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Abstract

Nous avons concu un modele de synthese de sons de piano qui utilise & la fois des méthodes
de type modeéle physique et des méthodes de type modeéle de signal. Il reproduit fidélement le
timbre de I'instrument tout en simulant les principaux phénomeénes physiques qui apparaissent
en condition de jeu.

Nous avons réalisé un ensemble de mesures sur une expérimentation et sur un véritable
piano. Pour chaque note du piano et plusieurs dynamiques, nous avons mesuré la vitesse
du marteau et I'accélération du chevalet. Divers modeles de synthése de vibration de cordes
de piano et d’interaction marteau-corde ont été comparés afin de reproduire les signaux
mesurés. Tout d’abord, nous avons étudié les modeles physiques sous la forme d’équations
aux dérivées partielles (EDP). La synthése sonore réalisée avec de tels modeéles manque de
réalisme. Pour améliorer cette synthese, nous avons utilisé des techniques d’optimisation,
calculant les parameétres du modéle afin que la synthese soit aussi proche que possible d’un
point de vue perceptif du signal mesuré. Une amélioration nette du son produit a été obtenue,
sans qu’il soit totalement satisfaisant.

Nous avons ensuite étudié les modeéles de type “guides d’onde numériques”. Ces modeles
simulent avec une grande précision la propagation des ondes dans une structure et sont peu
coliteux en tant de calcul. Nous avons montré que les parametres de ce type de modele
s’expriment en fonction des parameétres d’un modele physique EDP. En couplant ces guides
d’onde, nous sommes parvenus a modéliser les transferts d’énergie entre les cordes, re-
sponsables de phénomenes importants perceptivement comme les battements et la double
décroissance des modes. Nous avons de plus montré qu'’il est possible de traiter le probleme
inverse, c’est & dire d’obtenir les relations analytiques permettant de déduire les parameétres
du modele & partir des parametres modaux des signaux mesurés. Cette calibration a permis
de resynthétiser avec une grande fidélité les signaux originaux. La source du modeéle guide
d’onde, dont le comportement est directement 1ié & I’interaction marteau-corde, a été simulée
par un modele de signal, la synthése soustractive. Le modele de synthése a finalement été
implémenté en temps réel. L’instrument réalisé constitue un piano numérique dont on peut

modifier le timbre.
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Chapter 1

Introduction

1.1 Motivations, aims and method

1.1.1 Piano synthesis

A digital piano that accurately emulates the sound and behaviour of its acoustic counterpart
has both scientific and commercial merit. It has advantages because of the many conveniences
it offers to the user: it can be more easily transported, it can be played quietly by adjusting
a volume control or played in complete silence by wearing headphones, and it can be easily
recorded via a direct audio input to the sound card of a computer.

Sampling, a synthesis technique that uses an on-board bank of pre-recorded audio samples
is the most common method used to develop commercial digital pianos. There are two major
problems with this technique. The memory available for sample storage is limited and this
makes it impossible to sample the wide range of nuances available to each individual note
on a full size, 88 key, acoustic piano. It therefore becomes necessary to use transposition
and/or interpolation of existing samples to obtain the missing information. The second
disadvantage of sampling occurs when playing the instrument. The timbre of a note on the
piano depends on whether the note was played alone or whether it was played along with
other notes. This is because of the interactions between certain physical elements of the
piano, and in particular, the energy that is transfered between the strings whose keys are
suppressed, causing a modification in their vibration. Since the notes on a sampled piano are
recorded in isolation, the sampler cannot take into account this important phenomenon that
occurs only at the time of play (one cannot know ahead of time how many and which notes
will be played at any given time). A model is needed, therefore, to simulate any change in
timbre caused by a change in the behaviour of the system.

The piano is a struck-string instrument. Its range covers 88 notes with the lowest being

17



18 CHAPTER 1. INTRODUCTION

27.5 Hz and the highest being 4186 Hz. The piano consists of a large number of components,
each one having a role that is more or less important to the sound production mechanism.
Each note can use either one, two, or three strings with physical properties that differ from
one note to another, making it necessary therefore to model each string independently. The
resulting timbre depends on the interaction between the hammer and the string, the coupling
between the string, and the way in which the sound radiates from the soundboard.

The piano also has certain advantages for real-time interactive sound synthesis. Its key-
board interface is very well suited to an input device for controlling a synthesis model. A
MIDI keyboard (reproducing the piano touch) is all that is required to obtain input control
parameters—this perhaps being because of the unsustained nature of the piano. Unlike wind
or bowed instruments, the piano does not require continuous input control by the player in
order to change the sound over the duration of a note. Rather, the evolution of the piano’s
sound is based entirely on the player’s attack and release of a key (providing the pedal is not
held down).

There are many different types of sound synthesis models for the piano. Signal models
are generally computationally efficient enough to run in real time and can be very accurate in
reproducing the sound of an existing piano. However, these types of models fall short when
it comes to incorporating the player into the control-instrument loop. Since they make no
direct link between the player’s actions and the physics of the instrument, important playing
conditions have no effect on the produced sound.

Physical models on the other hand, have the benefit of being able to simulate the interac-
tion between player and instrument—of course this comes at a computational cost (though
this cost is becoming less of an issue as computers become increasingly powerful). The pa-
rameters of physical models are difficult to accurately estimate from measured signals, and
often their sound quality is inferior.

The quality of the synthesis depends on how many details of the acoustic system are
taken into account in the physical model. Though algorithms are becoming more efficient
and computer computation ever more powerful, there still remains a delicate balance between
quality of sound and algorithmic complexity that is yet to be fully achieved in a quality digital

piano.

1.1.2 Objectives

In this research, we propose a model that both achieves certain quality of sound and is
efficient enough computationally to run interactively in real time. Our hearing is the best
judge of whether the former criteria are met, and since human perception and experience

are highly subjective, the sound quality of a synthesized musical instrument is very difficult
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to ascertain. How does one judge sound quality without a reference? How does the listener
know if the synthesized sound is emulating a particular piano or a generic piano-like sound?
And if the listener hears a quality piano sound, how does one determine whether it’s really
because the model is good and not because of that particular listener’s experience listening to
pianos? One way to eliminate some of the subjectivity involved in this task is to synthesize
a particular piano and have that piano available to the listener as a reference. We have
therefore, in the first part of this study, tried to identically reproduce the sound of a Yamaha
Disklavier grand piano (belonging to our Laboratory). All measurements required by the
piano model were made on this instrument. Our task therefore falls under the category of
analysis/synthesis, one well suited to the LMA /S2M group which has solid experience in this
domain.

The second objective involves the control of the synthesis model. Since the algorithms
used in the model must be efficient enough to work in real-time, the sound quality of the
model will ultimately depend on the computational power of the computer.

The control parameters of the model should be similar to those controlled by the pianist
on a real piano, i.e., the beginning and the end of the sonic event, the note that is played and
with what velocity. In order to give the user the chance to modify the timbre of the virtual
piano, s/he is also given access to certain physical parameters such as the length and tension
of the strings, their inharmonicity, the strength of the the hammer, etc. This model could
therefore also be useful in designing and building new acoustic pianos. It can also allow the
user to hear alternate ways of playing the real acoustic instrument.

Though the user will likely own only one digital piano, s/he will be able to play on many
different instruments simply by selecting the appropriate parameters ahead of time. By select-
ing, modifying, or combining piano parameters, the user is effectively building his/her piano
of choice. And when certain parameter values surpass scientific reality, the user produces a
virtual piano that cannot be built in the real world and sounds are likely to be produced that

unlike any acoustic piano, creating artistic opportunity for the musician willing to experiment.

1.1.3 Methods

The steps taken to complete this research are outlined by the structure of this document.
We begin by classifying physical systems (as described in Section 1.2) from a perceptual
point of view. We then describe existing synthesis methods and their implementation as
applied to the piano in Section 1.3. As the primary aim of this study is not to exhaustively
classify and test all possible synthesis methods but rather to develop one sole algorithmic
model, those methods that do not meet our criteria are abandoned at this point. Though

there are certainly multiple ways to achieve our goals, we chose the methods that were most
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suited to our experience and that best met our criteria. We then applied these methods to
the synthesis of the piano while also proposing new models and new ways to, in particular,
improve parameter estimation procedures in order to achieve a resynthesis of the piano sound
that is as close to perfect as possible.

We begin by modeling the strings (chapter 2) and then the interaction of the strings with
the hammer (chapter 3). This presupposes that the structure of the model will be, as we
have previously specified, directly related to the physics of the instrument. We then propose
in the chapter 4 a model that is practically complete save certain aspects involving the sound
board—a topic more thoroughly developed in the thesis of Mitsuko Aramaki [?]. Finally, in
chapter 5, we show how the model is implemented in real-time by simplifying certain aspects

of the original model.

Physics i
Synthesis Calibration Resynthesis Real-time 4>F|nal
Model Method Implementation Algorithm
Measurements i 4 |

Figure 1.1: Principle stages of the modeling.

The principle stages of this procedure are outlined in figure 1.1.

e The synthesis model is developed based on the knowledge of physical systems and

observations as made through laboratory measurements.

e The model’s parameters are estimated using either signal measurements from a real
piano or experimentation. Two methods were used to estimate the parameters. When-
ever possible the model was inverted and the model’s parameters were expressed as a
function of the measured signal’s parameter’s such as amplitude, frequency and the rate
of decay in the partials. When the model was impossible to invert, global optimization

methods was used.

e Once the synthesis model was complete, we compared its produced sound with that of
the original. If need be, we refined the calibration method or tweaked the model by ear

until it reproduced the original signal to our satisfaction.
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1.2 Acoustical properties of the piano

Before trying to model the instrument and doing its sound synthesis, we need to understand
the main phenomena involved in the sound production. Many studies have described the
behavior of the varied elements of the piano. The strings and the hammer have been the
subject of specifics experimentations and publications [60] [117] [45]; the study of the radiation
of the soundboard [47] [31] is more recent and has made a lot of progress the last years thanks
to the appearance of accurate sensors (laser vibrometer, accelerometers, etc.). In this section,
we mainly describe phenomena which have an acoustic function in the transformation of the
gesture of the pianist in a perceptible sound. Some of the phenomena described have been
taken into account in the design of the piano model and can be directly measured from
experimentations. Other phenomena, which are less important from a perceptual point of
view, have not been modelled since they make the synthesis models too complicated and thus

incompatible with real-time simulations.

1.2.1 An intricate chain

The first piano was built by Bartolomeo Cristofori in 1709 in Florenze. Starting from a harp-
sichord, he substituted the plectra for a basic hammer (a wooden core with a thin leather).
The oldest existing piano, made by its inventor in 1720, is on display at the Metropolitan
Museum of Art in New York. Since its first appearance, the piano had to go to many changes
to reach its modern form. The hammers, the strings, the frame have changed, the string
tension has consequently increased. H.A. Conklin [30] has studied the difference between the
Cristofori piano and a modern piano. He reports that if the principle is still the same, the
influence of design factors has evolved and transformed this instrument, leading to a piano
adapted for an immense concert room. In this study, we concentrate mainly on the grand

piano. But most of the results given and models proposed are also valid for an upright piano.

Figure 1.2 shows a schematic view of a grand piano [5]. The string is suspended between
the agraffe and the hitch pin which is attached to an iron frame. Between those two fixed
supports, the string runs across the bridge. The bridge is a thin wooden bar transmitting
the vibration of the string to the soundboard (a wooden plate which can be found under the
frame). The distance between the agraffe and the bridge determines the vibrating part of the
string. The end of the string which is closer to the keyboard is connected to the tuning pins
on the bin block. The string is struck by a hammer, transforming the kinetic energy given
by the artist to vibrational energy in the string.

The piano sound is actually constituted by two parts produced thanks to two different
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Figure 1.2: Schematic view of a grand piano (from [5]).

vibrating ways [21]. The first way produces a percussive sound, result of the impact of the key
on the frame. The corresponding vibration precedes slightly the main sound and depends on
the way the pianist strikes the key. The second way starts with the hammer, which strikes the
strings. The interaction between the hammer and the strings leads to two complex transverse
waves which propagates back and forth [8]. Each time these waves are reflected at the bridge
level, a part of their vibrational energy is transfered to the soundbard and radiated. Besides
the impact noise and the transverse waves, the piano sound is the result of many other
vibrational phenomena. One can also hear slightly the longitudinal waves, and the sound
due to the vibration of strings in the high register. Moreover, coupling phenomena between
strings lead to important perceptual features like beating and two-stage decays [115] which

characterize the piano sound.

1.2.2 The strings

The piano strings have a great function in the behavior of the instrument. They are too thin
to radiate any sound but they have strong resonances. They select the energy received from
the hammer and given to the soundboard around several frequencies. Therefore, the design
of a string scale has to be done with a particular care.

The strings are made of steel wire. In order to obtain good elastic properties and efficiency,
the string tension has to be high, around 700 N. But it is usual in designing piano scales to
limit string pull to no more than 65% of the specified tensile strength of the wire [32]. There
are 88 notes on the piano keyboard (from AQ to C8) but there are more than 88 strings:
in the middle and the treble range, the hammer strikes two or three strings to reach higher
acoustic output. In order to have an homogeneous tone quality, the length of the strings
should change exactly in inverse proportion to the fundamental frequency. But if it were so,
the lowest strings would be too long to build a realistic piano and the scale would be larger
than acceptable. This is avoided by also changing the mass of the strings especially in the

bass range.
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Inharmonicity

The “harmonics” of the piano sound are not exact integral multiples of the fundamental
frequency. The whole spectrum is stretched and its components are called partials (see figure
1.3). The frequency difference between partials is higher than the fundamental frequency and
typically, the 10th partial could have the frequency of the 11th if there were no inharmonicity.
We could think that this inharmonicity is an artefact that has to be minimized. But it also
contributes to the piano tone and is mainly responsible for its specificity [32]. Fletcher,
Blackham, and Stratton [38] pointed out that a slightly inharmonic spectrum added certain
“warmth” into the sound. Simulations have shown that a piano without inharmonicity would
sound unnatural [85]. Inharmonicity has then to be absolutely taken into account in our

piano model.
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Figure 1.3: Spectrum of the note A3 of a grand piano.

The stretched tuning of piano strings can be almost entirely attributed to their inherent
stiffness [117] [84] which produces a restoring force in the string (the finite bridge impedance
can also slightly shift the mode frequencies of the string). This leads to a dispersion of the
waves during the propagation. The phase velocity of the high frequency waves is greater
than the one of the low frequency waves. A small “precursor”, corresponding to the highest
frequencies which reach the bridge before the low frequencies, can then be measured at the
beginning of the sound [112]. Consider the wave equation of a stiff and lossless string. It is

a combination of the equation for ideal string and ideal bar:
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where y is the transversal string displacement, x the position along the string, ¢ the time,
¢ the wave speed, K the stiffness coefficient p the linear mass and 7" the tension. FE is the
young modulus of the string and I its moment of inertia. Solving Eq. (1.1) for small stiffness,
the modal frequencies of the string will be [77, 38, 40]:

fn=nfovV1+Bn? for n>0 (1.3)

with
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where f, is the modal frequency, fo the fundamental frequency, n the partial index, B the
inharmonicity factor and dy the diameter of the string.

This inharmonicity factor is proportional to the diameter of the string (raised to the 4th
power). The larger the diameter, the more the string behaves as a beam. Therefore, in order
to increase the string mass in the bass range without increasing the inharmonicity, the strings
are wrapped. Wrapped strings are made by winding a helical coil of covering wire, usually
copper or copper-coated steel, onto a tensioned steel core wire [32]. Since this inharmonicity
increases in inverse proportion to the length of the strings squared, grand pianos are less
inharmonic than upright pianos. We have estimated the inharmonicity coefficient B thanks
to formula 1.3 for each note by making measurements on a grand piano. Figure 1.4 shows
the evolution of B over the piano range.

Except for the first notes, the inharmonicity increases with the range. This is in accor-
dance with other measurements found in the literature [32]. But, when listening to piano
sound, it seems to be more inharmonic in the lower register than in the higher one. One of the
reasons is that the bass strings countain more partials than the treble ones, allowing an easier
perception of the inharmonicity. Another reason is that the threshold of audibility is close to
the actual inharmonicity of the piano for the treble range [65] [75]. Inharmonicity affects also
piano tuning. Since the tune is made by using the beating between two different notes, the
stretching of partials will cause a stretching of the fundamental frequencies as well. In a cor-
rectly tuned piano, the upper and treble fundamental tones are higher in frequency and the
bass fundamental tones are lower in frequency than would be the case without inharmonicity.

This is a cause of troubles when the piano is played with other instruments.
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Figure 1.4: Measured inharmonicity factor B.

Losses

There are two different losses mechanism in the piano string: losses in the string itself, and
those due to the vibration of its extremeties. The first can be divided into three types,
according to the frequency [21]. Above 1 kHz, the greatest losses are due to viscous friction
in the air and increase with the decreasing of the frequency. After 1 kHz, the visco-elastic
losses in the steel are greater and increase with the frequency. The losses by heat conduction
are weak but greater around 1 kHz. For more details, see [112]. The second loss mechanism
allows the radiation and perception of the sound by transferring energy to the soundboard
and to other strings (see next paragraph). It depends on the string tension and will be

different from one note to another, according to its position on the soundboard [5].

Coupling phenomena

In the middle and the treble range of the piano, there are two or three strings for each note in
order to increase the efficiency of the energy transmission towards the bridge. The vibration
produced by this coupled system is not the superposition of the vibrations produced by each
string. Having several strings for each note not only facilitates the energy transfer but also
influences the behaviour of the sound. Considering a temporal signal of a piano sound (see
Figure 1.5), we can notice beating and double decay on the amplitude.

Similarly, we can notice in the spectrum (Figure 1.6) that partials are actually constituted
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Figure 1.5: Recorded waveform for a note C2 of a grand piano.

by two close components. If we assume that the strings are not tuned to the same frequency
but neglect the effect of coupling, the result will be beating between partials as well. But the
strings are coupled to the bridge. There is energy transfer between the strings giving rise to

new modal frequencies.

G. Weinreich [115] has studied in detail this phenomenon in the case of two strings coupled
at the bridge level and vibrating in the vertical plan. But its conclusion can be also extended
to the case of one string vibrating in two orthogonal planes (those two modes of vibration
are also coupled at the bridge). He shows that frequencies of the two eigenmodes of vibration
depend on the type of coupling (resistive, reactive) and of the frequency difference between
the two systems without coupling. In the case of a purely reactive bridge admittance, the
eigenfrequencies are purely real (there is no damping in the system) and always different
(even if they were equal without coupling). This leads to beating in the sound. If the bridge
impedance is purely resistive and if the frequency difference between the two uncoupled modes
is not too large, the eigenfrequencies will have the same real part (there is no beating) but
different imaginary parts and, consequently, there will be two different decay rates. If the
admittance has both real and imaginary parts, as it is the case for a real bridge, there will

be beating and double decay.

Practically, when the hammer strikes two strings, they will first vibrate in phase. The
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Figure 1.6: One component of the spectrum of a note C2.

vibrations are consequently large and the energy is quickly transmitted to the soundboard.
This leads to the ”immediate” sound which has the greatest decay rate. Then the two phases
of each string will be different and the strings will exchange energy via the bridge. The
losses are then weaker as well as the decay rate: this is the "remanent” sound. There is the
same kind of phenomena in the case of one bi-polarized string. The hammer excites first the
vertical mode, which is more efficiently coupled to the bridge than the horizontal mode. The
energy transmission is more effective in this direction as well. The sound produced by the
vertical polarization will be dominant and the decay will be greater. Then, the string will
vibrate in the horizontal polarization, leading to a smaller transmission of its energy and to
a smaller decay rate.

The coupling phenomena, provides a characteristic dynamic to the piano sound. Beats are
used by the professional tuner to precisely mistune the doublets or triplets of strings since
the beat periodicity is correlated to the frequency difference between the strings modes. This

way, they can adjust the duration and the tone of the sound.

Longitudinal modes

A dynamic consequence of the longitudinal elasticity of the string is the existence of longi-

tudinal waves. According to Giordano and Korty [48], they are produced by a non linear
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way, which is the stretching of the string due to the finite amplitude of the transverse dis-
placements. Those longitudinal modes lead to perfectly audible sound in the piano case and
are especially perceptible in the bass range. As Conklin claims, those ”longitudinal string
modes should be taken into account in the design of piano scales and wrapped strings in order
to obtain the best tone” [32]. They have to be tuned to the transversal modes for a more
pleasing tone. Longitudinal modes have a higher wave speed propagation than transverse
modes. They create an harmonic series of fundamental frequency +/E/p/(2L) [112], much
higher than those of transverse waves. According to Conklin, the frequency ratio between
the first longitudinal and transversal modes is typically from 4200 to 5200 cents. Therefore,
they are mainly present at the attack of the sound. The high frequency precursor vibrations
we have discussed before has then to be attributed to the vibrations of the piano frame/key

bed but also to longitudinal string vibrations.

Non linearities
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Figure 1.7: Spectrum from a note D1 of a grand piano.

Let’s have a look to the spectrum of Figure 1.7. The corresponding signal was measured
on an experimental setup described in Section 2.6.2. The string was struck with a hammer
located at 1/8 of its length and observed using a laser vibrometer at a distance 1/8 from

the bridge. The string has then been excited at a node of vibration which means that if
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we only consider the linear phenomena, the corresponding partial (here the eighth partial)
should not be visible, which is not the case. Consider now the Figure 1.8 showing a part of
the spectrum of the measured signal and of the corresponding synthesized signal using the
linear model described in Section 2.2.2. The original signal should contain only a series of
inharmonic partials whose frequencies are given by the relation Eq. (1.3). We can see on the
measured signal that there are many other partials (marked with a ™*’ on Figure 1.8) on the
spectrum. Those phenomena, are not foreseen by the linear theory. There are several nonlin-
ear phenomena intervening in piano string vibration. Some of them have a perceptible role
and have been studied in the literature. As we will see, the given explanations are sometimes

contradictory, which means that it calls for further research.
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Figure 1.8: Measured (top) and modelled (bottom) piano signal using a linear model. The **’

mark partials produced by non linear phenomena.

One of these non linear phenomena and perhaps the most obvious is the tension variation
in the string during the movement (see i.e. [110]). Indeed, due to transverse waves, the shape
of the string changes during the motion and its length changes as well. The tension will then
be modulated at a double frequency of the fundamental according to the amplitude of the
motion. It is possible to measure a slight decrease of the frequency of the partials at the
beginning of the sound [73]. In the piano case (contrary to harp or guitar) this phenomenon

is not perceptible. It is too weak and probably masked by other phenomena. According to
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Legge and Fletcher [73], tension variation is the starting point of mode coupling. Authors
have investigated both theoretically and experimentally energy transfer among partials due
to such non linear phenomena. For their study, they took the model of a string tightened be-
tween two supports. One rigid and another one which can have a mechanical finite impedance
in a direction perpendicular or parallel to the string. They show that the energy transfer
between modes is due to the tension modulation. In the case of completely rigid terminations,
the tension modulation will only affect original modes. If the bridge has infinite impedance in
a direction parallel to the string and a finite impedance in a perpendicular direction, modes
of frequencies w, and w,, can transfer energy to mode frequencies 2w, + wy,. If the bridge
also has a finite impedance in the string direction, the non linear mechanism gives driving

terms of angular frequencies 2w, and 2wy,.

In [58], Hall and Clark claim that there are at least two reasons showing that even if the
hammer strikes the string at a node, the corresponding modes will not be completely missing.
They show that, first, the small residual strengths in the nearly missing modes can be well
accounted for by the finite bridge admittance and secondly the finite width of the region of
contact between real piano hammers and their strings will avoid completely missing modes.

Conklin attributes in [33] the so called “phantom partials” observed in piano tones to
nonlinear mixing. This phenomenon can occur because the tension varies during transverse
vibration and produces longitudinal string forces at the bridge level. If the reason seems
to be close to the one given by Legge and Fletcher, one can notice that Conklin does not
make any assumption concerning the bridge impedance. By imposing a displacement to a
string (tightened between two fixed supports) at the center, he shows experimentally that
the force measured on the bridge can be expressed by f; = 0.0972d? where f; is the tension
end force in Newtons and d is the center displacement in mm. When two frequencies w,, and
wm, are present in the string, this force will generate components of frequencies 2wy, , 2w, and
Wp, * Wy. This non linear mixing could occur even if the bridge has an infinite impedance
and then generates other partials than the original ones, which is in contradiction with what
Legge and Fletcher claimed. The discussion is not closed yet and further investigation has to

be done.

Finally, we would like to give another element which has to be taken into account in
the discussion. For purposes of modeling, we have made a lot of experiments and measured
the vibrating behavior of piano strings in several experimental conditions. We would like to
emphasize the fact that what is called ” phantom partial” in the literature can also be produced
by coupling phenomena between the two polarizations of one string or, in the piano case,

by coupling between several strings. We have experimentally noticed that those couplings
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produce doublet (or more) components which can sometimes lead to totally independent
components in the spectra. Moreover, the coupling changes the frequency of the regular
inharmonic components. This may complicate the experimental detection of ”real phantom

partials” produced by non linear phenomena.

1.2.3 The hammer
The action mechanism

The action of the piano hammer is a complex mechanism which was first developed by Cristo-
fori. Its action was remarkably ingenious and has been later improved by Erard in 1820, with

the “double escapement”. Minor improvements have been made since this date.

The piano action consists of 4 main parts: the key, the leverbody, the hammer and the
damper. The motion of the key is transferred to the hammer via the leverbody. Due to
the levering in the action (ratio 1:5), the hammer velocities are much higher than the key
velocities. The force transmission from key to hammer is disconnected shortly before the
hammer-string contact. This is called the “escapement”. The hammer strikes then the string
freely. After the hammer-string contact, the hammer is caught. The damper is lifted off the
string by the key before hammer-string contact and let down when the key is released. The
action is aimed at allowing the best control of the hammer velocity, especially in the low
dynamic range, and the fastest possible repetition of a single note. In this way, the grand
piano has a more precise and sensible action for the control of dynamic and repeated notes.
When playing pianissimo, the impact of the hammer on the string is not strong enough to
throw back the hammer. It is done thanks to the gravity for a grand piano and to a spring
for an upright piano. But in the case of an upright piano, a security margin has to be taken,
which means that the escapement velocity of the hammer has to be a little higher, leading
to a weaker control in this dynamic range. Moreover, the double escapement, which usually
equipped grand piano allows a sooner reload of the system leading to a faster repetition of
the same note.

A. Askenfelt and E.V. Jansson have studied the timing of the action of a grand piano
[6] and noticed that the delay introduced by the action depends on the dynamic level. The
freetime for the hammer before the string contact became shorter, the key bottom contact
was reached earlier compared to the string contact; the hammer-string interaction duration
decreased. The pianist has then to compensate those differences. In a second article [7], A.
Askenfelt and E.V. Jansson have tried to solve a contradicting standpoint between pianists
and researchers. Pianists often claims that they can change the tone of the sound by using

different "touch” at a same dynamic level, whereas researchers said that since the escapement
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interrupt the transmission force before the hammer-string contact, the only control parameter
is the hammer velocity at the escapement time. One first explanation is that the shock of
the finger on the key and the shock of key on the keypad depends on the touch and are part
of the piano sound. The key motion can be different according to the dynamics: at loud
dynamics, strong oscillations superimposed on the key motion. The second explanation is
that the hammer exhibits various resonances and their level differs according to the type of
touch (legato, staccato...). The story of the hammer motion during acceleration is influenced
by those modes and consequently by the hammer-string contact. Those two results show that
depending on the touch, the piano action would offer a possibility for the pianist to influence
the tone.

Hayashi et al have proposed a model of the hammer action [59]. All the mechanism is
modeled as a spring-mass oscillator. Their model seems to perfectly reproduce the movement
of the hammer before the escapement. Authors show that depending on the displacement of
the finger on the key (constant speed, constant acceleration), modes of the hammer can be
excited. Moreover, for a constant low speed, the hammer can break contact with the action
parts before the escapement point and strikes the string. After it strikes, it is pushed up by the

parts and it can strikes the string again. This phenomenon is referred to as “double-striking”.

The interaction with the strings

The piano tone as many of musical instruments, depends on the dynamics. The greater the
velocity of the hammer, the brighter the resulting sound. Figure 1.9 shows several piano
spectra for different dynamics. It is obvious that there is a global increase of the amplitude
but also a modification of the spectral shape. Figure 1.10 shows the behavior of the centroid
of the spectrum modulus [13]. The centroid is correlated to the perception of brightness.
It is defined as the sum of the amplitudes of each component times its frequency, over the
sum of the amplitudes of the components. The centroid is clearly an increasing function of
the hammer velocity which is in accordance with the perceptual statement of an increase in
brightness. The audition is actually more sensible to the variation of the tone rather than
the variation of the intensity and the perception of dynamic is then strongly correlated to
the tone. This progressive increase of the high partials of the spectrum denotes a non linear
behavior due to the interaction between the string and the hammer.

The hammers are constituted by a hardwood core with one or two layers of wool felt that
increase in thickness from treble to bass [30]. In contemporary piano, the hammers have
also hardwood cores of graduated size. Hammer mass typically decreases over the 88-note
compass by a factor between two and three. Moreover, the ratio of hammer mass to string

mass increases more widely. The hammer /string mass ratio is of great importance since it
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Figure 1.9: Three spectra for three different dynamics (pp, mf, ff) from a note AO.

will affect the contact duration between the hammer and the string and therefore influences
the tone (see next paragraph). The hardness of piano hammer felt also directly affects the
quality of the tone. Harder felt results in stronger high partials, i.e., a brighter tone. The felt
of the hammer is not homogenous. Conklin believes that the existence of a hardness gradient
is chiefly responsible for the spectral changes that occur with changes of dynamic level. The
brightness of the tone can be adjusted by “voicing”. Voicing is done after a piano has been
completely assembled and tuned to produce a “good” tone, maintain an homogeneous timbre
from one key to another and giving a “personality” to the instrument. The felt can be made
softer by needling and harder by “filling” away with sandpaper some of the softer outer felt

or by using a hardening agent.

Many studies have tried to describe and model the hammer/string interaction. One of the
most complete study can be found in [8]. When the hammer strikes the string, it generates
a pair of waves traveling outward from the striking point (see Figure 1.11).

In the piano, the string is struck close to one of its terminations, the agraffe. During the
striking process, the string is temporarily divided in two parts by the hammer. The wave
propagating toward the agraffe will be reflected shortly after the hammer impact and follow

closely behind the original wave traveling toward the bridge. The returning wave will then
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Figure 1.10: FEwvolution of the centroid of the piano spectrum as a function of the hammer
velocity for the note AQ.

meet the hammer, a non rigid support. There will be multiple reflections in the agraffe side
of the string. The hammer will partly transmit and reflect the wave. Figure 1.12 shows the
velocity of two points measured using a laser vibrometer, one on the agraffe side and the
second on the bridge side. The reflected waves can be clearly seen in the first milliseconds
of the signal measured on the agraffe side. Transmitted waves appears as well on the bridge
side. When the hammer acceleration is too weak to cope with the gravity and the force
exerted by the reflected waves, the hammer string contact ends. One can then understand
why the hammer/string contact duration affects the tone. The spectra of the resulted sound
depend also on the striking point. This results in a comb filtering effect since modes of the

string which have a node at the striking point will be attenuated.

To model the hammer-string contact as a simple mass striking a string (modeled, for
example, using Eq. (1.1)) allows to give an analytical solution of the problem, but is totally
unrealistic. The next step consist in adding a linear spring to the mass to take into account
the felt compliance. Hall has reviewed in [54] [55] [56] articles dealing with such a model.
He proposed a solution, half analytical, half numerical, and shows that this approach is still
too far from the real phenomena. To reproduce the modification of the tone according to the
dynamic, one must take into account the non linear behavior of the felt. We have used such

a model and we will then give more details in Section 3.2.
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Figure 1.11: Ewolution of the string shape during the hammer/string contact.

1.2.4 The soundboard

The soundboard radiates the vibration received from the string via the bridge, according to
its dimension and geometry. It consists in a thin wooden (epicea) plate [31]. Ribs are glued
behind the board with regular intervals in order to increase its rigidity in a direction perpen-
dicular to the fibers of the wood. The soundboard allows the transform of the mechanical
energy from the vibrating strings in to acoustical energy radiated in the surrounding medium.
This energy transfer depends on the impedance ratio between the strings and the soundboard
in the vertical direction. The strings are distributed over the entire length of the bridge and
then deliver their vibration energy at different points on the soundboard, encounting different
matching conditions. The soundboard has its own resonance modes. To be well radiated, a
partial frequency of the string has first to be close to a mode resonance of the soundboard
and secondly, has to be superior to the “critical frequency” (see [5]). Measurements from
Wogram [5] have shown that the soundboard is incapable of radiating sound below 100 Hz.
Giordano in [47] shows that the impedance of the soundboard decreases as a function of the
note. Therefore, the damping is weaker in the bass range than in the treble. As we said

previously, the soundboard has not been specifically studied and modelled here.
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Figure 1.12: String velocity at the bridge side (top) and at the agraffe side (bottom) measured
using a laser vibrometer on the experimental setup described in 2.6.2. These correspond to

the curves given in [8].

1.2.5 The dampers and the pedals

The extinction of the sound after the released of the key is done thanks to the damper. The
pianist can control the fall of the damper and consequently act on the extinction. There
are few publications dealing with this phenomenon. Measurements and explanation can be
found in [8, 6]. The damper has a limited mass and cannot terminate the vibration instanta-
neously, but the decay time can be made relatively short. Authors studied the effect of the
dampers by simultaneous measurements of string and damper motion. The damping depends
on the ratio string mass/damper mass. The damping is fairly inefficient in the bass. It takes
approximately 250 ms for the string vibration to decay whereas this decay is 100 ms in the

midrange and 50 ms in the treble.

Pianos have either two or three pedals: the sustain pedal, the una corda pedal (or in
upright pianos, the soft pedal) and in some cases the susteno pedal. The sustain pedals lifts
the dampers of all strings. The string can then vibrate after the release of the key. As all the
strings can vibrate freely, the sympathetic coupling affects the resulting tone. The una corda
pedal shifts the action mechanism so that the hammer will strikes only one or two strings.

This causes a reduction of the sound pressure level (1 or 2 dB) but also changes the timbre.
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The string which is not directly excited vibrates thanks to energy transfer via the bridge.
In upright piano, there is no una corda pedal but a soft pedal which attenuates the sound
thanks to a piece of felt lowered between the strings and the hammer. The susteno pedal
(used only on grand piano) sustains the notes that have been struck before depressing the

pedal.

1.3 Synthesis methods for piano tones: an overview

In this section we describe the main techniques used in sound synthesis for piano tones.
It is not the purpose of this overview to exhaustively describe different existing methods,
but to consider those which, among the most commonly used, could be functional for this
study. Those methods have advantages and drawbacks, but some of them offer a better
matching of the conditions we have described in Section 1.1.2: doing a synthesis as realistic
as possible from a perceptual point of view while keeping a physical control of the parameters
and allowing a real-time implementation. Details of these methods will not be given in this
Section. Methods that have been used will be widely described in the different chapters of
this document while the others are referenced for those who might be interested in a more
detailed description. The classification given is based on the works of [68], [111] et [97]. We
will distinguish two main class of synthesis algorithms: synthesis using signal models and
synthesis using physical models. Signal models aim at reconstructing a perceptual effect
without being concerned with the specific source that made the sound whereas physical

models aim at simulating the behavior of existing or virtual sound sources.

1.3.1 Signal models

Signal models use a mathematical description of sounds. Their advantages are simplicity and
their easy implementation. We will distinguish three types of signal models: the processed

recordings, the global synthesis methods, and the linear methods.

Processed recordings

The sampling method is generally used in commercial digital pianos. It consists of playing
a sound which has been previously recorded. This method is very accurate in reproducing a
specific sound but is not able to reproduce the changes in playing conditions. Commercial
digital pianos store separate tones of the instrument in a memory and play it back when
a key is depressed [86] [111]. Several recordings are necessary for the same note to take
into account the modification of the tone with the dynamics. This method requires a large

amount of data, therefore only a few seconds are recorded. After the attack, the waveform
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is reconstruct by looping, which means, continuously repeating the steady state part of the
tone. Then, the amplitude and timbre evolution of the tone has to be simulated by a time-
varying amplitude envelope and a time-varying filter [12]. In less expansive samplers, there
might not be enough memory to store every tone. Typically, every third or fourth semitone
are stored. Other tones are obtained by pitch shifting of the reference note, using simple
time-domain methods that affect the length of the signal [86]. The drawback of this method
is that the transposed noise of the attack sounds usually unrealistic. In many samplers, the
memory requirements are tackled by data reduction techniques which degrades the perceived
audio quality. Nevertheless, the highest quality synthesized piano sounds are coming from
devices using sampling technique. The concept is straightforward and the implementation of
the algorithm is relatively simple. But this method synthesizes the note separately, which
means that physical phenomena, like energy transfer between the strings, restrike of the same
string are not taken into account. This method has been successfully implemented for piano
sound, since the musician can not act on the sound after the note was played. But it is very
difficult to use such an algorithm for instruments like violin where the musician has more

influence on the sound.

Multiple wavetable synthesis is close to sampling synthesis. The musical tones are pro-
duced using several wavetables, i.e. sound signals stored in a computer memory. The sound
signals are multiplied with an amplitude envelope and then summed together to produce the
synthetic sound [111]. In wavetable cross-fading, only portions of the signal are synthesized
and then cross-faded to the next. This procedure is repeated over the course of the event. In
wavetable stacking, every whole sound signal is shaped and they are then summed to produce
the synthetic sound. It is in a way similar to additive synthesis (see further).

Global synthesis methods

Global synthesis methods aim at shaping a simple signal (a sinusoid for example) using a
function. Those methods are nonlinear since the operations on the signal are not simple
additions and amplifications. The synthesis uses relatively simple algorithm and exhibits a
small number of parameters, but the analysis procedures are complicated. It is then generally
difficult to control the shaping of a sound by those methods, since the timbre is related to

the synthesis parameters in a non linear way.

The most well known example of global synthesis is audio frequency modulation (FM)

originally introduced by J.Chowning in 1973 [29]. This synthesis method has been adapted
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from the theory of FM for radio frequencies to audio synthesis purposes and revolutionized
commercial synthesizers. Chowning observed that by connecting two sinusoidal oscillators,
namely the carrier and the modulator, complex audio spectra can be easily achieved. The
two oscillators are connected in such a way that the frequency of the carrier is modulated
with the modulating wave form. If both the carrier and modulating waves are sinusoids, the
amplitudes of the resulting harmonics can be calculated by the Bessel functions (see [29] for
more details).

Another method, based on the nonlinear distortion of an input signal was developed by
Le Brun [22]. We have tried this method to take into account the non-linear behavior of the
hammer /string interaction and we will then give more details in section 3.8.4. An advantage is
that the amplitude variation of the signal results in a large alteration of the output spectrum.
If the input signal is sinusoidal, the harmonics ratios could be accurately controlled by using
Chebyshev polynomials as distorsion functions. The signal can be then bandlimited and the

aliasing can be avoided.

Linear models

Linear models like additive synthesis or substractive synthesis aim at constructing a signal
using its time-frequency representation. In this way, they are using the process of human
perception, which analyze audio signals according to their spectral contents. A wide range of
sounds can be produced using those techniques. But generally, a large number of parameters

is needed for the description of a given instrument.

Additive synthesis is one of the simplest and most intuitive of those spectral techniques. It
consists in constructing a complex tone by summing elementary sounds, generally sinusoidal
signals modulated in amplitude and frequency. It can be interpreted as a method to model
the time-varying spectra of a tone by a set of discrete lines in the frequency domain [97].
Three control functions are needed for every sinusoidal oscillator: the amplitude, frequency
and phase of each component. In many cases, the phase is left out and the output signal can

then be represented as [111]:

y(m) = Y Ay(n)sin(2nFy ()] (1.5
k=0

where y is the output signal, n the time index, M is the number of the sinusoidal oscilla-
tor, Ag(n) is the time varying amplitude of the k™ partial and Fj(n) is the frequency of
the k' partial. For periodic or quasi-periodic sounds, these components have frequencies

that are multiples of one fundamental frequency. Analysis method can be applied to map
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a natural sound into a series of sinusoidal oscillator. Amplitudes and frequencies of the
components are mapped peaks in the frequency domain, and can be detected by using the
Short Time Fourier Transform (STFT) of the original signal. We have synthesized piano
tones by applying this method. The spectral components are well reproduced as well as their

time varying behaviour as we can see on figure 1.13.
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Figure 1.13: Amplitude of the first 6 components of an original piano tone measured on a

grand piano (top) and its resynthesis using additive method (bottom)

The resynthesized sound is then very close to the original one. An advantage of this
method is its flexibility and the potential for intimate and dynamic modifications of the
sound. But its drawback is the huge number of control parameters. Group additive synthesis
has been used to reduce this number of control parameters. Partials are group together and
have common frequency and amplitude enveloppes. These grouped partials are then com-
bined to form wavetables. According to K.Lee and A.Horner [72] who have used this method
to model piano tones, it reduces the amount of data by about 50% compared to additive

synthesis, while preserving the perceptual identity of the sound.
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Granular synthesis is a set of techniques based on composing the synthetic sounds from
short signal elements in the time domain called ”sound atoms” or grains. Grains can have
a duration ranging from one millisecond to more than a hundred milliseconds. The gran-
ular synthesis can be classified according to how the grains are obtained. In asynchronous
granular synthesis (AGS) [86], grains are scattered over a region in the time-frequency do-
main called cloud. The grains can have similar waveforms or different waveforms. The
waveform can be a windowed sinusoid, a sampled signal or obtained from a physics-based
model [24]. In pitch synchronous granular synthesis (PSGS) [79], grains are derived from
the Short Time Fourier Transform (STEFT) of the original signal. The length of the rect-
angular windows used in STFT is the period of the final synthetic sound. Then each grain

corresponds to a period of the signal.

The Spectral Modeling Synthesis (SMS) [91] is a method which aims at synthesizing a
sound by adding separately the deterministic components and the stochastic components.
The deterministic part is obtained from a given musical sound by first calculate the STFT of
each windowed portion of the signal [111]. From the complex spectra produces by the STFT,
the prominent peaks and their trajectories are obtained using a peak continuation algorithm.
The stochastic components are then calculated by substracting the deterministic part from

the original signal in the frequency domain.

In subtractive synthesis, the process is opposite to the one used in additive synthesis:
the sound is constructed by removing undesired components from an initial, complex sound
such as a noise. This method is then closely linked to the theory of digital filtering. This
approach allows the separation between a source signal and a filter. This technique has been

used especially to produce synthetic speech [76].

The source-resonator synthesis is in a way similar to substrative synthesis. A wide-band
excitation signal is filtered using resonant filters. But this approach also corresponds to what
happens in many physical system, assuming that there is no feedback from the resonator to
the excitator. There is sometimes a confusion between the terms “source” and “excitation”.
In this document, we will call “source” the concept and “excitation” the corresponding signal.
The sound transformations related to these methods often use this property to make hybrid
sounds or crossed synthesis of two different sounds by combining the excitation source of
a sound and the resonant system of another [83]. A wellknown example of cross-synthesis
is the sound of a talking cello obtained by associating an excitation of a cello string and a
resonance system corresponding to the time-varying formants of the vocal track. The source-

resonator technique was used by Laroche and Meiller [71] for the synthesis of piano sound. To
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model percussive sounds using this approach, the authors made two assumptions: first, the
freely vibrating body generates a sound that is composed of exponentially decaying sinusoids
(which is the case for piano sounds, under the hypothesis of small perturbations and linear
elasticity); secondly, the independence between the source and the values of frequencies and
damping factors. From a physical point of view, the two parts of the model can be interprated
as follows [71] : the strings, which correspond to the vibrating structures are represented by
the resonant filter, and the hammer, which is the physical excitator is represented by a short
duration excitation signal. This analogy is not totally exact since in the piano case, the
hammer and the string interact during several milliseconds. The excitation which has to be
injected in the resonator is then the result of this interaction. Laroche and Meiller show that
realistic piano tones can be produced using this method. Moreover, they used one excitation
to generate several sounds, typically five piano tones belonging to the same octave. We have

also used this method to produce piano sound. More details are given in Sections 3.8 and 4.

1.3.2 Physical Models

Unlike signal models which aim at modeling the resulting signal, the main feature of physical
modeling approaches is that they describe the sound generation system with respect to its
physical behaviour. Such systems can be constructed either from knowledge of the physical
laws that govern the vibrating parts of the system and expressing them mainly as mathe-
matical equations, or from the behaviour of the solution of these equations [68]. There are
two reasons for developing physics-based model. One is the understanding of the physical
phenomena involved in sound production and the other is sound synthesis. But if the purpose
is to model a real instrument and to reproduce its tone as close as possible, those two mo-
tivations are inexorably related and the accuracy of the synthesized sound will validate the
design of the physical model. Physical models give a realistic response to the interactions of
the musicians, since the input parameters are directly related to the physical features of the
instrument and consequently to the gesture of the musicians. They are generally complicated

and necessitate high computational costs.

Numerical Solving of a wave equation

The first method used in physical modeling was based on finite difference equations. The basic
principle is to obtain the mathematical equation describing the vibrating motion and solve it
in a finite set of points. The finite difference equation obtained simulates the propagation of
waves in the system. Hiller and Ruiz [62, 87] proposed one of the first finite difference method
for sound synthesis purposes. They applied this principle to plucked strings and proposed
a PDE taking into account the frequency dependency loss and the stiffness of the string.
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Chaigne and Askenfelt [26] [27] proposed one of the most realistic model of a struck piano
string by combining the PDE of Hiller and Ruiz with a non-linear hammer model. They
have then compared simulations and experiments. Waveforms were in good accordance with
the signal measured on the real piano. We will describe their work in details in Section 2.2.1
and Section 3.2. A more complete piano model (taking into account the soundboard) using
finite differences was presented by Hikichi and Osaka in [61]. Finite differences can be used to
simulate the vibrational behaviour of many other structures such as bars, membranes, tubes,

etc.

Modal synthesis and mass-spring networks

Modal synthesis describes sound-producing objects as a linear combination of vibrating sub-
structures which are defined by modal data [1]. Substructures are then connected and can
also respond to external excitations. Each substructures is modeled using its modal data, i.e.
the frequencies and damping coefficients of the resonant modes and the shapes of each mode.
Modes are supposed to be uncoupled, which means that there is no energy transfer. The
modes are excited by an external force applied at a given point on the structure. Analysis
techniques for the determination of the modal data have been developed. Modal data can be
obtained analytically for simple structures, but for complex structures, an analysis based on
measuring experiments is necessary. Modal synthesis method is general and can be applied
to structure of arbitrary complexity. The modal synthesis has been mainly developed at
IRCAM in Paris. A commercial software application called Modalys has been produced.
Another method was proposed by Cadoz et al. [23] consisting on using a set of masses,
dampers and springs to model mechanical structures. The CORDIS system used this method

and was the first system capable to produce sound based on a physical model in real time.

The Karplus-Strong algorithm and Digital Wave Guides

Karplus and Strong [67] have proposed a very efficient algorithm to simulate plucked string
and drum timbres. This algorithm is an extension of the wavetable synthesis technique
(see Section 1.3.1). As we have seen previously, wavetable synthesis consists in the periodic
reading of data in a computer memory. In the Karplus-Strong algorithm (KS), the content of
the wavetable evolves with time. The wavetable changes each time a sample is read. A block
diagram of the simple wavetable algorithm and of the KS algorithm are shown on Figure 1.14
[111]. In the KS algorithm, the lowpass filter will account for the decay of the tone. The

transfer function of the modifier filter is

H(z)=1/2(1 +z71) (1.6)
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This filter can then be related to the losses of the physical system, allowing a physical inter-

pretation of this signal model.

Wavetable (delay of P samples) z - O_utput
’_» signal
Wavetable (delay of P samples) z > Qutput
signal
N M
N
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_2 z-1

Figure 1.14: The simple wavetable synthesis algorithm (top) and the Karplus-Strong model
for plucked string tones (bottom) (from [111]).

Smith [92] [64] has extended this algorithm and developed the concept of Digital Wave-
guide synthesis. The digital waveguide approach provides efficient computational models for
musical instruments primarily in the string, wind, and brass families [101]. Digital waveg-
uides and finite differences are closely related in that they are both based on the discretization
of the wave equation. The efficiency of the digital waveguide approach lies in lumping the
losses and dispersion of the structure to one point (assuming that the system is Linear and
Time Invariant - LTT). Digital waveguides have been developed specifically for piano synthesis
[104, 114, 101, 43]. These approaches are close to the one presented in this document. We
will described in details digital waveguide algorithm in Section 2.3 and those approaches in
Sections 2, 3 and 4.

1.4 Conclusion

Several physical phenomena are involved in the sound-production mechanism in the piano.
Some are taken into account in the model proposed here, though others, of presumably lesser
perceptual significance, are ignored. String inharmonicity and frequency-dependent losses

are dealt with. Inter-string couplings, between string pairs or triples, giving rise to two-
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stage decay, are also covered; however, only string vibration in direction perpendicular to the
soundboard is modeled (vibration in the parallel plane does not transmit energy efficiently to
the soundboard). Longitudinal waves, also present in a vibrating string, are also not modeled,
and neither are nonlinear effects; their perceptual effects are of much less importance than
those mentioned above. As far as the hammer is concerned, the felt nonlinearity on the
hammer /string interaction is a necessary feature to be modeled, as is the modulation of the
spectrum as a function of the hammer striking point.

Because we would like to transfer the physics directly to the synthesis method, we will
not make any use of prerecorded sound (samples) or of non-physically motivated techniques
such as FM synthesis. In addition, the parameter estimation methods that we will make use
of will not give rise to a perfect reproduction of the analysis sound. Linear models give good
results, from the perceptual point of view, but the relationship with physical parameters is
neither simple, nor easy to control. We have thus looked mainly at physical and quasi-physical
models: synthesis via numerical integration (of the equations of motion of the hammer-string
system, see Sections 2.2 and 3.4)), synthesis by source/filter methods, and through the use

of digital waveguides.



46

CHAPTER 1. INTRODUCTION



Chapter 2

String modeling

2.1 Introductory remarks

We have seen that there are several methods, by which synthesis of piano string vibration
is possible. Ideally, we have focused on those which allow a satisfactory resynthesis from a
perceptual point of view, have little cost in calculation time and have its parameters directly
tied to the physical phenomena. We will show that the digital waveguide satisfies these first
two requirements in the case of Linear Time Invariant (LTT) systems. On the other hand,
the synthesis by digital solving (finite difference scheme) of a partial differential equation
(PDE) enables the use of physical synthesis parameters, thereby satisfying the third of these
requirements. In forming a link between these two methods, we express the parameters of
the digital waveguide (DWG) as a function of those of the PDE. We show, then, that the
DWG equally satisfies this third requirement and will be then, finally, used as a synthesis
model.

Section 2.2 describes two different PDE models that allow the simulation of piano string
vibration. Section 2.3 gives the basic principles of synthesis by digital waveguide model and
Section 2.4 compares the signals produced by each of these methods, for a set of physical
parameters given. This work (Sections 2.2, 2.3 and 2.4) was the result of collaboration with
researchers of Stanford University and will be published in [14]. The second part of this

chapter is concerned particularly with the modeling of coupled strings by digital waveguide.

2.2 PDE string model

We will present in this Section two different PDE string models. The first have been proposed
by Hiller and Ruiz [87, 62] and is one of the most realistic string models. It takes into account

stiffness and frequency dependent loss phenomena but does not allow the identification with

47
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the digital waveguide model (see Sections 1.3.2 and 2.3). In order to compare both approaches,

we will then consider another PDE model allowing this identification.

2.2.1 A PDE piano string model

Several models of transverse wave propagation on a stiff string, of varying degrees of com-
plexity, have appeared in the literature [87, 62, 11, 26, 27]. These models, intended for
the synthesis of musical tones, are always framed in terms of a partial differential equation
(PDE), or system of PDEs; usually, the simplified starting point for such a model is the
one-dimensional wave equation (see Section 1.2.2 and [39]), and the most realistic features,
such as dispersion, frequency-dependent loss and nonlinear hammer excitation (in the case
of the piano string), are incorporated through several extra terms. Hiller and Ruiz [87, 62]
have proposed one of the most advanced such model and used it as the basis for a synthesis
technique, through the use of finite differences. Chaigne and Askenfelt [26] [27] have used
this model to show that the time waveform on a struck piano string is simulated in this way
to a remarkable degree of fidelity. Frequency-dependent loss, is modeled through the use of
a third order time derivative perturbation to the dispersive wave equation; while a physical
justification for the use of such a term is tenuous, it does give rise to perceptually important

variations in damping rates. This model is described by the following equation:

@:CQ@—ﬂZ@—2b1@+2b3— (2.1)
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The first term on the right-hand side of the equation, in the absence of the others, gives
rise to wave like motion, with speed ¢. The second “ideal bar” term [51] introduces disper-
sion, or frequency-dependent wave velocity, and is parameterized by a stiffness coefficient «.
The third and fourth terms allow for loss (b; and b3 are the loss parameters), and if by # 0,
decay rates will be frequency-dependent. A complete model, for a piano string, is obtained
by including hammer excitation term f(z,t), possibly accounting for nonlinear effects, on
the right-hand side, and by restricting the spatial domain to a finite interval and supplying

a realistic set of boundary conditions (see Section 3.4).

In order to compare the solution given by the finite difference method to the one obtained
using waveguide models, we have to calculate explicit formulae for dispersion and loss curves.

By inserting a solution of the form
y(z,t) = eHiPe (2.2)
into Eq. (2.1), we obtain a dispersion relation,

—2b383 + 82 + 2b1s + B2 + K261 =0 (2.3)
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This is a cubic in the variable s, which means that Eq. (2.1) could admit three solutions.
The third solution corresponds to a fast exponential growth [87] which can, under certain
condition, be unstable (see [14]). This third solution was not numerically of importance
for the simulation proposed by Chaigne in [26, 27]. But, as we will see in Section 2.3, the
digital waveguide model we choose, simulates the propagation of only two transverse waves
traveling in both directions. It will then be formally impossible to relate the PDE model of
Hiller and Ruiz with the digital waveguide we would like to use. We will propose in the next
Section another PDE model which avoids a third solution and allows the identification to the

waveguide model.

2.2.2 A second order model
A second-order model of one-dimensional wave propagation

The model of string vibration we will describe here has been proposed by Stefan Bilbao. It
is of second order in time differentiation; frequency-dependent loss is introduced via mixed
time-space derivative terms [28]. It is described by the equation
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where b, and b, are the loss parameters.
This model differs from that of Hiller and Ruiz [62] only by the replacement of the term
2b3% by 2b2%. It also allows for frequency-dependent loss, but the system itself is of
a quite different character, due to the decreased degree of the equation with respect to the

time variable. The characteristic equation is now

s24+2q(B)s +7(B) =0 (2.5)

with
q(B) = b1 + b8 r(B) = B + kB

and the roots are
st =—q+\qg%—r

The condition that the initial value problem corresponding to Eq. (2.4) be well posed is
that these roots have real parts which are bounded from above as a function of 5. A more
restrictive (and physically relevant) condition is that these roots have non-positive real part
for all B, so that all exponential solutions are non-increasing. It is simple to show that this

will be true for

q(B),r(B) 2 0 (2-6)
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For ¢ and r satisfying Eq. (2.6), the imaginary parts of these roots correspond to oscillation
frequencies, and the real parts to loss. Clearly, for real wavenumbers 3 such that ¢> < r, the
real parts of s are simply —¢. This case corresponds to normal damped wave propagation;
notice in particular that if ¢ depends on 3, then damping rates will be wavenumber (and thus
frequency) dependent. If ¢> > r, then both roots are purely real and non-positive, yielding
damped non-traveling solutions. For b1,by > 0, condition Eq. (2.6) is satisfied and this PDE
obviously possesses exponentially decaying solutions, and what is more, loss increases as a
function of wavenumber. The PDE of Eq. (2.4) possesses traveling wave solutions when
g®> < r, which, for realistic values of the defining parameters for a piano string, includes the
overwhelming part of the audio spectrum.

In order to relate this PDE model with a digital waveguide numerical simulation method,

it is useful to write the expressions for dispersion and loss directly. Taking
S+ =atjw (2.7)
over the range of 8 for which traveling wave solutions exist, we obtain

a(f) = —bi— b (2.8)
w(B) = +/—(bs + 0222 + 2P + K2 (2.9)

Boundary Conditions

Let us now restrict the spatial domain for the problem defined by Eq. (2.4) to = € [0, L].
As Eq. (2.4) is of fourth order in the spatial derivatives, we need to supply two boundary
conditions at either end, i.e., at z = 0 and z = L. Following Chaigne [26], we apply fixed
boundary conditions,

0%y

0%y
=0 = =L = ——5 = — = 2.1
Yla=0 = Yla=1 0x?lz=0 O0x2 0 (2.10)

r=L

For a solution of the form y(z,t) = e5*t75%  from dispersion relation Eq. (2.5), there are thus

four solutions for 8 in terms of s,

—y + /72 — 4K2(s2 + 201 3)

v — 2 _ 4 2( 2 + 2b )
,33 (8) — Y \/’Y 25"; S 18

with
v = c% + 2bys
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At frequency s, thus, any linear combination
y(z,t) = est( a+,+ejﬁ+w + a+7ie—j5+w
+ cz_A_ejﬂ‘“c + a_,_e_jﬂ‘z)

is a solution to Eq. (2.4). Applying the boundary conditions Eq. (2.10) to this solution gives

the matrix equation

1 1 1 1 Ot + 0
eiB+L e—IiB+L eiB-L e—iB-L ag - 0
-p% -B% -p2 —B2 a—t| |0

—pleif+l  —p2e=ifrl  _pg2eif-L  _pg2e=if-L| |a_ 0

2 A(s)

Non-trivial solutions can occur only when det(A) = 0, giving the relation

(82 — %) sin(B, L) sin(8 L) =0 (2.12)

Discounting the case 82 = 2 (which yields an identically zero solution y(z,t)), then obvi-
ously, solutions are of the form gy = nw/L, for integer n # 0 (similarly for £_), and the
modal frequencies sy, are, from the solutions Eq. (2.8) and Eq. (2.9) of the dispersion relation
Eq. (2.5),

sn = a(nm/L) + jw(nw/L)
over wavenumbers for which a traveling solution exists (for small b; and b, this will be true

for all n).

Finite difference schemes

In order to solve Eq. (2.4) numerically, we may approximate its solution over a grid with
spacing X, and with time step 7. To obtain an “explicit scheme”, Eq. (2.4) can be written

as
5t2y = 02(5525y — m25§5§y
—2b1 0 0y + 2b2626;,_y + O(T, X ?) (2.13)

where the various difference operators are defined by

Bylwt) = 55 W+ X,0) ~ 2(a,0) +ylo — X,0)
Fy(e,t) = g (st +T) — 2y, 0) + y(a,t — T))
Sroy(z,t) = — (y(z,t+7T)—y(z,t—T))

5t,—y(wa t) = (y(:v, t) - y(w,t - T))

N =N
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All these operators are “centered” about the point (z,t), except for the backward difference
operator d; _, which is used in order to obtain an explicit algorithm. The approximation is
first-order accurate in the time step 7', and second-order accurate in the space step X. We
may now rewrite Eq. (2.13) as a difference scheme, operating on the grid function yJ,, indexed
by integer m and n, which will serve as an approximation to y(z,t) at the location z = mX,
t=mnT"

y?n_}—l = F(y:;H—?a y?n—kla y:}m ygnfla y?ﬂ]—lla yfnila yzl_—ll) (214)

with F a linear function.

To obtain an “implicit scheme”, we have to rewrite Eq. (2.13)

Sy = oy — K505y
—2b16; 0y + 262626, +y + O(T, X?) (2.15)

where the various difference operators are now defined by

s2y(z,t) = %(y(erX,twLT)—2y(x,t+T)+y(ac—X,t+T))
Buet) = g (et +T) — 2y(a,0) + y(a,t - T))

Boy(e,t) = o (et +T) —y(a,t — T))

Say(@t) = o (et +T) — y(a,)

which leads to the implicit scheme:

G(yﬁfw y?n_illa y?n_}—lv y%tlp y?n,tIZ) = H(y?na yfn—la y?n;_lla y'rnn_la y?n__ll) (216)

with G and H linear functions.

We have here given one formulation to obtain an explicit or implicit scheme. They have
both advantages and drawbacks. The explicit scheme is less expensive from a computational
point of view (the new iterate is directly obtained from the old ones) but a stability condition
is needed to ensure convergence: the space step and the time step are related and cannot be
chosen independently (as small is the space step, as high is the sampling frequency). On the
other hand, the implicit scheme is unconditionally stable (in the linear case, time and space
steps may be chosen independently), is less dispersive, but needs more calculation time since
it necessitates the inversion of a linear system at each iteration. Depending on the kind of
simulation we are looking for, we may use an explicit or implicit scheme. We have used an
explicit scheme for numerically integrating the PDE Eq. (2.4). For a detailed description of

those numerical methods, see [25].
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Synthesis

We have numerically calculated the solution of Eq. (2.4) by finite differences. Since we have
obtained the analytical expression of the solution, the numerical solving is not necessary for
the time being, but it will be when we couple the PDE model with an equation describing
the interaction with the hammer. This interaction is not being taken into account in this
section; we have simply imposed an initial and specific displacement to the string. The sound
synthesis results obtained are then those of a plucked string and are significantly different

from those of a piano.

2.3 Digital Waveguide model

Digital waveguide modeling is one of the most efficient methods for physics-based real-time
modeling of musical instruments. As we have seen previously (Section 1.3.2), this method
has been developed by Smith and is particularly usefull for piano string modeling [98].

2.3.1 Principle

As mentioned in Section 2.2.1, to arrive at a PDE modeling the piano string, it is fruit-
ful to start with the ideal wave equation and add perturbation terms to give more realistic
frequency-dependent dispersion and losses. The perturbed PDE is then numerically inte-
grated via a finite-difference scheme. The digital waveguide approach interchanges the order
of these operations: the ideal wave equation is integrated first using a trivial finite-difference
scheme, and the resulting solutions are perturbed using digital filters to add frequency-

dependent loss and dispersion.

It has been known since d’Alembert [34] that the ideal one-dimensional wave equation is
solved exactly by arbitrary (sufficiently smooth) wave shapes propagating in both directions.

The lossless wave equation for a vibrating string can be expressed as

P _ ay
0z2 ot?

where y is the displacement of the string, = the position along the string and ¢ the wave

(2.17)

speed. This differential equation has an explicit solution and can be solved by an arbitrary
function of the form
y(z,t) = yi(z — ct) + yr(z + ct) (2.18)

The functions y;(z — ct) and y,(z + ct) can be interpreted as respectively leftgoing and right-

going traveling waves at the speed propagation c¢. The general solution of the wave equation
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is a linear combination of those two traveling waves. The functions y; and y, have to be twice
derivative. This means physically that the slope of the vibrating string can only have values

much lower than one.

The digital waveguide formulation works directly with these traveling wave components. An
isolated traveling wave is trivially simulated in practice using a delay line. An ideal vibrating
string is then modeled as a pair of delay lines, one for each direction of travel. For digital
implementation, the traveling waves are sampled at intervals of T' seconds in time and X

meters in space by changing the variables

— =mX
T Im = (2.19)
t—t, =nT

where m and n are the new integral-valued time and space variables. These variables are

related by
X
== 2.20
o= (2:20)

y+ (’n) ‘ m sample delay line }—» y+ (n — m)
y(n,m)
Yy~ (n) «—{ m sample delay line “7 y~(n+m)
=0 r=k z = mcTl

Figure 2.1: The one-dimensional digital waveguide [98].

By Shannon’s sampling theorem [102], the solution remains exact, in principle, at all
frequencies up to half the sampling rate. To avoid aliasing, all initial conditions and ongoing
excitations must be band-limited to less than half the sampling rate f; = 1/T. Substituting
Eq. (2.19) into the traveling-wave solution Eq. (2.18) of the wave equations gives

y(tna xm) = yr(tn - xm/c) + yl(tn + Jf'm/c)
mX mX

= y,(nT — T) + y(nT + 7)
= % (T(n—m)) +u(T(n+m))

Since T' multiplies all arguments, we can suppress it by defining [98]

y"(n) =y, (nT) y~(n) = yi(nT)
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The + superscript denotes the traveling wave component going to the right and the — su-
perscript denotes the traveling wave going to the left. The two discrete functions y*(n — m)
and y~ (n + m) can be interpreted as the output of an m-sample delay line whose input are
respectively yT(n) and y~(n) [98]. The output from the waveguide at point k is obtained
by summing the delay line variables at that point. A simulation diagram is shown in Figure
2.1. Any ideal one-dimensional waveguide can be simulated in this way. It is important to
notice that contrary to finite differences, the solution provided by the waveguide is exact at
the discrete points in the lossless case as long as the waveforms are originally bandlimited
to one half of the sampling rate. On the other hand, using digital waveguide, we efficiently
calculate the string vibration only at preselected point. Time and space are related using
Eq (2.20) and we do not get the exact solution for the entire length of the string, loosing
spatial information. This is not of importance for sound synthesis purposes, because only the

behavior of the string at the bridge is of interest in most stringed instruments.

2.3.2 Dispersion and frequency-dependent losses in digital waveguide model

Consider a wave-like solution propagating from a point M to a point My along a string (see
Figure 2.2, top). The distance M7 My will be arbitrarily called [ and the propagation time d
at the minimal phase velocity. At the observation point Ms, the wave will have arrived after
having undergone the effects of loss and dispersion. In terms of digital waveguides, the wave
will undergo a pure delay (in the frequency domain, a multiplicative phase factor exp(—iwd)),
times a multiplicative factor F'(w) representing the loss and the dispersion experienced by
the wave during this interval (see Figure 2.2, bottom). Since loss and dispersion are, for
this system, linear time-invariant (LTI) phenomena, even when frequency dependent, the
perturbations needed for added realism in the digital waveguide string model are LTI digital
filters. Since LTI filters commute, we may lump all of the filtering associated with propagation

in one direction into a single LTI filter.

, My ! M,
String

Waveform A M

Delay line/ filter ‘ exp(—iwd) }—‘ F(w)‘

representation

Figure 2.2: The physical system and its coresponding delay line/filter.

Figure 2.3 shows the simulation diagram for a digital waveguide model of a rigidly ter-
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minated string. The string is excited by the signal £ at a given location and its vibration
is observed via the signal S at another location. The string is then divided into three parts.
Sampled traveling velocity waves propagate to the right along the upper rail, and to the
left along the lower rail. The rigid terminations cause inverting reflections (the two —1 scale
factors). The delay lines are denoted D;, i = 1,2, 3, and the F; blocks are digital filters taking

into account loss and dispersion phenomena on each segment of the string.

FD1*F1 Dy | Fy 1= D3 ™ F3

D‘*Fl D2¢F2<T D3<*F3

1

Figure 2.3: Digital waveguide model of a rigidly terminated string.

For purposes of computing the output signal S from the input signal E, Figure 2.3 may
be further simplified:

e The two filters labeled F; can be replaced by a single filter F2 (by commuting one of
them with the inverting two delay lines D; and —1 gain). A similar simplification is

possible for Fj3.

e In the same way, the two delay lines labeled D; can be replaced by a single delay line
D? (having twice the length of D;), and the two D3 blocks can be replaced by one D%
block.

In general, any uniform section of a linear vibrating string which is excited and observed only
at its endpoints can be accurately modeled (in one vibrational plane) by a pair of digital

delay lines, each in series with a digital filter.

Since losses and dispersion are relatively weak in vibrating strings and acoustic bores, a
low-order filter can approximate the distributed filtering associated with a particular stretch
of string or bore. In practice, the desired loss and dispersion filters are normally derived from
measurements such as the decay time of overtones in the freely vibrating string (see, e.g.,
[93, 71, 113]). In the next section, the filter will be derived from the stiff-string model of
Eq. (2.4). Interestingly, the filter(s) so designed can be mapped back to an equivalent PDE,
including many higher-order terms (which may or may not have a physical interpretation).
Lumping of traveling-wave filtering in this way can yield computational savings by orders of

magnitude relative to more typical finite difference schemes [99, 66].



2.4. FROM THE WAVE EQUATION TO DIGITAL WAVEGUIDE 57

2.4 From the wave equation to digital waveguide

2.4.1 Relating digital waveguide to the physical model

We address here the problem of relating digital waveguide filter parameters to the loss and
dispersion curves from the physical model discussed in Section 2.2.2. For that, we consider
the continuous frequency representation of the loop filter and show its relation with the phys-
ical parameters. The digital waveguide parameters can then be obtained by discretization.
We will address the problem of the time domain implementation of the digital waveguide in

Section 5.

According to Egs. (2.2) and (2.7), the transformations of the wave due to propagation
along the string segment of Figure 2.2 can be represented in terms of a digital waveguide
filter by a multiplicative phase factor exp(sd + j53l). Ideally, the modulus and phase of this
expression are related to the filter F' by

IF(w)| = e840l = god = = (b1t0267)d (2.21)

|
arg(F(w)) = arg(e* ™Y = wd + i (2.22)
In order to write the expressions of the modulus and the phase of the loop filter in terms

of the frequency w, it is necessary to express the wavenumber £ in terms of w. From Eq. (2.9),

solving for /3, one gets

F(w) = T £ /i + (b + w?)
2119
with
m=c —2bby 1 =r>—bj
Since S is real (see Section 2.2.2), we keep only the solution for which the term inside the

root is positive. Then,

Blw) = jE\/—m + /17 + 4n2 (6] + w?)
212

Given that, for realistic piano string modeling, by ~ 1, by ~ 107*, ¢ ~ 200, x ~ 1 and

w =~ 400, we make the simplifying assumptions
biby < b3 <K b < W? (2.23)

which permits the following approximation of j:

2
Blw) = i%\/i\/—l—k \/1+4/Z—4w2
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In practice, it is helpful to work with more perceptually significant parameters. For
that purpose, we will now suppose that the string is of length L, with perfect reflections at
the extremities. The delay D, which corresponds to the propagation time of the minimum

phase-velocity wave along the length L can be expressed as:
D=0L/c=m/wp. (2.24)

where wy is the fundamental frequency (rad/sec) of the ideal (stiffless) string and c is the

minimum phase-velocity given by

c=woL/m.

Thus, D is the propagation time over distance L for a sinusoidal traveling wave tuned to the
first resonant mode of the ideal string. This choice of nominal propagation-time D simplifies
the frequency-domain computations to follow; however, since phase velocity increases with
frequency, the associated propagation filter F' will be non-causal in the time domain. This
poses no difficulty for frequency-domain implementation.

Next, we may express [ as

Blw) ~ VE (2.25)

0
4
LV2B

¢ =-1+4/1+4Bw?/w?

in terms of the inharmonicity factor B [38] given by

with

B = r%w3/c!

We now have to choose the sign of 8 in the expression for the phase. Since we want
the output signal to be delayed with respect to the input signal, the loop filter/pure delay
combination has to be causal. This means that the phase of the whole transfer function must
be negative, i.e.,

—wD + arg(F(w)) < 0. (2.26)

This indicates that we choose the negative solution for 8 in the phase expression. Finally,
using Eq. (2.25), we arrive at approximate expressions for the modulus and phase of the filter

F' as a function of frequency w:

|F(w)| ~ exp (—D [bl + %D (2.27a)

arg(F(w)) ~ wD—m/—= (2.27b)



2.4. FROM THE WAVE EQUATION TO DIGITAL WAVEGUIDE 59

These expressions serve as the link the PDE model of Eq. (2.4) to the lumped filters of
the digital waveguide, under approximations Eq. (2.23). For the sake of simplicity, one can
choose an “elementary filter” §F = F/P guch that

0F ()] = exp (- [bn + 575 )
arg(0F (w)) ~ w — wo\/%

The filters F' of the digital waveguide, which correspond to propagation over a time

(2.28)

duration D, can be then easily expressed in terms of § F' by
F =46FP

The stability of the digital waveguide model is ensured if the modulus of the filter §F is less
than one. This condition is here always fulfilled, since the expression in the exponential of
Eq. (2.27a) is negative.

2.4.2 Numerical simulations

We now address the validity of the analytical approach of the previous section to determine
digital waveguide loop filters. The modulus and phase of the filters corresponding to the

digital waveguide model have been directly linked to the parameters of the physical model.

Table I:  Typical physical model parameters for piano tones C2, C4 and C7, after [27].

H C2 C4 Cc7 units
L | 1.23 0.63 0.10 m
160.9 329.6 418.6 m-s—!
k | 0.58 1.25 1.24 m?-s~!
by || 0.25 1.1 9.17 s !
by || 7.5x107% | 2.7 x107* | 2.1 x 103 | m?s~!
F, || 16 000 32 000 96 000 s~!

For a given set of PDE parameters, thus, we can design a complete digital waveguide model
simulating the signal of the vibrating string at a given location, for a predetermined excitation
location. For purposes of comparison, we have generated output signals using both a finite
difference scheme (for more details see [14]), and the digital waveguide model for the same

set of model parameters.
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2 F
String
Velocity 0
m-s~! -1}
_2 L
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Figure 2.4: Velocity signals obtained from a finite difference scheme (solid line) and a wave-
guide model (dotted line), for three different notes and for two periods of sound. The string
is excited at distance L/8 from one endpoint, and the output signal is measured at distance
9L /10.

The digital waveguide has been computed in the frequency domain, allowing the use of
Eq. (2.27a). The excitation, a Gaussian function simulating the initial velocity of the string
at a distance L/8 from one end is the same in both cases. The signal is observed at the
location 9L/10. We have performed simulations for the notes C2, C4 and C7 using the
parameters in Table I. Figure 2.4 shows the two first periods of the waveforms generated
by both approaches. The amplitudes are similar. Nevertheless, there is a slight discrepancy
between the two signals, due to the numerical dispersion introduced by the finite difference
scheme. This discrepancy can be better seen by comparing the phase velocity of the two
signals on Figure 2.5 (the phase velocity of the signal produced by the waveguide is similar

to theoretical phase velocity of the model. We have then plotted only one curve).
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Figure 2.5: Phase velocity for the waveguide model (solid line) and for difference scheme as

a function of the frequency for the note C2.
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Figure 2.6: Spectrograms of the output of the finite difference scheme (at top) and the wave-
guide model (at bottom) for the note C2.

The long-time behavior of the generated signal is also very similar. In Figures 2.6, 2.7

and 2.8 spectrograms obtained over the whole length of the sound are shown. It is clear
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Figure 2.7: Spectrograms of the output of the finite difference scheme (at top) and the wave-
guide model (at bottom) for the note C4.

that the global damping behavior is similar in the low-frequency range. However, at high
frequencies, the finite-difference model suffers from an artificially high propagation gain. The
fundamental frequencies are essentially equal, but the wave dispersion due to string stiffness
is different due to the numerical dispersion introduced by the difference scheme. In summary,
these figures illustrate the extent to which the waveguide model provides a more accurate
digital simulation of stiff, lossy strings with respect to both attenuation and dispersion of

wave propagation.

2.5 Simple and coupled digital waveguide model

The digital waveguide model is actually a source-resonator model as we defined it in Section
1.3.2 : a wide-band excitation signal filtered using a resonant filter. It efficiently simulates
string vibrations. But, as we will see, it can be further simplified. Moreover, we show that
by coupling several waveguides, it is possible to accurately reproduce coupling phenomena
between strings. Finally, we give the resolution of the inverse problem, allowing to calibrate

the coupled digital waveguide model thanks to experimental data.
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Figure 2.8: Spectrograms of the output of the finite difference scheme (at top) and the wave-
guide model (at bottom) for the note C7.

The construction of such an equivalent model using PDE is more complicated and expensive
from a computational point of view. The calibration would be more difficult and does not a

priori allow a perfect resynthesis of a given sound.

2.5.1 Source-resonator approach for modeling piano tones

The use of a source-resonator model requires that the source and the resonator are uncoupled.
This is not the case in the piano since the hammer interacts with the strings during 2 to 5
milliseconds. A significant part of the piano sound characteristics is due to this interaction.
Even though this observation is true from a physical point of view, this short interaction
period is not in itself of great importance from a perceptual point of view. As we have
seen in Section 1.2.1 the attack is actually constituted by two parts produced thanks to two
different vibrating ways [21]: one percussive, a result of the impact of the key on the frame,
and another which starts when the hammer strikes the strings. Actually, Schaeffer [89] shows
that cutting the first milliseconds of a piano sound (for a bass note, for which the impact

of the key on the frame is less perceptible) doesn’t alter the perception of the sound. We
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have carried out such an experiment using data recorded on an experimental setup and have
concluded that, from a perceptual point of view, assuming that there is no impact noise due
to the impact of the key on the frame, the hammer-string interaction is not audible in itself
even though it undoubtedly plays an important role as an initial condition for the string
motion. This is a substantial point justifying the dissociation of the string model and the
source model in the design of our synthesis model. Thus, the resulting model consists of
a source-resonator system. The resonator is modeled using a physically related model: a
digital waveguide. The source model will be presented in Sections 3 and 4. Such an approach
has already be studied in the piano case in the literature (S.A. Van Duyne and J.O. Smith
[114][104], F. Avanzini, B. Bank [12], G. Borin, G. De Poli and D. Rocchesso [9]). As we
have seen in the introduction, we have here worked in an analysis-synthesis framework, which
means that contrary to what have been done before, our point was to accurately reconstruct

the signal measured on single and coupled strings.

2.5.2 One string digital waveguide model

To model the wave propagation in a piano string, we can simplify the waveguide model of
Figure 2.3 to design an “elementary” waveguide model (represented on Figure 2.9). Counsider
a wave traveling back and forth along a piano string. Since the system is linear and time
invariant, all the dissipation and dispersion phenomena over one period can be lumped into
only one digital filter and only one delay is necessary to take into account the propagation

time. Thus, our model consists of a single loop system including;:

e a delay line (a pure delay filter denoted D) simulating the duration the waves take to

travel back and forth in the medium,

e a filter (denoted F') taking into account the dissipation and dispersion phenomena, to-
gether with the boundary conditions. The modulus of F' is then related to the damping

of the partials and the phase to the inharmonicity in the string.

The output S which represents the vibrating signal measured at one end of the string (at the
bridge) and the input E corresponds to the frequency-dependent energy transferred to the
string. The excitation location on the string will also be taken into account by the input: the
source spectrum will be modulated with respect to the hammer position.

The transfer function T of this elementary digital waveguide is given by:

S(w) _ F(w)e @D
E(w) 1- F(w)e D

T(w) = (2.29)

with w the radial frequency.
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@4» D(w) - F(w) - S

Figure 2.9: Elementary digital waveguide representing a single string.

2.5.3 Two and three coupled digital waveguides model

As we have seen in Section 1.2.2, coupling phenomena between strings are very important
from a perceptual point of view. We have then designed a coupled waveguide, for two and

three coupled strings allowing to reproduce those phenomena.

Smith [12] proposed a coupling model with two elementary waveguides. He assumed that
the two strings were coupled to the same termination, and that the losses were lumped to
the bridge impedance. This technique leads to a simple model only necessitating one loss
filter. Nevertheless, the decay times and the coupling of the modes are not independent.
Another approach proposed by Karjalainen [13] consists in coupling two digital waveguides
through real gain amplifiers. In that case, the coupling is the same for each partial and the
time behavior of the partials is similar. We have designed two models which are an extension
of the Karjalainen’s approach. They consist in separating the time behavior of the compo-
nents by using complex-valued and frequency-dependent amplifiers (linear filters) to couple
the waveguides (see Figures 2.10 and 2.11). Those models accurately simulate the energy
transfer between the strings.

Each string is modeled using an elementary waveguide (named G4, G2, G3). The coupled
model is then obtained by connecting the output of each elementary waveguide to the input
of the others through coupling filters. The coupling filters simulate the wave propagation
along the bridge and are thus correlated to the distance between the strings. In the case of
a doublet of strings, the two coupling filters (named C) are identical. In the case of a triplet
of strings, the coupling filters of adjacent strings (named C,) are equal but differ from the
coupling filters to the extreme strings (named C.). The excitation signal is assumed to be
the same for each elementary waveguide since we suppose the hammer to struck the strings

in a similar way.

The transfer functions of the coupled model are given by (all the filters are frequency



66 CHAPTER 2. STRING MODELING

C

G Go

Y
-
N

|
Q

&

G

Figure 2.10: The two-coupled digital waveguide model.

dependent but for sake of simplicity, we note G; for G;(w) (i = 1,2,3) and C; for C};(w))
(.7 = eaa)

T(w) = G1 + G2 +2CG1Go
YT T 026G,

(2.30)
for the two strings model and

. Gi1+Go+Gs+ 2Ca(G1G2 + G2G3) + 2C.G1G2 + (4CeCa — CeZ)GlGQGg

T
() 1 — C2(G1Ga + G2G3) — C2G1G3 — 202C,G1GaG5

(2.31)

for the three strings model.
The strings have the same length and are tuned to a very close pitch. Without loss of

generality, one can assume that D; = Dy = D3 = D, since the difference in delays can be
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Figure 2.11: The three-coupled digital waveguide model.
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taken into account in the phase of the filter F;. By replacing the elementary waveguides by
their transfer function (Eq. (2.29)), we obtain

Fle_iwD + Fge_iwD + 2F1F2(C — 1)€_i2wD

T(w) = : . .
(w) 1-— (F1 + FQ)G_Z"JD + F1F2(1 — CZ)G_ZZWD (2 32)
for the two strings model and
Ny
T(w) =— 2.
@ =3 (2:33)

with

Ny =Fy + Fy + F3+ 2[(Cy — 1)(F1 Fo + FoF3) + (Ce. — 1) F F3]
+ P FyF3[3 4+ 4C.C, — 4C, — 2C, — C?]

No=1—(F\ + F+ F) + (FFy, + FF3 + FiF3)(1 — C?)

+F FF3(202 + C% - 2C2C. — 1

for the three strings model.

Figures 2.12 shows the waveform and a partial of a signal produced using the two-coupled
waveguide model. We can see beats and double decays on the amplitude of the signal. The
partials are actually constituted by two or more components, depending on the number of

waveguides we coupled.

2.6 Analysis and resynthesis using digital waveguides

In order to resynthesize a given piano sound, we have to accurately calibrate the model pa-
rameters. For that, we deal with the inverse problem, which consits in finding the expression
of the model parameters as a function of parameters estimated on the measured signal (i.e,

the modal parameters: frequencies of the modes, amplitudes and damping coefficients).

2.6.1 Inverse problem
single string

In the case of only one string (modeled using an elementary digital waveguide), the problem
of relating the parameters of the waveguide to the parameters of the signal measured is quite

easy. We have seen in Section 2.2 that a function of the form

y(z,t) = yoe ' HIhT
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Figure 2.12: Signal produced by the two coupled waveguide model. Waveform (top) and a
doublet of the corresponding spectrum (bottom)

is solution of the wave equation, assuming here that § is negative By applying boundary
conditions, we concluded that the wave number § exists for a discrete set of values. We write
then B, = —kwL where k is the partial number. The signal measured at a given location on

the string can then be expressed as a sum of exponentially decaying sinusoids
w .
s(t) = Z ape *rlelrt (2.34)
k=1

with aj, the initial amplitude of the k™ partial, depending on the excitation position on the
string and on the position of the observation point, oy and wy the damping coefficient and

the frequency of the k' partial.
The modulus and phase of F' are related to aj, and wy by the expressions Egs. (2.21) and
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(2.22):

e D (2.35)
wrD + BrL = wi D — 2km (236)

| F(w)]
arg(F (wk))

The calculation of the modulus and phase of the filter F' necessitates the knowledge of ay

and wy, for each partial. This can be easily done by using the analytical signal (see Section
2.6.3).

In practice, resynthesis also requires estimating the excitation signal. This excitation
can be explicitly obtained by deconvolution. To avoid deconvolution difficulties such as
division by values close to zero, we deconvoluate at the modal frequencies. We denote by
S(w), the Fourier transform of the output signal s(¢). In the frequency domain we have
S(w) = F(w)T(w) which can be written

E(w) = S(w)T(w) (2.37)

as we suppose that 7' (Eq. (2.29)) can be inverted. S(w) is the Fourier transform of Eq. (2.34)

o
=y — (2.38)
— ag +1 w—wk)

Then at the modal frequencies, we have

ap(1 — F(wg)e”™*P)

Blwr) = ap F(wg)e i D

In order to simplify this expression, we will use a limited expansion of ek, assuming that

for a realistic piano string o < 1.

iwk D=2k

F(w.) = efakDeika72k7r ~Z
(wk) D11

Finally, we get
E(wk) =~ akD (239)

This expression gives a good estimation of the excitation signal, leading to a good resynthesis.
Actually, it takes into account both the amplitude and the relative phase of the component

(ag is complex valued here).

Coupled strings

We will first show in this paragraph how the parameters of a two-coupled digital waveguide

model can be expressed as function of the modal parameters. The case of three coupled
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waveguides is quite similar.

The signal measured at the bridge level is the result of the vibration of two coupled strings.
As we have seen, each partial is actually constituted by two components, having frequencies
which are slightly different from the frequencies of each individual string (see Section 1.2.2).
Similarly to Eq. (2.34) we write the measured signal as a sum of exponentially damped

sinusoids
o0

s(t) = Z aype” Gkt WIRt | go) o2kt lW2kE (2.40)
k=1
with a1 and a9 the initial amplitudes, oy, agr and wig, wor the damping coefficients and
the frequencies of the components of the k' partial. The Fourier transform of s(t) is

o0

aig A
= 2.41
S(w) pat a1k + z'(w — wlk) + ok + z'(w — w2k) ( )

We will now identify this expression locally in frequency with the output of the two-coupled
waveguide model. For this purpose, since T'(w) is a rational fraction of second order polynomia
in e7P (see Eq. (2.32)), it can be decomposed into a sum of two rational fractions of the

first-order polynomia in e~%P

_ P(w)e—iwD N Q(w)e—iwD
11— X(w)emwD T 1 - Y (w)e~wD

The vibrations generated by the model are assimilated to a superposition of two series of

T(w) (2.42)

partials whose frequencies and decay times are governed by the quantities X (w) and Y (w).
By identification between Eqgs. (2.32) and (2.42), we can determine the following system of

4 equations:
P+Q=F+F (2.43)
PY + QX =2F,F»,(1-C) (2.44)
X+Y=F+F (2.45)
XY = FiF(1 - C?) (2.46)
We now identify Eq. (2.41) with the excitation signal times the transfer function T

(Eq. (2.42))

S(w) = E(w)T(w) (2.47)
Assuming that two successive modes do not overlap (these assumptions are verified for the
piano sound) and by writing X (w) = | X (w)|e’®*®) and Y (w) = |Y (w)|e’®¥(“), we express

Eq. (2.47) near each double resonance as:

aik n asg N E(w)P(w)e~™D E(w)Q(w)e~™P
ag +i(w —wik) o +i(w—wok) T 1—|X(w)|e"iwP=2xW) " 1 —|Y (w)|e~{wD-Py(w)
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We will identify term by term the members of this equation. We take, for example

arg - E(w)P(w)e P
o +i(w —wik) 11— |X(w)|e*i(WD*‘I’X(w))

The resonance frequencies of each doublet wq; and wy correspond to the minimum of the two
denominators 1 — | X (w)|e"#“P=®x (@) and 1 — |Y (w)|e""@P=®v (@) If we assume that mod-
ulus | X (w)| and |Y (w)| are close to one (this assumption is realistic because the propagation
is weakly damped), we can determine the values of wy) and woyy :

@X(wlk) + 2km . @y(w%) + 2km
D Wk = D (248)

Wik =

Taking w = wy + € with € arbitrary small:

ai _ Blwg + € Pwig + e Px(wiite)gmicD
aig +ie 1 — | X (wig + €)|e?eP

A limited expansion of e™*P ~ 1 — jeD + 0(¢?) around € = 0 (at the zero' order for

the numerator and at the first order for the denominator) gives

E(wiy, + €)P(wig + €)e 10X @ete=ieD ~ () P(wyy)e 1 ®x @Wik)

1 — |X(wig +e)|e ™ ~ 1—|X(wi)|(l —ieD)

Assuming that P(w) and |X (w)| are locally constant (in the frequency domain), we identify
term by term (the two members are considered as functions of the variable €). We deduce the
expressions of | X (w)| and |Y (w)| as a function of the amplitudes and decay times coefficients

for each mode.
1 1

_ Y S 2.49
agD +1 ¥ (w2 )] agrD + 1 (2:49)

| X (wik)| =
We also get the relations:

E(wik) P(wik) = a1 DX (w1k) (2.50)
E(wak)Q(wak) = ag DY (war) (2.51)
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From the measured signal, we will estimate the modal parameters aix, aor, @1, ok, Wik
and wyr. Thanks to Eqgs. (2.48) and (2.49) we can calculate X and Y. We still have six
unknown variables P, ), E, C, F; and F,. But we also have a system of six equations
(Egs. (2.43) - (2.46), (2.50), (2.51)). Assuming that the two resonance frequencies are close
and that the variables P, Q, E, C, Fi, F», X, Y have a locally smooth behavior, we can
then express the waveguide parameters as function of the temporal parameters. For sake of

simplicity, we note Py = P(w1;) = P(wax)

Using Egs. (2.43) and (2.45), we obtain P + Qr = Xy + Y;. Thanks to Egs. (2.50) and

(2.51) we finally get the expression of the excitation signal at the resonance frequencies

D(a1x Xk + agYy)
Ey = 2.52
k X, + Y (2.52)

We deduce the expressions of P, and Qj

Xk =+ Yk
P, =ayXp———
R 0 Xk + age Y
X + Y
Qr = ag, Yy

a1x Xk + a2k Yy
Using Egs. (2.44) and (2.46) we get the expression of the coupling filter

_ (a1 — ag) (Xk — Vi)
(a1k + agk) (Xy + Yi)

(2.53)

Using Egs. (2.44), (2.45) and (2.53) we obtain after some calculation the expression of the

waveguide filters

= 2 Tk (e = Yo) Vb (2.54)
2 2v/(a1x X + a2k Ys) (015 Y + a2k Xk)

Fyp — Xy +Y, (Xi — V2)Vaikboy (2.55)
2 2v/(a1x X + a2k Vi) (015 Y + a2k Xp)

The same approach can be used to get the expression of the three-coupled waveguide pa-
rameters as a function of the modal parameters. The signal s will be, for each partial, a
sum of three exponentially damped sinusoids. We obtain a system of nine equations which
does not admit any analytical solution. We solve it numerically and obtain the values of the

parameters E, F, Fy, F3, C,, C, for a given set of modal parameters.

2.6.2 Experimental setup

We have designed an experimental setup (see Figure 2.13) allowing the measurement of the

vibration of one, two or three strings struck by a hammer for different velocities. On the top
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Figure 2.13: The experimental setup.

of a massive concrete support, we have attached a piece of a bridge taken from a real piano.
On the other extremity of the structure, we have attached an agraffe on a hard wood support.
The strings are then tightened between the bridge and the agraffe and tuned manually to the
closest sounding pitch. It is clear that the strings are not totally uncoupled to their support.
Nevertheless, this experiment has been used to record signals of struck strings, in order to
validate the synthesis models, and was entirely satisfying for this purpose. One, two or three
strings are struck with a hammer linked to an electronically piloted key. By imposing different
voltages to the system, one can control the hammer velocity in a reasonably reproducible way.
The precise velocity is measured immediately after escapement using an optic sensor (MTI
2000, probe module 2125H) pointing at the side of the head of the hammer. The vibration
at the bridge level is measured by an accelerometer (B&K 4374). The signals are directly

recorded on Digital Audio Tape. We have collected acceleration signals corresponding to

—

hammer velocities varying between 0.8 ms~! and 5.7 ms~!.

The study of the interaction between the hammer and the string is not the purpose
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ccelerometer

Figure 2.14: Accelerometer at the piece of bridge.

of this chapter. The hammer gives its energy to the string and excites a large frequency
band allowing us to measure the vibratory behavior of the string. We will only analyze
the string vibration during the linear part of the phenomena, i.e., after the interaction with
the hammer, which is sufficient to totally characterize the resonator. Exciting the strings
for several hammer velocities will however allow to validate the source-resonator approach.
Indeed, if both elements of the model are correctly estimated and separated from the analysis,
the resonances, which characterize the strings, should be invariant as a function of the hammer

velocity.

2.6.3 Parameters estimation

The measured signal contains many partials which can be composed of several components
due to the coupling between strings (see Section 1.2.2). To estimate the amplitudes, frequen-
cies and damping factors associated with each component of the measured signal, we use a
two-step process. The first step consists in isolating each component by a band pass filtering
and then estimate the average frequency using the corresponding analytic signal. As a second
step, a parametric method is used on this analytic signal to model each component and obtain
the amplitude, frequency and damping factor. The diagram of Figure 2.17 summarizes the
analysis process. This two step process was the most convenient and accurate way to estimate
the parameters of the original signal. Indeed, due to the large number of components, the

global parametric estimation on the whole signal led to unconvincing results.
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Figure 2.15: The hammer action and the optic sensor.
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Figure 2.16: The experimental setup.

7



78 CHAPTER 2. STRING MODELING

s(t)—= FFT|—= S(w) —=Filtering—= Sr(w)—~FFT™—= sr(?)

sp(t)~_Hilbert | 5.y .| Phase |  Average

Transform Derivative|  Frequency
. i . IIR
8r(t)—= Demodulation|— 8ro(t)—= STMCB T Coof ficients
aEstimated

Identification Parameters

Figure 2.17: The two steps of the analysis process.

To isolate each partial in frequency, we used a truncated Gaussian window, the frequency
bandwidth of which was chosen so as to minimize smoothing effects over the attack duration
and to avoid overlapping two successive partials in frequency. The Gaussian was employed
since its time-bandwidth product is minimized. As a consequence, it optimizes the exponen-
tial damping suport after convolution with a causal single component for a given band pass
filtering. Then we use the Hilbert transform to get the analytic signal. The analytic signal
(first introduced by D. Gabor [41]) is a complex-valued signal associated with a real-valued
signal. If sp(t) is our real-valued filtered signal, the corresponding analytic signal §p(t) is
formally obtained using the relation § = (1+4H)sy where H denotes the Hilbert transform
operator. An important property of such an analytic signal is that its Fourier spectrum is
identical to that of the original signal, except that it vanishes for negative frequencies. Con-
sequently, it allows an unambiguous definition of the frequency. The frequency is obtained

using the relation

WD) = 5 tm(log(3(1) (2.56)

In the case of a partial which contains a doublet or a triplet, this frequency is an average

frequency.

As a second step, a parametric modeling of each partial is performed. To work on a small
number of samples for better efficiency from a computational point of view, we first de-
modulate the component by its average frequency, allowing it to be subsampled drastically.
Typically, we work on a 512-point sequence, with an original signal one thousand times longer
(about 10 seconds). The time origin of the signal is then shifted to remove the biased part

around the onset. Moreover, to avoid problems related to the poor signal to noise ratio at
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high frequency, the duration on which the estimation is performed is restrained to the sig-
nificant part of the signal. The resulting signal is then modeled using the Steiglitz- McBride
method [105], which consists in finding an IIR filter with a prescribed time domain impulse
response. For that purpose, the method attempts to minimize the squared error between
the impulse response corresponding to the IIR filter and the input signal. If one constrains
the method to estimate a one zero and two poles (for example in the case of two coupled
strings) IIR filter, then amplitude, frequency, and decay time are directly deduced from the
coefficients of the filter. Indeed, by identifying near each component, the expression of the
IIR filter and the Z-transform of Eq. (2.40), we write

c1 + 62271 ailk agk
= - - 2.
14+doz 1 +d3z2 1 — e (ar—iwig)y—1 + 1 — e—(e2r—iwag) 5—1 (2.57)

where ¢1, ¢9, do and d3 are the IIR coefficients.

After identification, we can deduce the parameters aig, a9, Q1p, o, Wi and wor as a
function of the filter coefficients. As the signal has been demoluted, we must add the average
frequency to w1y and woy to get the actual frequencies of the components. We have also tested
various minimization methods (among them classical Linear Prediction Coding and Prony)

and found that the iterative Steiglitz-McBride method was more robust for our problem.

2.6.4 Results

From the signals collected on the experimental setup, a set of data has been extracted. For
each hammer velocity, the waveguide filters and the corresponding excitation signals have
been calculated using relations Egs. (2.52)- (2.55).

Resonator stability

Figure 2.18 shows the modulus of the filter response F’ for the first twenty five partials in the

case of tones produced by a single string. Here the hammer velocity varies from 0.7 ms™!

to 4 ms~1L.

One can notice that the modulus of the waveguide filters with respect to the
hammer velocity are similar. The resonator represents the strings that are unchanged during
the experiment. If the estimated resonator is still the same for different hammer velocities,
it means that all the non-linear behavior due to the dynamic as been taken into account in
the excitation part. The resonator and the source have been well uncoupled. This result
validates our approach based on a source-resonator separation. Nevertheless, one can notice
a slight decrease of the filter modulus as a function of the hammer velocity for high frequency
partials. This non-linear behavior is not directly linked to the hammer string contact. It

is mainly due to non-linear phenomena involved in the wave propagation. The larger the
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Figure 2.18: Amplitude of the filter F as a function of the frequency and of the hammer

velocity.

amplitude of the motion, the larger the internal losses. The filter modulus slowly decreases
from a value close to 1. Since the higher partials are more damped than the lower ones,
the amplitude of the filter decreases while the frequency increases. The value of the filter
modulus (close to 1) suggests that the losses are weak. This is true in the piano string case
and even more obvious on this experimental setup, since the lack of a soundboard limits the

acoustic field radiation. More losses are expected in the real piano.

Let’s now consider the multiple strings case. From a physical point of view, the behavior
of the filters Fy, Fy and F3 (which characterize the intrinsic losses) of the coupled digital
waveguides should be similar to the one of the filter F' for a single string, since the strings
are supposed identical. This is verified except for high frequency partials. One can see
this behavior on Figure 2.19 for the filter F, of the three-coupled waveguide model. Some
artifacts pollute the drawing at high frequencies. These artifacts are mainly due to the poor
signal/noise ratio at high frequency (above 2000 Hz) and low velocity. Nevertheless, this does

not alter the synthetic sound since the corresponding partials are weak and of short duration.
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Figure 2.19: Amplitude of the filter Fy (three-coupled waveguide model) as a function of the

frequency and of the hammer velocity.

The phase is also of great importance since it is related to the group delay of the signal
and consequently directly linked to the frequency of the partials. The phase is then a non-
linear function of the frequency (see Eq. (2.27a)). The phase is constant with the hammer
velocity (see Figure 2.20), since the frequencies of the partials are always the same (linearity

of the wave propagation).

The coupling filters simulate the energy transfer between the strings and are frequency
dependent. Figure 2.21 represents one of these coupling filters for different values of the
hammer velocity. The amplitude is quite constant with respect to the hammer velocity
(up to signal/noise ratio at high frequency and low velocity), showing that the coupling is
independent of the amplitude of the vibration. The coupling seems to rise with the frequency.
The peaks at frequencies 700 Hz and 1300 Hz correspond to a maximum of the energy transfer

and are related to the impedance of the experimental setup termination.
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Figure 2.20: Phase of the filter F' as a function of the frequency and of the hammer velocity.

Resynthesis

At this point, one can resynthesize a given sound by using one or multi-coupled digital
waveguide and the parameters extracted from the analysis. For the synthetic sounds to be
identical to the original one requires precisely describing the filters. This can be achieved by
implementing the model in the frequency domain, as described in 2.5.2 and 2.5.3, allowing to
take into account the exact amplitude and the phase of the filters. Nevertheless for real-time
synthesis purposes, filters can be approached by IIR low order filter as it is usually done (see
for example [113]).

By injecting the excitation signal obtained by deconvolution into the waveguide model,
one can reproduce the signal measured on the experimental setup. From a perceptual point
of view, the resulting sound is indistinguishable from the original ones. Figure 2.22 shows
the original and resynthesized spectra for a one string signal. The perceptual characteristics
of the original spectrum are well preversed. Figures 2.23, 2.24 and 2.25 show the amplitude
modulation laws of the first six partials of the original and the re-synthesized sound. The

variations of the temporal envelope are generally well retained, and for the coupled system,
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Figure 2.21: Modulus of the filter Cy, as a function of the frequency and of the hammer

velocity.

the beat phenomena are well reproduced. The slight differences that one can observe are not
audible. They are due to fine physical phenomena that are not taken into account in our
model. For example, let us consider the second and sixth partials of the original sound in
Figure 2.23. We can see beats which show coupling phenomena on only one string. Indeed,
the horizontal and vertical modes of vibration of the string are coupled through the bridge (see
Section 1.2.2). This coupling was not taken into account in this study since the phenomenon
doesn’t alter the perceptual effect. The accuracy of the re-synthesis validates a posteriori the

use of our model and the source-resonator approach.

2.7 Conclusion: PDE model and FDs versus waveguide model

As we have seen, the numerical solution of a PDE model using finite differences and the use of
a digital waveguide both allow simulation of the propagation of waves in a piano string, taking
into account the main physical features. The most notable distinction is the complete lack
of numerical dispersion (which leads to mode mistuning) in the waveguide implementation.

On the other hand, the waveguide allows the efficient computation of a solution (“sound”)
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Figure 2.22: Spectra of the original signal (top) and of the synthesis signal (bottom) for a

single string model.

only at pre-selected points on the string, whereas a finite difference scheme computes the
entire string state in (sampled) physical form. This is not a drawback for sound synthesis
applications, because only the behavior of the string at the bridge is of interest in most
stringed instruments. Moreover, physically accurate outputs from additional points along
the string are easily added to a digital-waveguide simulation at the price of one small digital
filter each.

The digital waveguide, when computed in the frequency domain, possesses another im-
portant advantage. As we have seen, it is possible, through the use of an arbitrary filtering
function F', to implement any amount of loss or dispersion at a given frequency. The form of
the filter can be of arbitrary complexity, without any effect on the efficiency of the implemen-
tation. In the analogy between the PDE model and the digital waveguide model presented in
Section 2.4, we were forced to choose a specific form for the modulus and phase of the filter F’
(Eq. (4.2)) and to make assumptions about values of the parameters for a real piano string.
This analogy is then verified only for a realistic piano string. But we have shown in Section
2.6 that it is possible to determine the modulus and phase of this function from measured

data, in such a way as to reproduce the piano sound perfectly, at least from the perceptual
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Figure 2.23: Amplitude modulation laws for the first siz partials, one string.

point of view, even when multiple strings are struck.

For these reasons, we have chosen to make use of the digital waveguide model in order
to simulate wave propagation in strings. It is worth mentioning that if the filter F' is to
be implemented in the time domain, much less freedom of the choice of modulus and phase
will be allowed, at least if the implementation is to be efficient. It will become necessary to
approximate the measured filter response by that of an FIR or IIR filter with a reasonable

number of coefficients. The sounds produced will remain, however, of a good quality.
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Figure 2.25: Amplitude modulation laws for the first siz partials, three strings.



Chapter 3

The hammer-string interaction

3.1 Introductory remarks

In this chapter, we present several approaches to the problem of modeling the interaction
between the piano string and hammer, as well as its effect on the timbre of the resulting
sound. This interaction intervenes in a crucial way in the production of this timbre, giving
a struck piano string a sound quite distinct from that of other keyboard instruments such
as the harpsichord, and varying considerably even among pianos. Piano tuners place great
importance on the hammer, and, as we discussed in Section 1.2.3, manually adjust the me-
chanical properties of these hammers in order to achieve a balanced sound over the entire
range of the keyboard. The nonlinear behavior of the hammer felt is a key attribute, and

will be incorporated into the models we will discuss.

First, we present a model which takes the form of a coupled set of differential equations,
one describing the motion of the hammer, and the other that of the string. This system is
solved numerically via finite differences, and optimization method of calibration of the model
parameters is also discussed. We then approach the problem from the point of view of digital
waveguides (used to model the string motion) and wave digital filters (to model the hammer),
and show advantages of this method compared to the finite differences. Finally, we show that
it is possible to simulate the hammer/string interaction (that is, the source signal to the
digital waveguide), by subtractive synthesis, a signal-based method. This method, which is
more distant from the physically motivated models, allows a resynthesis of measured sounds

of a very high quality.
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3.2 The hammer as a non linear oscillator

A linear hammer model has been described in Section 1.2.3. We concluded that the only
way to take into account the modification of the piano tone with the dynamic is to use a
non-linear hammer model. Ghosh [45] was one of the first to propose a non linear spring

model of the felt [107], obeying the powerlaw:
fo = KyaP (3.1)

where z refers to the compression of the felt, Ky is the stiffness coefficient and p the stiffness
exponent. Using the Ghosh’s model, Hall and Askenfelt [57] measured the values of p for
several hammers: p varies between 1.5 to 3.5. Suzuki [108] have approximated the force of

the hammer felt using a sum of power laws:
fro = K13° + Kya® + Ksaz* (3.2)

with K1, Ks, K3 the stiffness coefficients. This model was able to reproduce some of the mea-
sured phenomena but was not satisfactory since K; is negative and the force is consequently
negative for small felt compression. Realistic numerical simulations have been obtained using
the Ghosh’s model and a lossless and stiffless string model by Boutillon [20]. Chaigne and
Askenfelt [26] have compared experimental measurements and simulations using a lossy and
stiff string. The first milliseconds of the two signals were well reproduced but the resulting
synthesized sound corresponding to the displacement of one point of the string) was not per-
ceptually satisfying.

For a more realistic model, some papers suggest an hysteretic law for the hammer felt.
The felt is compressed and extended several times during the contact. As the relaxation is
not instantaneous, the hardness of the felt increases during the contact. Boutillon [20] tried
to model this phenomena using several values of p for the increasing and decreasing part of
the spring stiffness characteristic. But using this model, the felt deformation tends to zero
with the unloading of the force. Other experiments [116] show that the felt is still deformed
after the force is removed. Stulov [107] proposed a mathematical model to take into account
the hysteretic feature of the felt. Starting from a simple model of material with memory
(obtained by replacing constant elastic parameters by time-dependent operators), he found
the following relation governing the hammer force F' as a function of the felt compression Ay

fir = Kiga? = Zeap(=2) [ fa(erecn(S)ie (3.3)

T

where € is the hysteresis constant, and 7 = t/7y with 79 the relaxation constant. Good

agreement with experiments was achieved. Giordano and Miller [49] have shown that this
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model well reproduce the force exerted by a hammer on a sensor, in the static case. They have
also mounted a very small accelerometer on the string, opposite to the hammer-string contact,
and shown that this model is not able to simulate the force characteristic in ”dynamic”
conditions. Another model which was originally developed by Hunt and Crossley [63] to
describe the interaction between two colliding objects has been used by Rochesso and Avanzini
in [10] to model the hammer-string contact hysteresis. The losses are empirically introduced
by adding a dashpot to the Ghosh’s model. Authors show that the force-compression diagrams
are closed to the ones of a real hammer. This model has the advantage to conserve energy.

The force depends on the felt compression z and of the compression speed &

i = Kyga? (14 p0) (3.4)

where K is the hammer stiffness (Kg > 0) and u the felt loss coefficient (u > 0).

3.3 Coupling a non-linear hammer and a PDE string model

We describe in this section the hammer and string model we have used to simulate the
hammer-string interaction. It consists of a set of PDEs governing the string motion and the
hammer displacement coupled by a power law describing the compression and losses of the
felt as a function of the hammer and string displacement. The force law is proposed by Hunt
and Crossley [63]. The string PDE equation corresponds to the one presented in Section
2.2.2.

82?/5 N 282?/5 284'!/3 0ys 833/5
o2 2— c 922 K ot 2b1§ + 2b23:1:28t + 9(z, z0) fu(ym — ys)
MH% = —Fu(yn — ys)
0
s(@,0) = yo(e), (,0) = vio (3.6)
ys *ys
ys(0,t) = ys(L,t) =0, 972 (0,t) = 922 (L,t) =0

0
11 (0) = 9s(20,0), “5(0) = vmo

where

KpuP(1 —i—u%) ifu>0

0ifu<0 ’ (3.7)
fr(u(t) = Fu(u(t) {p [ 9(z,z0)dz} ™

Fr(u(t)) =
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with y, the string displacement, yz the hammer displacement, ¢ the wave speed, x the
stiffness coefficient, by and bs the loss parameters, p;, the linear mass density of string, Kg
the hammer stiffness and yu the felt loss coefficient. z( is the hammer position on the string,
yso and vg are the initial string displacement and velocity and vgg is the initial hammer
velocity. g(z,xg) is a dimensionless spatial window. We took here g(x, () equal to one on
one cell of the mesh.

As expected, this non-linear system does not admit any analytical solution. We will show
in Section 3.4 that this model well reproduce the main phenomena involved in the hammer
string interaction, namely the non-linear behavior with respect to the hammer velocity and

the hysteresis of the hammer force.

3.4 Numerical solution using time and space finite differences

To solve the system Eq. (3.6), we use an alternative scheme to the explicit and implicit ones
describe in 2.2.2. At first we reduce the time derivative order by introducing new variables:

the string velocity vs and the hammer velocity vy.

_ Oys _ Oyn
vs = 5 vE = (3.8)
We obtain the following system of first order in time:

Oys ”
b
oy _
ot
v, 5 0%y 0 0%y 0%v
ot dz c 92 K ot 2bvs + 2b2£; +9(z,x0) fu(ys — ym,vs — vm) 5.10)
v .
MHd—f = —Fy(ys — yu,vs — vm)
ys(x,(]) = yso(iﬂ), ’l)s(LE,O) = Us0
azys 82?/5
5(0,1) = ys(L, 1) = 0, —2(0,¢) = L,t) =
0s(0,0) = 91,0 = 0, TL(0,0) = TLe(r,1) =0
yu(0) = ys(70,0), vu(0) = vmo
System (3.10) may be written
0X
— = A(X A1
= AX) (3.11)

where X ='(ys,vs,ym,vn) and A the spatial differential operator corresponding to the right-
hand side of (3.10). We discretize (3.11) in time using a 6-scheme:
Xn+1 —_Xn

A == 0)AX™ ) +0A(X™) (3.12)
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By choosing @ # 1, an implicit scheme is obtained. # = 1 gives the explicit scheme. We
choose 8 = 1/2 to obtain the Crank Nicholson scheme which have good stability properties.

Finally, spaces derivatives are discretized as in section 2.2.2.

4
vgo = 0.5m-s~ !
2 -
0 1 1 1 1
0 1 2 3 4 5 6
20 . .
VHO = 2m-s !
Hammer 1g}
force (N) M
0 1 1 1 1 1
0 1 2 3 4 5 6
40 T T T T T
vio = 4m-s~!
0 1 1 1 —t
0 1 2 3 4 5 6
time (ms)

Figure 3.1: Hammer force curves as a function of time, for a note C4 and three different

hammer velocities. The hammer parameters and the striking positions are as given in [27].

The hammer force behaves in accordance with what is forseen by the theory as shown on
Figure 3.1. The hammer-string contact has a duration of approximatively 4 ms and decreases
with the increase of the initial hammer velocity. The reflections of the waves propagating
between the hammer and the agraffe can be seen on the hammer force shape. Figure 3.2
shows the force as a function of the compression of the felt. We can clearly see an hysteretic
behavior (due to the term Kppu(vs —vp) of the non linear force law) describing losses in the
felt.

The displacement is computed at a location 9/10 of the string length. Its spectral modulus
is plotted on Figure 3.3 for different initial hammer velocities. We clearly see a modification
of the spectral shape, namely an increase of the amplitude of the high frequency partials

(corresponding to an increase of the brightness of the sound).
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Figure 3.2: Hammer force curve as a function of the felt compression, for a note C4 and a

hammer velocity of 4 m-s—'.

in [27], u=0.1.

The hammer parameters and the striking positions are as given

3.5 Calibration by optimization method

The estimation of the physical parameters of such a PDE model as described in Section 3.3
is not easy. Some of those parameters can be quite accurately measured on the experimental
setup itself (the initial hammer velocity vgg, the wave speed ¢ ...) with a relative error.
Other parameters, like the hammer stiffness Kz or the felt loss coefficient u are very difficult
to extract from measurements, especially under dynamic conditions. As a consequence, the
synthesized signal should be different from the measured one. We propose here a method
of estimating the parameters of the PDE model so that the resulting signal sounds like the
original one. We use a classical optimization technique to calibrate the parameters of the
system, referring to an experimental data set. To do so, gradients of the hammer and the
string behaviors, with respect to physical parameters, are described as the solution of linear

coupled systems of PDEs coming from Eq. (3.6).
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Figure 3.3: Three spectra (of three velocity signals, for a sampling frequency of 24000 Hz and

2'8 points) for three different hammer velocities for a note C4.

3.5.1 Physical Parameter Derivatives

To get the gradient of the solution, the derivatives of the hammer and string displacements
with respect to the physical parameters have to be calculated. (ys,ym) are time and space
depending, but they may be seen as functions of physical parameters:

{ ys(x,t, (zj)jZI,---,g) = ys(x,t, (Ca’%abla b2aKHa/~taMHapa UHO)) (3 13)

yH(fE, ta (zj)jZI,'",Q) = yH(IE,t, (Ca K, blab27 KHa/'La MHapa ’UHO))

We do not mention y49, vsg, g, since we will not calculate the derivatives regarding those
parameters. We suppose that y59 = 0, v50 = 0 and that zy can be precisely measured on the
experimental setup.

We will only give the detailed calculation to obtain derivatives with respect to the pa-
rameter vyg, but the same procedure could be applied to any of the physical parameters.
We first write that the set (ys(vgo), ym(vho)) is solution of the system (3.6) for a value vy
of the initial hammer velocity and that the set (ys(vgo + h),ym(vmo + h)) is solution of the
system (3.6) for a value vgg+ h of the same parameter. By doing term by term the difference
between the two corresponding systems, dividing by h and passing to the limit when h tends

to zero, we obtain a linear system of equations, governing the derivatives (v}, y';)
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Py 0%y, 0N Oy’ 3y
= — _ 2 S 2 S
o912 (c g K> p b1 5t + b28:1728t o |
AR - yH — Y
m ap(Ye — Yy —ys)P (1 + u#)
———K —y)eMMH IS/
oL [ 9(z,z0)dz np(ym = ys) ot
! 0) = ays 62 82
ys(2,0) = 0, =2 (2,0) =0, y(0,t) = yL(L,t) = 0, o 2(0 )= 5 2(L H=0
82/ ’ 5 S o
2 20— Kptyty ) e (1 Py ey o O )
oy
! H
= — 1
where u' = Ou .
~ dvpmo

G U ))

We may generalize this procedure to any of the parameters. The derivatives (ys’, vy
of (ys,ym) are then obtained by solving the following linear system of equations (supposing
that (ys,yp) are known):

32’!/9) _ 282y§j) B 284’!/9) aygj) a3y§9)

= — _ )
+(02)(j)% - (602L2)(j)84 2(b )(J)a_ + 2(b )©) 83%
dz2 0 ozt Vot > B0t . "

. . J . ) 2, (J 2, (J

¥ (,0) =) @), Po(w,0) = o, y0(0,0) =y (L1 =0, TV 0, = Ty = 0
82 (4) . , 62

Myt = = g(z,20)[fu (ya(t) - ys(ao, )Y — M1

() () dysy) i
Y (0) = ysj ($0’0)’ ot (0) =Y

(3.15)
where 1) = Ou .
8Zj

3.5.2 Optimization Process

We describe here the optimization tools and how they can be applied to our problem. We
chose simple and classical algorithms known for their robustness. We used a simple gradient
method with an optimal step. Consider a measured signal ygbj collected on the experimental
setup described in Section 2.6.2 for which system Eq. (3.6) is assumed to be a good approxi-
mation. We recall that the measured signal corresponds to the displacement of one point of
the string (measured using the laser vibrometer). The string is struck by the hammer link to

the electronic key. The hammer velocity is measured just before the contact with the string
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by the optical sensor.

We consider the following problem: is it possible to determine a set of physical parameters
(2§)j=1,-.,9 so that the system (Eq. (3.6)) would give a solution as close as possible to the
experimental signal? More precisely, considering a quadratic criterion C measuring the error
between y, and y2%, C(ys,ygbj) = é(zj), for which set (2;);=1,.. n, C is minimum? The
knowledge of (ys,yp) obtained from Eq. (3.6) allows the computation of the derivatives
(ygj ), yg)) j=1,n and the gradient of solution (y,, yx) with respect to the physical parameters.
Then, we construct an algorithm which insure the decreasing of the criterion C (we do not
discuss here the uniqueness of such a minimum of C). We start with initial parameters values

measured on the experimental setup, or, for the hammer, found in the literature.

€ given; (2)i=1,n = (20)i=1,n iven
while C > € do
Compute y; solution of (Eq. (3.6)) with parameter set (2)i=1
for j=1,n do
Compute 35 solution of (Eq. (3.15))
Compute € using ygj ) { j* component of Vé}
end for
chose h such that C + VC-h < C
for j=1,n do
zj <= zj +h;
end for
end while

3.5.3 Choice of criterion
“Global” quadratic criterion

The optimization criteria have to be chosen with care to take into account perceptual phe-
nomena. A criterion based on the quadratic error obtained by comparing the measured and
computed temporal signals is too accurate. Indeed the physical model does not exactly de-
scribe the experiment (for example, beats due to the coupling between the two polarizations
of the string, impedance of the bridge). Therefore, the waveforms of the original and syn-
thetic signals may not be identical (slight phase modifications don’t alter the perception of the
sound). For this reason, we considered a criterion based on the spectral power density (with-
out considering the phase) of the signal. More precisely, we ought to minimize the quadratic

error C between the modulus of the Fourier transform Y of the string displacement y§, the
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solution of Eq. (3.6) and the modulus of the Fourier transform S™ of the measured signal s:
1
¢ =3 [(¥sP — IsmP s (3.16)

One may easily compute the gradient V,C of the criterion C (V. denotes the gradient with

respect to the physical parameters):
v.C =2 [ (V5P - |S™) ¥V Vide

Due to the linearity of the Fourier transform, one may deduce V,Y§ from Vy,. We do
not consider the phase of the Fourier transform in the minimization criterion. This phase
contains information about the physical parameters. But this information is also contained
in the spectral modulus. For example, the parameter x, related to the dispersion of waves
and consequently to the phase of the signal, is also correlated to the frequency of each
partial of the spectrum. So we can estimate it by considering only the spectrum modulus.
Since the most important part of the energy is localized in the low frequency region of
the spectrum, this ”global” criterion (power spectral density) hardly takes into account low
frequency components, leading to a lack in brightness of the sound. As high frequency
components are perceptually of great importance (namely for the first milliseconds), the
attack of the sound obtained using such an optimization criterion appeared then to be too

smooth compared to the original one.

Tristimuli based quadratic criterion

In order to overcome this high frequency loss, we propose here a quadratic criterion con-
structed from an adapted form of the so-called tristimuli [80] which was previously used for
estimation purposes by Ystad st al.[118]. This approach consists of separating the spectral
range into three spectral bands. The first band is centered on the fundamental frequency of
the signal, while the second and the third bands respectively contain the partials two to ten
and all the components above the tenth partial. This spectral split has several advantages:

- tracking of the fundamental ensures good estimation of the geometric and static parame-
ters. This fundamental component is of importance for the sound since it is highly correlated
with pitch. We estimate the wave speed ¢ and the loss parameter b; over this band.

- components two to ten contain a large part of the energy and determine the damping
behavior of the sound. Their frequencies lead to the sensation of inharmonicity. This band
is used to estimate the stiffness coefficient k.

- high frequency components are of great importance since they can dramatically change

the timbre of the sound, even though their energy is low compared to the ones of the first
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components. These high frequency components are related to the perception of brightness and
mainly correlated with the velocity and with the stiffness of the hammer. They characterize
the dynamics of the playing. We use this frequency band to estimate the remaining coefficients

(b27KHa,u7MH’pa UHO)'

3.5.4 Results
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Figure 3.4: Spectra of original (top) and synthesized (bottom) signals

Starting from parameters measured on the experimental setup or, for the hammer, found
in the literature the optimization process leads to a new set of physical parameters. Those
parameters are then used to compute a synthesized signal (with Eq. (3.6)), closer to the
original one from a perceptual point of view. In Figure 3.4, the spectral modulus of the
original and synthesized signals are plotted. The spectral moduli are similar, but not exactly
identical. There is namely a coupling between the horizontal and vertical polarizations of the
string, leading to doublets of components. Those doublets are not reproduced by the model
(since we only consider one polarization). In Figure 3.5.4 are plotted the waveshape for the

real sound and the synthesized one. One may see the similarity between the signals.
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Figure 3.5: Waveform of the displacement; top, original, bottom, syntesized using the opti-

mized parameters.

The quality of the resulting sound increases using the optimized parameters. But the tone
still lacks realism. One explanation for this lack is that the hammer model is too simplistic

to accurately simulate the non-linear behavior.

3.6 From mechanics to electricity

The hammer-string system Eq (3.6) and Eq (3.7) can be seen as a mass and a non-linear
spring for the hammer and as a set of mass-spring oscillators for the string. Figure 3.6 shows
such a model. My is the hammer mass and Ky the stifflness of the felt. The arrow on the
hammer spring indicates its non-linear behaviour. Thanks to the analogy voltage/force and
current /velocity, we obtain the corresponding electrical scheme of Figure 3.7. vg, vq4, vr and
vg are the velocities of the hammer mass, the hammer non-linear spring, the wave coming
from the agraffe side and the wave coming from the bridge side of the string, respectively. Z,
is the characteristic wave impedance of the string at the contact point (Zy = +/pT with the

linear mass of the string and T the string tension). fas, f4, fr and fg are the forces exerted
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Figure 3.6: Mechanical model of a non-linear hammer coupled to a string.
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Figure 3.7: Electrical model of a non-linear hammer coupled to a string.

by the hammer mass, the non-linear hammer spring, the wave coming form the agraffe side
and the wave coming from the bridge side, respectively.

We will now show that this representation corresponds to the system of partial differential
equations Eq. (3.6) and Eq. (3.7) at the hammer-string contact point.

The voltage of the inductor is given by

fv = Mpoy (3.17)
And the current in the capacitor is
1 .
_ 1
Vi = o fa (3.18)

To take the non-linearity of the spring into account, we have to calculate an ”equivalent”
stiffness K, which will be function of Ky and of the force f;. This will be done in Section A,
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with the use of digital wave filters. In this part we will use for seek of simplicity the relation
fa= Kny), (3.19)

where 94 = vg and p is the hammer stiffness exponent.
The string is here modeled as a distributed structure such as a digital waveguide. The
discrete velocity waves are propagating in the digital waveguide and the relation between the

force and the velocity at the contact location is given by

{ frL = Zovg,

3.20
fr = Zovr (3.20)

Applying Kirchoff’s voltage laws (for a serial connection), we obtain for the connection be-

tween the hammer and the two parts of the string

{ fo+fr—fa=0 (3.21)

V[, = UR = Vg

with vg the velocity of the string at the contact location. Applying Kirchoff’s current laws (for

a parallel connection), we obtain for the junction between the hammer spring and hammer

mass
g =0
Vg + Vs — VH (3.22)
fo="fa=—fm
where fg is the hammer force.
Using Egs. (3.17)- (3.22) we obtain the system
[ =2Zyvs
= —Mgv
In o (3.23)
fu=Knyy,

Yd = VH — VS

This system of equation corresponds to the partial differential equations system Egs. (3.6) and
(3.7), except that the delay, loss and dispersion phenomena involved in the wave propagation
in the string are now characterized using the corresponding impedance at the contact location.

This system can also be written

1
Y4 =va — 5~ Knyh
| 2%0 (3.24)

N
Uy P 7Y,
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We here exhibit the ”delay free loop”: to solve the first equation, we need the hammer velocity
vy, so we have to solve the second equation. But to solve the second equation, we need the
felt compression y4, so we have to solve the first equation. The K-method and the digital

wave filters allow to cut this simultaneous dependancy.

3.7 Numerical solving using Digital Wave Filters

The numerical solving of a non-linear partial differential equation system leads to discrete
time models exhibiting non computable loops. They are called delay-free loops since they
involve instantaneous dependancy between inputs and outputs of the elements of the system.
To solve this computability problem, many authors proposed to introduce an extra delay [44].
But the numerical error can leads to aberrant behaviour at low sampling rates and decrease
the quality of the synthesized sound.

Implicit methods such as the K-method (developed by Borin et al. [19]) and the wave
digital filters [37] [17] can take care of this computability problem. They allow to eliminate
the delay-free loops in discrete time models of non-linear system. We describe in the next
sections both methods.

Digital Wave Filters (DWF's) have been described in details by Stefan Bilbao in his dis-
sertation [17], under the supervision of Julius O. Smith. We worked with both researchers to
apply this simulation method to the hammer string interaction. The results are published in
[18].

Since this model was not used in the final synthesis model, we will not detail the DWF's
theory and calculation in this document. For more details, the reader may refer to the
appendix A, thesis [17] and paper [18].

3.7.1 K-method

We applied here the K-method [19] to numerically solve the system of Eq. (3.23). We first
have to transform the equations of the mechanical system to exhibits all non-computable loops
involving non-linear maps (this is what we have done in Section 3.6). Then, the instantaneous
dependencies are cut using geometrical transformations on the non-linearities. The formalism
is straightforward, compared to the one of the digital wave filters. Nevertheless, wave filters
allow an energy measure which guarantees numerical stability. Such a guarantee seems to
be difficult to obtain using the K-method. At least, it has not been exhibited by its authors
[19].
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We first rewrite the system Eq. (3.23)

Ja=vn — g5l
@H—:-—]%;fH (3.25)
fo = Kuyh

We discretize the system by applying the Laplace transform to the first two equations

1
sya(s) =vg(s) — 5= fu(s
vals) = on(s) = gy fn() 65.26)
svp(s) = — g1 fu(s)
We then applied a frequency mapping, the bilinear transform
21—2z1
§=—=———
T1+ 271
where z~! = ¢~*T which is interpreted as a unit delay of duration 7. This mapping is used

since it implies that stable, causal transfer function in s will be mapped to stable causal

transfer functions in the discrete variable z=! [17]. We obtain the discretize system

ya(n) = g (UH(n) - ifH(M) + g (UH(TL —-1)— %f}l(n - 1)> + ya(n — 1)
vn(n) = =g Fu() = gy fu(n = 1) + vg(n = 1)

fu(n) = Kg(ya)’(n))

(3.27)
From the system of Eq. (3.27), we obtain the relation
1T 2R — o —
fH(n)(2Z0 2M) + fy (n)TKH =C(n—-1) (3.28)
T 1 2

At the instant n, the term C(n — 1) is known. We then have to solve the non-linear function
of the force fy. This can be done using iterative procedures such as the Newton-Raphson’s
method. For more efficiency, Borin et al. [19] have precomputed solutions and stored it in a
table.

3.7.2 Theory of wave digital filters

Concepts and formulae presented in this section are obtained from Stefan Bilbao thesis [17]

and a co-signed article [18]. The reader can find more details in each of these documents.
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Wave digital filter and numerical stability

The digital wave filter method [37] aims, like the K-method, at solving computability prob-
lems due to delay free loops. They are eliminated by changing variables of the system and
by choosing, when possible, appropriates impedances for the scattering junctions between

elements.

It is easy to surmise that regardless of any non-linearity in the hammer (typically the felt stiff-
ness), the total energy, kinetic and potential, of the moving string and the hammer can never
be greater than the energy provided initially by the hammer - in other words, the combined
system is passive. For the sake of numerical stability, it is useful to have an energy measure
(or Lyapunov function) for the discrete system, which mirrors the energetic behavior of the
modeled physical system. Such a measure is rather difficult to obtain from time domain finite
difference formulations (though techniques such as the energy method [53] might conceivably
be employed). A scattering representation, in which the discretization is rewritten in terms
of wave variables which are scattered at junctions, can be used to give an easily verifiable
numerical stability condition. In the purely lossless case, all operations on the signals in the
network are either shifts or scattering operations (orthogonal matrix multiplies) at each step
in the recursion; the squared sum of all the signals in the network remains constant. Loss can
be introduced simply by adding resistive drains at the scattering junctions or the terminating

filters, and renders the system more generally passive.

Wave variables

In order to arrive at a scattering formulation, it is necessary to introduce wave variables
[36, 37]. Due to the nonlinearities to be modeled, we make use of power-normalized wave

variables. We write

f+Rv f—Rv
2VR 2VR

for an arbitrary positive number R, known as the port resistance.

b=

Q:

(3.30)

‘Wave digital capacitor and inductor

We apply this change of variables to the case of a capacitor (a spring) and of an inductor (a
mass). Let’s consider the relation between the force f exerted by a spring and its compression
velocity v.
1 .
v = Ef
with K the spring stiffness. By discretizing this equation using the bilinear transform in the

linear case or the trapezoid rule of numerical integration [36] [37] [88] in the non-linear case,
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we get the relation (see [17])
b(n) = a(n —1)

which is the standard form for a wave digital capacitor (or its mechanical counterpart, the
spring) with a port resistance R = T'K /2. Thus, the output b at the instant n, only depends
on the input @ at the instant n — 1. Applying the same procedure to a mass M, we get the
relation

b(n) = —a(n — 1)

with a port resistance R = 2M/T.

Scattering junctions

In order to connect wave digital one-ports such as the spring and mass mentioned previously,
it is necessary to make use of scattering junctions (or adaptors, as they are called in wave
digital filter terminology). The equations for a scattering junction are simply restatements of
Kirchhoff’s parallel and series connection rules in terms of wave variables (see [17] for further
details).

For a parallel combination of N one-ports, defined in terms of N velocities v; and N forces
fi, t = 1,, N, where power-normalized wave variables a; and b; , 1 = 1,, N are defined, as

per Eq. (3.30). The resulting scattering equations are

bi = —q; + fJ (331)

1
VR;

where the junction force f; (common to all one-ports) is given by

2 1
fi=er Y, (332
Zj R_] j Rj
The operation Eq. (3.31) produces N outputs b; from N inputs a;, ¢ = 1,, N, and can
be viewed as an IV by N matrix multiplication. It is possible to show that as long as the
port resistances R; are chosen positive, the matrix is orthogonal, and thus preserves an L?

measure of the input signals through the output, i.e.,

N N
doai=>"b (3.33)
=1 =1

This energy-preserving property is at the heart of the numerical stability offered by a scatter-

ing approach. Even for elements with a nonlinear dependence of the R; on the state variables
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(as for a nonlinear spring as we will discussed later), energy is still preserved.

Similarly, series connection are given by

b = a; — vV Riv; (3.34)

where the junction velocity v; (common to all one- ports) is given by
2
V)= = Z Vv Rja; (3.35)

This scattering operation also corresponds to an orthogonal matrix multiplication.

Elimination of delay-free loops

A special case of the scattering junction occurs when one of the port resistances remains

unspecified. For instance, if we choose, at port q,
R;=> R (3.36)
i=q

for the series junctions, the scattering equations Egs. (3.34) above simplify to

1
b, = — R;a; 3.37
b=~ E Z:j v (3.37)

Thus the output wave b, at port q does not depend on the input wave g, . In other words,

the port is reflection-free [36]. This special choice of a free port resistance is necessary in
order to avoid delay-free loops, as we shall see in Section 3.7.3. The same operation can be

done for parallel connections (see [17])

3.7.3 Scattering model for the hammer-string interaction

We describe in this section the scattering model for the hammer-string interaction and its
connection to a digital waveguide model. The design of these model has been made in
collaboration with Stefan Bilbao. Parts of this paragraphs can also be found in [18].

In terms of wave variables and scattering junctions, the hammer model defined by the

scheme of Figure 3.7 corresponds to the scheme of Figure 3.8.

The upper parallel junction, when disconnected from the lower series junction, is an os-
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Figure 3.8: A parallel connection of a mass and a nonlinear spring, top, representing a wave

digital hammer, is connected in series with o digital waveguide, bottom.

cillator (nonlinear), corresponding to the free vibration of a parallel mass-spring system (the

hammer). Referring to Figure 3.8, the port resistances are given by
Ry =2Mpy)T Ry =TK,./2 (3.38)

where K, is an equivalent stiffness, allowing to take into account the non-linear behavior
of the felt. The expression of K, and the detailed calculation are given in Appendix A.
The expression of the output normalized wave variables for the two wave digital one ports

are

ag = —b (3.39)
az = bs (3.40)

Using the equations for the scattering junction, we get the relations

1
- _ - 41
by a1+\/R1fH (3.41)
1

by=—as+ 1/ —fu (3.42)

by =—a3+1/ 5 fu (3.43)
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2 [1 [1 [1
foE=—"——""F ( —ai+ 4/ 5a2+ —a_3> (3.44)
R%+R%+RL3 Ry Ry R3

for the parallel connection and

with

br = ar, — v/ Rovs (3.45)
br = ar — / Rovs (3.46)
a1 = b1 — /Ry, (3.47)

with Ry the caracteristic impedance of the string and

2 (V/Roar, + /Roar + VEiby) (3.48)

Y= 9Ry + Ry

Connecting the series junction to the parallel junction poses a problem, due to the intro-
duction of a delay-free loop; a; is calculated from b; and vice-versa. In order to surmount
this difficulty, we note that the port resistance R; of the upper port of the series junction
is left unspecified; we thus can set it to 2Ry, as per Eq. (3.36), rendering the port reflection

free. The expression of the output wave a; is then

a1 = ———=(ag + agr) (3.49)

The order of operation in a single computational cycle is then:

1. Using Eq. (3.49), calculate a; from ar and ag, the two variables entering from the

waveguides on either side of the series junction.

2. Calculate fg, the junction force at the parallel junction from ai, as and a3 using
Eq. (3.44).

3. Using Eqgs. (3.41)-(3.43), calculate the scattered waves bi, by and b3 at the parallel

junction.
4. Using Eq. (3.45)-(3.47), calculate the scattered waves by, and bg at the series junction.

5. Shift the scattered waves into the delay registers, and shift all samples in the waveguides.



108 CHAPTER 3. THE HAMMER-STRING INTERACTION

Only step 2) above involves the hammer nonlinearity, and requires special care. Indeed,
the definition of the junction force fy , from Eq. (3.44), depends on R3, which is a non-linear
function of y4, and thus, from Eq. (A.1), on fy. This nonlinear equation must be solved
before the scattering of step 3) above can occur. A simple iterative method such as Newton’s
Method suffices for this solution. Nevertheless, due to incomplete convergence of the iterative
method, the calculated fg is slightly different from the exact solution to the abovementioned
equation, the resulting scattering operation is still orthogonal, and thus energy is preserved.
This scattering hammer model has been connected with digital waveguides (see Section 2.3),
simulating in the time domain the propagation of waves in each part of the string. This

implementation of the digital waveguide in the time domain is described in Section 5.

3.7.4 Simulation by connecting the hammer model to a simple delay line

In this section, we present simulations of the piano string-hammer interaction. This has been
done in collaboration with Stefan Bilbao. This paragraph can also be found in [18].

Here, perfectly reflecting string terminations, losslessness and stifflessness of the string
are here assumed. The wave digital hammer is decoupled from the digital waveguide when

contact is lost (i.e., when a negative value of y, is calculated).

In Figure 3.9, three generated hammer force curves are shown, for the notes C2, C4 and
C4; they agree well with figures published in [27].

More importantly, in Figure 3.10, we show the stored signal energy as a function of time
for the C4 note, as well as its partition into hammer and string energies. The hammer energy
is calculated from the sum of the squares of the signals in the two upper delay registers, and
the string energy is simply the squared sum of all the signal values in the digital waveguides,
on both sides of the scattering junction. Since there is no loss in the string, the stored
energy is constant (reflecting perfect losslessness of the model system), to within errors due

to machine precision.

3.7.5 Simulation by coupling with a lossy and stiff string

To get a more realistic model and consequently a better sound synthesis, we have coupled
the hammer model to a stiff and lossy string. This has been done using digital waveguides,
as described in section 2.3. The parameters of the loop filters have been estimated from the
experimental setup using calibration methods as discussed in section 2.6. The corresponding
string velocities are shown in Figure 3.11. The introduction of loss and dispersion phenom-

ena in the string does not really modify the behavior of the hammer force. Nevertheless, it
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Figure 3.9: Hammer force curves as a function of time, for C2, C4 and C7 lossless and

stiffless piano strings. The hammer parameters and the striking positions are as given in

[217].
strongly affects the propagation of waves in the string and the resulting tone.

Synthesized sounds of struck strings obtained by coupling a hammer (modeled by digital
wave filters) and a string (modeled using digital waveguides) are realistic, but differ from
the original ones, measured on the experimental setup (they sound less bright). The filters
of the waveguide model have been accurately estimated from the measured signal, but the
parameters used for the hammer model are found in the literature [27]. The difficulties in
measuring those parameters, as well as the relative simplicity of the physical hammer model
we used (regarding to the physics of the phenomena) don’t allow a perceptually satisfying

resynthesis of the measured signal.

However, the DWF's method is extremely promising, thanks to its good stability properties
and the possibilities of connection with digital waveguides. A more detailed work on the
physical hammer model, will eventually allows a very good resynthesis of the original signal.
The hammer model could be improved by taking into account some effects such as non-
uniformity of hammer force over the contact area, delay effects in the felt expansion, hammer

modes. We started this work by including the hysteretic behavior of the felt in the wave
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Figure 3.10: At top, the hammer force curve for a Cj string, and at bottom, the energies of
the hammer (dotted), the string (dashed) and their total (solid) as a function of time. The

total string energy is normalized to unity.

digital hammer model (presented in appendix B). However such a study necessitates a lot of

physical measurements on the felt which are beyond the scope of this thesis.

3.8 Modeling the source using signal models

We return in this section the source-resonator approach used in Sections 2.5 and 2.6. As
we have seen, the resonator we designed and calibrated accurately reproduces the physical
phenomena in the strings and is invariant with hammer velocity. The source is related to
the hammer-string interaction and takes into account the non-linear phenomena involved
during this interaction. We first analyzed the behaviour of the excitation signals. They are
obtained for several hammer velocities by the deconvolution between the signal collected on
the experimental setup and the transfer function of the waveguide model. The excitation
signal varies nonlinearly as a function of the velocity. Then, we have tried several signal
methods to model this behaviour and calibrate their parameters. One drawback to this
approach is that we do not take into account the feedback of the resonator on the source. As
we have seen in Section 2.5.1, this is not of importance since the hammer string interaction

is very short and not perceptible in itself. But when the hammer strikes an already vibrating
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Figure 3.11: The string velocity at the contact location between the hammer and the string.
At top, for a note C2, and at bottom, for a note C4.

string the excitation should be modified. This aspect, which has no great effect perceptually,

is not taken into account here.

3.8.1 Theoretical expression of the source

Let’s consider that the hammer strikes a string, fixed at its extremities, at a location zy with
an impulse force P. As we have seen in Section 2.5.2, the signal measured at a given location
can be expressed as a sum of exponentially decaying sinusoids (see Eq. (2.34)). According to
Valette and Cuesta [112] the amplitudes of the partials of the waves traveling in the string

are given by the relation
2P  sin(kmwzo/L)

ar =
Y /oo T) knv/I + k2B

where py, is the linear mass, T' the string tension, L its length and B the inharmonicity factor.

The excitation is related to the amplitude of the string partials (see Section 2.6.1). In the
one string case, we have E(wy) = a;D with D the delay of the elementary waveguide model.
D is expressed as D = 2L/c with ¢ the fundamental wave speed, since D is the time the wave

takes to go back and forth along the string. The excitation signal can be then expressed by

ALP sin(knzo/L)
T krv1+k’B

B(wg) = (3.50)
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As the hammer force is not an impulse and is not located at a single point, this expression
gives us a very approximate idea of the relation between some physical parameters and the
excitation signal. The hammer velocity dependence of the excitation will be taken into

account by the term P.

3.8.2 Experimental behavior of the source

The amplitudes of the excitation signals are estimated by deconvolution for each partial
frequency (see Section 2.6). Those partials correspond to frequencies “selected” by the string,
but the “actual” excitation spectra have no resonances. To get the “actual” continuous
excitation, we interpolate its spectrum. The excitation signal sounds like an impact, short

and broadband. Figure 3.12 shows the excitation signals extracted from the measurement

8 T T T T T
— 0.82m/s
— 212m/s
Amplitude 6 — 5.68 m/s |]
(arbitrary scale)
4F i
) |
0
_2 7
_4 T
5 6
time (ms)

Figure 3.12: Waveform of three excitation signals, corresponding to three different hammer

velocities.

of the vibration of a single string struck by a hammer for three velocities corresponding to
the pianissimo, mezzo-forte and fortissimo musical playing. The excitation duration is about
4 ms, which is in accordance with the duration of the hammer-string contact [5].

Since this interaction is non-linear, the source behave non-linearly, basically becoming
brighter for high hammer velocities. The spectra of several excitation signals obtained for a

1

single string at different velocities regularly spaced between 0.8 and 4 m.s™" are represented
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Figure 3.13: Amplitude of the excitation signals for one string and several velocities, as a

function of the frequency.

in Figure 3.13. The excitation corresponding to fortissimo playing provides more energy than
the ones corresponding to mezzo-forte and pianissimo. But this increase of the amplitude
is frequency dependent: the higher partials increase more rapidly than the lower ones with
the same hammer velocity. This increase of the high partials corresponds to an increase of
brightness with respect to the hammer velocity. It can be better visualized by considering the
spectral centroid (see Section 1.2.3 and [13]) of the excitation signals. Figure 3.14 shows the
behaviour of this perceptual criteria as a function of the hammer velocity. We can clearly see
for one, two or three strings an increase of the amplitude of the spectral centroid, showing an
increase of the brightness of the sound. We can also notice on Figure 3.13 several irregularities
among which appears a periodic modulation related to the location of the hammer impact
on the string.

In the next sections, we try different signal methods to model the excitation behaviour.

3.8.3 Additive synthesis

One simple way to model the excitation is to use sinusoidal additive synthesis methods (see
Section 1.3.1). The excitation signal should be continuous in the frequency domain, as the

hammer produces a broadband spectrum. By using such a method, we generate an excitation
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Figure 3.14: The spectral centroid of the excitation signals for one (plain), two (dashed) and
three strings (dotted).

signal having modes with frequencies corresponding to the mode frequencies of the string.

This is not a drawback as long as the excitation is tuned with the resonator.

Figure 3.15 shows the evolution of the first partials of the excitation spectra as a func-
tion of the hammer velocity. They all increase with respect to the hammer velocity. The
mean slope of the curves depends on the rank of the component. We can efficiently fit their
amplitude using a second order polynomial. We have identified 50 partials on the signal from
our experimental setup. We then performed 50 fits and we got 50 sets of three polynomial
coefficients. In order to reduce this amount of data, we considered the behaviour of each
coefficient with respect to the partial number. Figure 3.16 shows that this behaviour is really
irregular. It will then be very difficult to find a law, governing their evolution as a function of
the partial index. Those irregularities are due to many phenomena, including the modulation
of the spectrum due to the hammer position. We haven’t found any relevant way to take it

into account. For these reasons, we have put this model aside.
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Figure 3.15: Amplitude of the first ten partials of the excitation signal as a function of the

hammer velocity for a single string.

3.8.4 Wave shapping

The wave shapping method [22] is a non-linear synthesis method (see Section 1.3.1) allowing
to generate complex signals. Ystad [118] used it to reproduce the behaviour of the source of a
flute model as a function of the pressure. We have tried this method to model the behaviour
of our excitation signal as a function of the hammer velocity. We first recall the mathematics

of this method and then show its application to our problem.

Principle

The signal obtained by waveshaping is expressed as
s(t) = y(I(t)cos(wot)) (3.51)

where y(z) is a non-linear function and I(t) is the index of distorsion. The non-linear function
can be decomposed into different basis. The first is Chebyshev’s polynomials basis, frequently

used because they allow the signal s to be written as an harmonic sum of sinusoids. We may
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Figure 3.16: Amplitude of the three polynomial coefficients as a function of the partial index.

write
o0

(@) =) axTi(x) (3.52)
k=0
with a; being constant coefficients and T}, the Chebyshev’s polynomials. These polynomials

are defined by [50]

To(z) = cos[n arccos(z)]

= [(z+ivV1—2%)"+ (z —iV1—2?)"]/2

(3.53)
The Chebyshev’s polynomials are orthogonal with respect to the measure
dx
—zre[-1,1 3.54
e €11 (3.549)
which means
U, Snm % 0
Andm g 2 m7 (3.55)
—1V1—22 Onmm m=20
When the index of distorsion is equal to 1, the output s is given by
s(t) = y(cos(wpt)) = Z a;Ty(cos(wot)) = Zakcos(kwot) (3.56)

k=0 k=0
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The synthesis method generates a signal with a fundamental frequency of fy and harmonics
with amplitudes of a;. For other values of the index, the spectrum of the generated signal

varies according to

s(t) = y(I(t)cos(wot)) = Zaka(I(t)cos(wgt)) (3.57)
k=0

Application to the synthesis of the excitation signal

It is then possible to synthesize a harmonic spectrum and its evolution by acting on the
waveshaping index I(t). We can apply this method to model the evolution of the excitation,
assuming that the synthesized harmonic spectrum will be “stretched” afterward since piano
tones are inharmonic. As we model the evolution of the excitation as a function of the
hammer velocity, the main perceptual feature we want to take into account is the increase in
brightness. We then choose a waveshaping index allowing the centroid of the v function to

be as close as possible to the original.
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Figure 3.17: Spectral centroid of the original signal (plain) and of the vy function (dotted) for

twelve hammer velocities

The first step consists of constructing a non-linear -y function so that the "richest” spec-
trum (corresponding to the highest hammer velocity) corresponds to a waveshaping index

I = 1. For this value of the waveshaping index, the amplitudes of the synthesized signal
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corresponds to the ay coefficients of the v function. The second step consists in estimating
the wave-shaping index so that the spectral centroid of the v function corresponds to the
centroid of the original tone as a function of the hammer velocity. This was done for twelve

hammer velocity in the range 0.3 to 3.4 m.s™'.

The corresponding index varied from 0.62
to 1. We can see on Figure 3.17 that the two centroids are very close, especially for low

velocities. The corresponding excitation spectra are shown on Figure 3.18.
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Figure 3.18: Spectrum of the excitation for a three hammer velocities: original (plain) and

modeled using wave-shaping (dotted).

The global increase of brightness is well reproduced. When injected into the resonator
model, these excitation signals give a sensation related to the dynamics of the final string
sound. But when compared to the original tone, we notice that the synthetic tone is slightly
different. In order to resynthesize the original sound, the amplitudes of each excitation partial
must be controlled more accurately. Contrary to the flute [118], piano tones have a lot of
partials and a global criteria, such as the centroid of the spectrum, is not relevant. Using an
other criterion like the tristimulus criterion provides improvements to the synthesis, but the

resulting string sound is still different from the original.
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3.8.5 Subtractive synthesis

The excitation behaves regularly as a function of the hammer velocity. This causes an increase
in the amplitudes of the spectral components. For high frequency components, this increase
is more important than for low frequency components, leading to a flattening of the spectrum.
Nevertheless, the general shape of the spectrum stays the same. Formants do not move and
the modulation of the spectrum due to the hammer position on the string is visible at any
velocity. These observations make us believe that the behaviour of the excitation could be
well reproduced using a substractive synthesis model (Section 1.3.1). This work has been
done in collaboration with researchers form DIKU university, Copenhaguen and has been
published in [16].

The excitation signal can then be seen as an invariant spectrum shaped by a smooth
frequency response filter the characteristics of which depends on the hammer velocity. The

source model is shown on Figure 3.19.

Static spectrum  Spectral deviation Gain

Es =@Od8 E
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Figure 3.19: Diagram of the substractive source model.

It consists of the static spectrum, the spectral deviation and the gain. The static spectrum
takes into account all the information that is invariant with respect to the hammer velocity.
It is then a function of the hammer position and the strings characteristics, as we will see
momentarily. The spectral deviation and the gain, shape the spectrum as function of the
hammer velocity. The gain will model the global increase of amplitude and the spectral
deviation will simulate the shifting of the energy to the high frequencies.

A similar approach has been developed by Smith and Van Duyne in the time domain
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[104]. The hammer-string interaction force pulses were simulated using three impulses passed
through three low pass filters which depends on the hammer velocity. In our case, we need a

more accurate method to resynthesize the original excitation signal.

The static spectrum

We defined the static spectrum as the part of the excitation that is invariant with the hammer
velocity. By considering the expression Eq. (3.50), the static spectrum E can be expressed
as

AL sin(knzo/L)

Bl = T T 1B (559

since the term P in Eq. (3.50) is related to the force and is consequently not invariant with
the hammer velocity. We can easily measure the striking position z¢, the string length L and
the inharmonicity factor B on our experimental setup. On the other hand, we only have an
approximate estimation of the tension but we can calculate it using the relation Eq. (1.4),
knowing the fundamental frequency and the linear mass. This formula will provide a good

estimation of the static spectrum.
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Figure 3.20: Static spectrum.

Figure 3.20 shows this static spectrum for a single string. Many irregularities are however
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not taken into account. These are due to several reasons. We will see later their importance

from a perceptual point of view.

The deviation with the dynamics

The spectral deviation and the gain take the dependency of the excitation signal on velocity
into account. They are estimated by dividing the excitation signal with the static spectrum

for all velocities:
d(w) = E(w)/Es(w) (3.59)

where F is the original excitation signal. Figure 3.21 shows this deviation for three hammer
velocities. It effectively strengthens the fortissimo, in particular the medium and high partials.
Its evolution with the frequency is quite regular and can successfully be fitted to a second

order exponential polynomial (as shown in Figure 3.21)
d = exp(af? +bf +g) (3.60)

where d is the modeled deviation. The term g corresponds to the gain (since independent of

the frequency) and the terms af2 + bf corresponds to the spectral deviation.
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Figure 3.21: Dynamic deviation.
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g, a and b depend on the hammer velocity. In order to get a usable source model, we
must consider the parameter’s behaviour with different dynamics. Figure 3.22 shows the
three parameters for several hammer velocities. The model seems to be consistent since
their behaviour is regular. But, the tilt is decreasing with the hammer velocity, showing
an asymptotic and non-linear behaviour (at least for a and b). This observation can be
directly related to the physics of the hammer. As we have seen, when the felt is compressed
it becomes harder and thus gives more energy to high frequencies. But, for high velocities,
the felt is totally compressed and its hardness is almost constant. Thus, the amplitude of
the corresponding string wave increases but its spectral content is roughly the same. We
have fitted this asymptotic behaviour by an exponential model (see Figure 3.22), for each
parameter g, a and b

9(v) = ag — Bgexp(—y4v)
a(v) = ag — Baezp(—7av) (3.61)
b(v) = ap — Brezp(+ypv)

where «; (i = g,a,b) is the asymptotic value, §; (i = g,a,b) is the deviation from the
asymptotic value at zero velocity (the dynamic range), and ~; (i = g,a,b) is the velocity
exponential coeflicient, governing how sensible the attribute is to a velocity change. The

parameters of this exponential model have been found using a non-linear curvefit.

Resynthesis of the excitation signal

For a given velocity, the excitation signal can now be recreated using Egs. (3.59), (3.60), (3.61).
This source model convoluted with the transfer function of the resonator leads to an accept-
able sound of a string struck by a hammer. The increase of the brightness with the dynamic
is well reproduced. But from a resynthesis point of view, this model is not satisfying. The
reproduced signal is different from the original one, sounding too regular and monotonous.
In order to understand this lack of our model, we have calculated the error we made by divid-
ing the original excitation signal with the modeled one for each velocity. The corresponding
curves are shown on Figure 3.23 for three velocities.

We can notice that this error term doesn’t depend on the hammer velocity, meaning
that our static spectrum model is too straightforward and does not take into account the
irregularities of the original spectrum. Irregularities are due to many phenomena including the
width of the hammer-string contact, hysteretic phenomena in the felt, non-linear phenomena
in the string, mode resonances of the hammer, etc. To give a more realistic feature to
our source model, we can include this error term in the static spectrum. The original and
resynthesized signals are shown on Figure 3.24. The deviations of the resulting excitations

are perceptually insignificant.
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velocity. Original(+) and modeled(dotted)

3.9 Conclusion: physics versus resynthesis

We have described several methods allowing the modeling of the hammer-string contact and
producing the corresponding sound. Purely physical models, like the coupling of a non-linear
spring equation with the PDE of a stiff and frequency dependent lossy string, allow the
reproduction of some of the phenomena, but still the sound lacks realism. A parametric cal-
ibration, using optimization methods, provides for a better perceptual effect, without being
totally satisfying. Further, numerical methods using finite differences is expensive computa-
tionally and the construction of a real time polyphonic piano model currently seems difficult
to achieve by this method.

The modeling of this interaction by the coupling of a hammer using wave digital filters to
a string modeled by digital waveguide presents the double advantage of maintaining the close
relationship with the physical parameters, all being less costly with respect to computation.
But, still further, the hammer model seems too simple and its parameters difficult to calibrate

to permit a quality resynthesis of the measured signal.
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The signal models are, then, the most performant with respect to the quality of the
resynthesis. But, the relationship between the parameters of these models and the physical
parameters is difficult to establish. The subtractive synthesis model presented in Section
3.8.5 permits a very precise resynthesis of the original excitation. These parameters cannot
be explicitly linked to the physical parameters, but we have shown that it is possible to
establish empirically their relationship with the hammer velocity. We will choose, then, this
method to synthesize the excitation signal and in so choosing will abandon the idea of a

purely physical model of the piano in order to achieve a higher quality synthesis.
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Chapter 4

The piano model

4.1 Introductory remarks and choice of the model

To take into account the necessary simplifications made in the physical description of the
piano sounds, we have finally used a hybrid model. Hybrid models are obtained by combin-
ing physical and signal synthesis models [118]. The physical model simulates the physical
behavior of the instrument while the signal model tends at simulating the perceptual effect
produced by the instrument. It allows in perfectly reconstructing a given sound and in ma-

nipulating it in both a physical and a perceptual way.

The resonator has been modeled using a physically related model: the digital waveguide
(Sections 2.3 and 2.5), while the source -the aim of which is to generate the initial condition
for the string motion- has been modeled using a signal based non-linear model (Section
3.8.5). This approach was the best compromise we have found to reach as close as possible
the objectives we have presented in Section 1.1.1. The advantages of such a hybrid model

are numerous:

e it is simple enough so that the parameters can be estimated from the analysis of real

sound,

e it takes into account some of the most relevant physical characteristics of the piano

strings and permit the control with respect to the playing (the velocity of the hammer)

e it simulates the perceptual effect due to the non-linear behavior of the string-hammer

interaction,

e it allows sounds transformation with both physical and perceptual approaches.

127
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4.2 Piano setup

Because our piano model is intended for use in the context of musical sound synthesis, we
had to estimate the behavior of all the parameters using measurements on a real piano. Data
were collected on an experimental setup consisting of a Yamaha Disklavier C6 grand piano
equipped with sensors. The Disklavier allows the piano to be played under computer control.
Each key can be actionned at several velocities using a MIDI protocol. The actual MIDI
velocity of the hammer can also be measured. As we wanted the hammer velocity in m-s~!,
we had to find the relation between the MIDI code and the ”physical” hammer velocity. For
several notes we measured both velocities, using a computer with a MIDI interface and an

optical sensor pointing at the head of the hammer (see Figure 4.1). We deduce from those

Figure 4.1: Optical sensor used to measure the hammer velocity. The velocity is obtained
through the duration corresponding to the travel time of the hammer between two reflectors

placed on it.

data the relation between the hammer velocity and the MIDI velocity
VUh = 6:12])(0.0284 * UMIDI — 1.4976) (4.1)

where vy, is the hammer velocity in m:s—! and vasrpr is the MIDI velocity (the MIDI velocity
values varies from 0 to 127). The relation is the same for all the piano range.

After calibrating our experimental setup, we have measured at a first step, the string
vibrations at the bridge level for one velocity and every notes. Those measurements will be

usefull to estimate the resonator filters and their behavior as a function of the note. Since
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we were interested in exciting a large portion of the frequency spectrum while remaining
in the linear domain of vibration, we chose a medium (mezzo-forte) hammer velocity of 2.2
m-s— !, which roughly corresponds to a MIDI value of 80. Such a hammer velocity allows
the generation of about 140 spectral components for low frequency tones with a reasonable
signal-to-noise ratio. The bridge vibration was measured using an accelerometer (BK 4374),

as shown on Figure 4.2.

Figure 4.2: Accelerometer at the bridge level and zooming supperposition

For notes corresponding to double or triple sets of strings, the accelerometer was placed as
close as possible to the strings. Due to the imprecision of MIDI coding, several measurements
were made, until a target value of the hammer speed was obtained. We have deemed an
uncertainty of +0.1 m-s~! for the hammer velocity to be acceptable, as the estimation of
modal frequency and decay rates is relatively insensitive to such an error. The acceleration
measured at the bridge level was then digitally recorded using 16 bits discretization and a

sampling rate of 44.1 kHz, before being entered in the database.

As a second step, we performed the same measurements for several notes and several
velocities. Typically, we measured the bridge acceleration every one octave and for ten
hammer velocities. Those measurements will be usefull to verify the stability of the resonator

and study the behavior of the source parameters.
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4.3 Resonator model and calibration

4.3.1 Behavior of the resonator

The resonator is constituted by one digital waveguide for the one string notes, two and three-
coupled digital waveguides for the two and three strings notes as presented in Sections 2.3
and 2.5. We have used the same estimation method we used to analyze the data provided by

the experimental setup and calibrate the digital waveguide model.

As expected, the behavior of the resonator as a function of the hammer velocity and for
a given note is similar to the one described in Section 2.6.4, for the signals measured on
the experimental setup. The filters are quite similar with respect to the hammer velocity.
Their modulus is close to one, but slightly weaker than previously, since it now takes into
account the losses due to the acoustic field radiated by the soundboard. The resynthesis of
the piano measurements using the resonator model and the excitation obtained by deconvo-

lution is perceptively satisfying since the sound is almost undistinguable from the original one.
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Figure 4.3: Modulus of the waveguide filters for notes A0, F1 and D3: original and modeled.

On the contrary, the shape of the filters is modified as a function of the note. Figure 4.3

shows the modulus of the waveguide filter F' for several notes (in the multiple string case,
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we have calculated an average filter using an arithmetic averaging). The modulus of the
loop filter is related to the loss undergone by the wave over one period. We notice that this
modulus increases with the fundamental frequency, indicating decreasing loss over one period

as one approaches the treble range.

4.3.2 Model parameters calibration

We recall here the expression of the elementary loop filter (already presented in Section 2.4):

2
0F (w)| =~ exp (— [bl + ;’ZI;TLED

arg(0F(w)) ~ w — wq %

¢ =-1+41/1+4Bw?/w]

L, the length of the string has been measured directly on the piano. wg the fundamental

(4.2)

where

frequency (rad/s) of the ideal string and B the inharmonicity coefficient, by and b the loss
parameters will be estimated from the signal measured for each note. B and consequently wg
may be deduce from the mean frequency values estimated for each partial (see Section 2.6.3)
using the relation Eq. (1.4). The inharmonicity factor B is plotted as a function of MIDI
note number in Figure 4.4; B is an increasing function of the note number, except over the
bass range, where the strings are double-wrapped (this behavior has also been measured by
Conklin [32]).

Let’s know estimate the loss parameters b; and by. For each note, we can calculate the
damping of each component. In the case of multiple strings, we measured, the damping of the
”immediate” sound which has the greatest decay rate and which approximately corresponds

to the decay of the partials without coupling. Combining Egs. (2.8) and (2.25), one obtains
2

a(w) = —by — by (2;? [—1 /1T 4B(w/w0)2]) (4.3)

From the value of a obtained for each partial, by and by may be estimated for a given
tone using a non-linear curve fit. The evolution of these parameters as a function of the
fundamental frequency is shown in Figure 4.5.

We have also fitted extremely simple curves to the loss parameter data given by

by = 44x1073f—4x1072 (4.4a)
by = 1.0x10%f+1x107° (4.4D)
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Figure 4.4: The inharmonicity factor B as a function of the note number.

These simple empirical descriptions of b; and b allow the reproduction of piano tones whose
damping will be close to that of the perceived acoustic note. We see that b; and by are
both increasing functions of the fundamental frequency. We give here a straightforward
explanation. In a real piano, the loss is extremely important, as it is the mechanism by
which energy is transferred to the soundboard, and, ultimately to the listener as a musical
sound. Parameters b; and b2 do not only take into account internal losses in the string, but
also losses due to the energy transfer to the bridge. Each time the wave is reflected at the
bridge, part of its energy will be given to the soundboard. As the strings are shorter in the
treble, waves are able to complete more round-trip passages in a given time. Thus, the decay
rate (which is correlated to the decrease of the amplitude per second) will be finally greater
in the treble than in the bass range. In order to compare those losses, we divide b; and bo
by the fundamental frequency, as shown on Figure 4.6. The loss coeflicients obtained this
way have a quite irregular behavior. The physical characteristics of the strings themselves
(and consequently the internal losses) vary with the note, as well as the bridge impedance
[46] (and consequently losses due to radiation). A more precise study of those curves would
give us other information about the coupling between the strings and the soundboard but
such a study is out of the scope of this work. Nevertheless, we notice that the increase of
the modulus of the loop filter F' (as observed on Figure 4.3) is due to the decrease of the
coefficient by / fo (up to 300 Hz).
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Figure 4.5: Values of by and by for a grand piano, fitted from measured data, as a function
of MIDI note number

The determination of by, by, B and wy for each note allows for an explicit expression of
the behavior of the filter F' as a function of note number. The modeled modulus is close to
the original one, as shown in Figure 4.3. The original modulus has many ”artifacts” that are
not taken into account in the model. This will not be perceptually of great importance from

a synthesis point of view.

Several modulus and phases of the elementary filter model are plotted on Figure 4.7 for
the notes A0, A1, A2 and A3. In order to understand the general behavior of the elementary
modulus and the phase of the loop filter and then to be able to control it in a synthesis

situation, we expand their expressions (Eqgs. (4.2)) to third order for 4B(w/wp) near zero. We

obtain
w2
[0F (w)| =~ eXP(—[b1+bQC—2]) (4.5a)
3
B
arg(0F) ~ 22 (4.5b)
2wy

The decrease of the modulus is mainly due to the increase in b;. But the parameter
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Figure 4.6: Values of b1/ fo and ba/fy for a grand piano as a function of the fundamental
frequency fo

bs, which allows for frequency dependent loss is also increasing, leading to a modification
of the slope of the modulus versus frequency for different note numbers. We note that this
behavior is slightly different for the wrapped strings (A0, A1) than for the other strings (A2,
A3). Moreover, the behavior of the normalized filter modulus with the note is different from
the one of the non-normalized filter (see Figure 4.3. In the first case we actually consider
losses over a time interval of one second and over one period in the second case. We also
note that although B is mainly an increasing function of the note number, the phase of the
filters 6F grows less rapidly for the bass tones than for higher tones. This is due to the
fact that the phase of the filter depends not only on B, but also on the fundamental fre-
quency, as evidenced by Eq. (4.5b). Though this expression is meaningful only for the first

few partials, it is clear that phase dispersion decreases as a function of fundamental frequency.

The relations Egs. (4.2), relating the physical parameters to the waveguide parameters,
allow the control of the resonator in a relevant physical way. We can either change the length
of the strings, the inharmonicity, or the loss. But in order to be in accordance with the

physical system, we have to take into account the inter-dependence of some of the parameters.
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Figure 4.7: Normalized modulus and phase of the filter F' for selected tones.

For instance, the fundamental frequency is obviously related to the length of the string, as
well as the tension or the linear mass. If we modify the length of the string, we also have to
modify, for instance, the fundamental frequency, considering that the tension and the linear
mass are unchanged. This aspect will be taken into account in the implementation of the

model.

4.4 Source model and calibration

The model we have finally chosen for the excitation signal is the substractive signal model
presented in Section 3.8.5. The source model parameters have been calculated for a subset
of the data for the piano, namely the notes A0, F1, B1, G2, C3, G3, D4, E5 and F6. Each
note has approximately ten possible velocities, from around 0.4 m/s to 3.5 m/s. Figure 4.8
shows the normalized amplitude (divided by the delay D) of several excitation spectra for a

medium velocity. The amplitude increases slightly as the frequency of the note increases.
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Figure 4.8: Normalized excitation signal (divided by the delay D) for three different notes.

4.4.1 The static spectrum as a function of the note

The static spectrum is analytically calculated (see Eq. 3.58). It is different for each note,
since its behavior depends on the inharmonicity coefficient B, on the striking point zg, on
the length of the string L and on the string tension 7. zy and L have been measured on
our previous piano setup. B has been estimated on the measured signal (see Section 4.3).
It is not possible to measure precisely the string tension. Moreover, we can not deduce it
from the estimation of the fundamental frequency (as we did for the experimental setup),
since we don’t precisely know the linear mass of the strings. This linear mass is different for
each note and we didn’t get tables containing such information from the Yamaha Company.
The tension will therefore be removed from the expression of the static spectrum and will be
implicitly incorporated in the expression of the gain g.

This static spectrum model is, again, too straightforward to allow an efficient resynthesis
of the final sound. The error term we added previously to the static spectrum (see Section
3.8.5) is still necessary to obtain perfect a resynthesis of the original sound. This error term
is independent of the hammer velocity for a given note, but depends on the note played. Its
behavior as a function of the note doesn’t exhibit any coherent form and will be consequently

impossible to model. As we have measured the string vibration for every notes and for a
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medium velocity, we are then able to identify this error term for every note, afterwards (we
first model the spectral deviation as a function of the note and then, we calculate the error

term by comparing the synthesized signal with the original one).

4.4.2 The dynamic deviation as a function of the note

The source extracted from the signals measured on the piano, behaves as the experimental
data for all notes with respect to the hammer velocity. The dynamic deviation is well modeled
by the gain g and the spectral deviation parameters a and b.

As shown in Section 3.8.5, their behavior as a function of the velocity is well fitted using

an asymptotic exponential curve. For more clarity, we recall here their expressions:

g — ﬂge:vp(—'ygv)
a — Baezp(—74v) (4.6)
b(v) = oy — Brexp(+ypv)

0%
«,

For sake of a playable piano model, we have to consider the behavior of the asymptotic
value ¢; (i = g,a,b) , the deviation from the asymptotic value at zero velocity (the dynamic
range) B; (i = g,a,b), and the velocity exponential coefficient ~; (i = g,a,b), with respect
to the note. Figure 4.9 shows the evolution of the gain parameter as a function of the
fundamental frequency of the note. The curves are smooth enough to be fitted by a second
order polynomial for the gain g and also for the parameters ¢ and b. This last fit leads to a
complete piano model allowing us to resynthesize the string vibration at the bridge location

as a function of the velocity and the note.

4.4.3 Control of the source

From a perceptual point of view, an increase of the hammer velocity corresponds to an
increase of the intensity of the sound as well as a relative increase in high frequencies leading
to a brighter tone. Equations Eqs. (4.6) allow for the resynthesis of the excitation signal for
a given note and hammer velocity. However, the parameters g,a, b, used in the modeling,
are linked in a complex way to the two important perceptual features of the tone which are
intensity and brightness. Thus, without a thorough knowledge of the model, the user will
not be able to adjust the parameters of the virtual piano to obtain a satisfying tone. To
get an intuitive control of the model, we therefore need to provide the user with perceptual
parameters. We have therefore given the user access to the energy and the spectral centroid
parameters. The energy En is directly correlated to the perception of intensity and the

spectral centroid Ba to the perception of brightness [13]. These parameters are given by:
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Figure 4.9: Parameters oy, B, and v, as a function of the fundamental frequency.

Fs/2
En = % /0 E%(f)df (4.7)
Fs/2
| B
Ba = 0Fs/2 (4.8)
T

Where f is the frequency and F's the sampling frequency.
In order to synthesize an excitation signal having a given energy and spectral centroid,
we must express parameters g, a, b as functions of Ba and En. The centroid actually depends

on two parameters, a and b:
Fs/2 )
| Bsner g
0

Fs/2 )
/ E's(f)e“f 'H’fdf
0

Thus, a given centroid corresponds to several couples of variables (a,b), and is therefore not

Ba =

(4.9)

unique. In order to solve this problem, we choose one of the two parameters as the control
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parameter. The other parameter will then be determined by the corresponding relation
Eq. (4.6). We have chosen the parameter b as a control parameter, since it determines the
tilt of the excitation spectrum and is therefore intuitively related to the brightness. Since we
can not find an analytical expression for b as a function of Ba, we numerically calculate the
solution and store it in a table.

Knowing b and a, we can calculate g from the energy En.

E,T

Fs/2
/ ES2(f)62af2+2bf
0

1
Slog(

5 ) (4.10)
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Figure 4.10: Spectral centroid (top) and energy (bottom) for several notes as a function of
the hammer velocity. Original (plain) and modeled (dotted).

The behavior of Ba and En as a function of the hammer velocity will determine the
dynamic range of the instrument and must be defined by the user.

Since the evolution of the parameters a as a function of the note is small, we choose
the same relationship for all notes to model its behavior. Figure 4.10 shows the behavior

of the spectral centroid and the energy for several notes. The curves have similar behavior
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and only differ by a multiplicative constant. We have fitted their asymptotic behaviour by
an exponential model, similarly to what have been done with functions Eqgs. (4.6). These
functions will be applied to the synthesis of each excitation signal and will then characterize
the dynamic range of the virtual instrument. It will be easy for the user to change the
dynamic range of the virtual instrument, which may be modified by the user by changing the
shape of these functions.

Calculating the excitation signal is then done as follows: to a given note and velocity, we
associate a spectral centroid Ba and an energy En (using the asymptotic exponential fit) and
a coefficient a (thanks to relation Eq. (3.61)); b is then obtained from the spectral centroid
(from a table)and ¢ from the energy (Eq. (4.10)). One finally gets the spectral deviation

which, multiplied by the static spectrum allows the excitation signal to be calculated.

4.5 Damper model

The dampers allow for a fast decay of the vibration after the release of the key (see Section
1.2.5). The damping is related to the string/damper mass ratio. It is weaker for bass strings
than for treble ones. This damping also depends of the partial for a given note. Figure 4.11
shows the behavior of the amplitude of the first sixth partials of the note A0, before and after
the fall of the damper. The number indicates the estimated damping coefficient.

We note that this coefficient varies depending on the partial index. This difference is
related to the position of the damper on the string. The damper can not efficiently damp a
partial having a node of vibration at the damper position. Moreover, we see that non-linear
phenomena appear at the damper-string contact. When falling, the damper gives energy to
some modes, causing the corresponding partials (the second, third and fourth on Figure 4.11)

to temporarily increase before being damped.

To take the damping increase into account, we have cascaded another filter to the loop
filter. We have estimated this filter from the analysis of experimental data. The dashed
curves on Figure 4.11 correspond to the modeled damping. But, to reduce the computation
time, we finally chose a real coefficient for this filter. The damping will then be the same at
every frequencies. This real coefficient varies from 0.75 to 0.9 for the note A0 to A5. This
simple model is accurate enough from a perceptive point of view. This ensures that the lower
notes will damp more slowly.

The non-linear phenomena at the beginning of the decay can be well modeled by injecting

a new excitation in the loop filter. This excitation can be obtained by deconvolution between
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the original damped sound and the synthesized one. Nevertheless, this method has not been
used in the real-time implementation of the model, since the phenomena is not of great

importance from a perceptual point of view.

4.6 Soundboard model

The soundboard has not been modeled in this study. We have mainly worked on the strings
and their interaction with the hammer. Nevertheless, the filtering of the soundboard greatly
modifies the timbre of the instrument. We therefore need to take it into account in our piano
synthesis model. Studies presented by Aramaki et al. [4] show that it is possible to simulate
the soundboard contribution using a set of linear filters. Those filters have been identified
for each note from experiments on a real piano. The Disklavier grand piano was placed in an
anechoic room. The string vibration at the bridge level and the radiated acoustic pressure at
the location of the ears of the pianist were simultaneously measured, using an accelerometer
and a dummy head. The authors have then calculated the transfer functions which describe
the wave propagation from the bridge, through the soundboard and air, to the right and
left ears of the pianist. We will use an average of both transfer functions for each note, to
simulate the perceptual effect of the soundboard.

An efficient way to compute the effect of the resonating body (i.e. the soundboard) was
proposed by Smith [99] and is called “commuted synthesis”. The string and the body are
considered as linear time-invariant (LTI) system and they can be consequently commuted.
The filter corresponding to the soundboard can be convoluted with the excitation signal to
create a wave table of "aggregate excitations”. The resulting signal is then injected in the
waveguide model to synthesize the sound final sound. This technique reduces the compu-
tational costs since the aggregate excitation can be computed a priori. We have used this
method in Section 5 to pre-calculate the aggregate excitation signals corresponding to all
notes and all MIDI velocities.

4.7 Conclusion

The model we presented in this chapter allows an accurate resynthesis of piano tones. We used
a source-resonator synthesis model to simulate the string vibration and the hammer string-
interaction. The resonator constitutes a set of digital waveguide filters. Their parameters
have been estimated from measurements on a real piano. The behavior of those parameters
as a function of the note has also been modeled. The source is simulated using a substractive

synthesis signal model allowing to reproduce the excitation signal for a given note and a
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given velocity. To get an intuitive control of the source model, we exhibited two perceptual
parameters: the energy and the spectral centroid.

Thus, we have shown that it is possible to synthesize the tone of a given piano, using
a hybrid model. However, at this stage, the algorithm is not real-time compatible. It is
computed in the frequency domain, by multiplying the excitation signal by the transfer
function of the resonator. To make a digital piano, the previous model has to be adapted
for a real-time implementation. We show in the next Chapter that for this purpose, it is

necessary to implement in the time domain.
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to the modeled damping. The number corresponds to the damping coefficient, after the lift of
the damper.
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Chapter 5

Real-time implementation

5.1 Introductory remarks

In this section, we present the methods used for implementing the real-time piano model
presented in the previous section. The complexity of the model, it’s control and the calcula-
tion limitations of computers have constrained us to make a certain number of choices and
simplifications, to render this implementation possible. In doing this, we were required to
leave the context of analysis-resynthesis for that of synthesis. We have however, at each stage
of this implementation, compared the synthesized sound with the original sound in order to

stay true to the latter.

The control of the synthesis model is done in two successive stages. In the first stage, in
non-realtime, an interface permits us to change the physical parameters of the strings, in a
global or detailed (individual) way, as well as the perceptual parameter related to the source,
resulting in the hammer string interaction. Regarding the issue of the choice in parameters,
the modulus and phase of the filters as well as the excitations are calculated. For reasons that
we have developed in Section 5.3.1, it was necessary to implement the piano model presented
in the previous sections in the frequency domain, in the time domain. It is necessary to
calculate the FIR and IIR filters approximated by modulus and phase given in the frequency

domain.

In the second step, the software MAX/MSP uses these quantities in real time, to cal-
culate the operation necessary to the synthesis (convolution, delay lines etc.). The control
parameters are therefore, the number of the note played, its begin and end time, as well as
it’s velocity. The instrumentalist uses a traditional MIDI keyboard, and sends this playing
information to the software MAX. This then synthesizes the corresponding sound starting

from the synthesis model, and restores it with the help of an amplifier and a loudspeaker.
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5.2 Control of the resonator and the source parameters in the

frequency domain

5.2.1 Resonator interface

The model of the resonator, presented in Section 2.5 and 4.3, is extremely parameter rich.
Given a note, the resonator can consist of one, two, or three coupled digital waveguides. Each
digital waveguide is calculated according to the length L of the string (or the fundamental
frequency wy), the tension T, the loss coefficients b; and by, the inharmonicity factor B
and finally the parameters of the coupling filters in the case of multiple strings. We have
approximated the modulus and phase of the filters by simple linear curves as a function of
frequency. From a perceptual point of view, this was sufficient to simulated the beating and

double decay of the modes. Finally, the control of the model involves 1727 parameters.

Figure 5.1: Interface allowing the control of the resonator parameters
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Constructing ones own piano could involve adjusting one by one each of these parameters.
This operation is extremely difficult to realize, and global modifications of the parameters
should therefore be possible. We may, for example, want to change the decay time or the
inharmonicity of the whole keyboard range with one sole operation. In order to resolve this
problem of control, we have developed an interface (represented in Figure 5.1), using the
software Matlab, that permits the user to choose the parameters of the resonator, in either a
global way or on a individual basis.

It is first possible to change the parameters of an existing resonator. Many pianos are
available according to the type of timbre that is desired. The keyboard range is divided into
three sections corresponding to notes with one, two and three strings. The user selects from
a section a note whose parameters he wishes to modify. The interface then calculates in
the frequency domain the parameters of the corresponding digital waveguide and plays the
obtained sound for a medium excitation (or given by the control interface of the source, see
Section 5.2.2). He can also listen to the original sound measured on a grand piano, to compare
them. Once he is satisfied with the obtained sonority, he can either chose to modify another
note, or generalize the modifications to all the notes in the section. These modifications can
then be saved to a file. Excessive modification of the parameters can produce sounds that are
very far from the original, and very unrealistic in the case of the piano. Certain modifications
can change the causality and the stability of the model. In this case, the interface indicates
to the user that the chosen parameters produce an unstable model, but will still calculate

the corresponding sound.

5.2.2 Source interface

In the same way, we have developed an interface that permits modification of the source.
For each note, it is possible to adjust the brightness and the energy of the source. Global
modifications, by section, are equally possible. The interface calculates the corresponding
excitation signal (in the frequency domain) and multiplies it by the transfer function of the
resonator (obtained by the resonator interface, see Section 5.2.1). When the user is satisfied by
the obtained timbre, he can generalize the modifications and calculate the group of excitation

signals for the whole keyboard range.

5.3 Time domain synthesis

5.3.1 why realize synthesis in real-time?

The digital wave guide model can be implemented in either the time or frequency domain. It

consists of convolving (or multiplying) an excitation signal with an impulse response of long
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duration (or by a transfer function). The wave guide model parameters are estimated in the
frequency domain. It would be advantageous to realize this synthesis in the frequency domain
and then obtain the time domain signal by discrete Fourier transform. This would allow the
preservation of high accuracy resynthesis, as much as possible, in the frequency domain, to
choose a loop filter modulus and phase as complex as is needed. But, the implementation
of the model in the frequency domain also presents significant difficulties. The Max-MSP
environment provides, for real-time synthesis, the objects ” fft” and ” ifft,” which can process
buffers of 4096 points maximum, which, in general, are too few to process the duration of
an entire note. It is necessary, then, to perform this convolution in several blocks. Only one
buffer of data at a time can be modified while processing, so the parametric modifications can
only be performed at time intervals corresponding to the duration of this buffer. To obtain
a relatively high parameter refresh rate, the data buffer size must be reduced, which lessens
the frequency resolution of the buffer. There exist algorithms for dividing long signals into
shorter blocks to be processed sequentially (”overlap-add”) and even to remove the inherent
enter-exit latencies in block processing. However, after having tested certain among these
algorithms, there were weaknesses, notably in phase continuity. Therefore, we have decided
to realize the synthesis in the time domain. The loop filter, then, being estimated in the
frequency domain, the first difficulty encountered was to find some approximate expressions
for the modulus and phase in the time domain. We have chosen to treat separately the
modulus and phase filter allowing the possibility of controlling them independently. We will
see that this separation is no more costly in calculation time, because it allow for the reduction
of the number of coefficients of each of the filters used. The modulus is then approximated
by a linear phase FIR filter, while the phase is approximated by a cascade of all-pass IIR
filters.

5.3.2 Modulus approximation

The amplitude of the loop filter is simulated using an FIR filter whose phase is linear. In
order to reduce the cost of real-time computation, the number of filter’s coefficients needs to
be the smallest possible. To find optimal filter’s coefficients, we used the firls function from
Matlab. For a given filter, this function allows to find the coefficients of a linear phase FIR
filter whose amplitude is closest to the one of the original (in the least mean square sense,
using the norm £?) and for a number of coefficients which are predetermined. In order to
increase precision at high frequencies we also added a weight function. The number of chosen
coeflicients depends on the note played. We used 17 coefficients for the first 10 notes and
9 coefficients for the following. The firls function imposes an odd number of coefficients, in

order to have amplitude zero at Nyquist. Figure 5.2 shows the original amplitude of the loop
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Figure 5.2: Modulus of the loop filter original (plain) and fitted using a FIR filter (dotted).

filter and the approximated one using the FIR filter.

Since the phase is linear, their impulse response is symmetric. It is therefore possible to

reduce the number of operations. Given the following impulse response:

N
H(z) = Easzk (5.1)
k=0

Since the impulse response is symmetric, the coefficients are redundant. For N even, we

can write ay = ay_g with k # N/2 so:

n|2

H(z) = ap(z7F + 27 (VR)) 4 anz" (5.2)

The number of MACS (Multiplication Accumulation) becomes from N+1 for Eq. (5.1) to
N/2+1 for Eq. (5.2). For z = ezp(iw), Eq. (5.2) can be written:
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N_q
2
. . N
H(e") = ey 2aycosw(k — 5}
=0

)+a (5.3)

>
vl

Notice that the filter FIR creates a phase delay 7rrg of N/2 samples when N is even, and
N/2+1 when N is odd. It is necessary to account for this delay when calculating the total
filter.

5.3.3 Phase approximation

Thick piano strings create a dispersion when waves propagate, leading inharmonic partials.
In terms of waveguides, this inharmonicity is accounted for in the phase of the loop filter. As
seen in section 2.4, this phase is non linear. In order to reproduce in the temporal domain
the phase of the loop filter (which comes from Eq. (2.27a)), we use a cascade of allpass filters.
The allpass filter allows to approximate a given phase, without modifying the amplitude
which is already accounted for by the FIR filter. In real-time simulations we need to limit
the number of filters’ coefficients. If it is possible to simulate inharmonicity in guitars, violin
and cello which is rather weak, it is hard, in the case of the piano, to obtain the exact filters’
phase for a given number of coefficients. Using a cascade of allpass filters allow to simplify
the optimization process. The original phase is divided by the number of allpass in the
cascade. So the phase behavior is more linear, allowing the optimization procedure to work
more efficiently in a reduced number of coefficients.

In order to find the coefficients of the allpass filter that better approximate the phase, we
use an optimization procedure proposed by M. Lang [70] and already used by Serafin in [90].
Calling k4p the number of allpass coefficients in cascade, and given an N-order all-pass filter

whose transfer function is:

2 NP(z71)
H(z) = ) (5.4)
N
with P(z) = Z arz~® and ag = 1. The phase response is given by:
k=0
; YN agsin(kw)
bap = arg(H(e™)) = —Nw + 2 arctan =£=0 (5.5)

o 0rCos(kw)

As proposed by Lang, we minimize (using a Remez algorithm) the L,,-norm of the
weighted phase error between the phase ¢r of the original loop filter and the phase ¢4p
of the all-pass filter

Minayz||W (w)[¢r/kap — Tow — pap]|oo (5.6)
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W (w) is the weighted function, allowing us to give more importance to low frequencies.
Tow is the pure delay that has to be removed from ¢r/kap to fit the phase of the all-pass
filter. Figure 5.3 shows phases ¢ and kap(¢ap + Tow) for a note F4#, using three all-pass

filters of third degree. Figure 5.4 shows the corresponding frequency error.
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Figure 5.3: Phase of the loop filter original (plain) and fitted using a cascade of IIR filter
(dotted).

We notice that the phase is well approximated only for low frequencies. For middle and
high frequencies, the inharmonicity of the synthesized sound will be much weaker than the
one of the original signal. To get a better approximation, we could use more all-pass filters
or increase their degree. But for real-time application, we have to use as few filters of the
lowest degree as possible. We have then compared the synthesized signal to the original one
and proceeded to informal perceptual tests. We concluded that for the first 10 notes of the
keyboard range (corresponding to the one string notes) we can use 4 all-pass filters of the
third order to get a satisfying perception of the inharmonicity. For other notes, we use 3
all-pass filters of third order.

We also need to take into account the delay introduced by the filters’ cascade. For a
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Figure 5.4: Frequency error between original and approximated phases.

cascade of k4p allpass filters, the delay introduced for the fundamental frequency wy is given

by: Tap = kap®ap(wo)/wo. Using Eq. (5.5), we have

2 Al in(k
Tap = —kapN + — arctan Z’;VZO ax sin(kwo)
wo S axcos(fwo)

As in the case of the FIR filter with linear phase, we show that it is possible for the allpass

(5.7)

filter to minimize the number of operations. Equation Eq. (5.4) can be written as:

n
27NV 4 Z akzk_N
k=1

N
1+ Z akz_k
k=1

The corresponding time equation becomes:
N

y(n) =xz(n—N)+ > ap(z(n — N + k) —y(n — k)) (5.9)
k=1

Using this formulation, it is necessary to perform N+1 MACS instead of 2(N+1).
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5.3.4 Excitations calculation

The excitation is obtained using the mean spectrum, filtered with respect to the hammer
velocity. We may compute this filtering in the time domain, in real-time. Nevertheless, for

more efficiency, the excitation is not computed in real-time due to processor’s capacity.

The MIDI protocole defines 128 different velocities. For each note, 128 excitations were
calculated and stored in a table. When necessitating, those excitations are loaded, depending

on the note and the dynamic and finally convoluted with the digital waveguide.

5.4 Real-time implementation

5.4.1 The real-time software environment, Max/MSP

High quality digital signal processing and sound synthesis at audio sampling rates (using 16
bit, 44100 Hz samples), once reserved for specialized DSP processors, is now easily done on
the home computer. Many environments for the development of such applications are now
available. The software MAX, that we used for the real-time implementation of our model,
was developed by Miller Puckette and David Zicarelli for the development of control applica-
tions for instruments and MIDI synthesizers on the Macintosh platform [82]. It consists of an
environment in which the applications are constructed by assembling elementary functions
or objects in their graphical form: functions are represented by boxes with inlets and outlets
and the data flow is given by patch chords connecting the outputs and the inputs. The
maximum real-time data flow rate (on the order of 3 kbytes per second) was compatible with
the computational power of microprocessors of the time. The rise of microprocessor power
has permitted real-time data flow rates at digital audio rates (on the order of 100 kbytes per
second per channel). An extension of the software MAX was developed by David Zicarelli
[119]. This extension (Max Signal Processing, or MSP) consists of sixty objects dedicated to
synthesis and digital signal processing. Similar environments have since appeared for other
platforms, notably under UNIX or Linux systems (PD [81]). The functionality is identical,

and the problems are of the same nature.
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5.4.2 Processing of samples using blocks

Input samples Output samples
i Cyclel
buffer E buffer E buffer S buffer S
A
Y
Program
Input samples i Cydle?2 T Output samples
buffer E buffer E buffer S buffer S
A
Y
Program

Figure 5.5: Double buffer principle.

Real-time synthesis refers not only to the algorithm, but to the manipulations involved
in the reading of input data and the writing of output data. The first real-time synthesis
machines (IRCAM’s 4X, GRM/Digilog’s Syter, and early DSPs, etc.) operated in a simple
form of synchronization with the sampling frequency. During each sampling period (which
lasts some 20 microseconds), an input sample is read from the analog/digital converter, and
a sample value is sent to the digital/analog converter. The same set of operations is thus
carried out at each sampling interval, a mode of operation which is far from optimal. For
example, variable initialization is carried out at each cycle, resulting in a loss of valuable
computational power.

An improvement over these simple schemes is known as double-buffering (see Figure 5.5).
Here, operations recur every two sampling periods, and involves two sets of buffers, one for
storing input samples, and the other for reading output samples, at the sampling frequency.
At the same time, the synthesis program uses two other buffers, one in which input samples

are read, and another in which output samples are written. When the former two buffers
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are entirely full and read, respectively, the two sets of buffers switch roles with the latter
set. The microprocessor is thus free to devote more of its time to system operation tasks;
the only constraint is the synchronization of the buffer exchange, so as to maintain constant
input and output data streams. We will not discuss the details and relative advantages of
such a method, which is used in the MAX/MSP synthesis environment.

Double buffering can create problems when the algorithm to be implemented involves
recursive feedback structures, such as digital waveguides. Let us consider, as an example, the

waveguide model shown in Figure 5.6, constructed from basic delay and filtering objects.

e(n)%@H D - F - s(n)

Figure 5.6: Elementary digital waveguide.

The calculation of output samples s(n) requires knowledge of input samples e(n), as well
as samples z(n), which are not known until the entire vector has been processed. A delay line
of duration less than the vector length can thus not be realized. There is a resulting upper
bound on the fundamental frequency which can be attained in real time: for a minimum
vector size of 64 samples, this bound will be 690 Hz, at a sampling frequency of 44100 Hz.
For the piano, encompassing a range of fundamental frequencies up to approximately 4000
Hz, this bound is not respected. The problem can thus not be solved except by employing
a recursive structure inside an elementary object, where one has access at each sampling
instant. We have thus created a “waveguide object” (in the C language), which is used
directly by MAX-MSP.

5.4.3 Determining the delay value

The fundamental frequency of the signal generated by a waveguide model is linked to the pure
delay of the loop. This loop makes use of several elements in series, each of which introduces
a delay. It is necessary to take into account the delay 7prg introduced by the FIR filter, the
delay 74p introduced by the all-pass cascade, and the delay D of the delay filter which allows
for tuning. If D; is the total delay of the loop, the following relation can be obtained:

Dy =71pir+Tap +D (5.10)
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where Dy = F/fo with F; is the sampling frequency and fj is the fundamental frequency of
the string. We get
D =D; —1rir — kapTaP (5.11)

5.4.4 Implementation of the fractional delay

The implementation of a delay line is very simple when the delay is made of a n integer
number of samples. In this case, the delay line is made of a memory block with a read and
a write pointer (using the “circular memory” technique). At each new sampling period, the
two pointers are increased. The distance between the two pointers gives the delay time in
samples. The delay obtained in this situation is an integer multiple of the sampling period.
We therefore obtain a discretization of the frequencies which becomes audible in the middle
and high registers. In order to obtain a continuous variation of the frequencies in order to
use a musical scale, we need to build fractional delays.

For sampled signals, the implementation of a constant delay can be considered as the
approximation of an ideal allpass filter, with an amplitude equal to one and a constant delay

given by: D, H(w) = e~™% 50 the impulse response becomes:

sin(w(n — D))

hn) = =0 (5.12)

since the signal are sampled, therefore bandlimited. This impulse response is represented in
Figure 5.7.

We notice that when the delay corresponds to an integer number of samples, the response
becomes unit for n = D. Indeed, the cardinal sinus is zero for n = kD with k integer
different from 1, which justify the implementation using a circular memory. For non integer
delay values, the impulse response is an infinite cardinal sinus, sampled and shifted. A non
integer delay must therefore consider all the samples of the signal, each one weighted by a
value of the cardinal sinus function. This function being infinite and non causal, this gives
a problem. The practical solution consists of building FIR or IIR filters which approximate
the ideal case. Laakso et al. [69] propose 12 methods to build FIR filters and 6 methods to
build IIR. The IIR filters that show the best approximation are the allpass, i.e. with unitary
amplitude response in [0, fe/2]. Usually an FIR filter does not have this property. Moreover,
an IR filter allows to obtain the desired approximation (constant delay in a frequency band)
with less operations (multiplications) than an FIR filter. The implementation of a fractional
delay using an allpass IIR seems the best choice, in terms of computational cost and artifacts
on the amplitude of the frequency response.

We can therefore build a fractional delay using the cascade of allpass filters used to

approximate the phase of the loop filter. We therefore decided to obtain the fractional delay
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Figure 5.7: Impulse response of an ideal linear phase all-pass filter for an integer number of

samples (top) and for a fractional number of samples (bottom)

using another allpass filter (which implies more calculations) for two reasons. First of all
we want to be able to change the tuning of the waveguide, eventually in real-time, without
recalculating the filters’ coefficient of the allpass filters of the cascade. The second reason
is that the optimization algorithm that calculated the coefficients of the cascade of allpass
filters is made in the all frequency band which gives an error at all frequencies. In order to
tune the loop delay at the fundamental frequency, we need to use another allpass with linear

phase.

The method for calculating the coefficients ak (for a filter defined by Eq. (5.4)) of this
all-pass filter depends on the type of approximation desired. The simplest method is due to
Thiran [109]. It attempts to find a constant delay over the largest possible spectral region.
The error is nearly zero on an interval between the DC frequency and a frequency fmax which
depends on filter order, and then increases with frequency. In addition, this method leads
to simple calculation, useful in the real-time context. The best approximation is obtained
for a phase delay D = N + d (with N integer and d fractional) and the values of the filter
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coefficients of order NV given by:

N\Y D-N+n N N1
akz(_l)k< B )Em avec (k>=m (5.13)

The Figure 5.8 represents the value of the fractional part of the delay as a function of
frequency for different all-pass filter orders (1, 2, 3, 40, 50). One remarks that the bandwidth
over which the delay is constant increases more and more slowly with filter order. But
increasing the filter order also increases the integer portion of the delay of the filter, and
thus the maximal fundamental frequency and the calculation cost (one must recalculate N
coefficients and realize an IIR filter with N+1 coefficients). It is necessary to determine the
minimal order acceptable for a correct waveguide delay. We have shown, in Figure 5.8 the
maximal fundamental frequency for a piano (4186 Hz). It is worth noting that the tuning of

the fundamental frequency can be accomplished using a filter of order 3.

0.35

0.3

0.25

0.2

0.15

0.1

0.05

O 1 1 1 1 J
0 0.5 1 15 2 2.5

4
frequency (Hz) X 10

Figure 5.8: Fractional delay for all-pass filters of orders 1, 2, 3, 20 et 40. The X in a circle

indicates the maximal fundamental frequency for a piano(4186 Hz).
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Figure 5.9: The implemented elementary digital waveguide

5.4.5 Implementation for a simple waveguide model

The scheme for a simple waveguide in a real-time implementation is shown in Figure 5.9.
The retroactive loop makes use of a delay line to simulate the integer part of the delay, a
linear-phase FIR filter simulates loss during a period (see Section 5.3.2), an IIR filter to take
care of the fractional part of the delay (see Section 5.4.4), a cascade of all-pass filters to
simulate dispersion during a period (Section 5.3.3) and finally a simple gain G which allows
the global real-time modification of the decay rates of the partials, simulating the effect of
the dampers. The filters and the delay line depend on MIDI pitch. The gain G depends also
on MIDI pitch, but also on the state of the pedal. If the pedal is not in use, the gain is 1
when the note is being played, and G otherwise (see Section 4.5). If the pedal is in use, the
gain is set to 1.

The waveguide shown in Figure 5.9 has an excitation which depends on MIDI velocity, and
on MIDI pitch (see Section 5.3.4). There are two outputs. The output “outl” corresponds
to the signal measured at the bridge, and the output “out2” is in fact the excitation signal,
amplified or attenuated by the gain N. This second output allows the percussive reinforcement
of the attack, and thus the ability to reproduce the key impact noise (see Section 1.2.1). The

outputs “outl” and “out2” corresponding to each note are then added.
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We have represented here the implementation of a simple waveguide, in the case of a
single string. In the case of two or three strings, the waveguides are coupled as shown in

Section 2.5.3. The coupling filters are implemented using simple phase-linear FIR filters.

5.4.6 Sympathetic resonances

In order to make the synthesized sound realistic in playing conditions, the energy transfer
between the strings of different notes need to be taken into account. If they are, from a
quantitative point of view, less important that the energy transfers between the strings of a
single note, they may be perceptually significant. A simple, but relatively costly solution is
to send the global output of the model, that is, the sum of the outputs of all the waveguides,
into the set of resonators. In order to avoid stability issues, it is necessary, for a given note,
to filter the output corresponding to this note. It is necessary, thus, before to sum the various
outputs, to multiply them by a square matrix of size 88, with zeros only on the diagonal. The

other values of the matrix will be functions of the distance between strings, at the bridge.

This type of implementation is, however, much too computationally costly, and thus
impossible to use in real time. We thus choose a slightly different solution. Instead of using
the matrix in order to not send the output of a waveguide into its own input, we inject this

output a second time, but in phase opposition, canceling the effect of the first signal.

5.4.7 Model complexity and computation time

Since we would like a real-time implementation, the number of operations (multiplications)
per second (flops) should be suitable for the computer we are using. By considering that the
set of waveguides in the piano range are simultaneously in use, and coupled as described in
5.4.6, without taking into account the filtering calculations for the soundboard, we estimate
that the algorithm requires slightly more than 200 million flops, for a sampling frequency of
44100 Hz. This is a large figure, and can be reached with difficulty on todays computers.
We have thus made some simplifications. Only waveguides corresponding to notes which are
not damped will be permanently active, as these notes resonate sympathetically, even if they
are not directly played. For the other notes, only played notes will be active. This can cause
problems when the pedal is down: all the strings are susceptible to sympathetic vibration.
In this case, we activate the waveguides whose modes are closest to those of other notes, in

other words, those which are most coupled.
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5.5 Conclusion

We have presented in this chapter the real-time implementation of the model, in the time
domain. The filters have been approximated by a set of FIR and IIR filters which reproduce,
at least for the first half of the spectrum, the magnitude and phase characteristics of the loop
filters in the waveguides. We have coupled these waveguides in such a way as to reproduce,
in real-time, beating and double-decay phenomena. We have also taken into account the
damping of partials due to the dampers, sustain pedal effects and sympathetic resonance, by
using a set of filters identified with measurements (see 4.6 and [2]).

The necessary approximations for a real-time implementation forced us to abandon anal-
ysis/synthesis in favor of synthesis. It was necessary to limit the number of filters and their
order, so that the model is able to function on today’s computers. The synthesized sound re-
mains piano-like, but differs from the original sound recorded on a grand piano, and which we
have tried to maintain in this work. It is clear that as computational power grows, higher filter

precision and model complexity will make for a greatly improved quality of sound synthesis.
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Chapter 6

Conclusion

In this research we have studied diverse synthesis models of piano sound. We have developed
a collection of methods for the analysis and resynthesis of real signals starting from physical
and semi-physical models, allowing for the a high quality reproduction of piano sounds.

In the first chapter we precisely described our objectives: to build a synthesis model that
is strongly related to the physics of the piano and to achieve a synthesis that is as close as
possible to the recorded sound while still being computable in real-time. We have then briefly
described the principle physical phenomena that come into play during the production of
sound. Many that were perceptually important where incorporated into the model (frequency
dependent loss, inharmonicity, non-linear behaviour of the hammer string contact...). Others
were neglected because they had less influence on the timbre and were too computationally
expensive for real-time implementation. Likewise, we have described the principle physical
models or signals found in the literature that successful reproduce the piano sound.

The second chapter was devoted to the study of models simulating the propagation of
transverse waves in the strings. A partial differential equation slightly different from that
of Ruiz and having only two propagating solutions was proposed. The digital waveguide
model, in which a filter simulates the delay, the attenuation and the dispersion undergone
by the transverse waves during their propagation was described. We have explicitly given
the relationship between the parameters of the digital waveguide model and the physical
parameters of the EDP. Calculating these expressions has required, for the sake of simplicity,
that certain approximation be made, justified for the piano strings. If the relationship between
this EDP and this digital waveguide model are valid for certain values of damping and
dispersion, the waveguide model, once implemented in the frequency domain, can simulate
all types of laws for damping or dispersion. Unlike a finite difference solution, the waveguide
model does not introduce digital dispersion or dissipation. Its drawback however is that

the string vibration can only be calculated at one point (one may, however, get additional
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output points along the string at the price of one small digital filter), whereas in a finite
difference solution we have access to all the discrete points along the string. We have then
showed that by coupling several digital waveguides, we are capable of simulating beating and
double decay phenomenon. The originality of our approach lies in the explicit resolution of
the inverse problem: calculate the parameters of the coupled waveguide model from modal
parameters of a recorded signal. This very fine calibration of the model allowed us to precisely

resynthesize the vibration of coupled strings.

In the third chapter, we focused on the contact between hammer and string. We coupled
a nonlinear hammer model with the EDP proposed in chapter 2. This system which has no
analytical solution was resolved using finite difference methods. Since some of the physical
parameters of the model are not easily measurable we proposed a method of calibration
by optimization: an iterative process allowing the values of each of the parameters to be
adjusted so that the spectrum of the synthesis will match as close as possible that of the

recorded signal.

We also proposed another method for resolving the system of equations using “digital
wave filters” which provides a knowledge, and thus a control, of the distribution of energy
in the system. The stability of this method is assured by its construction—regardless of the
sampling rate. In this method the physical model is decomposed into mass (inductance),
spring (capacitance) and dampers (resistance) elements which are arranged either in parallel
or in series. The appropriate change of variable allows the relationship between force and ve-
locity for each element to be written in terms of wave variables and characteristic impedance.
The expressions obtained for the relationships allow the different elements obtained using
Kirchoff laws to be connected. The “digital wave filters” also connects to the waveguide
model. The sound obtained from this method was not entirely satisfying. It seems that the

hammer model is too straightforward to accurately simulate the hammer string interaction.

Another method consisted of using a signal model to simulate the excitation of the digital
waveguide. This method presupposes that the resonator (consisting of the string and modeled
using a digital waveguide) and the source (the result of the interaction between hammer and
string) can be decoupled. This hypothesis is evidently false as seen in the measurement
where the contact between the hammer and string lasts for several milliseconds. However
this interaction is too short to be perceivable in itself. Thus, if we consider only the vibration
of the transverse waves (and not the shock of the impact from touching the frame nor the
longitudinal waves), and we delete the first milliseconds of the signal, the perception of the
attack is not changed. It is sufficient to simulate the result of this interaction, and not the
the interaction itself, to obtain the same perceptual result. By using a subtractive synthesis

model, we were able to reproduce the behaviour of the excitation of the digital waveguide in
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a way that provides a synthesis that is perceptually identical to the recorded piano.

Chapter 4 presents the final model, a collection of digital waveguide models and a signal
model simulating the excitation. To calibrate the model, we conducted an experiment on
a real piano which involved measuring the chain of elements that produce the piano sound,
from the pianist’s finger to the vibration that s/he perceives. The piano was placed in an
anechoic chamber so that measurements were not affected by the geometry and reflections of
the room. Measurements from the keyboard elements were made using a piano that could
be controlled using MIDI. The string vibrations were measured using a laser vibrometer and
the bridge behavior using an accelerometer. An artificial head was also placed in the position
of the performer to measure the sound at that point radiating from the soundboard. These
measurements allowed us to follow the evolution of the model’s parameters as a function
of the keyboard range and therefore to resynthesize the timbre of each note for different

velocities.

In Chapter 5 we show how this model can be implemented in real-time in the time domain.
The filter module of the loop was approximated using zero-phase infinite impulse response
(ITR) filters. The phase of the filter loop was reproduced using a cascade of all-pass filters.
The more the number of coefficients of the filters is important, the more the sound of the time-
domain synthesis approached that obtained in the frequency domain. However, increasing
the number of coefficients also increased the number of operations and therefore the time
required to complete the simulation. It is necessary therefore to choose the optimal number
of coefficients. It is here that we see a limitation in the digital waveguide for simulating
loss and dispersion. The parameters of the synthesis model must be controllable from a
simple interface such as a MIDI keyboard. The model was therefore implemented using the
software Max/MSP. This software allows for real-time processing of a large number of inputs.
The computer receives input from the MIDI controller—the excitations are calculated as a
function of the speed with which the hit was pressed—and they are sent to the corresponding
waveguide. Depending on the note that was played, the software simulates a transfer of
energy between the strings, and calculates the resulting sound from the sound producing

elements.

The “concrete” result of my thesis with therefore the implementation of a digital piano,
which, unlike other commercial synthesizers, does not simply play a recorded sound, but
simulated some of the physical phenomena in real-time and synthesized the corresponding
vibration. It offers everyone the possibility of choosing and modifying the sound of the virtual
instrument by modifying the model’s parameters. This piano “simulator” also provides a

useful tool to piano manufacturers.

To further improve the quality of the synthesis model and the realistic sound control, we
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propose several research directions. For the real-time model, with an increase in processor
computational power, some of the simplifications and approximations that we did here will
no longer be necessary. The synthesis will therefore be improved. Consider the model of the
piano alone. The hybrid model which associates excitation by signal model and resonator by
waveguide allows for an excellent resynthesis of the recorded sound but doesn’t give access
to the physical parameters of the hammer. One solution would be to define another physical
model of a hammer that more accurately simulates behaviour of the force on the string
and then finally calibrate these parameters by optimization methods. Additionally, we did
not keep track of a certain number of phenomenon in the modeling. The models simulate
linear phenomenon intervening in the string and the nonlinear behaviour of the hammer-string
interaction. However, a precise comparison of example signals with those of the synthesis show
that some components of the spectrum are not reproduced. If we only consider the linear
phenomenon, the spectrum should contain a simple series of partials, lightly inharmonic.
However, the spectrum contains other components due to nonlinear phenomenon occurring
in the strings and the soundboard. Listening attentively to the synthesis signal and the
recorded signal brings us to think of the these components occurring essentially in the attack

of the sound. It would therefore be worthwhile to simulate them to improve the synthesis.
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The non-linear hammer

The physical hammer model we use is the same as previously, i.e. a mass and a non-linear
spring obeying the power law

But to get a standard form of a wave digital capacitor (spring) allowing to simulate the non-
linear behaviour of the felt, we have to define an “equivalent” stiffness K, which depends on
the force fy. To insure the stability of the model, we first define an energy measure for the

mass and the spring and then we calculate the equivalent stiffness K,

Springs and masses: energetic properties
Consider a spring-like object defined by the following equation:

f(z) =Kz (A.2)
Here, f is a force, and z is position; both are functions of time ¢. K > 0 is the spring

constant. Taking a time derivative of both sides of this equation gives

o ds
Y4 _g% _ g A
di di v (A-3)

where v is velocity, and thus we may write

—1y2, 41y
K12 = S (K1) (A.4)

Defining power-normalized variables v = K/2v and f=K ~1/2f we then obtain

df
dt

Q:
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The spring constant is thus absorbed into the definitions of the variables themselves. Multi-
plying both sides of Eq. (A.5) by f gives:

i _d e, (A.6)

p=vi=ul =10 = 7GL

The left side of the equation can be interpreted as the instantaneous power supplied to
the spring, and the right side as the rate of change of the energy

1
E=_f"= inQ (A.7)

N | —

stored in the spring. Thus all energy supplied to the spring is stored; the spring is lossless,
according to such an energy measure. An important point here is that the energy E is a

positive definite function of the state variables in this case, a quadratic.

Suppose, now, that we take Eq. (A.4) as our definition of a spring. We can see that all
of the manipulations above still follow, even if K = K(z,v, f,t,..), as long as K is a positive
function. Thus Eq. (A.4) can be viewed as the definition of a nonlinear lossless spring, if the
energy is defined as per Eq. (A.7). The relation between force and velocity for a simple mass
(the dual to the spring) may be defined by

m—1/2f — i

i) (A.8)

for a possibly non-linear mass m.

Expression of the equivalent stiffness

Using the definition of a spring given by Eq. (A.4) we will define in this section the equivalent

hammer felt stiffness K.

Let us return to the definition of the elastic behavior of the nonlinear felt in the piano

hammer, which is
fu = Knyj (A.9)

for yg > 0 and fg = 0 otherwise.

Here, K > 0 and p are constants. When y4 > 0 (i.e., the hammer is in contact with the

string), we take time derivatives to get

d B
% = Kupyh vq (A.10)
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and using Eq. (A.9) gives

1 —1/p (1-p)p &
- K 44 Al
Vg P H fH dt ( )
Developping Eq. (A.4) in the case of a hammer stiffness K, which depends on the force fp,
we obtain ) K, df
=K;'(1- K" ey=I A12

Posing C = 1/K,, we get by identification between Eq.(A.11) and Eq.(A.12) the non-linear

differential equation

Cpa) + 5 1n ™ — Crtg, (A13)

P

1—
Using the change of variable C = Cyf,” this equation can be rewritten after some ma-

nipulation in the form of Eq. (A.4), with

_1+p

L+ P o 1/p o (0-1)/
Ke=——Ky'fi """=—

Kyt (A.14)
which reduces to K, = Ky in the linear case, i.e., when p = 1. The stored energy in the
nonlinear spring is thus
p=1tPy, i (A.15)
2 2
which is again a positive function of x, when = > 0.
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Appendix B

A non-linear and lossy wave

hammer

As we have seen in Section 3.2, the hammer felt relaxation is not immediate, leading to losses
and hysteretic behavior of the hammer force. In order to get a more realistic model, we can
take this behavior into account using the relation Eq. (3.4) of Hunt and Crossley [63]. The

hammer model has to be modified and the corresponding diagram is shown on Figure B.1.

bsrRST LB

P

The force is now given by the relation

Figure B.1: A parallel connection of a mass and a nonlinear lossy spring, top, representing

a wave digital hammer, is connected in series with a digital waveguide, bottom.
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Fy = fu + fr = Kayh(1 + pya) (B.1)
There is then two force terms. One which is the same as previously:
fa =Knuyh (B.2)
And another one which introduces loss in the spring;:
fr = Kupyhya (B.3)

Using the "equivalent” spring stiffness K, defined by Eq. (A.14), we rewrite the two force

terms:

fo = Ke(fH)yd (B-4)
fr pfaya = Rs(fu)ya (B.5)

The wave digital port corresponding to this non-linear lossy spring is then a capacitor with
port resistance Ry = TK,./2 connected in series with a resistor with the port resistance
Rs = pf. In order to eliminate a new delay-free loop, the port admittance G has to be set

to

G3 =G+ Gy (B.ﬁ)

G1 =1/R; and G2 = 1/ Ry are the same as previously.

The expressions of the output normalized wave variables for the three wave digital one

ports are
a2z = ~b (B.7)
as = b (B.8)
as = 0 (Bg)

Using the equations for the scattering junction, we get for the parallel connection the

relations
b +4/ L F (B.10)
= —a e .
1 1 i H
b + \/—1 F (B.11)
= —Q .
2 2 R H
1 1
= — — B.12
by 1 R2—a2) ( )
with

2 1 / 1
m Tt R 1 3



For the ”lower” series junction, the scattering equations are unchanged:

with

Vs =

b = ar — vV Ryvs

br = ar— VRovs

1
- ——— (/R VR
ay ’—2Ro( oar + v/ Roag)

2R0+R (VRoar + v/ Roar + / Rib1)

and for the "upper” series junction, we can write

with

vy =

R3+R4+R

as = b3 — ' Rsvy
by = as— VR,

bs = a5 —Rsv;

(v R3bs + \/Raas + v/ Rsas)
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(B.14)
(B.15)

(B.16)

(B.17)

(B.18)
(B.19)
(B.20)

(B.21)
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