Sound transmission through a rib-stiffened plate: comparisons of a light fluid approximation with experimental results
Cédric Maury, Pierre-Olivier Mattei

To cite this version:

HAL Id: hal-00166284
https://hal.archives-ouvertes.fr/hal-00166284
Submitted on 15 Jan 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sound transmission through a rib-stiffened plate: comparisons of a light fluid approximation with experimental results

C. MAURY and P.-O. MATTEI

Laboratoire de Mécanique et d’Acoustique

31 chemin Joseph Aiguier
13402 Marseille cedex 20 (France)

(18 pages, 4 figures, 2 tables)

send proofs to

C. MAURY

Signal Processing and Control Group
Institute of Sound and Vibration Research
University of Southampton, Highfield
Southampton SO17 1BJ (England)

1Present address: I.S.V.R., University of Southampton, Southampton SO17 1BJ, England.
Sound transmission through a rib-stiffened plate: comparisons of a light fluid approximation with experimental results

C. Maury and P.-O. Mattei

Laboratoire de Mécanique et d’Acoustique

31 chemin Joseph Aiguier

13402 Marseille cedex 20 (France)
1 INTRODUCTION

Interest in stiffened plate constructions has been widespread recently in aerospace, marine and engineering structures: their vibratory response can be greatly modified by small weight added to the hull. Several methods have been presented for the dynamic analysis of such structures. Analytical methods easily account for the fluid-loading coupling but they are restrained either to a great number of equally spaced stiffeners [1] or to ribs with an infinite mechanical impedance [2]. Semi-analytical [3, 4] and finite element [5] modellings are mostly based on a weak (energetic) formulation of the *in vacuo* problem. First, the analysis has been simplified by applying the so-called orthotropic equivalent plate theory [6] only valid when the mechanical wavelengths are greater than the stiffeners spacing; a more accurate and robust method is the discrete model in which the system is divided into subelements: the stiffeners are therefore considered as beams exerting efforts on the plate [7].

The structural analysis used in this paper follows this way. Moreover, the vibro-acoustic response of the system fluid/structure is approximated under the assumption that the fluid-loading is a small perturbation with respect to the *in vacuo* problem since the surrounding fluid is a gas. A more thorough investigation of perturbation methods for predicting the sound radiated by a vibrating plate in a light fluid has been examined in two recent references [8, 9]. This paper applies this approximation to the case of a baffled plate stiffened by ribs.
2 THEORETICAL ANALYSIS

Let us consider the thin elastic plate shown in Figure 1, occupying the domain Σ of the $z = 0$ plane and stiffened by two eccentric T-section ribs parallel to the y-axis. The rectangular baffled plate, with thickness h, is clamped along its boundary $\partial \Sigma$ with normal unit vector \vec{n}. It separates two half-spaces containing a perfect gas with density μ_0.

2.1 THE RIB-STIFFENED PLATE MODEL

The thin beam approximation assumed for stiffeners with a ratio thickness/length of 2%, as used in the experiment, is a very crude approximation. However, as shown in Table 1, it can be seen that this approximation remains valid up to the fourth natural frequency of the beam (721 Hz) with an error less than 2%. Above this frequency, it has been noted that this approximation provides erroneous results and so, the study is limited to the low-frequency domain.

Because the stiffeners are attached on one side of the plate, the flexural and membrane action of the plate are a priori coupled. However, as shown by Petyt [10], the in-plane contribution has little effect on the firsts natural frequencies of a stiffened plate. Thus, for the low-frequency range considered in this paper (up to about 30 natural modes), neglecting the in-plane deformations is a reasonable approximation.

2.2 GOVERNING EQUATIONS FOR THE RESPONSE OF A BAFFLED PLATE STIFFENED BY TWO RIBS

Let $P_0(M)$ be the sound pressure generated by an acoustic source distribution ($e^{-i\omega t}$) in the $z < 0$ half-space and $w(M)$, the plate deflection, positive in the $z > 0$
Let G_{ω} be the Green’s function which satisfies the Helmholtz equation in the fluid medium with a Neumann boundary condition on $z = 0$.

Using the Green’s representation of the acoustic pressure [8], the initial boundary value problem is replaced by an integro-differential equation which governs the plate displacement:

$$(D \Delta^2 - \mu \omega^2) w(M) + 2\omega^2 \mu_0 \int_\Sigma w(M') G_{\omega}(M, M') d\sigma(M') = \left(P_0 - \sum_{j=1}^2 F_j(M)\right) , M \in \Sigma$$

$$F_j(M) = \left(E_j I_j^x \frac{d^4}{dy^4} - \rho_j A_j \omega^2\right) w_{R_j}(y) \delta_{x_j}(x), \ j = 1, 2 \ , M \in \Sigma$$

$$w_{R_j}(y) = w(x_j, y), j = 1, 2 \ , y \in [-l_y, l_y]$$

$$w(M) = \partial_n w(M) = 0 , M \in \partial \Sigma$$

D is the bending rigidity of the plate and μ its mass per unit area. F_j is the normal force exerted on the j^{th} stiffener by the plate along the junction line. E_j and $\rho_j A_j$ are the Young’s modulus and the mass per unit length of each stiffener. I_j^{x} is the second moment of area of each rib cross-section about axis in the middle surface of the plate.

2.3 The perturbation method applied to the modal analysis of the fluid-loaded structure

The plate displacement w is expanded into a series of eigenmodes W_n of the fluid-loaded structure. The eigenmodes and their corresponding eigenvalues Λ_n are sought as series of the small parameter $\varepsilon (= 2\mu_0/\mu)$:

$$W_n = W_n^0 + \varepsilon W_n^1 + \cdots \ , \ \Lambda_n = \Lambda_n^0 + \varepsilon \Lambda_n^1 + \cdots$$
These expansions are then introduced into the eigenmodes series representation of the plate displacement [8]. Hence, \(w \) is approximated at the first order by:

\[
 w(M) \approx \sum_{n=1}^{N} \left\{ \frac{W_{n}^{0}(M)}{\Lambda_{n} - \mu \omega^{2}} \left[\langle S, W_{n}^{0*} \rangle + \varepsilon \sum_{q=1,q \neq n}^{Q} \frac{1}{\Lambda_{n} - \Lambda_{q}} \left(\frac{\Lambda_{n}}{\Lambda_{n} - \mu \omega^{2}} - \frac{\Lambda_{q}}{\Lambda_{q} - \mu \omega^{2}} \right) \beta_{\omega}(W_{q}^{0}, W_{n}^{0*}) \right] \right\}
\]

where \(N \) is the norm associated to the orthogonality relationship between the \textit{in vacuo} eigenmodes \(W_{n}^{0} \) of the stiffened plate. These latter are computed as series of functions of Legendre polynomials satisfying regularity conditions as well as boundary conditions on \(\partial \Sigma \). The bilinear forms in (1) are defined by:

\[
 < u, v > = \int_{\Sigma} u(M)v^{*}(M)dM, \quad \beta_{\omega}(u, v) = \int_{\Sigma} \int_{\Sigma} u(M)G_{\omega}(M, M')v^{*}(M')dMdM'
\]

A specific integration algorithm is used to give rapidly an accurate estimation of the coupling term \(\beta_{\omega} \) which is the most time consuming. The number \(N \) and \(Q \) of the eigenmodes that are accounted for is determined by the number of those which are necessary for an accurate representation of the excitation \(P_{0} \).

3 COMPARISONS BETWEEN NUMERICAL PREDICTIONS AND EXPERIMENTAL RESULTS

In order to validate this approach, an experiment has been achieved in the twin anechoic rooms of the Laboratoire de Mécanique et d’Acoustique. A large anechoic room is connected to a smaller semi-anechoic room by an aperture in which the plate is clamped. The wall between the two rooms is an almost perfectly rigid plane on the semi-anechoic side and covered with glass-wool wedges on the anechoic side (the baffle is almost perfectly absorbant). As shown in Figure 2, the acoustic sound source is located in the semi-anechoic room.
While the experimental conditions are somewhat different from the theoretical model, which assumes a perfectly rigid baffle on both sides of the plate, it can easily be seen that the transmitted sound field very close to the plate is not too much influenced by the reflecting properties of the baffle. Moreover, the uncertainties on the mechanical properties of both the plate and the stiffeners, the non perfect clamping of the plate or the non perfect fixing of the stiffeners, bolted on the plate, induce more significant errors.

The experimental plate is made of stainless steel with dimension 1 m by 1.54 m. Its thickness has been measured at more than twenty points and a mean value of 1.9 mm has been obtained. The mean value of the mass per unit area could then be deduced and is given by $\mu = 15.6 \text{ kg/m}^2$. The rigidity of the plate has been obtained experimentally by the following procedure. A flat circular plate (10 cm radius) has been realised in the same material. The first eigenfrequencies of the free plate have been measured and the rigidity adjusted to get the best fit with the experimental ones. This leads to $D = 122 \text{ N} \times \text{m}$; the Poisson coefficient is given by $\nu = 0.33$. The mechanical characteristics of the stiffeners, made of aluminium, have been estimated in the same way. A 1 meter length stiffener built in the same material has been clamped at one end while the other end rests free. The comparison between the first measured and computed eigenfrequencies leads to a fitted Young’s modulus $E = 67.6 \text{ GPa}$ (see Table 1). The density of the stiffeners material is given by $\rho = 2600 \text{ kg/m}^3$.

In the Table 2, a comparison between the experimental and measured eigenfrequencies of the fluid-loaded clamped stiffened plate is presented. As it can be seen the results agree within a few percents. It is to be noticed that for a stiffened plate,
there is a better agreement between the experiment and the theory than for a plate without stiffeners: the stiffeners smooth the inhomogeneity of the plate (made of industrial material).

A transfer function between two microphones (see Figure 2) has been measured and computed in terms of the excitation frequency. The results are presented on the Figures 3 and 4. For the prediction, a structural damping has been accounted for by considering an imaginary part for the Young’s modulus of the materials. The usual values can be found in [11]. Though some discrepancies can be noticed for the peak levels between the experimental and the predicted data in the Figure 3, the results presented here enable a validation of the method since the mean third octave analysis, which is of great practical interest, yields to differences lower than 3 dB (see Figure 4).

4 CONCLUDING REMARKS

The results herein presented show that the light fluid approximation provides a suitable tool for acoustic design purposes with rib-stiffened plates surrounded by a gas in the low frequency domain: this is because the \textit{in vacuo} eigenmodes of the structure are rather close to the fluid-loaded structure ones. However, it is necessary to account, even in a first approximation, for the acoustic fluid-loading in order to describe both the radiation damping and the added-mass effects. Indeed, we have checked that the radiation damping of the first ten eigenmodes is prevailing with respect to the structural damping and therefore cannot be neglected. Furthermore, neglecting the added-mass effect would enable, to a less extent, an overestimation for the real part of the first eigenfrequencies.
For the studied configuration, the perturbation method is numerically efficient since low computational times are required to describe the light fluid-loading effects with a sufficient accuracy. Moreover, the vibro-acoustic problem can also be solved with the same numerical cost up to higher frequencies by a Boundary Integral Equation method for the displacement fields.
REFERENCES

<table>
<thead>
<tr>
<th>Measured</th>
<th>Computed</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5</td>
<td>21.4</td>
<td>0.5%</td>
</tr>
<tr>
<td>134.2</td>
<td>134.3</td>
<td>0.1%</td>
</tr>
<tr>
<td>373</td>
<td>376</td>
<td>0.8%</td>
</tr>
<tr>
<td>721</td>
<td>736</td>
<td>2%</td>
</tr>
<tr>
<td>1168</td>
<td>1216</td>
<td>4%</td>
</tr>
<tr>
<td>1711</td>
<td>1816</td>
<td>6%</td>
</tr>
<tr>
<td>2331</td>
<td>2597</td>
<td>10%</td>
</tr>
<tr>
<td>3012</td>
<td>3374</td>
<td>11%</td>
</tr>
</tbody>
</table>

Table 1: Comparison between the measured and computed eigenfrequencies of the stiffeners.
<table>
<thead>
<tr>
<th></th>
<th>Measured</th>
<th>Computed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>Computed</td>
<td></td>
</tr>
<tr>
<td>13,7</td>
<td>14,1</td>
<td>90</td>
</tr>
<tr>
<td>26</td>
<td>27,4</td>
<td>99</td>
</tr>
<tr>
<td>34</td>
<td>35,2</td>
<td>107</td>
</tr>
<tr>
<td>46</td>
<td>45,7</td>
<td>113</td>
</tr>
<tr>
<td>47</td>
<td>47,5</td>
<td>118</td>
</tr>
<tr>
<td>57</td>
<td>56,2</td>
<td>129</td>
</tr>
<tr>
<td>63</td>
<td>62,3</td>
<td>134</td>
</tr>
<tr>
<td>72</td>
<td>75,2</td>
<td>146</td>
</tr>
<tr>
<td>78</td>
<td>78,2</td>
<td>148</td>
</tr>
<tr>
<td>81</td>
<td>81,1</td>
<td>150</td>
</tr>
<tr>
<td>87</td>
<td>88,3</td>
<td>158</td>
</tr>
</tbody>
</table>

Table 2: Comparison between the measured and computed eigenfrequencies of the rib-stiffened plate.
Figure 1: A plate stiffened by two T-ribs.

Figure 2: Experimental set-up for sound transmission measurements.

Figure 3: Comparison between the measured transfer function and its *light fluid approximation*: steel plate occupying $\Sigma = -0.77 \text{ m} < y < 0.77 \text{ m}, -0.50 \text{ m} < x < 0.50 \text{ m}$ in the plane $z = 0$, doubly stiffened with aluminium ribs placed along y-axis at $x = \pm 0.17 \text{ m}, z = 0$; source at $y = 0, x = -0.4 \text{ m}, z = -3 \text{ m}$; microphones at $y = -0.26 \text{ m}, x = -0.17 \text{ m}, z = -0.25 \text{ m}$ and $y = -0.26 \text{ m}, x = -0.17 \text{ m}, z = 0.25 \text{ m}$.

Figure 4: Comparison between the measured mean (third octaves) transfer function and its *light fluid* approximation with the same configuration as above.
Figure 1