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Abstract

The paper presents analytical and numerical models describing localised transverse electric defect modes in a doubly periodic

structure involving split ring inclusions. We provide an asymptotic estimate which can be implemented in the optimal design of

low frequency stop bands in photonic crystal fibres.
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1. Introduction

Split ring resonators (SRR) have recently attracted a
great deal of attention since they are building blocks of so-
called meta-materials exhibiting artificial magnetism [1].
Here, we propose to use them as the building blocks of lo-
cally resonant photonic crystal fibres. The idea is to replace
each of the six air holes of the micro-structured fibre studied
in [2] by a SRR. The dispersion diagrams for electromag-
netic waves in such a structure possess low frequency stop
bands. The boundaries of these stop bands can be evalu-
ated analytically and hence the filtering properties can be
controlled by changing the physical parameters of the sys-
tem.

2. Formulation of the problem

We consider transverse electric waves propagating within
a doubly periodic array of ‘defects’ represented by a ‘cloud’
of 6 voids Ω1, Ω2, ..., Ω6 embedded in an hexagonal el-
ementary cell Y (see figure 1(a)). In this case, the time
harmonic transverse electric field has the form E(x, y, t) =
(E1(x, y), E2(x, y), 0)e−iωt so that its magnetic counter-
part H(x, y, t) = (0, 0, H3(x, y))e−iωt is longitudinal. The
propagation of these waves satisfies the Helmholtz equation
taken in distributional sense

(

∇ · 1

n2(x, y)
∇

)

H3(x, y) +
ω2

c2
H3(x, y) = 0 , (1)

where c is the speed of light in vacuum, ω the wave fre-
quency and n the refractive index such that α ≥ n ≥ β > 0,
where α and β are positive arbitrary constants. We look for
solutions H3 of finite energy in Y which satisfy the Floquet-
Bloch condition

H3((x + pl(1), y + ql(2)) = H3(x, y)ei(k1p+k2q) , (2)

where l(1) = d(1, 0), l(2) = d/2(1,
√

3) are the lattice vec-
tors, d is the period of the structure, p and q are integers,
and k = (k1, k2) represents the Bloch vector.

Equation (1) is then solved numerically by considering
its weak formulation using test functions V taking values
on nodes of a triangular mesh of the basic cell Y . The Fi-
nite element formulation was used in the numerical com-
putations with Getdp [3] where special care was taken to
enforce Floquet-Bloch conditions [4].

3. Helmholtz equation within thin-bridges

Here, the metallic inclusions Ω1, ..., Ω6 are of the shape of
the letter C and they are located and oriented in such a way
as to preserve the six-fold symmetry (figure 1). Formally,
using local coordinates associated with each inclusion

Ωj = {aj <
√

x2 + y2 < bj} \ Π
(j)
ε , j = 1, . . . , 6 , (3)
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Fig. 1. (a) Physical space. A doubly periodic array of hexagonal
macro-cells containing six split ring resonators located and oriented
to preserve six-fold symmetry. b) Associated multi-structure consist-

ing of a large body Σ connected to a thin bridge Π
(j)
ε (c) Recipro-

cal space. Irreducible part of the first Brillouin zone ΓMX where
Γ = (0, 0), M = (0, 2π/(

√

3d)) and X = (2π/(3d), 2π/(
√

3d)).

where aj and bj are given constants, and

Π(j)
ε =

{

(x, y) : aj < x < bj , | y |< εhj/2
}

, (4)

is a thin ligament between the ‘ends of the letter C’. Here
εhj is the thickness of the j-th bridge, with ε being a small
positive non-dimensional parameter.

The function H3(x, y) satisfies the Helmholtz equation

within the thin-ligament Π
(j)
ε occupied by a material of

constant refractive index nj,

∇2H3(x, y) + n2
j

ω2

c2
H3(x, y) = 0 , (5)

together with homogeneous Neumann boundary conditions
(infinite conducting walls)

∂H3

∂y

∣

∣

y=±εhj/2
= 0 . (6)

This system will be supplied with appropriate boundary
conditions at the ends x = aj and x = bj . From now on,
we drop the index j for simplicity.

4. Thin-bridge analysis

Let us introduce the scaled variable ξ = y
ε . Hence, ∂2v

∂y2 =

1
ε2

∂2v
∂ξ2 , and the rescaled wave equation in Π1 =

{

(x, ξ) :

a < x < b , | ξ |< h/2
}

becomes

( 1

ε2

∂2

∂ξ2
+

∂2

∂x2
+ n2 ω2

c2

)

H3 = 0 . (7)

The field H3 is approximated in the form

H3 ∼ H
(0)
3 (x, ξ) + ε2H

(1)
3 (x, ξ) . (8)

To the leading order we obtain (see (6), (7) and (8))

∂2H
(0)
3

∂ξ2
= 0 , | ξ |< h/2 ,

∂H
(0)
3

∂ξ

∣

∣

ξ=±h/2
= 0 . (9)

Hence, H
(0)
3 = H

(0)
3 (x) (it is ξ-independent). The function

H
(1)
3 satisfies the following model problem on the scaled

cross-section of Π1

∂2H
(1)
3

∂ξ2
= −∂2H

(0)
3

∂x2
− n2 ω2

c2
H

(0)
3 , | ξ |< h/2 ,

∂H
(1)
3

∂ξ |ξ=±h/2

= 0 . (10)

The solvability condition for the problem (10) gives us the

equation for H
(0)
3 , that is,

d2H
(0)
3

dx2
+ n2 ω2

c2
H

(0)
3 = 0 , a < x < b . (11)

Thus, to the leading order, we can approximate the field

H3 within the thin bridge Πε by the function H
(0)
3 (x) which

satisfies the one-dimensional Helmholtz equation.

5. An asymptotic estimate of the frequency of the

localised mode

We are interested in standing waves (flat curves on the
dispersion diagram of Figure 2). For low frequencies, let
C1 denote the constant value of the field in the core Σ =
{
√

x2 + y2 < b} of the multi-structure Ω, and C2 denote
the constant value of the field within the complementary
area of the macro-cell Y \Ω excluding the ligaments. Then,
neglecting the small area of the ligament, we obtain

C1SΣ + C2SY \Ω = O(ε) , (12)

where SΣ and SY \Ω denote the areas of Σ and Y \ Ω.
Boundary layers occur at the end regions of the thin

ligaments [6]. These boundary layers are characterized by

exponential decay when H
(0)
3 satisfies:

H
(0)
3 (a) = C1 ,

H
(0)
3 (b) = C2 = − SΣ

SY \Ω
C1 . (13)

Now, integrating (5) over the multistructure Ω and apply-
ing the divergence theorem, we obtain that to order ε

dH
(0)
3

dx
|x=a= −n2SΣω2

c2εh
C1 . (14)

Combining (11), (13) and (14), in the low frequency limit
we obtain

ω2 ∼ εhc2

(b − a)SΣn2

(

1 +
SΣ

SY \Ω

)

. (15)

We note that this estimate is in agreement with the one
derived in [5] for anti-plane shear waves when SΣ/SY \Ω

vanishes.
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6. Thin-bridge estimates versus finite elements

results

Formula (15) is an accurate estimate for the frequency
of TE modes trapped in split ring resonators. Here n is the
refractive index of the dielectric material within the SRR,
εh is the constant thickness of the thin bridge (split), SΣ is
the area of the core of the ring, and SY \Ω is the area of the
hexagonal cell excluding the six rings and their cores.

In our case, εh = 0.012, SΣ = π ∗ 0.1592, b− a = 0.1 and
n =

√
12, and SY \Ω = 3

√
3/2 − 6π0.2592 = 3.93, so that

SΣ

SY \Ω
= 0.02. Hence, we find ω1d/c = 0.3548 whereas the

finite element computation gives ω∗
1d/c = 0.35308. This

is associated with the lower flat band on the right disper-
sion diagram of Figure 2. We notice that this first localised
eigenmode is axi-symmetric (constant) within each inclu-
sion except for thin bridges. Its analytic expression in thin
bridges is given by

H
(0)
3 (x) = −C2 cos(ω(b − a)/c) − 1

sin(ω(b − a)/c)
sin(ωx/c)

+C2 cos(ωx/c) .

(16)

7. Higher localised modes and possible applications

Finally, the upper flat curve (the seventh dispersion
curve) in figure 2 corresponds to a dipole mode localised
within each structured inclusion. In this case, the thin
bridges play little part. Hence, if we denote the refractive
index of the core of the inclusion by n, such a mode is
simply the solution of the Helmholtz equation

∆H3 + n2 ω2

c2
H3 = 0 , x2

1 + x2
2 < r2

1 . (17)

In polar coordinates, the dipole solution of this problem is

H3(r, θ) = J1(
ωnr

c
)eiθ . (18)

Further, the dipole mode we are looking for satisfies the
Neumann condition ∂H3/∂r = 0 on the inner circular
boundary r = r1 of the split ring. Hence, the associated
frequency is given by the first root of the transcendental
equation

ωn

c
J ′

1(
ωnr1

c
) = 0 , (19)

where r1 = 0.159d and n =
√

12. This gives an estimate
ω2d/c = 3.36 for the normalised frequency of the first dipole
mode of split rings (see Figure 2(b)) which fits reasonably
well the numerical value ωFEM = ω∗

2d/c = 3.4540 given by
Finite Element Computations.

Dispersionless modes propagating along the crystal fiber
at very low frequency (as it is the case for the localised
mode associated with the lower flat band) may lead to sub-
wavelength imaging in a way similar to that demonstrated
in [7] for swiss-rolls at radio frequencies. Modes associated

with flat curves at higher frequencies suggest that they
would be nearly leakage free in the case of multi-structured
fibres of finite cross-section. Multi-structured crystal fibres
hence have possible applications both in medical imaging
(radio frequencies) and long-haul communications (from
near infra-red to optical frequencies).
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Fig. 2. Transverse incidence. (a) Dispersion diagram for six infinitely
conducting inclusions shaped as split ring resonators of inner radius
0.159d and outer radius 0.259d (right) and filled with a dielectric
material of relative permittivity 12. The center-to-center spacing of
inclusions is 0.7d. Inclusions are surrounded by a matrix of rela-
tive permittivity 1. The horizontal axis shows the magnitude of the
Bloch vector describing the first Brillouin zone described in Fig-
ure 1(c). On the vertical axis, we represent the eigenfrequencies of
propagating TE waves. (b) Eigenfield associated with eigenfrequency
ω∗

1d/c = 0.35308 (root of multiplicity six) which is constant in the
center of each C-shaped inclusion. (c) Eigenfield associated with
eigenfrequency ω∗

2d/c = 3.4540 (multiple root). We note the dipole

nature of modes confined in the center of each C-shaped inclusion.
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