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Physics of vortex merging
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CNRS / Universités Aix-Marseille I & II

49, rue Frédéric Joliot Curie, BP 146, F-13384 Marseille Cedex 13, France

Abstract

This article deals with the interaction of co-rotating vortices, in configurations similar to those
found in the extended near-wake of typical transport aircraft. The fundamental process of vortex
merging is analyzed and modeled in detail in a two-dimensional context, giving insight into the
conditions for merging and its physical origin, and yielding predictions for the resulting flow.
Three-dimensional effects, in the form an elliptic short-wave instability arising in the initial co-
rotating vortex flow, are described and analyzed theoretically. They are found to cause significant
changes in the merging process, like earlier merging and larger final vortex cores. Illustrations
from recent experimental, numerical and theoretical studies are given, and the relevance of the
results for applications to real aircraft wakes is discussed.
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Résumé

Aspects physiques de la fusion de tourbillons – Cet article traite de l’interaction entre tour-
billons co-rotatifs, dans des configurations semblables à celles présentes dans le sillage proche et
moyen des avions de transport. Le processus fondamental de fusion des tourbillons est analysé et
modélisé en détail dans une description bidimensionnelle, donnant accès à des conditions pour la
fusion et son origine physique, ainsi qu’aux propriétés de l’écoulement résultant. Les effets tridi-
mensionnels, sous forme d’une instabilité elliptique à courte longueur d’onde des vortex co-rotatifs
initiaux, sont décrits et analysés théoriquement. Ils sont à l’origine de modifications importantes
de la fusion, comme un démarrage plus rapide du processus et un vortex final plus gros. Des illus-
trations d’études expérimentales, numériques et théoriques récentes sont données, et la pertinence
des résultats pour des applications aux sillages réalistes des avions est discutée.
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1 Introduction

The merging phenomenon occurs when two vortices of the same sign with (almost) parallel
axes, and within a certain critical distance of each other, mix a substantial portion of
their core vorticity to become a single vortex. Vortex merging, which is principally a two-
dimensional process, is one of the fundamental ingredients of fluid motion and plays a
major role in a variety of situations, such as decaying two-dimensional turbulence, three-
dimensional turbulence, and mixing layers, to name a few. Its potential significance covers
various fields such as astrophysics, meteorology, and geophysics.[1]

Vortex merging also plays an important role in the context of aircraft trailing wakes. A
lifting aircraft wing generates a sheet of longitudinal vorticity, whose structure depends on
the lift distribution along the span, dictated by the geometry of the wing and its different
elements (flaps, spoilers, engines and nacelles, etc.). In the near field, the vortex sheet
quickly rolls up into a set of discrete vortices, which subsequently interact and merge to
form a single vortex behind each wing in the aircraft’s far wake.

The wake vortex issue is particularly important for the traffic near airports, since aircraft
follow each other closely there. Figure 1 shows schematically a typical trailing vortex sys-
tem generated by an aircraft in take-off or landing configuration. Two strong vortices of
comparable strength are generated from the tips of the wing and the lowered flap. These co-
rotating vortices spin around each other by mutual induction, and merge into a single one
over a distance of 5-10 wing spans. Issues related to the merging of trailing vortices include
the following questions: when and under which conditions do two given vortices merge, in
other words: what is the time (distance) to merging? What is the role of three-dimensional
effects? What are the characteristics of the merged final vortex? These questions are all rel-
evant for the dynamics and final decay of the counter-rotating vortex pair in the far wake
of an aircraft, involving turbulent dissipation and different three-dimensional instabilities,
as discussed by Jacquin et al. [2].

The present paper deals with aspects of the dynamics and merging of (nearly) parallel co-
rotating vortices, such as those observed in the extended near wake of a landing aircraft. In
section 2, the two-dimensional dynamics are reviewed in detail. Experimental and numerical
results will be used to analyze the different stages of merging, establish a merging criterion,
including a discussion of the physical origin of merging, and assess the properties of the final
vortex. Section 3 is dedicated to three-dimensional effects, in particular a short-wavelength
elliptic instability, which can arise in the co-rotating vortices before merging, and which can
significantly modify the merging process and the properties of the final vortex. In section
4, these results are discussed in the context of realistic aircraft wakes, and a conclusion is
given in section 5.
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Fig. 1. Schematic of a typical vortex wake of a transport aircraft in high-lift configuration (flaps
deflected). The scale in the downstream direction is compressed by a factor between 5 and 10.

2 Two-dimensional dynamics

In this part, we focus on the two-dimensional dynamics of two identical co-rotating vortices
having a smooth vorticity distribution. Although such a configuration is a very simplified
representation of the near wake of a realistic aircraft, it contains all the ingredients nec-
essary to explore and understand the physics involved in vortex merging. It is also much
closer to reality than the constant-vorticity patches, which were frequently used in previous
numerical and theoretical studies (see, e.g., Waugh [3], and references therein). Details on
the experimental procedures and numerical methods used to obtain the results presented
here can be found, e.g., in Meunier et al. [4] and Le Dizès and Verga [5], respectively. Three-
dimensional effects associated with instabilities will be discussed in detail in section 3.

2.1 Interaction of two well-separated vortices

When two vortices are distant from each other, i.e., when their separation distance b is
large compared to their characteristic core radius a, the large-scale non-viscous dynamics
of the system are well-characterized by a point vortex approach: the two vortices with equal
circulation Γ remain separated by a constant distance b0 and rotate around each other at
a constant angular speed

Ω =
Γ

πb2
0

, (1)

just as if all the vorticity of each vortex was concentrated in the respective vorticity “center
of mass”, or vorticity centroid.

This large-scale evolution is observed in many experiments, as demonstrated in figure 2(a),
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Fig. 2. Temporal evolution of the orientation (a) and the non-dimensionalized core size (b) of a
co-rotating vortex pair. Symbols represent experimental results at Re = 742 (◦), Re = 1506 (�)
and Re = 2258 (M). Thick lines represent results from direct numerical simulations (DNS) at
Re = 500 (dash-dotted) and Re = 8000 (dashed). Thin solid lines correspond to the theoretical
predictions of Eqs (1) and (4) respectively.

where the angular orientation of the vortex pair is compared with the theoretical prediction
(1) for different values of the Reynolds number Re = Γ/ν (ν: kinematic viscosity). The
period of rotation of the vortex pair is thus a natural characteristic time scale of the system
which can be used to define a non-dimensional convective time variable:

t∗ = t
Ω

2π
=

tΓ

2π2b2
0

. (2)

While rotating around each other, the vortices spread by viscous diffusion. If the core size
of each vortex is defined using the angular momentum J [4]:

a2 =
J

Γ
=

∫
S[(x− xc)

2 + (y − yc)
2]ω(x, y)dS

Γ
, (3)

where S is a surface containing the vorticity of the vortex, and (xc, yc) the location of the
vorticity centroid, it increases according to the law a2 = 4νt, which can be rewritten in
non-dimensional units:

a2

b2
0

=
8π2

Re
t∗ . (4)

The temporal evolution of the core size a is plotted in figure 2(b) for experimental and
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numerical results obtained at different Reynolds numbers. It is in excellent agreement with
the theoretical prediction (4). This linear evolution allows an unambiguous definition of
the origin of time, which is chosen at the time where the backward extrapolated core size
vanishes, independently from the actual starting time of the experiments or the simulation.

Le Dizès and Verga [5] have analyzed in detail the viscous evolution of such a vortex
pair. They showed that the vorticity profile of each vortex tends to have the same viscous
evolution as a single diffusing vortex. Each vortex converges toward a solution close to the
Lamb-Oseen vortex whose vorticity and angular velocity profiles are given respectively by:

ω(r) =
Γ

πa2
e−r2/a2

; vθ(r) =
Γ

2πr

(
1− e−r2/a2

)
. (5)

The deformation of each vortex, which can be seen, e.g., in figure 4(a), is due to the presence
of the other vortex. Each vortex is indeed subjected to the straining field generated by
the other vortex and which deforms its streamlines into ellipses. Such deformations were
analyzed by Le Dizès [6], who considered an axisymmetric vortex in an external rotating
strain field of strain rate se. He observed that, due to the strain-vorticity interaction, the
strain rate si in the vortex center was a complex function of the vorticity profile, the angular
rotation rate and the Reynolds number, which could even diverge under certain conditions.
For a Gaussian vortex and large Reynolds numbers, a good estimate of the ratio si/se versus
the angular frequency was found to be given by the relation:

si

se

= 1.5 + 0.038 (0.16− Ω/ω0)
9/5 , (6)

where Ω/ω0 is the ratio of the angular frequency of the strain field and the vorticity in
the vortex center. This expression has been compared to data obtained from numerical
simulations of vortex pairs [5], by taking for se the point-vortex estimate se = Γ/2πb2,
and for Ω/ω0, the estimate obtained from (1) and (5): Ω/ω0 = a2/b2

0. The results are
reproduced in figure 3; they show very good agreement. The importance of the inner strain
rate si will be demonstrated in section 3. We will show that it measures the strength of the
three-dimensional instability.

2.2 Convective merging

The slow viscous evolution of the two distant vortices is suddenly modified when the vortex
core size a exceeds a critical fraction of the separation distance b. For the two-vortex system,
this critical ratio (a/b)c is always reached, due to the progressive increase of the vortex
core size by viscosity. But in other configurations, it could be reached by the action of a
background flow that could reduce the separation distance b. This situation will again be
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Fig. 3. Ratio of the inner strain si at the center of the vortex to the outer strain se induced by
the opposite vortex as a function of the dimensionless core size a/b0. The solid line corresponds to
DNS at Re = 8000. Symbols correspond to the theoretical prediction of (6) when Ω is calculated
for two vortices separated by b0 (◦) and two vortices separated by the real distance b(t) between
the vortices measured in the simulations (?).

discussed in section 4. When the critical ratio (a/b)c is exceeded, the two vortices rapidly
deform, eject arms of vorticity and merge into a single vortex. Figure 4 presents experimental
dye visualisations and numerical vorticity fields of a pair of merging vortices, which rotate
anti-clockwise. The two vortices get closer to each other by advection and then coalesce into
a single distribution of vorticity by a diffusion process. At the beginning of the merging,
two strong filaments of vorticity are ejected and roll-up around the final vortex due to
the differential rotation, leading to an axisymmetric vortex at late stages. This merging
phenomenon has been extensively studied by different numerical methods [7,8] and was
also observed experimentally for geostrophic vortices [9], for starting vortices [4], for aircraft
wake vortices [10,11], and in mixing layers [12].

The qualitative phenomenon of merging can be quantitatively studied by measuring the sep-
aration distance b between the two maxima of vorticity. It is plotted in figure 5 as a function
of convective time for different Reynolds numbers. This evolution allows to define four dif-
ferent stages in the merging process. The first stage corresponds to the quasi-stationary
state described in the previous section, for which the separation distance b remains con-
stant, and for which the core size increases by viscous diffusion of vorticity. The duration of
this diffusive stage is proportional to the Reynolds number; it can be calculated using (4)
as:

∆t∗1 = (a/b)c
Re

8π2
(7)

Once the critical core size is exceeded, the vortex pair becomes unstable and merges, leading
to a rapid decrease of the separation distance. This stage appears to be driven by advection
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Fig. 4. (a-c) Cross-cut experimental dye visualizations of two laminar co-rotating vortices, and
(d-f) vorticity fields obtained by two-dimensional DNS. The snapshots are taken (a,d) before, (b,e)
during and (c,f) after merging.

of vorticity, and its duration ∆t∗2 = 0.7 is thus fairly independent of the Reynolds number.
The numerical results in figure 5 show that, at the end of this stage, the merging of the
vortices is never complete: the separation distance b does not vanish but remains at a value
close to 0.25. This defines the beginning of a third stage, in which the two vortices are
next to each other but still have two separate maxima of vorticity, as can be seen, e.g., in
figure 4(e). The diffusion of vorticity, coupled to the rotation of the vortex center (close to
a solid body rotation), leads to an axisymmetrization of the vortex center in a time scaling
as Re1/2, as has been explained by Bajer et al. [13] for vorticity perturbations at the center
of a vortex. Numerically, the duration of this stage has been found to be:

∆t∗3 = 0.0089 Re1/2 (8)

In the fourth and last stage, the vortex diffuses again due to viscosity and its core size
increases with time. This stage will be described in more detail in the next section.
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Fig. 5. Separation distance between two merging vortices as a function of the convective time
t∗ for four different Reynolds numbers, obtained experimentally by Particle Image Velocimetry
(symbols) and numerically by DNS (lines). Re = 742 (dotted line, ◦); Re = 1506 (dash-dotted
line, �); Re = 2258 (dashed line, M); Re = 8000 (solid line).

The merging phenomenon highly depends on the critical ratio (a/b)c of core size and sepa-
ration distance at which it begins. The determination of the critical condition has been the
subject of numerous works: through numerical simulations on vortex patches, it was found
that (a/b)c = 0.3 (see Overman and Zabusky [8], Rossow [11], and Dritschel [14,15]), which
was confirmed experimentally by Griffiths and Hopfinger [9]. Theoretically, Melander et
al. [16] used the elliptic moment model (EMM) to show that the vortex pair is only stable
for (a/b)c < 0.326 and Saffman and Szeto [17] observed the numerical destabilization of two
Euler equilibrium solutions for (a/b)c = 0.315. Recently, Meunier et al. [4] showed experi-
mentally and theoretically using Euler equilibrium solutions that for Gaussian vortices, the
criterion is closer to (a/b)c = 0.22− 0.24, which was confirmed experimentally by Cerretelli
and Williamson [18] and by direct numerical simulations by Le Dizès and Verga [5]. How-
ever, the discrepancy comes from the difference in the vorticity profiles and all the results
can be collapsed to (a/b)c = 0.22 if the core size is defined using (3).

Although the empirical criterion of merging is now known fairly accurately, it is still unclear
why exactly the two vortices merge. In order to analyze this issue, it is useful to look at
the streamlines in the frame of reference rotating with the vortex pair, because, in the limit
of infinite Reynolds numbers, the vorticity contours should be equal to these streamlines
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Fig. 6. Principal streamlines of two co-rotating point vortices in the rotating frame of reference.
The vorticity contours (orange colormap) are shown schematically for two vortices whose vorticity
(a) remains inside the core of each vortex or (b) diffuses in the exchange band and along the
filaments.

(except in the vicinity of hyperbolic points). The characteristic streamlines (separatices)
are shown schematically in figure 6. They divide the plane into four different areas. Inside
the dotted streamline, the fluid rotates around only one vortex center. Between the dotted
and the blue streamline, the fluid rotates around the two vortices. Between the blue and
the green streamline, there are two ‘ghost’ vortices rotating in the opposite direction. And
outside the green streamline, the fluid is almost in solid body rotation.

The theoretical results of Saffman and Szeto [17] and Dritschel [14] tend to prove that
each vortex destabilizes before the vorticity touches the center of the pair (named O in
figure 6), as it is the case in figure 6(a). However, Melander et al. [16] showed numerically
that it was possible to put some vorticity inside the exchange band without vortex merging.
Apparently, the two vortices start moving toward each other when the vorticity reaches the
hyperbolic points H1 and H2, as it is the case in figure 6(b). In this configuration, the
vorticity is advected along the green streamlines on figure 6(b) and creates the filaments
of vorticity which are observed numerically and experimentally. This argument was used
by Meunier [19] to explain the merging process: during the creation of these filaments,
they are asymmetric as in figure 4(d) and thus create a velocity field that pushes the two
vortices against each other. This hypothesis was verified quantitatively by Cerretelli and
Williamson [18]. This argument can be understood in a different way by saying that the
ejection of the filaments create a large angular momentum, and thus enforce the vortices
to get closer to each other to conserve the angular momentum of the system (which is true
for vanishing viscosity).

Using these ideas, a simple model can be constructed, by calculating the angular momentum
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of two vortices of core size a and separated by a distance b: it can be estimated numerically
by averaging the vorticity of two circular Gaussian vortices of core size a on the streamlines
of two point vortices separated by b. This picture is representative of real flows at high
Reynolds numbers, since the vorticity is averaged on the whole streamline on a time scaling
as Re1/3 (see Rhines and Young [20], Bernoff and Lingevitch [21]), i.e., much faster than
the growth of the core size a which scales as Re1/2. This is indeed the case in the numerical
simulations far from the hyperbolic points. The angular momentum of the system can thus
be calculated numerically as a function of a and b:

J = Γb2 J̃(a/b) (9)

where J̃ is a universal function shown in figure 7(a). The angular momentum grows with
the ratio a/b, even faster than for two vortices whose vorticity distribution is not averaged
on the streamlines (shown as a thin solid line in figure 7(a)). This comes from the fact
that the streamline averaging creates the vorticity filaments, which increases the angular
momentum. To reach a theoretical prediction of the separation distance b, the expressions
of the core size a given by Eq. (4) and the expression of the angular momentum J as a
function of time (given by Dritschel [14] for a two-dimensional flow):

J = Γb2
0/2 + 8νΓ t (10)

can be introduced into Eq.(9), leading to the prediction of b(t). The result is plotted in
figure 7 and compared to the numerical results. This simple model predicts relatively well
the time at which the separation distance starts to drop. However, it does not predict a
total merging of the vortices, but only explains why they come closer to each other up
to 80% of the initial distance. In order to fully explain the merging process, some other
phenomenon, probably associated with a convective instability of the vortex system, has to
be invoked. However, a theoretical prediction and description of such an instability are still
missing so far.

2.3 Characteristics of the final vortex

After the convective phase of merging, the resulting vortex becomes axisymmetric on a
time scale Re1/2, which is small compared to the viscous time scale. The merging and
axisymmetrization processes can therefore be considered as instantaneous on such a viscous
time scale. Our objective is here to characterize the final axisymmetric vortex which results
from these processes.

Since the final vorticity profile will turn out to be non-Gaussian, it is convenient to define
the vortex core size as the radius amax at which the azimuthal velocity is maximum, divided
by 1.12 (equivalent to the core size a for a Gaussian vortex). Using this definition, the core
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Fig. 7. (a) Rescaled angular momentum J of two vortices of core size a separated by b, which are
axisymmetric (thin line) and whose vorticity has been averaged numerically along the streamlines
of two point vortices (thick line). (b) Theoretical prediction of the separation distance as a function
of the viscous time (solid line), compared to the numerical results (dashed line: Re = 8000 and
dash-dotted line: Re = 1506).

size can be measured before and after merging; this is plotted in figure 8 for three different
Reynolds numbers as symbols and dashed lines. The square of the core size increases before
and after merging linearly in time with the same slope 4ν (obtained for Gaussian vortices)
and jumps abruptly during the merging stage. Although this stage lasts longer at low
Reynolds numbers, a universal behavior is observed: the square of the core size a2 increases
by a factor 1.5 when measured at the end of the merging stage. This behavior is more
universal than the increase of a factor 2 given in the paper by Meunier & Leweke [22],
where it was measured at the beginning of the merging stage.

A prediction of a similar core size ratio had been made by Carnevale et al. [23], assuming
that the maximum vorticity ωmax and the energy (scaling as ω2

maxa
4) are conserved: the

energy of the final vortex is twice the energy of each initial vortex, and the square of
the core size a2 thus increases of a factor

√
2 during the merging, which is close to the

experimental and numerical value of 1.5.

However, this theory is in contradiction with the conservation of the circulation and the
angular momentum. Indeed, if the core size is defined as in Eq. (3) using the angular
momentum J and total circulation Γtot (shown as a thick solid line in figure 8), the core
size increases by a much larger factor than when it is defined using amax. This ratio can
be predicted theoretically using the expression of the angular momentum given in (10)
(plotted as a thin solid line in figure 8). The difference between these two measurements
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predictions for Gaussian vortices.

comes from the fact that the velocity profile is not Gaussian after merging: the final vortex
contains a core with an intense vorticity, surrounded by a background of low vorticity far
from the center coming from the ejected filaments. The theory of Carnevale et al. [23]
predicts accurately amax (since the core contains most of the energy), and the theory using
the conservation of the angular momentum is linked to the filaments (since they contain
most of the angular momentum).

As a consequence, none of the previous theories predicts in a satisfactory way the final
velocity profile, which is plotted in figure 9. The theory by Carnevale et al. (shown as a
dotted line on figure 9) predicts accurately the velocity and the circulation only inside the
core of the final vortex (since most of the energy is located in the vortex core). On the
contrary, the theory using the conservation of the angular momentum (shown as a dashed
line on figure 9) predicts accurately the velocity and circulation in the filaments, i.e. far
from the center, but fails in the vortex core.

An alternative theory is thus needed to describe accurately the entire velocity profile of the
final vortex. Since the core and the filaments are created by two different mechanisms (fusion
of two cores and ejection of vorticity), we assume that they can be modeled separately as
Gaussian vortices with different core sizes and circulations. We thus seek the vorticity profile
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symbols show results from numerical simulations at Re = 8000 (◦) and Re = 1506 (�) and from
experiments at Re = 1506 (M). The dotted line corresponds to a Gaussian vortex with a core
size predicted by the theory of Carnevale et al. [23] and the dashed line to a Gaussian vortex
with a core size predicted using the conservation of the angular momentum. The thick solid line
corresponds to the theory using two concentric vortices with different core sizes given by (11).
The thin solid lines is a fit to a two-scale model defined by Fabre and Jaquin [24], given by (16).

of the final vortex as:

ω =
Γc

πa2
c

e−r2/a2
c +

Γf

πa2
f

e−r2/a2
f (11)

where the four variables are: (Γc, ac) the circulation and size of the core, and (Γfil, afil) the
circulation and size of the wrapped filaments. We now look for a solution which has the
same energy, maximum vorticity, angular momentum and circulation as the initial pair of
Gaussian vortices of circulation Γ , initial core size ai, and separated by b. The conservation
of the total circulation writes:

Γtot = Γc + Γf = 2Γ. (12)

The conservation of maximum vorticity means:

Γc

πa2
c

+
Γf

πa2
f

=
Γ

πa2
i

. (13)

The conservation of the angular momentum leads to:

Γca
2
c + Γfa

2
f = 2Γa2

i + Γb2/2. (14)
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After a straightforward calculation (see Appendix), the conservation of the excess energy
leads to:

Γ 2
c

[
−C − ln(

ac

ai

)
]
+Γ 2

f

[
−C − ln(

af

ai

)
]
+2ΓcΓf

[
Kconc(

ac

af

)− ln(
ac

ai

)

]
= −2Γ 2C−2Γ 2Ksep(

b

ai

)

(15)
Here, C is a constant, Kconc is the mutual energy of two concentric vortices and Ksep is
the mutual energy of two vortices separated by b, given in the appendix. For the critical
ratio of core size and separation distance (a/b)c = 0.22, the four preceding equations have
a solution: ac = 1.14 ai, Γc = 1.22 Γ , af = 3.71 ai and Γf = 0.78 Γ . For these parameters,
the square of the core size (defined as (amax/1.12)2) increases of a factor 1.46, in excellent
agreement with the measured value of 1.5 (see figure 8). This corresponding velocity profile
is plotted in figure 9 and is very close to the experimental and numerical velocity profiles
both in the core of the vortex and in the far field. The velocity is only 10% smaller than the
measured value at the maximum. This is due to a slight loss of energy during the merging
stage, and a better agreement can be obtained (within the noise in the measurements) by
assuming an energy loss of 10% during the merging stage. The agreement is even better
for the circulation profiles. Using this vortex model, the evolution of the final vortex is
straightforward since the velocity profile corresponding to Eq. (11) is a solution of the
Navier-Stokes equations, if the squares of the core sizes increase linearly in time.

The final velocity profile can be also fitted by a two-scale model described by Fabre and
Jacquin [24], which contains three fitting parameters (the circulation Γtot being equal to
2Γ ). The best fit, shown in figure 9 as a thin solid line, is given by:

vθ(r) =
(a2/a1)

α Γtot/(2πa1a2)

[1 + (r/a1)4]
1+α

4 [1 + (r/a2)4]
1−α

4

(16)

with α = 2/3, a1 = 1.12 ai and a2 = 4.5 ai. This vortex model is useful since it was
shown to be characteristic of airplane vortices, and was analyzed in detail with respect to
three-dimensional instabilities [24].

To conclude, in this section, we have described the flow of two co-rotating vortices before
merging, we have determined the empirical criterion for merging and we have also char-
acterized the final vortex. However, these analyses have been made for a two-dimensional
flow, which is valid representation of real flows only at low Reynolds numbers (Re < 2000).
When the Reynolds number increases, the flow can become three-dimensional through in-
stabilities and turbulence, which can highly modify the merging phenomenon. The merging
at high Reynolds numbers will be presented in the following chapter.
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3 Three-dimensional dynamics

For large Reynolds numbers, the two-dimensional flow obtained by the interaction of two
co-rotating vortices before their merging forms a quasi-steady solution in the frame rotating
with the vortex pair. In view of the complex streamline pattern (figure 6a), it is natural to
address the stability characteristics of such a 2D solution, with respect to three-dimensional
perturbations.

For two counter-rotating vortices, three-dimensional stability studies were started in the
1970’s. Crow [25] showed that a pair of counter-rotating vortices is unstable with respect
to a long-wavelength instability. This instability which is now known to play an important
role in the dynamics of the far wake, leads to the reorganization of the vortices into vortex
rings. Leweke and Williamson [26] demonstrated that this instability can be mixed with a
short-wavelength instability associated with the elliptic character of the streamlines in the
vortices.

When the vortices are co-rotating, Jimenez [27] proved that the long-wavelength instability
obtained by Crow could not be active. By contrast, the short-wavelength elliptic instability
is present, as first evidenced by Meunier and Leweke [28]. The following section will be
concerned with the description of its characteristics in a system of two co-rotating Gaussian
vortices.

The streamline pattern also exhibits hyperbolic points. Near these stationary points, vor-
ticity can be locally increased by stretching. In mixing layers and wakes, during their three-
dimensional transition, this hyperbolic stretching mechanism is known to participate in the
formation of ribs aligned along the stretching direction between successive vortices. For
two distinct vortices, as those considered in the previous section, there exists no evidence
of such ribs. Yet, it cannot be discarded in more realistic configurations, notably when a
vortex sheet is still present between the vortices, that the local growth near hyperbolic
points could contribute to the global growth of a three-dimensional instability modes, in
particular those associated with the elliptic instability.

3.1 Elliptic instability

In this section, a short description of the elliptic instability which develops in a co-rotating
vortex pair is given. A more detailed account can be found in Le Dizès and Laporte [29] for
the theoretical aspects and in Meunier and Leweke [22] for the experimental results.

Experiments and direct numerical simulations show that, when the Reynolds number ex-
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(a) (b)

Fig. 10. Elliptic instability of a co-rotating vortex pair. Dye visualizations from experiments in
(a) a side-view and (b) a cross-cut section.

ceeds approximatively Re ≈ 2000, a three-dimensional perturbation grows spontaneously
in the vortices before their merging. This instability, which is illustrated in figures 10(a)
and 11(a), is characterised by a sinuous deformation of each vortex in two parallel planes.
Moreover, the perturbation is found not to propagate and to have a well-defined wavelength
which scales with the core size. Its transverse structure is such that it breaks the mirror
symmetry of the two-dimensional system (figures 10b and 11c). Figures 12(a,b) show the
axial vorticity of the perturbation alone obtained in experiments and in numerical simula-
tions, respectively. It has a dipolar shape oriented at approximatively 45◦ with respect to
the line connecting both vortices.

These instability characteristics are typical of what is now called an elliptic instability
(see the review of Kerswell [30]). It has also been observed in counter-rotating vortices
[26], in vortex rings [31], in elliptically deformed cylinders [32], but is also expected to
take part in the three-dimensional destabilization of parallel shear flows [33] and wakes
[34]. The common characteristic of all these flows is the presence of elliptically deformed
vortices. The instability mechanism was understood by Pierrehumbert [35] and Bayly [36],
who demonstrated that any elliptic uniform flow was generically unstable with respect to
short-wavelength perturbations in a non-viscous flow. In the present case, the base flow in
the frame co-rotating with the vortex pair is elliptic near the center of each vortex. The
base flow streamfunction can be written in polar coordinates centered on one vortex, near
its center, as

Ψ ≈ −(µ− Ω)
r2

2
− si

r2

2
cos(2θ + φ) , (17)

where µ = 2ω0 and si are the angular velocity and the inner strain rate in the vortex center,
and Ω is given by (1). The phase angle is such that φ ≈ π/4 if θ = 0 corresponds to the
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Fig. 11. Elliptic instability characteristics. Perspective view of the vorticity isosurfaces obtained
by (a): Direct Numerical Simulations of co-rotating vortices, and (b): the theory in a single vortex
as combination of the underlying vortex with two Kelvin waves m = −1 and m = 1. (c): Cross-cut
axial vorticity obtained from experiments with Re = 3450.
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Fig. 12. Axial vorticity of the elliptic instability mode. (a): Experimental results for Re = 3450;
(b): Numerical results using Large-Eddy Simulations (LES) for Re = 105 [37]; (c): Theoretical
prediction in a single vortex in which the perturbation is a combination of Kelvin waves m = 1
and m = −1.

direction of the line connecting both vortex centers.

The streamlines defined by (17) are ellipses of eccentricity ε = si/(µ−Ω). If one considers
local perturbations near the vortex center, where the base flow is defined by (17), a general
stability analysis can be performed, as shown by Bayly [36] and Lifschitz and Hameiri [38].
For small elliptic deformation (ε � 1), an asymptotic estimate for the growth rate of the
three-dimensional local plane waves

u = uoe
ik(t).x−iωt (18)
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can be obtained [39] as

σ(local) =

√√√√(3µ− Ω

4µ

)4

s2
i − (µ− Ω− 2µ cos ξ)2 − k2

z

Re cos2 ξ
, (19)

where ξ is the constant angle between the wavevector k and the vortex axis. This local
growth rate estimate is maximum when cos ξ ≡ kz/|k| = (µ− Ω)/(2µ).

Le Dizès and Laporte [29] used the above formula for the growth rate of the elliptic instabil-
ity for two co-rotating Gaussian vortices. They were able to evaluate the local wavevector
angle ξ of the perturbation by performing a global analysis of the elliptical instability. Such
an analysis was first performed by Moore and Saffman [40] and Tsai & Widnall [41]. The
idea is to take into account the complete structure of the vortex. Each vortex possesses,
when not deformed by the presence of the other vortex, an infinite number of normal modes
called Kelvin waves of the form

u = uK(r)eikzz+imθ−iωt, (20)

whose axial wavenumber kz, azimuthal wavenumber m, and frequency ω satisfy a dispersion
relation D(kz, m, ω) = 0. This dispersion relation depends on the vorticity profile of the
vortex. A description of those waves can been found in [42] for the Rankine vortex and in
Fabre et al. [43] for the Lamb-Oseen vortex. For these two types of vortices, none of these
waves are unstable by itself. However, they can be resonantly coupled with each other when
one considers the elliptic deformation field induced by the other vortex. Indeed, such a field
can be written, in a fixed frame centered on one vortex, as a velocity correction of the form

U1 = V1(r)e
2i(θ−Ωt) (21)

It can therefore couple two neutral Kelvin waves (kz1 , m1, ω1) and (kz2 , m2, ω2), if they
satisfy the conditions of resonance

kz1 = kz2 ; m1 = m2 + 2 ; ω1 = ω2 + 2Ω. (22)

In this description, the elliptic instability is thus interpreted as a resonance phenomenon of
Kelvin waves with the straining field. In most cases, there exist several pairs of Kelvin waves
satisfying (22), but these configurations are not excited with the same growth rate. It turns
out that, for vortices such as the Lamb-Oseen vortex, the most unstable configurations
satisfy a peculiar property near the vortex center: they locally correspond to a combination
of local plane wave of the form (18) if their frequency satisfies the additional conditions

ω1 = (m1 − 1)µ + Ω ; ω2 = (m2 + 1)µ− Ω. (23)

These two conditions are satisfied by the two symmetric and resonant Kelvin waves m1 = 1,
ω1 = Ω and m2 = −1, ω2 = −Ω for a discrete number of wavenumbers k(n)

z (Ω). The
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Fig. 13. Growth rate of the elliptic instability as a function of the axial wavelength (a) at Re = 2700
and a/b = 0.220, and (b) at Re = 105 and a/b = 0.205. Growth rate is non-dimensionalized by
the rotation period of the pair. Lines correspond to theory, black symbols to DNS/LES and gray
symbols to experiments. From [37].

combination of these two waves forms a sinusoidal deformation in a plane rotating at the
angular velocity of the vortex pair. Figure 12(c) shows the axial vorticity associated with
the combination of the first two resonating waves. It is in qualitative agreement with the
experimental and numerical results shown in figures 12(a) and 12(b), respectively. Figure
11(b) shows a surface of constant axial vorticity of the total flow composed of the underlying
vortex and the two resonant Kelvin waves. The same undulation as observed in figure 11(a)
is obtained.

If one assumes that the growth of the two resonant waves is dominated by the local growth
near the vortex center, formula (19) can be used as soon as a connection between cos ξ and
the dispersion relation of the Kelvin modes has been made. This is possible by expressing
the resonant Kelvin waves near the origin as local plane waves, which gives, for the mode
m = 1, the relation

cos ξ(n) =
1

2
− ω(n)(kz)

2µ
, (24)

where ω(n)(kz) is the nth eigenfrequency of the Kelvin wave m = 1. The number n denotes
the index of the Kelvin wave. It can be associated with the number of radial oscillations
of the velocity components of the Kelvin wave. The larger the index, the more oscillatory
the Kelvin waves structure is. As the maximum growth rate is obtained for small values
of ω(n)/(2µ) [close to Ω/(2µ) as prescribed by (23)], a good estimate can be obtained by
a linear fit of the different branches for small frequencies. For the Lamb-Oseen vortex, we
obtain the following relations

cos ξ(n) =
1

2
− 2.26 + 1.69n− kza

14.8 + 9n
; n = 0, 1, 2, . . . (25)
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If we non-dimensionalize the instability growth rate (19) by the convective time scale 2π/Ω,
we finally obtain an expression of the form

σ∗ = π

√√√√[3

4
− 1

2

(
a

b

)2
]4 (

si

se

)2

− 4

(
b

a

)4 [
1

2
−
(

a

b

)2

− cos ξ(n)

]2

− 2π2(kzb)
2

Re cos2 ξ(n)
, (26)

which, for Lamb-Oseen vortices, has to be used in combination with relations (6) and (25)
for si/se and cos ξ(n). This formula is compared with experimental and numerical results in
figure 13. The quantitative agreement is surprisingly good. It provides a strong validation
of the theory on the elliptic instability mechanisms described above.

3.2 Three-dimensional merging

For moderate Reynolds numbers (Re > 2000), experiments show that as soon as the elliptic
instability develops, the dynamics of the two vortices becomes strongly three-dimensional
and departs from the two-dimensional dynamics described in section 2. When the amplitude
of the instability mode has reached sufficiently large values, a complex three-dimensional
merging process of the vortices begins. It leads to the formation of a single vortex with
specific characteristics. The three-dimensional merging process is much more complex than
in two dimensions, as illustrated in figures 14(a-d). A strong disorder with small scales
appears in the merging region, and three-dimensional secondary filament structures are
ejected far from the vortices.

The three-dimensional merging process starts earlier than in two dimensions. This is in
agreement with the mechanism discussed in section 2: the instability deforms the vortices
and can then move vorticity across the separatrix connected to the outer hyperbolic points
(see figure 6). When this occurs, the vorticity is carried away outwards along the outer
streamline; the two vortices then must get closer in order to conserve their angular momen-
tum, and the merging process starts. In the experiments, three-dimensional merging has
been found to occur for values of (a/b) as small as 0.19 which has to be compared with the
critical two-dimensional value of 0.22.

After the merging, the final vortex reorganises into an axisymmetric structure. As for two-
dimensional flow, the vorticity profile of this structure is not Gaussian, but a core size can
still be defined from the radius at which the azimuthal velocity reaches its maximum. Figure
15 shows the evolution of the square of the core size as a function of the viscous time for
both cases, with and without instability. With instability, we see that not only the merging
process starts earlier, but it also leads to a larger vortex. The core area is multiplied by a
factor of 3.5 during the three-dimensional merging, while only a factor of 1.5 was observed
in the two-dimensional case.
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(a) (b)

(c) (d)

Fig. 14. Late stages of the elliptic instability after merging. Dye visualisations (a) in a sideview
and (b) in a transverse section. (c-d) Vorticity isosurfaces from DNS, in perspective view and in
a section. From [37].

The maximum velocity of the vortex is also smaller in the presence of the instability, it
is less than 2/3 of the value without instability. The velocity profiles are shown in figure
16. This is mainly due to a large decrease of the maximum vorticity by a factor of about
2.5, whereas it was conserved in the two-dimensional case. However, if we assume that the
other conservation laws are still valid in three dimensions (circulation, energy and angular
momentum), the profile of the final vortex can be predicted for the case shown in figure 16,
using the vortex model composed of two concentric Gaussian vortices, as defined in (11),
with the following parameters: ac = 2.1985, Γc = 1.9315, af = 13.34 and Γf = 0.0685. This
prediction is in good qualitative agreement with the experimental results, although a better
agreement can be found using the two-core vortex defined by (16) with α = 2/3, a1 = 1.9
and a2 = 6.
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The three-dimensional merging initiated by the development of the elliptic instability has
been obtained in numerical simulations up to Re = 5 × 104. For larger Reynolds numbers
and smaller initial a/b, a different evolution has also been observed (F. Laporte, private
communication). Under certain conditions, the elliptic instability has been seen to saturate
and, after a transient disordered regime, leave the flow with two vortices, which are still
distinct, but have much larger vortex cores. The elliptic instability was then observed to
develop again, up to the beginning of the three-dimensional merging process as seen for
smaller Reynolds numbers. No systematic study of this two-step three-dimensional merging
has been performed, so it is difficult to infer the parameter range for which it is expected to
occur. In particular, it is not excluded that, for even larger Reynolds numbers and smaller
initial a/b, more than two steps of elliptic instability growth and saturation could be needed
to reach the onset of merging.

The weakly nonlinear theory of the elliptic instability [44,45] provides some insight into the
dynamics at large Reynolds numbers. For infinite Reynolds numbers, the theory predicts
that the sinuous deformation associated with the two resonant Kelvin modes m = 1 and
m = −1 grows in the plane oriented along with the direction of stretching, then nonlinear
effects make this plane rotate toward the direction of compression such that the deformation
stops increasing, then decreases and goes back to zero [45]. As soon as viscous effects are
considered, the weakly nonlinear dynamics is different. The most unstable deformation is

expected to spiral to a fixed point of finite amplitude of order
√

si/µ ∝ a/b. Although such a

spiraling evolution has been seen for the elliptic instability developing inside a cylinder [32],
no clear evidence is available for the vortex pair. However, the saturation process has been
observed, followed by a complex rearrangement in each vortex (probably due to secondary
instabilities) by which new straight vortices are formed. If one assumes that, by this process,
the core size of each vortex grows by a fraction of the amplitude deformation, i.e., a fraction
of a/b, it is easy to imagine that, if a/b is initially very small, several instability cycles would
be needed to reach the critical ratio required for merging.

In conclusion, we have seen in this chapter that three-dimensional effects due to elliptic
instability of the vortex cores strongly modify the merging process of co-rotating vortices.
Three-dimensional merging sets in earlier (for smaller rescaled core sizes) than in two dimen-
sions, it produces a more turbulent and larger final vortex, with greatly reduced maximum
swirl velocity. The main characteristics of the final vortex can be predicted using a simple
model involving the basic physical conservation laws.
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4 Discussion

In this paper, we have considered the temporal dynamics of two identical co-rotating Gaus-
sian vortices without axial flow. This constitutes a very simple idealization of the near-wake
dynamics of the vortices generated by a wing. In this section, we want to identify, as far as
possible, the differences between the vortices in the near wake of an aircraft and our model,
in order to determine the impact and relevance of the results presented in the previous sec-
tions for applications. This will allow us to discuss a few possible extensions of the theory
to more realistic configurations, and to address some open issues.

The first difference to be pointed out is the fact that a flapped aircraft wing does not
generate two “nice” identical Gaussian vortices. Even if two dominant vortices exist behind
each wing, they are probably not identical, and they exhibit a large vortical region outside
their viscous core, due to the roll-up of the vortex sheet. In addition, these two vortices may
also be surrounded by other vortices, which are generated by various elements on the wing.
These other vortices are expected to affect the two-dimensional dynamics of the vortex pair.
Indeed, as soon as a third vortex is present, the two dominant vortices can get closer to
each other due to the velocity field generated by this third vortex. The two vortices could
therefore merge quickly even if their initial core size (a/b) was very small. This scenario
has not been considered above, where merging was always due to thickening of the vortex
cores by either viscous diffusion or instability. It may be important in real configurations.

It is also worth mentioning that merging is not the only possibility of strong vortex inter-
actions. When a small vortex gets close to a strong vortex, it is stretched and transformed
into a vortex sheet which is wrapped around the larger vortex. This so-called straining phe-
nomenon has been studied by Dritschel and Waugh [46,47] among others. It contributes in
particular to the reorganization processes of the very near wake, during which the smallest
vortices are wrapped around the largest ones.

The two-dimensional conditions for straining and merging are expected to be influenced by
three-dimensional instabilities. In section 3.1, we have provided a theoretical model for the
elliptic instability in two identical Gaussian vortices. When the two vortices possess different
circulations or different core sizes, a similar model can be developed. Le Dizès and Laporte
[29] showed that a formula for the instability growth rate can be obtained in each Gaussian
vortex. When the vortices are not Gaussian, the elliptic instability is still expected to be
active. Fabre and Jacquin [24] analyzed this possibility for the two-scale model defined in
(16), by considering such a vortex in a weak stationary strain field. They demonstrated that
both the growth rate and the selected wavelength depend on the profile parameters a1/a2

and α. They showed the following interesting features: both the ratio si/se of the strain
rate in the vortex center, i.e., the maximum growth rate of the instability, and the width
of the unstable wavenumber bands increase with the ratio a2/a1. They also identified two

24



different regimes according to the value of α. When 0.5 < α < 1, the unstable wavelengths
were found to scale on the inner core size a1, with values of kza1 comparable to those for
the Gaussian vortex. By contrast, for α < 0.4, the unstable wavelengths are much larger
and scale on the outer core radius a2. It was argued that, for these parameters, the elliptic
instability is not governed by the local destabilization of the vortex center, but instead by
the destabilization of the large intermediate region. Although only a stationary strain field
was considered, it is reasonable to believe that similar conclusions would be reached in the
case of a rotating strain field. In particular, for α > 0.5, we expect that a model similar to the
one developed for the Gaussian vortex could be used for the prediction of the instability
growth rate: expression (19) would still apply, but with modified relations for si/se and
cos ξ. One can also conjecture that the presence of a large intermediate region could favor
merging, since more vorticity can be advected outwards along the outer separatrix. Stronger
vorticity arms would then be ejected far from the vortices, which could lead to a premature
vortex merging, as explained in section 2.2. So far, however, there is no experimental or
numerical evidence to confirm this expectation.

Wing-generated vortices are also characterized by an axial velocity component, due to a
velocity deficit in the core region, with respect to the free-stream velocity transporting
the vortices downstream. We now discuss some of the effects of this axial flow. First, it is
important to note that axial flow does not modify the two-dimensional dynamics. Axial flow
is passively advected by the two-dimensional velocity and diffused by viscosity. Therefore,
the large scale two-dimensional dynamics, the vortex deformation, the viscous diffusion
of the vortex cores and two-dimensional merging should not be influenced by axial flow.
By contrast, axial flow is expected to strongly affect the three-dimensional dynamics. For
strong axial flow, vortices can become unstable with respect to an helical instability [48].
For a Batchelor vortex (Gaussian profiles of axial velocity and vorticity), this happens when
the axial flow parameter W0, defined as the ratio of the maximum axial velocity difference
and the maximum azimuthal velocity, exceeds approximatively 1. It is not excluded that
such large values of W0 could be reached very close to the wing.

For small values of W0, each vortex alone is expected to remain stable, so we can natu-
rally address the question whether the elliptic instability is still active in those cases. This
question is currently subject of active research. A few elements of response can be put
forward. The first point to note is that the local theory of the elliptic instability should still
apply in the vortex center, if we move with the axial velocity of the center. This means
that expression (19) for the instability growth rate should be valid for the most unstable
local perturbations located in the vortex center and moving with the flow. The problem is
that we have now no guarantee that such a local perturbation can be compatible with the
expression of a global instability mode. This can be seen by considering the effect of axial
flow on the characteristics of the Kelvin waves. When there is an axial flow, the helical
Kelvin waves m = 1 and m = −1 are no longer symmetric. They do not possess the same
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frequency nor the same spatial structure. This implies that their combination does not form
a stationary planar deformation any longer. Moreover, the symmetry breaking has the con-
sequence that the characteristics of the resonant waves do not satisfy the local conditions
(23), which permitted to use the local theory. The result is that the excitation of the Kelvin
waves m = 1 and m = −1 may become less efficient. This phenomenon has been analyzed
in detail by Lacaze et al [49] for a Rankine vortex with axial flow. They demonstrated that
other instability modes involving Kelvin waves with high azimuthal wavenumbers could
become the most unstable, as W0 increases. For a vortex with a continuous profile, such as
the Batchelor vortex, there is another effect: some of the Kelvin waves which were involved
in the resonance become damped and thus cannot be excited by the strain field. This situ-
ation has been studied by Lacaze [50] for a Batchelor vortex in a stationary strain field (see
also [51]). He demonstrated that, because of the damping of the Kelvin wave m = 1, the
resonance between the two waves m = 1 and m = −1 disappears as W0 reaches a critical
value. However, other pairs of waves which were not excited in the absence of axial flow
are now excited by the strain field. In particular, Lacaze demonstrated that pairs of Kelvin
waves m = 0 and m = −2, and then m = −1 and m = −3 were successively excited, as
W0 increases. The instability mode composed of m = 0 and m = −2 waves was apparently
observed in numerical simulations of a counter-rotating Batchelor vortex pair by Laporte
[52]. This observation has been recently confirmed (K. Ryan, private communication), and
a quantitative comparison with the theoretical results is currently underway [53]. An anal-
ysis of these new instability modes in the case of co-rotating vortices is highly desirable,
notably to determine their impact on the vortex merging phenomenon.

To close this section, we wish to address the effect of another important difference between
real wake vortices and the vortices studied in this article. Wake vortices evolve spatially,
whereas we have considered the temporal evolution of parallel vortices. We thus have to
address the question whether our results can be applied locally in the frame moving with
the mean stream U as if the temporal dynamics were just advected at a constant speed.
A priori, this is possible if the vortex system can be considered as locally parallel. This
requires that the characteristic streamwise evolution length, which can be evaluated as
L = Utc ≈ 2π2b2U/Γ if we take for tc the turnover time of the two vortices, is large
compared to the largest characteristic transverse scale, given by the separation distance b.
In practice, the ratio L/b is larger than 30 for typical configurations, so it is reasonable to
consider the spatial interaction of the two vortices as locally parallel. The two-dimensional
merging occurs on a time scale comparable to tc, so it should also be relevant for the spatial
evolution.

Concerning the three-dimensional evolution, one also has to verify that the characteristic
instability wavelength is small compared to L. This is of course satisfied for the elliptic
instability as it scales on the core size a, which is smaller than b. As spatial evolution is
considered, one should also analyze the spatio-temporal stability properties of the elliptic
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Fig. 17. Illustration of three-dimensional merging in a spatially evolving flow, representing a
realistic aircraft wake. Vorticity contours from LES at Re = 106 [52].

instability. This has been done for a model of counter-rotating vortices by Fabre et al [54].
They showed that the elliptic instability remains convective and that spatial growth rates
can be deduced from temporal growth rates by a Gaster transformation, i.e., by assuming
that the temporal mode is advected at the mean speed U . We expect similar conclusions
for co-rotating vortices.

Finally, note that temporal results may not be relevant everywhere. In the very near wake,
the dynamics is dominated by straining and vortex sheet roll-up which occur on a faster
time scale than tc. In this region, the locally parallel approximation is not expected to apply.
Consequently, the very near wake characteristics are poorly described by a two-dimensional
temporal approach.

Figure 17 shows the development of a short-wave perturbation on a spatially evolving vortex
system with characteristic close to a real aircraft wake (Re = 106), a result obtained by La-
porte [52] using Large-Eddy Simulation. It illustrates that elliptic instability of co-rotating
vortices and the associated three-dimensional merging are indeed relevant for realistic ap-
plications.

One may mention that one aspect involved in the dynamics of real aircraft wakes has been
completely excluded here, namely the influence of the atmosphere. The wake system of a
flying aircraft, especially in the vicinity of airports, i.e., relatively close to the ground, is
exposed to the influence of the surrounding atmosphere or atmospheric boundary layer. The
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effects of wind shear, stratification and atmospheric turbulence are particularly important
(see, e.g., Holzäpfel et al. [55] and Mokry [56] for an overview).

5 Conclusion

In this paper, we have treated fundamental aspects related to the interaction of co-rotating
vortices and the phenomenon of vortex merging. The basic two-dimensional analysis gave
insight into the different phases of merging and their Reynolds number dependence. Simple
models were presented, involving the basic conservation laws for circulation and energy,
allowing to understand the physics of merging and to predict the properties of the final vor-
tex resulting from this process. We have presented in detail a three-dimensional short-wave
instability linked to the mutual elliptic deformation of the vortices, and strongly interfer-
ing with the two-dimensional merging. Its effects include a premature merging, a faster
increase in core radius and a lower maximum swirl velocity for the final vortex, properties
which are of potential interest in the context of wake vortex hazard reduction. Although
the configurations considered in this paper may seem a somewhat severe simplification of
realistic aircraft wakes during takeoff or landing, they nevertheless contain the most impor-
tant features needed to understand the physics involved. The relevance of these results for
applications were discussed, and it is anticipated that many of the conclusions drawn here
will in some form carry over to the applied situation.

6 Appendix

We wish to calculate the energy of the two-dimensional flow before and after merging.
Before merging, the flow is made of two Gaussian vortices with circulation Γ and core size
ai, which are separated by a distance b. After merging, the flow is made of two concentric
vortices with circulations Γc and Γfil and core sizes ac and afil. Since the total circulation
is non zero, the kinetic energy of the flow is infinite and we need to use the excess kinetic
energy, defined as:

Ke = lim
R→∞

∫
r<R

v2

2
dS − Γ 2

tot

4π
ln

R

L
(27)

In this definition, L is a characteristic length scale of the flow, and should be identical
before and after merging. We will choose L = ai to simplify the calculations. Moreover, Γtot

is the total circulation of the flow and must be equal before and after merging. It is here
equal to 2Γ and to Γc + Γfil.

Introducing the velocity profile of two concentric Gaussian vortices into (27), it is easy to
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derive the energy of the flow after merging:

Kafter = Γ 2
c

[
−C − ln(

ac

ai

)
]

+ Γ 2
fil

[
−C − ln(

afil

ai

)
]

+ 2ΓcΓfil

[
Kconc(

ac

afil

)− ln(
ac

ai

)
]

(28)

where, C is a constant defined as:

C =
∫ 1

0

(1− e−r2
)2

4πr
dr +

∫ ∞
1

e−2r2 − 2e−r2

4πr
dr ≈ 4.6131× 10−4 (29)

and Kconc(ac/afil) is the mutual kinetic energy of two concentric vortices given by:

Kconc

(
a1

a2

)
=
∫ 1

0

(
1− e−r2

) (
1− e−r2(a1/a2)2

)
4πr

dr+
∫ ∞
1

e−r2
e−r2(a1/a2)2 − e−r2 − e−r2(a1/a2)2

4πr
dr

(30)
To calculate the energy of the flow after merging, it is easier to use the definition of the
kinetic excess energy using the vorticity and the streamfunction:

Ke =
1

2

∫
Ψω dS (31)

This definition is equivalent to Eq. (27) only if the constant of the streamfunction is chosen
such that Ψ is equivalent to −(Γtot/2π) ln(R/L) when R tends to infinity. For two vortices
separated by a distance b, the cross terms can be estimated by assuming that the stream-
function of one vortex is almost constant in the core of the opposite vortex, which leads to
an approximation of the excess kinetic energy before merging:

Kbefore = −2Γ 2C − 2Γ 2Ksep(
b

ai

) (32)

where the mutual kinetic energy of the two vortices is given by:

Ksep(
b

a
) =

∫ b/a

1

1− e−r2

4πr
dr +

∫ ∞
1

e−r2

4πr
dr (33)

This approximation is valid to six decimals for the critical merging ratio of a/b = 0.22 and
is accurate within 0.5% up to a/b = 0.4. Equating (28) and (32) leads to the conservation
of the energy given in (15).
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