affects children less than 5 y of age, elderly and immuno-
compromised patients.5 The easy transmission and its very low 
infectious dose, i.e., < 10 cells, remark the significance of this 
bacterium as a foodborne pathogen that has been associated with 
both, outbreaks and sporadic cases of human disease.6

Outbreaks are commonly attributed to the consumption of 
contaminated meat, milk and dairy products, in particular those 
derived from cattle;7,8 however, the consumption of water, unpas-
teurized apple drinks and vegetables contaminated with ruminant 
feces and direct contact with ruminant on farms are frequently 
implicated in outbreaks.9-11 A recent example is the large outbreak 
of the HUS associated with the rare E. coli serotype O104:H4 har-
boring stx2/aggr occurred in Germany in 2011. Of the affected 
case subjects, 90% were adults, and more than two-thirds of case 
subjects with the HUS were female. All of the infections were 
associated with the consumption of contaminated bean and seed 
sprouts.12-14 There is a growing concern about some sporadic cases 
and outbreaks attributable to direct contact with the animal envi-
ronment.15-17 In fact, in a study from a dairy farm, the ground 
and the environment of the rearing calves are the sites with the 
highest number of STEC-positive samples; however, cattle water 
troughs and the environment of cows are the places with the 
greater chance of finding stx2

EDL933
 which is a subtype associated 

with serious disease in humans.18 Cattle’s feces and hides are con-
sidered to be sources of STEC contamination of carcasses during 
slaughter and it can occur during removal of the hide or the gas-
trointestinal tract.19-21 Contamination of meat with STEC during 
slaughter is the main route by which these pathogens enter at 
the meat supply chain.22 Among the numerous retail meat cuts, 
ground beef possesses more risk than intact muscle because it can 
be contaminated during the grinding operation. The increased 
risk is associated with the protection of E. coli from heat during 
the cooking process, since the organism may be protected inside 
the body of reformed meat.23 In the conversion of beef carcasses 
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tagA), a subtilase cytotoxin (subAB), among others. KatP may 
help E. coli O157:H7 to colonize host intestines by reducing oxi-
dative stress, EspP is known to cleave pepsin A and human coag-
ulation factor V which could contribute to mucosal hemorrhage 
observed in HC and influences the intestinal colonization and 
adherence in bovines, while StcE contributes to intimate adher-
ence of this bacterium to host cells. SubAB has been described in 
certain highly virulent STEC strains which are negative for the 
LEE and shown to be cytotoxic to Vero cells and lethal for mice. 
However, in this set of strains the authors identified that espP 
was the most prevalent gene, meanwhile katP was present only 
in serotypes O145:H- and O157:H7, and stcE only in O157:H7 
strains.18,37

STEC O157 and Non-O157

In several countries, including Argentina, most outbreaks of HC 
and HUS have been attributed to STEC O157:H7 serotype38 but 
infections with some non-O157 STEC serotypes are frequently 
associated with HC and HUS mainly in Europe and Latin 
America. However, the potential of the non-O157 serotypes as 
human pathogens should not be underestimated, because as long 
as these serotypes are not regularly sought in clinical laboratories, 
they will neither be found, nor reported.39,40

STEC O157:H7 was described in 1977 by Konowalchuk41 
and has also been responsible for the most severe STEC out-
breaks reported worldwide. However, over the past 15 y, non-
O157 serotypes have emerged as important enteric pathogens 
and numerous outbreaks in countries such as Japan, Argentina, 
Chile, Germany, Australia, the United States and Ireland 
have been attributed to non-O157 infections.40,42-44 The sero-
types more commonly associated with human infections are: 
O26:H11/H-, O91:H21/H-, O103:H2, O111:H-, O113:H21, 
O118:H16, O121:H19, O128:H2/H-, O130:H11, O141:H19, 
O145:H28/H-, O146:H21, O163:H19, O172:H-, and 
O178:H19.45 In Argentina, the country with the highest inci-
dence worldwide of HUS, isolates obtained from 4824 samples 
from cattle, foods (hamburger and minced meat), and environ-
ment of farms were analyzed to detect STEC. From those, 545 
isolates were characterized by multiplex PCR to detect stx1, stx2, 
eae, ehxA, and saa and then were serotyped. The prevalent sero-
types were O8:H19, O26:H11, O91:H21, O113:H21, O117:H7, 
O130:H11, O145:H-, O157:H7, O171:H2, and O178:H19, cor-
responding to 61% of typeable strains. There were serotypes 
shared between cattle and foods, between cattle and the environ-
ment and among cattle, foods and environment. Ninety eight 
serotypes (18%) were non-typeable46 (Table 1).

The predominant virulence profiles, which comprised 78% 
of the isolates, were stx2, stx2/ehxA/saa, stx1/stx2/ehxA/saa, and 
stx2/eae/ehxA, arranged in decreasing order. Among calves, the 
profiles stx1/eae/ehxA and stx2/eae/ehxA were the most frequent, 
followed by stx2, and these three profiles also predominated 
among environmental STEC isolates. The profile stx2 was the 
most frequent among grown calves, adult cattle and food iso-
lates, followed by stx2/ehxA/saa and stx1/stx2/ehxA/saa.47 The 
most prevalent serotypes from cattle, foods, and environment in 

to ground beef and retail cuts, microbial contamination is cur-
rently unavoidable.24 The importance of the contamination were 
studied by Etcheverría et al.25 who detected an increase STEC 
contamination when the meat is transported from the slaughters 
until the sale point.

Typical Virulence Factors

The main virulence factor of STEC is the production of Shiga 
toxins encoded by stx1 and stx2 genes carried by lysogenic 
phages.26,27 Shiga toxins belong to the family of AB5 protein 
toxins that contain an enzymatically active A subunit, and 5 B 
subunits responsible for binding to the Gb3, the cellular recep-
tor that is present in several organs as kidney, brain, liver and 
pancreas. When Stx bonds its receptor, is internalized and inhib-
its the protein synthesis in the cytosol by removing an adenine 
base from the 28S ribonucleic acid (RNA) of the 60S ribosomal 
subunit.28 Both Shiga toxin genes present variants although Stx2 
is the most heterogeneous group. In contrast to Stx1, that pos-
sess stx1c, stx1d and stx1

EDL933
 variants several subtypes of Stx2 

have been identified, consisting of Stx2c, Stx2d, Stx2d
act

, Stx2e, 
Stx2f, and Stx2g.29,30 The strains stx2 positive (mainly harbor-
ing stx2

EDL933
 subtype) are potentially more virulent and are more 

frequently related to HUS than those harboring only stx1 or even 
those carrying both.31-33

Another typical virulence factor is intimin, which is required 
for intimate bacterial adhesion to epithelial cells inducing a 
characteristic histopathological lesion defined as “attaching and 
effacing” (A/E). This lesion is governed by a large pathogenic-
ity island named the locus of enterocyte effacement (LEE). The 
products of LEE are a type III secretion system, intimin and its 
translocated intimin receptor, and other secreted proteins. The 
secretion system is a molecular syringe for which secreted pro-
teins are transferred into host cell cytoplasm. Intimin is encoded 
by eae gene that presents heterogeneity in their 3' end, involved 
in binding to the enterocytes. Actually, there are 17 types of inti-
min α1, α2, β1, ξR/β2B, δ/κ/β2O, γ1, θ/γ2, ε1, νR/ε2, ζ, η, 
ι1, μR/ι2, λ, μB, νB, and ξB. The eae gene was detected in 24% 
of 186 STEC isolates obtained from cattle and food with a lower 
frequency in strains isolated from food than from cattle. In rela-
tion to stx genes, eae was detected more frequently in stx

1
-positive 

than stx
2
-positive STEC strains, and both eae and stx

1
 were more 

frequent in calves than adult cattle. Subtypes γ and β were the 
predominant eae variants, while ε was present at a lower rate and 
α was absent. As expected, isolates belonging to the same sero-
type presented the same eae variant.34,35

Additional virulence-associated markers, among many oth-
ers, are a plasmid-encoded enterohemolysin33 and, in strains 
lacking eae, an autoagglutinating adhesin (Saa) which could be 
involved in the adhesion of strains.36 This plasmid is present in 
STEC O157 and non-O157 strains although with a considerable 
variability among them. Furthermore, strains that belonged to 
identical pulsed-field gel electrophoresis types could be further 
discriminated by the detection of plasmid-encoded genes as 
hemolysin (ehxA), a catalase-peroxidase (katP), an extracellular 
serine protease (espP), a zinc metalloprotease (stcE, also called 
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proximal to the rectoanal junction (RAJ) of bovine host. They 
hypothesized that a subset of cattle (super shedders) may shed 
STEC O157:H7 at high levels (104 CFU/g of feces) and that 
colonization at the RAJ was necessary for the high level shed-
ding. Subsequent studies have described an association between 
RAJ colonization and super shedding status.60,61 STEC O157:H7 
intimately attaches to a variety of cell types and tissues, and a few 
studies have demonstrated that it can form attaching and effac-
ing lesions on explants of bovine intestinal tissues.62,63

Enterohemorrhagic Escherichia coli (EHEC), a STEC strains 
subgroup isolated from human cases and actually named as syn-
onymous, adapts an oral-fecal lifestyle in cattle and other rumi-
nants. After being ingested, EHEC enters the rumen of cattle. In 
order to reach the RAJ for colonization, EHEC must first breach 
the acidic barrier of the stomachs. EHEC has an intricate acid 
resistance system that enables it to survive through the acidic 
environment of the stomach, as exemplified by its low infectious 
dose of 10 to 100 colony-forming units.64

In recent years, several non-LEE encoded effectors EspJ, NleB, 
NleE, NleF, and NleH also have been shown to influence EHEC 
survival and colonization. NleE plays a key role inmodulating 
the innate immune response during EPEC and EHEC infection 
while NleH is a translocated antagonist of pro-apoptotic effects 
by EPEC/EHEC. The NleH effectors therefore promote over-
all cell survival and inhibit enterocyte loss to promote sustained 
colonization by EPEC/EHEC.65

Argentina have been also isolated from human cases in several 
countries including Argentina, and carry virulence profiles that 
reflect the pathogenic potential of the strains.46

Cattle as Reservoir of STEC

As mentioned above, several studies have demonstrated that cat-
tle are the main reservoir of STEC44,48-52 with variable prevalence 
ranged from 22% to 67% in different categories of cattle, and 
44% in cattle pre-slaughter.44,51-53

The population transmission dynamics of STEC are thought 
to be a combination of the transmission dynamics of mobile 
virulence factors, such as the stx genes, within the animals and 
the transmission dynamics of STEC between animals. The two 
transmission mechanisms result in acquisition and loss of the 
virulence markers, although they act on different time scales. 
Competition and dominance of certain STEC strains could be 
complementary explanations for the observed shedding of pre-
dominant E. coli isolates over time.54-57

The persistence of STEC O157:H7 in cattle may be due to the 
ability of the bacteria to colonize a particular location within the 
gastrointestinal tract (GIT). Several authors have reported that 
STEC O157:H7 shows tissue tropisms for the colon, lymphoid 
follicle-dense mucosa at the terminal rectum, and the rectoanal 
junction.58,59 Naylor et al.59 reported that STEC O157:H7 exhib-
its tropism for the terminal rectum in a region within 3–5 cm 

Table 1. Serotypes shared between cattle and foods, between cattle and the environment and among cattle, foods and environment of strains collec-
tion from Argentina

Serotype
Percentage of strains (%)

Virulence profiles
(n = 447) Cattle Foods Environment

O178:H19 13 95 5 0 stx2

stx2 saa ehxA

stx1 stx2 saa ehxA

O130:H11 9 93 7 0 stx1 stx2 saa ehxA

stx1 saa ehxA

O113:H21 8 86 14 0 stx2 saa ehxA

stx1 stx2 saa ehxA

stx1 eae ehxA

stx2

O26:H11 5 91 0 9 stx1 eae ehxA

stx2 eae ehxA

O91:H21 5 95 5 0 stx2 saa ehxA

O171:H2 5 86 14 0 stx2

O117:H7 3 50 50 0 stx2

O145:H- 3 93 0 7 stx1 eae ehxA

stx2 eae ehxA

stx1 eae

stx2 eae

O157:H7 3 93 7 0 stx2 eae ehxA

O8:H19 2 45 45 10 stx1 stx2 ehxA

stx1 ehxA

stx2
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In STEC strains it was described a family of serin protease 
autotransporters that include EspP of STEC O157:H7 that con-
tributes to the adherence to bovine primary rectal cells and colo-
nization of the bovine intestines.82

The analysis of a clinical isolate of STEC strain serotype 
O111:H-, highly adherent, led to identification of an enterohe-
morrhagic E. coli factor for adherence 1 or efa-1 and found to be 
present in enteropathogenic Escherichia coli (EPEC) and in non-
O157 STEC strains.83 In EPEC, Efa-1 was reported to be 97.4% 
identical to the LifA protein (also called lymphostatin), which 
inhibits the proliferation of mitogen activated lymphocytes and 
the synthesis of proinflammatory cytokines, such as IL-2, IL-4, 
IL-5, and gamma interferon (IFN-γ).84,85 STEC O157:H7 has a 
truncated version of the efa-1 gene in the chromosome, and some 
researchers have suggested that the truncated Efa-1 protein might 
share some properties with the full-length Efa-1.86 A homolog of 
the efa-1/lifA gene is also present on the pO157 large plasmid, and 
the gene has been designated toxB. The ToxB protein exhibits 
28% amino acid identity to the Efa-1/LifA protein and contrib-
utes to the adherence to cultured epithelial intestinal cells, which 
has been linked to the ToxB-induced production and/or secre-
tion of type III secreted proteins.87

Interesting, in a collection of 538 STEC isolates obtained 
from cattle and foods, efa-1 was detected in cattle isolates but no 
in food isolates, while iha was detected in isolates from cattle and 
food, further demonstrating differences between serotypes (data 
not published).

In addition to many colonization factors described above, 
Torres et al.88 have described in STEC O157:H7 two chromo-
somal gene clusters closely related to the long polar fimbrial (lpf ) 
operon of Salmonella enterica serovar Typhimurium. These oper-
ons named lpf1 and lpf2 have been associated with the appearance 
of long fimbriae that possess colonization abilities in animals. 
Different lpfA types have been detected in a collection of LEE-
negative STEC strains demonstrating no association between the 
types of lpfA1 and lpfA2 and the severity of human disease.35

Options for Control Cattle Colonization

Considerable effort has been expended to identify herd manage-
ment practices and environmental factors that inhibit or facilitate 
infection of animals with STEC O157:H7.89 EHEC transmits 
readily between ruminants in the farm environment90 and wild 
animals may represent important vectors. For many years, the 
cattle industry and researchers have focused on improving the 
safety of meat products after slaughter. Postslaughter antimicro-
bial treatments and HACCP policies in slaughter plants have 
been shown to significantly reduce carcass contamination.19

However, illnesses caused by contaminated meat prod-
ucts still occur. Therefore, greater emphasis has recently been 
placed on the development of intervention strategies that target 
the pathogenic microbial population of the live animal before 
slaughter.91 Because of the widespread distribution of EHEC 
serotypes, O157, and non-O157, in cattle population, its con-
trol will require interventions at the farm level.92 One strategy 
has been the development of vaccines to prevent or diminish 

NleE plays a key role in modulating the innate immune 
response during EPEC and EHEC infection causing a decrease 
in the expression and production of IL-8,66 while NleB interfere 
with inflammatory signaling pathways.67

Although EspJ is not required for A/E lesion formation in 
HEp-2 cells or human intestinal explants, in vivo studies in mice 
show that EspJ aids in the passage of EHEC through the host’s 
intestinal tract, suggesting a role for EspJ in host survival and 
pathogen transmission.68

Other Factors Involved in Colonization

The ability of bacterial pathogens to bind to the host mucosa is 
a critical step in the pathogenesis of many bacterial infections, 
but this characteristic is also present in commensal bacteria, since 
they have to adhere and colonize specific niches. Both commen-
sal and pathogenic bacteria have several putative adhesins that 
might participate in the adherence process. In the case of the 
bovine intestine or other sites where the bacteria are known to 
persist (vegetables such as lettuce and spinach), the data indicate 
that STEC O157 and non-O157 strains expressed a wide variety 
of fimbrial and afimbrial adhesins that might play a key role in 
persistence in the ruminant reservoir or in the formation of bio-
films in other cell surfaces.69

One of the best-studied adhesins is the type 1 fimbriae that 
mediate binding to the intestinal cell surface.70 The major com-
ponent of these fibers was a 21-kDa protein encoded by the yagZ 
gene, widely present among pathogenic and commensal E. coli, 
a situation leading to the designation of these pili as E. coli com-
mon pili or ECP.71-73

In studies that used bovine terminal rectal primary epithelial 
cells it was demonstrated that H7 flagellum acts as an adhesin to 
bovine intestinal epithelium and supports its involvement in the 
initiating step for colonization of the cattle reservoir.74 A putative 
fimbrial operon was identified in mutagenesis studies designed 
to find the adhesion factors involved in STEC colonization in 
cattle.75,76 Its expression in the E. coli K-12 strain resulted in the 
production of visible fimbriae, of about 1 to 2 μm in length, 
extending from the bacteria and able to form longer bundles dif-
ferent from flagella.77 The fimbria, designated F9, was found to 
be involved in the adherence to bovine epithelial cells and to the 
bovine extracellular matrix protein fibronectin, but not to bovine 
gastrointestinal tissue explants.77

Enterohemorrhagic E. coli autotransporter (Eha) have been 
identified in several STEC strains of different origins, some of 
them (EhaA, EhaB, and EhaJ), implicated in attachment to 
biotic and abiotic surfaces.18,78-80 EhaA and EhaB are the most 
prevalent between STEC strains, and EhaA promotes the adhe-
sion to primary epithelial cells of the bovine terminal rectum.80 
Tarr et al.81 described a novel Iha (iron-regulated gene A homo-
log adhesion) bacterial adherence-conferring protein. Iha is 
homologous to a variety of bacterial iron acquisition proteins in 
the database but not to other known adhesins. It is possible that 
iha does not encode an adhesin but instead encodes a protein 
that increases the expression of a cryptic adhesin in laboratory 
E. coli.
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demonstrated that colicinogenic E. coli was able to reduce the 
adherence of STEC O157:H7 when both strains were inoculated 
on cell cultures and on bovine colonic explants.98

Conclusions

STEC are widely distributed among cattle, foods, and the envi-
ronment. Multiple colonization factors and cellular processes 
have been involved in the mechanism of STEC adhesion to 
bovine intestinal epithelial. Many researchers have made high 
quality papers regarding adhesins and other factors involved in 
the mechanism of adhesion. More studies are needed to fully 
understand the interaction between the pathogen and the host in 
order to evaluate some strategies to control cattle colonization in 
an attempt to reduce the transmission to human.
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shedding of the bacteria in the animal reservoir. Some vaccines 
had been developed, one based on Type III secreted proteins 
decreased the shedding of STEC from 23 to 9% and other using 
EspA, intimin, and Tir, involved in STEC adherence signifi-
cantly reduced shedding of EHEC O157 from experimentally 
infected cattle.35,93 Another option for the control of foodborne 
pathogens in livestock is the feeding of beneficial bacteria, often 
referred to as probiotics.94 Probiotics can interfere with patho-
genic strains by producing metabolites that are inhibitory to 
STEC O157:H7. Some strains of E. coli can produce colicins that 
are inhibitory in vitro to diarrheagenic E. coli strains, including 
O157:H7.85 Several authors have identified bacteria with poten-
tial ability to exclude STEC O157:H7 from the GIT of cattle.95,96 
In a previous study, we isolated strains of colicinogenic E. coli 
from bovine colon which have the ability to inhibit the growth 
of STEC O157:H7 in vitro.97 Probiotics can inhibit the attach-
ment of STEC O157:H7 to Hep-2 cells and to bovine colon 
which is the primary site of colonization. In another study we 
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