Lookahead Computation in G-DEVS/HLA Environment
Gregory Zacharewicz, Claudia Frydman, Norbert Giambiasi

To cite this version:

HAL Id: hal-00173580
https://hal.archives-ouvertes.fr/hal-00173580
Submitted on 12 Feb 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lookahead Computation in G-DEVS/HLA Environment
Gregory Zacharewicz Claudia Frydman Norbert Giambiasi
LSIS UMR CNRS 6168 Université Paul Cézanne
Marseille France
{gregory.zacharewicz; norbert.giambiasi; claudia.frydman}@lsis.org

Abstract
In this article, we present new methods to evaluate lookahead of DEVS/G-DEVS federates participating in a HLA federation.

We propose first, an algorithm to compute the lookahead according to the current state of a DEVS/G-DEVS model. This solution is designed for models with lifetime function depending on one state variable.

Then, we extend this computation to models with lifetime functions defined with several state variables. We use the Dijkstra graph theory search to compute the different values of state variables and a mathematical function analysis to determine the lookahead for the model states. Finally, we illustrate with an example how this solution extends the range of DEVS/G-DEVS models that can be involved into distributed simulations and we present some simulation results.

1. Introduction
On the one hand, G-DEVS [7] lies in its ability to develop uniform discrete event executable specifications for hybrid dynamic systems with a scientifically controlled degree of accuracy. Hence, models of continuous and discrete components can be represented with the same formalism using only a continuous time representation.

On the other hand, HLA [16] allows integrating distributed simulations, located on several computers with different operating systems, into a global simulation. HLA-compliant distributed simulations intercommunicate by exchanging messages eventually synchronized.

A first DEVS/HLA compliant environment was proposed by Zeigler et al. in [20,21]. In this environment, distributed DEVS simulations intercommunicate through the interface (RTI) specified by HLA. In [14], Lake et al. have proposed a DEVS/HLA environment improvement by using the HLA lookahead. In [18], we have proposed going further in the improvement of the HLA lookahead computation. This computation tackles DEVS/G-DEVS models for which state lifetimes are functions of more than one state variable. This lookahead computation is based on the shortest and longest path search algorithms in a graph. This improvement permits to compute non-zero HLA lookahead values from models with complex lifetime functions. This result is significant because the use of greatest values for the lookahead improves the performances of distributed simulation according to literature on distributed discrete event simulation [5].

This article is organized as follows. Section 2 gives a brief recall on DEVS/G-DEVS formalisms and HLA standard. Section 3 recalls previous DEVS/HLA mapping. Section 4 exposes the approach proposed for improving the lookahead computation of the DEVS/G-DEVS HLA environment. Finally, we conclude by giving some simulation results that illustrate the performances of the proposed algorithm.

2. Recall
2.1 Generalized Discrete EEvent System Specification (G-DEVS)
Traditional discrete event abstraction (e.g. DEVS) approximates observed input-output signals as piecewise constant trajectories. G-DEVS defines abstractions of signals with piecewise polynomial trajectories [7]. Thus, G-DEVS defines coefficient-event as a list of values representing the polynomial coefficients that approximate the input-output trajectory. Therefore, a DEVS model is a zero order G-DEVS model (the input-output trajectories are piecewise constants). Formally, G-DEVS represents a dynamic system (DES_n) as an n order discrete event model expressed as a structure:

\[\text{DES}_n = \langle \text{XM}, \text{YM}, S, \delta_{\text{int}}, \delta_{\text{ext}}, \lambda, D, \text{Coe}f \rangle \]

The following mappings are required:

\[\text{XM} = A^{n+1}, \text{where } A \text{ is a subset of integers or real numbers that represents external input events} \]

\[\text{YM} = A^{n+1}, \text{represents output events} \]

\[S = Q \times (A^{n+1}), \text{is the set of sequential model states} \]
Where Q is a set of state variables, and A^{n+1} is a subset of state variables that stores last input coefficient-event.

For all total state $(q, (a_n, a_{n-1}, \ldots, a_0), e)$ (with e: elapsed time in S, $0 \leq e \leq D(S)$) and a continuous polynomial input segment $w : <t_1, t_2> \rightarrow x$, the following functions are defined:

The internal transition function: that defines the autonomous state changes for the transient states, (i.e. states for which lifetime is a finite value):

$\delta_{\text{int}}(S) = \delta_{\text{int}}(q, (a_n, a_{n-1}, \ldots, a_0)) = \text{Straj}_q, x(t_1+D((q, (a_n, a_{n-1}, \ldots, a_0)), x))$

with $x = a_n t^n + a_{n-1} t^{n-1} + \ldots + a_1 t + a_0$

and Straj is the model state trajectory

$\forall q \in Q$ and $\forall w : <t_1, t_2> \rightarrow x$,

$\text{Straj}_{w,q} : <t_1, t_2> \rightarrow Q$

The external transition function: that defines the state changes caused by external events:

$\delta_{\text{ext}}(S, e, XM) = \delta_{\text{ext}}(q, (a_n, a_{n-1}, \ldots, a_0), e, (a_n', a_{n-1}', \ldots, a_0'))$

$\text{Straj}_q, x((t_1+e), x')$

with: $\text{Coef} (x) = (a_n, a_{n-1}, \ldots, a_0)$

and $\text{Coef} (x') = (a_n', a_{n-1}', \ldots, a_0')$

Coef: function to associates n-coefficient of all continuous polynomial function segments w over a time interval $<t_i, t_j>$, to the $(n+1)$ constants values $(a_n, a_{n-1}, \ldots, a_0)$ such as:

$w(t) = a_n t^n + a_{n-1} t^{n-1} + \ldots + a_1 t + a_0$

Coef$^{-1}$: the inverse function of Coef is applied to transform an output event in piecewise continuous polynomial trajectory:

$Coef^{-1}(a_n, a_{n-1}, \ldots, a_0) = a_n t^n + a_{n-1} t^{n-1} + \ldots + a_1 t + a_0$

The output function: triggered by autonomous state changes, it produces output events:

$\lambda(S) = \lambda(q, (a_n, a_{n-1}, \ldots, a_0)) = (a_n', a_{n-1}', \ldots, a_0')$

The function defining the lifetime of states: that represents the maximum length or lifetime of a state:

$D(S) = D(q, (a_n, a_{n-1}, \ldots, a_0)) = \text{MIN}(\text{Coef}(\text{Otraj}_q, x(t_1)) \neq \text{Coef}(\text{Otraj}_q, x(t_1 + e)))$

with Otraj is the model output trajectory:

$\text{Otraj}_{q,w} : <t_1, t_2> \rightarrow Y$

2.2 DEVS / G-DEVS Coupled Model

Zeigler has introduced, in [23], the concept of coupled model. Every basic model of a coupled model interacts with the other models to produce a global behaviour. The basic models are, either atomic models, or coupled models stored in a library. The model coupling is done using a hierarchical approach. A discrete event coupled model (DEVS or G-DEVS) is defined by the following structure:

$MC = \langle X, Y, D, \{M_d/d \in D\}, EIC, EOC, IC, \text{Select}\rangle$

X: set of external events.

Y: set of output events.

D: set of components names.

M_d: DEVS/G-DEVS models.

EIC: External Input Coupling relations.

EOC: External Output Coupling relations.

IC: Internal Coupling relations.

Select: defines priorities between simultaneous events intended for different components.

Note that to allow the coupling of different degree models ports, Giambiasi et al. have defined, in [7], a coupling model component to transform the polynomial order of events exchanged.

2.3 DEVS / G-DEVS Simulator

The concept of abstract simulator has been proposed in [23] to define the simulation semantics of the formalism. The architecture of the simulator is derived from the hierarchical model structure.

The processors involved in a hierarchical simulation are Simulators, which insures the simulation of the atomic models, Coordinators, which insures the routing of messages between coupled models, and the Root Coordinator, which insures the global management of the simulation (e.g. Fig. 1. a, without considering crosses out).

The simulation runs by exchanging specific messages (corresponding to different kind of events) between the different processors.

2.4 The High Level Architecture (HLA)

The High Level Architecture (HLA) is a software architecture specification for global simulations that can include a variety of simulation programs implemented on distant computers and/or to reuse existing simulations by interconnecting them [8]. Dr. Straßburger presents in this journal an overview of this specification [16].

2.4.1. Implementation Components. An HLA federation simulation is composed of federates and a Run time Infrastructure (RTI) [11].

A federate is a HLA-compliant program, the code of that federate keeps its original features but must be
extended by other functions to communicate with other members of the federation. These functions, contained in the HLA-specified class code of FederateAmbassador, make interpretable by a local process the information received resulting from the federation. Therefore, the federate program code must inherit of FederateAmbassador to complete abstract methods defined in this class used to receive information from the RTI.

The RTI supplies services required by a simulation, it routes messages exchanged between federates. It is composed of two parts.

The "Local RTI Components code" (LRC, e.g. in Fig. 1 b) supplies external features to the federate for using RTI call back services such as the handle of objects and the time management. The implementation is the class RTIAmbassador, this class is used to transform the data coming from the federate in an intelligible format for the federation. The federate program calls the functions of RTIAmbassador to send data to the federation or to ask information to the RTI. Each LRC contains two queues, a FIFO queue and a time stamp queue to store data before delivering to the federate.

Finally, the "Central RTI Component" (CRC, e.g. in Fig. 1 b) manages the federation notably by using the information supplied by the FOM [16] to define Objects and Interactions classes participating in the federation. Object class contains object-oriented data shared in the federation that persists during the run time, Interaction class data are just sent and received.

A federate can, through the services proposed by the RTI, "Publish" and "Subscribe" to a class of shared data. "Publish" allows to diffuse the creation of object instances and the update of the attributes of these instances. "Subscribe" is the intention of a federate to reflect attributes of certain classes published by other federates.

2.4.2. HLA time management. In order to respect the temporal causality relations in the simulation stated in [15]; HLA [4,5] proposes classical conservative [1,2] or optimistic [12] synchronization mechanisms. We focus in this article on conservative synchronisation and event driven mechanism.

We recall here the time management notions from [9,10,11], implemented in the 1516 compliant RTI implementation, that will be exploited in the following of this article:

Lookahead: Delay given by influencer federates to the RTI. They certify to the RTI not to emit message until their actual time plus their lookahead.

GALT (Greatest Available Logical Time): Time stamp, computed by the RTI, until influenced federates will not receive information from the federation (i.e. minimum lookahead of its influencers federates).

NextMessageRequest(t) (NMRA(t)): Federate function to ask for grant to the RTI, to deal an event time stamped t. If the RTI call-backs the federate with TimeAdvanceGrant(t), this federate is sure to have received all events at t’ < t and can emit events time stamped t’ ≥ t.

NextMessageAvailable(t) (NMRA(t)): differs from NMRA(t) in the call-back function. TimeAdvanceGrant(t) answer to NMRA(t), ensures the federate to have received all events at t’ < t and allows it to emit events at t’ ≥ t. In return, the federate is not sure to have received all events time stamped t.

LITS (Least Incoming Time Stamp): Federate LITS is a lower bound until which the federate will receive no message, this value is calculated from its GALT and the messages in transit not received yet by the federate (i.e. messages stored in the LRC queue).

3. Previous DEVS/HLA mapping
3.1 Components mapping
Zeigler et al., in [20,21,22], present a first integration of DEVS Coordinators in a HLA-compliant architecture. They map local coupled models in HLA federates whose coordinators of higher level will have responsibility to communicate with a "Time Manager" federate. TM routes messages between distributed coordinators. This federation of coordinators defines a global distributed coupled model.

3.2 Integrating Algorithms
As recalled in the previous section, deterministic distributed simulations require synchronization mechanisms in order to treat events in respect of causality. In consequence, DEVS/HLA federates must include integrating algorithms to communicate with the RTI (i.e. in order to handle received messages from the federation and to emit messages in a HLA format).

Zeigler et al. have proposed in [22] a first integrating algorithm of DEVS models into a HLA-compliant environment. To guarantee the global synchronization of Local Coordinators, this approach exploits conservative algorithm of [1,2] mechanism available in HLA [11].

In [14], Lake et al. have given a second approach for mapping DEVS into HLA that resolves Deadlock problems encountered in the first solution. To this end, this approach notably uses the NMRA(t) service proposed by HLA instead of NMR(t). This two solutions use a zero or negligible value of HLA lookahead for every federate [4].
Reference [14] also introduced another approach that uses a not negligible lookahead by globally broadcasting event messages among federates and giving to each federate a global view of DEVS coupling relations. So, the federates decide to treat or not an event regarding to their history of received events and to their knowledge of coupling relations. This DEVS/HLA environment uses a non-zero constant for the lookahead. However, some responsibilities of the RTI are transferred to the federates, what bypasses some RTI functions.

4. New G-DEVs/HLA mapping

4.1 Components mapping

We have proposed, in [18], an environment for creating DEVs/G-DEVs models HLA compliant. This environment proposes two-step for distributing models (and simulators associated to).

In the first step, the GDEVS coupled model is flattened. The hierarchical structure of a model is a user facility, which is not necessary adapted to a simulation purpose. This new simulation structure decreases the algorithm complexity and so increases simulation performance regarding to the hierarchical one as stated by Kim et al. and Glinsky et al. in [8, 13]. The flattening of the structure induces eliminating the crossed out Coordinators on Fig. 1 a.

In the second step, the flattened G-DEVs simulation structure is split into coupled model by federate (Fig. 1 b) in order to build an HLA federation (i.e. a distributed G-DEVs coupled model). The environment conforms to [22] mapping of Local Coordinator and Simulators into HLA federates, but does not use the “Time Manager” federate. It maps directly the Root Coordinator into the RTI. The reason of this mapping is the specification of interface (RTI) proposes services that enclose those defined in the DEVS Root Coordinator. Thus, the “global distributed” model (i.e. the federation) is constituted of federates intercommunicating. The G-DEVs models federates intercommunicate by publishing/subscribing to HLA interactions that map the coupling relations of the global distributed coupled model. This information is routed between federates by the RTI in respect to time management and FOM description.

4.2 G-DEVs/HLA integrating Algorithms

From the first algorithm of [14], we have proposed in [18] a solution integrating the use of the HLA lookahead. This solution can be applied to G-DEVs or DEVs coupled model. It considers a local G-DEVs coupled model integrated in a HLA federate. This federate communicates with other G-DEVs models within the federation. We set the federate lookahead as in function (1).

\[\text{Lookahead} = \min_{s \in S} \frac{D(s)}{s} \]

Where S is the set of model states.

We assume to use, G-DEVs models with \(D(S) > 0 \) to define a non-zero lookahead.

Moreover, we state that, in the case of simultaneous events, we choose to treat first the internal event, then, after having emitted an output event and done a state change, we process simultaneous external events using a confluent function.
We recall from [18], in the Fig. 2 pseudo-code, the federate algorithm to communicate with the RTI. The initial settings define that the actual logical time of this federate is "Tact" and it possesses a next local event planned in its local event list at "TnextLocal". It uses the queryLITS() RTI service defined in the HLA standard. Using this service, a federate can preserve a non-zero lookahead value by treating local events with timestamps earlier than LITS (that evolves depending on influencers federates data delivering behaviour and processing speed). In consequence, a non-zero lookahead federate frees of constraint federates under its influence for a period equal to the lookahead. Thus, this situation increases the parallelism of the global simulation.

It should be noted that our pseudo-code is designed for the 1516 version of HLA specification and the 1516 compliant RTI implementation.

Do queryLITS()
 If (TNextLocal ≤ LITS)
 ComputeOutput() // associated to next local internal event timestamped TNextLocal
 SendInteraction(TNextLocal) // send output without reducing federate Lookahead
 NMRA(TNextLocal) // RTI 1516 NextMessageRequestAvailable(TNextLocal) and then wait for RTI answer
 Else // if (TNextLocal > LITS)
 NMRA(TNextLocal - Lookahead)
 WaitUntil(RTI responds callback)
 If (TimeAdvanceGrant(TNextLocal - Lookahead))
 queryLITS()
 Else // if ((TNextLocal) > LITS)
 ModifyLookahead(zero)
 Else // if ((TNextLocal) ≤ LITS)
 ComputeOutput() // associated to next local internal event timestamped TNextLocal
 SendInteraction(TnextLocal) // send output with zero federate Lookahead
 NMRA(TNextLocal) // then wait for RTI answer
 Else if (ReceiveInteraction(T' < (TnextLocal - Lookahead) & TimeAdvanceGrant(T')))
 Do
 NMRA(T'+e) // guaranty to have received simultaneous event timestamped T'.
 WaitUntil(RTI responds callback)
 If (TimeAdvanceGrant(T'+e))
 ComputeExternalTransition() // associated to external events timestamped T'
 Break to beginning // with new TnextLocal.
 Else if (((ReceiveInteraction(T') & TimeAdvanceGrant(T'))) & TimeAdvanceGrant(T'))
 AddtoSimultaneousMessageList()
 While (TimeAdvanceGrant(T') < T'+e)
 WaitUntil(RTI responds callback)
 If (TimeAdvanceGrant(TnextLocal))
 If (output not already sends with positive lookahead)
 ComputeOutput() // associated to next local internal event timestamped TnextLocal
 SendInteraction(TnextLocal) // send output with zero federate Lookahead
 ComputeInternalTransition() // associated to internal event timestamped TnextLocal
 Do
 NMRA(TnextLocal+e) // guaranty to have received simultaneous event timestamped TnextLocal.
 WaitUntil(RTI responds callback)
 If (TimeAdvanceGrant(TnextLocal+e))
 ComputeExternalTransition() // associated to eventual external event(s) timestamped T
 ModifyLookahead(min of D[S])
 Break to beginning
 Else if (((ReceiveInteraction(T') & TimeAdvanceGrant(T'))) & TimeAdvanceGrant(T'))
 AddtoSimultaneousMessageList()
 While (TimeAdvanceGrant(TnextLocal) < TnextLocal +e)
 Else if (ReceiveInteraction(T<TnextLocal) & TimeAdvanceGrant(T))
 Do
 NMRA(T+e) // guaranty to have received simultaneous event timestamped T.
 WaitUntil(RTI responds callback)
 If (TimeAdvanceGrant(T+e))
 ComputeExternalTransition() // associated to external event(s) timestamped T
 Break to beginning // with new TnextLocal.
 Else if (((ReceiveInteraction(T') & TimeAdvanceGrant(T'))) & TimeAdvanceGrant(T'))
 AddtoSimultaneousMessageList()
 While (TimeAdvanceGrant(T) < T+e)
 While (Simulation not end)

Figure 2. Federate Algorithm
4.3 First G-DEVS/HLA Lookahead computation improvement

In the two last integrating algorithms [14,18] presented in the above section, the lookahead is set to the minimum of all the states lifetime $D(s)$ of the model. Indeed, in DEVSI/G-DEVS, output events are produced by output function $\lambda(s)$ associated to internal transitions δ_{int} that occur when a state lifetime $D(s)$ is elapsed. Therefore, these solutions always consider the worst case. In concrete term, the event to be earliest emitted will not have a time stamp lower than the minimum states lifetime as defined in (1), but this solution does not take into account the behaviour of the model (i.e. its current state).

We have proposed in [19] a first improvement in the lookahead computation in the case of G-DEVS models with only one state variable, named “phase”, and a constant lifetime function defined for each symbolic value of the phase. Lookaheads relative to the current state (of the model simulated) are computed by considering the reachable state list by external transitions δ_{ext} for each state. The lookahead relative to the phase is set to the minimum lifetime of the current state reachable state list, what gives a relative value superior (or equal in worst case) to the solution of the previous section that was using a unique lookahead value during the simulation.

In more details, for a G-DEVS model, the next output event to be emitted is associated to an upcoming internal transition. As a result, we have to find the sooner next internal transition that could be executed from the current state of the model. We propose to use a graph search to explore and to determine for each state all reachable states by a sequence of external transitions.

For that purpose, we defined an algorithm that explores, from a considered state, the graph of reachable states in order to compute a state relative lookahead. In Fig. 3, we present a pseudo-code algorithm of this solution that is based on oriented graphs classical depth-first search algorithm.

We use the list of adjacencies of a considered node of the graph to obtain the $\text{Succeding_States_List}$. This algorithm computes the relative Lookahead for an Initial_State, which is equal to Min_D at the end of the graph exploration (i.e. Min_D is the min $D(S)$ of reachable states).

Let us focus on Fig. 4 that represents a simple DEVS atomic model (i.e. a G-DEVS model of 9 order) with the graphical representation of [17]. The discrete state of the models considered in this sub-section is defined only by the phase state variable (with values represented by circles). For that reason, a lifetime value can be associated to each phase value (referenced by numbers inside circles). Solid arcs represent external transitions δ_{ext}, for instance, mark “com?o1” on an arc of this type describes that the model state will transit by receiving an input event of “o1” value on the input port “com”. Dotted arcs represent internal transitions δ_{int}, if it elapses lifetime length in the source phase of this type of arc, mark “outset” shows, for instance, that the model state will transit and emit an output event of “set” value on output port “out”. Triangles represent input and output ports.

Figure 3. G-DEVS model current state relative lookahead

If we consider an absolute lookahead not depending on the current state, the lookahead of the Fig. 4 example is equal to one time unit. If B state is the current state of the example, considering the current state relative lookahead, the lookahead can be increased to five times units (Fig. 4. minimum lifetime of not shadowed states). Moreover, the computation of all lookahead values is done before run time and so does not affect simulation performance.
The restriction of the computation presented in this sub-section comes from the fact that it can only be applied to models with $D(S)$ functions depending on only one state variable called the phase. Because DEVS/G-DEVS formalism can express more complex models, we propose in the next sub-section to generalise this computation for models with $D(S)$ function depending on several state variables.

4.4 Second G-DEVS/HLA Lookahead computation improvement

In the following, we define an extension of the computation of the lookahead in order to consider G-DEVS models with state defined by (2).

$$S = Q \times (A^{n+1}) \quad (2)$$

Where:

- Q: (phase, sigma, B^n) where sigma is the lifetime function $D(S)$ of the current state, phase is a state variable with symbolic values and B^n $(b_0, ..., b_n)$ is a (n)-tuple set of discrete state variables.

- A^{n+1}: state variables $(a_0, ..., a_{n+1})$ stores the $(n+1)$-tuple polynomial coefficients of the last external event occurred with A subset of real numbers or integers [7].

The phase defines explicit subset of state set, which allows representing graphically the DEVS/G-DEVS models as stated in [17] and recalled in 3.4.

The B^n n-tuple finite set of integer valued state variables completes the definition of the considered G-DEVS model state.

The values of the state variables are modified by the δ_{ext} and δ_{int} transition functions. Note that we do not consider the elapsed time in the current state to change the values of the next state.

Moreover, in the G-DEVS models considered, each lifetime is a mathematical function of $D(\text{phase}, \text{B}^n)$, it does not depend on A^{n+1} (e.g. Fig. 5 a).

4.4.1. Path search in G-DEVS models. The lookahead is the minimum delay to emit an output event, which corresponds to the earliest next $\lambda(s)$ among the reachable phase values by a sequence of δ_{ext}.

Path search algorithms seem to be suited to analyze the variation of state variables involved as parameters of $D(s)$, because the considered G-DEVS models can be represented by nodes/arcs. The only mismatch comes from classical graph path search algorithms only consider one variable (i.e. that is the path weight between two nodes) but G-DEVS models graphs can possess more than one state variable. In the considered model, there are n state variables B.

A key to this mismatch is to decompose a considered G-DEVS model (e.g., Fig. 5 a) into as many sub-models as the model contains state variables B. From each sub-model with $S = ((\text{phase}, \sigma, B), A^{n+1})$, we create an oriented graph by representing the phase values of the G-DEVS model as nodes and the δ_{ext} as edges (e.g. Fig. 5 b,c,d).

The edges of a G-DEVS sub-model are weighted by the part of the δ_{ext} function that handles the considered B state variable. Therefore, it implies that the state variables of B^n are independent in the expression of δ_{ext} (i.e. each B variable must only be dependent on constant values or on itself in the δ_{ext} functions). We can apply on the obtained oriented graphs a path search algorithm to track the variations of state variable B.

4.4.2. Dijkstra path search. Considering an oriented graph (obtained from a G-DEVS sub-model) and the phase value phase_i, we define a function (3), which computes the shortest path (in terms of a considered b_k of B^n) to reach each other phase_k by a sequence of δ_{ext}.

$$\text{ShortestPath}(\text{phase}_p, b_k, \text{phase}_k) = \min b_k \text{ in phase}_k \quad (3)$$

/ considering an initial value of b_k in phase,

and $k \in$ reachable phase value list of phase

For example in Fig. 5 b), the shortest path from phase A to the others phase values, considering state variable b_1, is 10 for reaching phase B, 2 for C, 10 for D and not defined for E because it is not linked from A by external transition.

To implement the ShortestPath function, we applied the Dijkstra Algorithm [3] that fulfils requirements of the function. The limitation is that this algorithm is not suited for graphs that contain circuits with edges of negative weight; indeed the looping of such circuits decreases iteratively the weight of the path. As a result, the considered G-DEVS models must contain only B variables defined on R^+ and δ_{ext} functions that only increment the state variables of B^n. We notice that others algorithms (e.g. Warshall and Floyd) allow the use of negative weight edges but the studied graphs still must no contain negative weight circuit.

We use the modified Dijkstra Algorithm (by changing the values searched from min to Max) to find the longest path from a considered phase value to all others. This search computes the state variable B maximal values for each reachable phase value. It implies a restriction on graphs type; it can be applied only to acyclic graphs (i.e. without circuits) because finding the longest path in a cyclic graph has been shown to be an NP-hard problem. Notice that cyclic graphs can be considered only if all state lifetimes $D(s)$ contain no decreasing part since we do not search for the maximum of the state variables.
4.4.3. State lifetime \(D(s) \) analysis. Using min/Max values of state variables of \(B^n \) (obtained from shortest/longest path computation), we exploit mathematical backgrounds to study the variations of state lifetime \(D(s) \). We consider \(D(s) \) as real-valued functions of several variables. The functions must be continuous, defined and derivable in all points of the state of several variables. The functions must be continuous, defined and derivable in all points of the state of several variables.

To respect these definitions, we bound the study to linear state lifetimes \(D(s) \) defined by independents state variables (i.e. a linear function of several variables \(b_1, b_2, ..., b_n \), the state lifetime is described by (4)).

\[
f(b_1, b_2, ..., b_n) = a_0 + a_1b_1 + ... + a_nb_n \quad (4)
\]

\(/ \{a0, ..., an\} \) are constants real values.

Taking into account the restrictions on state lifetime \(D(s) \), we can compute a minimum value of state lifetime of a reachable phase value from a considered one regarding to min/Max values of the state variables. More formally, for a phase value phase\(_{\alpha} \) and the state variables \(b_1, ..., b_n \), the state lifetime is defined by (5).

\[
D(\text{phase}_\alpha, \text{sigma}, B^n), A^{(\alpha)} = a_0 + a_1b_1 + ... + a_nb_n \quad (5)
\]

If \(a_i < 0 \) we consider maximum value of \(b_i \) / \(i \in \{0, ..., n\} \)

If \(a_i > 0 \) we consider minimum value of \(b_i \) / \(i \in \{0, ..., n\} \)

By repeating this computation for each reachable phase, from a considered phase, we calculate the lookahead (6) of the considered phase value equal to the minimum of all the reachable phase value state lifetime \(D(s) \) (we do not consider sigma and \(A^{(\alpha)} \)).

Lookahead (phase\(_{\alpha}\)) = \(D(\text{phase}_\alpha, \text{sigma}, \text{min/Max (B^n)}) \) \quad (6)

\(\forall k \in \) reachable phase value list of phase\(_{\alpha}\)

If some G-DEVS models federates in a G-DEVS coupled model federation do not respect the restriction on state lifetime \(D(s) \) and on the variables variations or if state lifetime \(D(s) \) computation concludes to a negative value result, then no minimum of state lifetime \(D(s) \) can be computed. We set, in that case, the lookahead of these G-DEVS models federates equal to a minimum value \(\epsilon \) negligible regarding to values taken by state lifetime \(D(s) \). Thereby, the simulation is constrained and slowed, by the lookahead of this federate.

4.4.4. Lookahead computation example. Fig. 5 a) example is an order 1 G-DEVS model. We consider an initial state with phase\(_A\) and \(b_1=b_2=b_3=a_0=a_1=0 \).

We focus on the computation of the lookahead of phase \(A \). As a result, we determine the reachable phase values from \(A \) by a sequence of external transitions that are \(B, C \) and \(D \). The state lifetime \(D(s) \) values of these phase values are dependent on the external transition passed from \(A \) to attain the considered phase value.

For instance, state lifetime \(D(S) \) of phase \(D \) is equal to \(3b_1+b_2-2b_3 \). It implies to consider the minimum value of \(b_1 \) and \(b_2 \) and the maximum value of \(b_3 \). Dijkstra algorithms find out the extremes values of the state variables for each phase value.

We focus first on the sub-model represented in Fig. 5 graph b) that only considers the phase and \(b_1 \). From the initial state, we compute that \(b_1 \) minimum value is 10 time units in phase \(B \), 2 for \(C \), 10 for \(D \) and not defined for \(E \).

By repeating the same process, we compute \(b_2 \) minimum values in Fig. 5 graph c). The min of \(b_2 \) is 2 for \(B \), 2 for \(C \), 3 for \(D \) and not defined for \(E \).

Because the \(D(s) \) function of phase \(D \) contains a subtraction, it is necessary to compute \(b_3 \) maximum value in Fig. 5 graph d) that is equal to 8 for \(D \).

Using these values, we compute the minimum values of the \(D(s) \) functions for each reachable phase value from \(A \):

\[
\begin{align*}
\text{min } D(\alpha, \text{min/Max (B^n)}) &= b_1 + b_2 + 5 = 0 + 0 + 5 = 5 \\
\text{min } D(B, \text{min/Max (B^n)}) &= b_3 + b_2 + 3 = 2 + 2 = 4 \\
\text{min } D(C, \text{min/Max (B^n)}) &= 2b_1 + b_2 + b_3 = 3 + 2 + 2 = 6 \\
\text{min } D(D, \text{min/Max (B^n)}) &= 3b_1 + b_2 + 2b_3 = 30 + 3 - 16 = 17
\end{align*}
\]

The lookahead of phase \(A \) is equal to the minimum \(D(s) \) of all reachable phase values. It is thus set, to 4 time units.

Using the same approach, we can compute the HLA lookahead for all phase values of the model. The lookahead is employed in the communication algorithm defined in [18] and recalled Fig. 2.

The limitation of this solution comes from its non-generic capabilities to handle all DEVS formalised models. In more details, this improvement does not allow to extend the lookahead computation to all kinds of DEVS/G-DEVS models; e.g. models with non-explicit phase, state variables defined on \(R \) and non-linear \(D(s) \) functions are not considered in this study.
5. Simulation results

We have implemented the algorithm of Fig. 2 on two distributed Pentium 4-based computers with 2.4 GHz, 256 Mo RAM, Windows XP OS, interconnected by a 10 Mbps LAN. We ran G-DEVS coupled models federations, of 2, 4, 6 and 8 G-DEVS federates distributed on the two computers, in order to measure the influence of the lookahead value on the execution time. In the tests, each federate contained a G-DEVS atomic model and published/subscribed to coupling HLA interactions to define the federation as a "closed-chain" of coupled model federates. The code was developed in Java and the RTI (running on a third similar computer of the LAN) was the pRTI1516 of Pitch.

The Fig. 6 shows that G-DEVS federation execution is speeded up using a maximum lookahead (computed from the lifetime of the G-DEVS models phase as presented in 4.3 and 4.4). This assertion is done regarding the run time of the same federates models with half-reduced lookahead (representing the first solution proposed in 4.2 with a unique lookahead) and with negligible (min) lookahead (representing the previous solutions recalled in 3.2).

The experiment also deduces that the speedup is nearly linear in number of federates. Thus, federates with a negligible lookahead value always produce an important overhead regarding federates with a maximal lookahead. This overhead increases with the federation size and appears clearly in Fig. 6 to slow significantly the simulation as stated theoretically.

6. Future work

The lookahead computation algorithm is still under the scope of our studies.

We are working on the improvement of this computation, particularly in the case of computing a longest path. Because computing the longest path is restrictive on the class of G-DEVS models that can be handled, we try to compute it using algorithms of estimate for the longest path proposed in the literature.
We are also studying other kind of state lifetime \(D(s) \) functions to be considered (e.g. real valued of several variables interaction functions, distance functions, constrained functions).

7. Conclusions

In this article, we have presented a new HLA lookahead computing algorithm for distributed G-DEVS/DEVS models that uses the Dijkstra path search in a graph. It considers G-DEVS models with explicit phase and \(D(s) \) depending on several state variables instead of previous solutions that were considering DEVS models with \(D(s) \) depending only on one state variable. In addition, a benchmark experiment has been performed to confirm the speedup of the G-DEVS federation execution due to the new lookahead computation.

Finally, this improvement extends the class of G-DEVS models that can be involved in a G-DEVS federation. These models can be, more generally, coupled with heterogeneous HLA-compliant programs that respect, of their sides, the distributed time management constraints and the event exchanged format.

References