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A high order purely frequency-based harmonic balance

formulation for continuation of periodic solutions
Bruno Cochelin a Christophe Vergez a,∗

aLaboratoire de Mécanique et d’Acoustique (LMA-CNRS),
31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

Abstract

Combinig the harmonic balance method (HBM) and a continuation method is a
well-known technique to follow the periodic solutions of dynamical systems when a
control parameter is varied. However, since deriving the algebraic system containing
the Fourier coefficients can be a highly cumbersome procedure, the classical HBM
is often limited to polynomial (quadratic and cubic) nonlinearities and/or a few
harmonics. Several variations on the classical HBM, such as the incremental HBM or
the alternating frequency/time domain HBM, have been presented in the literature
to overcome this shortcoming. Here, we present an alternative approach that can
be applied to a very large class of dynamical systems (autonomous or forced) with
smooth equations. The main idea is to systematically recast the dynamical system
in quadratic polynomial form before applying the HBM. Once the equations have
been rendered quadratic, it becomes obvious to derive the algebraic system and
solve it by the so-called ANM continuation technique. Several classical examples
are presented to illustrate the use of this numerical approach.

Key words: harmonic balance, frequency domain, asymptotic numerical method,
continuation, bifurcation, periodic solutions

1 Introduction

In the field of engineering, especially when dealing with nonlinear vibrations,
it is often required to compute the periodic solutions of a system of nonlinear
differential equations ([1,2]). In the following, we focus on numerical meth-
ods to find periodic solutions. They are usually subdivided into two main
groups : those relying on the time-domain formulation and those relying on
the frequency-domain formulation. The first group consists of methods where
a time integration algorithm, which is generally limited to a single period, is
used to transform the original differential system into a system of algebraic
equations, which are then solved by continuation. With these methods, the
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unknowns in the algebraic system are the values of the original unknown vari-
ables at grid points along the periodic orbit. The classical shooting technique
([3,4]) and the orthogonal collocation methods used in AUTO ([5,7]) belong
to this group. The second group corresponds to the so-called harmonic bal-
ance method where the unknown variables are decomposed into truncated
Fourier series. In this case, the unknowns in the final algebraic system, which
is obtained by balancing the harmonics featuring in the differential equations,
are simply the Fourier coefficients of the original unknowns. Methods of both
kinds are widely used in many applications and research is still required to
improve them. In practical terms, the choice between the time-domain or the
frequency-domain approach depends mainly on whether the periodic solution
can be decomposed with a few Fourier components. The method chosen to
deal with a given problem can therefore depend on the operating point.

In this paper, we focus on the harmonic balance method (HBM) and some
of its variations, which are briefly recalled here. Although the name ”har-
monic balance” seems to have first appeared in 1936 ([8]), this method has
been widely used only since the sixties, and especially for electrical and me-
chanical engineering purposes. Forced vibrations were first studied ([9]), and
self-sustained oscillations a decade later ([10]). The study by Nakhla & Vlach
([11]) is often said to be a milestone in the modern formulation of HBM. The
classical HBM is simple in its principle, but it can be cumbersome or even im-
practicable, as stated by Peng et al. ([12]) when the system contains complex
nonlinearities and when a large number of harmonics is required, ie, more than
5 or 10. The first problem which arises is how to derive the algebraic system
for the Fourier coefficients and the second problem is how to solve this strongly
nonlinear system efficiently. To overcome these shortcomings, many variations
on the basic HBM have been proposed in the literature. Here, we will simply
give an overall picture of incremental harmonic balance (IHB) and alternat-
ing frequency/time domain harmonic balance (AFT) method. With the IHB
method ([13]), the incremental-iterative method used for the continuation is
closely combined with the harmonic principle, so as to be able to apply the HB
principle to the incremental linear problem instead of the nonlinear original
system. Nonlinearity of all kinds can be treated using this technique [14,15].
In the AFT variant, the harmonic balance of the Fourier coefficients is not
explicitly performed. At each increment (or iteration) in the continuation pro-
cedure, the unknowns are transferred to the time domain (using the inverse
Fast Fourier Transform,which is denoted IFFT below), so as be able to use
the original system of equations. The nonlinear responses are then transferred
back to the frequency domain using the Fast Fourier Transform, (denoted
FFT below). The use of FFT/IFFT procedures seems to have started in [16].
This technique has been used, for instance, to analyse nonlinear vibrations in
mechanical systems with contact and dry friction [17]. Since the pioneering
work on IHB and AFT, many variations have been proposed to extend the
applications, as well as to decrease the computational cost (see [18] or [19] for
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some recent examples).

An alternative strategy is proposed here for applying the classical HBM with
a large number of harmonics, without avoiding explicit balancing. The idea
is to apply a transformation to the original system of differential equations
before applying the HBM. The aim of this procedure is to transform the non-
linearities present in the original system into purely polynomial quadratic
terms. The classical HBM procedure can then be easily applied. This trans-
formation might seem to be a limitation of the method, since not every system
can be recast in polynomial quadratic form. However, it will be shown in this
paper that a very large class of systems with smooth equations can indeed
be recast in quadratic form by making a few algebraic manipulations and
a a few additions of equations and auxiliary variables. The idea of using a
quadratic formulation to simplify the (Fourier) series expansion was inspired
by another numerical method, the so-called Asymptotic Numerical Method
(ANM) ([21,22]) which was presented for the first time in 1990 ([20]). ANM is
a continuation technique ([23]) involving high order powers series expansion
of the branches of solutions. For reasons that will be given later on, this ANM
continuation is the ideal means of solving the algebraic system resulting from
the HB method proposed here.

The paper is organised as follows: details of the transformation into a polyno-
mial quadratic form, the application of the HBM method and the principle of
continuation are given in section 2 in the cases of autonomous systems. Three
simple examples are given as an illustration. Section 3 is devoted to periodi-
cally forced systems, and two further examples are presented. Section 4 gives
the results of all the examples and ends with some concluding comments and
perspectives.

2 Presentation of the method for obtaining periodic solutions of

autonomous systems

Let us consider an autonomous system of differential equations

Ẏ = f(Y, λ) (1)

where Y is a vector of unknowns, f a smooth nonlinear vector valued function
and λ a real parameter. The dot stands for the derivative with respect to time
t. We assume that this system has branches of periodic solutions when λ varies,
and we want to find and follow them by applying the harmonic balance method
and a continuation procedure (path following technique). The important case
of a forced (non-autonomous) system will be dealt with separately in section
3.
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2.1 The harmonic balance principle

As recalled in the Introduction, the HBM consists basically in decomposing
Y (t) into a truncated Fourier series :

Y (t) = Y0 +
H∑

k=1

Yc,k cos(kωt) +
H∑

k=1

Ys,k sin(kωt) (2)

This ansatz is put into Eq. (1) and f(Y, λ) is expanded into Fourier series. By
balancing the first 2H + 1 harmonic terms, one obtains an algebraic system
with 2H +1 vector equations for the 2H +1 vector unknowns Yi, the unknown
pulsation ω, and the parameter λ. Adding a phase condition ([3]) yields a
system with N equations and N + 1 variables. The branches of solutions of
this algebraic system are then followed using a continuation technique. This
procedure provides only approximate periodic solutions, since in the expan-
sion of Eq. (1), all the harmonic terms greater than H remain unbalanced.
However, if the number of harmonics H is large enough, accurate solutions
can be obtained.

The most crucial point is the expansion of the vector f(Y, λ) into Fourier
series. This can be quite a straighforward procedure if f(Y, λ) is a polyno-
mial of degree two or three, and if the number of harmonics H is sufficiently
small. In this case, the expansion can be carried out by hand. But in the most
general situation, where f(Y, λ) shows nonlinearities of any kinds, this com-
putation can be very cumbersome, even with the help of a symbolic software
program. The only alternative is then to use numerical procedures to estimate
the Fourier series of f(Y, λ), by performing iterative FFT/IFFT steps, for ex-
ample. This drawback was the starting-point in the developpment of many
variants of the HBM as mentioned in the Introduction.

2.2 A key point: the quadratic recast

The main aim of this paper is to present a simple but powerful procedure that
overcomes the drawback mentioned above. The idea is to recast the original
system (1) into a new system where the nonlinearities are at most quadratic
polynomials . The application of the harmonic balance method subsequently
becomes quite straighforward. This new quadratic system, which will be writ-
ten as follows

m(Ż) = c + l(Z) + q(Z, Z) (3)
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can contain both differential and algebraic equations. Ne is taken to denote the
number of equations. The unknown vector Z (size Ne) contains the original
components of the vector Y and some new variables which are added to get
the quadratic form. The right hand side of Eq. (3) is written as follows: c

is a constant vector with respect to the unknown Z, l(.) is a linear vector
valued operator with respect to the vector entry, and q(., .) is a quadratic
vector valued operator, which is linear with respect to both entries. At this
stage, the three vectors c, l(.) and q(., .) may depend on the real parameter
λ. However, it is preferable for the quadratic operator q(., .) not to depend on
λ, which may require introducting a new variable in Z (see example 1 below).
on the left hand side, m(.) is a linear vector valued operator with respect to
the vector entry. The algebraic equations correspond to zero values of m(.).

Since the nonlinearities are quadratic, the HBM can obviously be easily and
systematically applied on Eq. (3), even with a large number of harmonics. The
question is now: can any system be easily put into the form of Eq. (3) ? As
we will see, the answer is yes, for a very large class of nonlinear systems.

The idea of recasting a nonlinear system into a new one with a quadratic poly-
nomial nonlinearity is frequently used when considering the so-called ANM
continuation method, which consists in computing power series expansion of
solution branches, see ([21,22,23,24]) for the basic algorithms and ([25,26,27])
for some applications in mechanics. The quadratic recast gives a very simple
and systematic algebra for the series determination, even with high orders of
truncature. Similar benefits are obtained with the Fourier series expansions.

It is now worth illustrating this main idea by giving some elementary exam-
ples where the recast from Eq. (1) to Eq. (3) will be performed explicitely.
We will deal first with the classical Van der Pol oscillator, the Rössler sys-
tem and a model for clarinet-like musical instruments. Other examples, with
nonlinearities of others kinds such as rational fraction, will be given later on.

Example 1: The Van der Pol oscillator. We take the following second order
autonomous system, known as the Van der Pol oscillator, where the parameter
λ governs the amplitude of the nonlinear damping term.

ü − λ(1 − u2) u̇ + u = 0 (4)

This equation can be classically recast into first order system ( as Eq. (1)) by
introducing the velocity v(t) = u̇(t) as a new unknown. We obtain

u̇ = v

v̇ = λ(1 − u2) v − u
(5)
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If we now introduce the auxiliary variables w(t) = 1 − u2(t) and r(t) =
v(t)w(t), the system can be written in the form of Eq. (3) with Z = [u, v, w, r]t.
The various terms are arranged below so that it will be clear to the readers
how the different functions m, c, l and q are formed.

u̇ = 0 +v

v̇ = 0 −u + λr

0 = 1 −w −u2

0
︸︷︷︸

m(Ż)

= 0
︸ ︷︷ ︸

c

+r
︸ ︷︷ ︸

l(Z,λ)

−vw
︸ ︷︷ ︸

q(Z,Z)

(6)

We finally obtain two first order differential equations and two algebraic equa-
tions with quadratic polynomial nonlinearities. Only the operator l depends
here on λ.

Example 2: The Rössler system. We take the following first order autonomous
system of three equations known as the Rössler system.

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − λ)

(7)

where x, y, z are functions of time and a, b, c are float parameters. This
system can be written in the form of Eq. (3) without any auxiliary variables
(i.e. Z = [x, y, z]t):

ẋ = 0 −y − z

ẏ = 0 +x + ay

ż
︸︷︷︸

m(Ż)

= b
︸ ︷︷ ︸

c

−λz
︸ ︷︷ ︸

l(Z,λ)

+zx
︸ ︷︷ ︸

q(Z,Z)

(8)

Here again, only the operator l depends on λ. This example will be used
here to show that the approach presented in this paper can be used to find
period-doubling and bifurcations with period 4.

Example 3: A model for clarinet-like musical instruments. In the case of
small amplitude oscillations, a simple model for reed instruments (clarinet,
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saxophone, etc) can be written using a modal formulation (see [28]):

ẍ + qrωrẋ + ω2
rx = ω2

rp

p̈n + 2αnc ṗn + ω2
npn = 2c

l
u̇ ∀n ∈ [1 . . . N ]

u = ζ(1 − λ + x)
√

λ − p

p =
∑N

n=1 pn

(9)

where the unknowns x, pn=1..N , p, u are functions of time and qr, ωr, αn, ωn, c,
l, ζ are given parameters describing either the physics or the player’s action.
N is the number of acoustic modes. λ stands here for the blowing pressure.

It is worth noting that even if this system contains a square root, it can be
recast in the form of Eq. (3): if we introduce the auxiliary variables y = ẋ, zn =
ṗn and v =

√
λ − p, system (9) can be rewritten, with Z = [x, y, p1, . . . , pN , z1 . . . zN , u, v]t

as follows:

ẋ = 0 +y

ẏ = 0 +ω2
rp − qrωry − ω2

rx

ṗn = 0 +zn ∀n ∈ [1 . . . N ]

żn − 2c
l
u̇ = 0 −2αnc zn − ω2

npn ∀n ∈ [1 . . . N ]

0 = 0 −u + ζ(1 − λ)v +ζxv

0 = 0 −p + p1 + . . . + pN

0
︸ ︷︷ ︸

m(Ż)

= λ
︸ ︷︷ ︸

c(λ)

−p
︸ ︷︷ ︸

l(Z,λ)

−v2

︸ ︷︷ ︸

q(Z,Z)

(10)

Here, the linear term l, but also the constant term c, are functions of λ.

2.3 The harmonic balance method applied to a quadratic system

In this section, the harmonic balance method is applied to the system (3).
The unknown (column) vector Z is decomposed into Fourier series with H

harmonics:

Z(t) = Z0 +
H∑

k=1

Zc,k cos(kωt) +
H∑

k=1

Zs,k sin(kωt) (11)
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The components of the Fourier series are collected into a large (column) vector
U , with size (2H + 1) × Ne, where Ne is the number of equations in (3).

U = [Zt
0, Z

t
c,1, Z

t
s,1, Z

t
c,2, Z

t
s,2, . . . , Z

t
c,H, Zt

s,H]t (12)

By introducing the expansion (11) into the set of Eqs. (3), collecting the terms
of the same harmonic index, and neglecting the higher order harmonics, one
obtains a large system of (2H + 1)×Ne equations for the unknown vector U ,

ωM(U) = C + L(U) + Q(U, U) (13)

The new operators M(.), C, L(.), and Q(., .) that apply to U depend only
on the operators m(.), c, l(.) and q(., .) of Eq. (3) and on the number of
harmonics H. The explicit formulas have been given in annex 1 for a sake of
brevity. It should be noted that these expressions for M(.), L(.) and Q(., .)
are the same in all the examples presented. The change from one particular
system to another only involves the operators m(.), l(.) and q(., .).

The final system (13) contains (2H +1)×Ne equations for the (2H + 1)×Ne

unknowns U plus the angular frequency ω and the continuation parameter λ.
Since the original system is autonomous, a phase condition has to be added
to Eq. (13) to define a unique orbit. Indeed, the time t does not appear in Eq.
(3) and if U(t) is a solution of Eq. (13) then U(t + τ) is also a solution, for
any τ . We refer here to textbooks dealing with periodic solution continuation
([3,7,4]) for the choice of the phase condition.

2.4 The continuation procedure

2.4.1 Framework

As the result of the harmonic balance operation, we now have to solve an
algebraic system

R(U) = 0 (14)

with R ∈ R
N and U = [U t, λ, ω]t ∈ R

N+1 (N = (2H + 1) × Ne + 1). Any
numerical continuation method ([29,30,3]) and any suitable software (see ([31]
for an overview) can be used for this purpose. However, in this paper we will
use the so-called Asymptotic-Numerical-Method (ANM), on which the idea
of the quadratic recasting was based. It is worth noting that the final system
(13) is already quadratic with respect to U and ω, and that the application of
the ANM is therefore quite straighforward.
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In the continuation procedure, a pseudo-arc length parametrization will be
used in order to be able to pass the limit points with respect to λ. The pa-
rameter λ will therefore now become an unknown, like U and ω. It is now
mandatory to specify how the operators m, c, l and q in Eq. (3) depend on λ.
In the three examples presented here, we have organised the terms of equations
so that the parmeter λ only appears in the operators c and l. In addition, we
have managed to make this dependence linear. Once again, this formulation
is not limited to the three example presented here, but it can be obtained for
a very large class of dynamical systems provided suitable additional variables
are introduced. We recall that the parameter λ should not appear in the op-
erator q, for which the HBM algebra is the more complex. For example, if
there is a term λu2 in Eq. (3), it should be rewritten as λv with the auxiliary
variable v = u2, and put into l instead of q.

In what follows, it is therefore assumed that c and l can be written:

c = c0 + λc1

l(.) = l0(.) + λl1(.)
(15)

where c0, c1, l0 and l1 are independent of λ. Under this assumption, the oper-
ators C and L simply become

C = C0 + λC1

L(.) = L0(.) + λL1(.)
(16)

Note that the expression for C0, C1 and L0, L1 in terms of c0, c1 and l0, l1 are
exactely the same as those given in annexe 1 for C and L in terms of c and l.
The final algebraic system (14) becomes

R(U) = L0 + L(U) + Q(U,U) (17)

with U = [U t, λ, ω]t and

L0 = C0

L(U) = L0(U) + λC1

Q(U,U) = Q(U, U) + λL1(U) − ωM(U)

(18)

In Eq. (17), L0 is a constant vector, L(.) is a linear vector valued operator
and Q(., .) is a bilinear vector valued operator. We will now briefly review the
ANM continuation technique for solving quadratic system Eq(17).
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2.4.2 The ANM continuation

One of the main particularities of the ANM is that it gives access to branches of
solution in the form of power series. Assuming that we know a regular solution
point U0, the branch of solution passing through this point is computed in
the form of a power series expansion (truncated at order n) of the pseudo-
arclength path parameter a = (U − U0)

tU1, where U1 is the tangent vector
at U0:

U(a) = U0 + aU1 + a2U2 + a3U3 + . . . + anUn. (19)

The series (19) is replaced in Eq. (17) and each power of a is equated to zero,
giving a series of linear systems :

• order 0 : L0 + L(U0) + Q(U0,U0) = 0, which is obvious since U0 is a
solution of Eq. (17).

• order 1 : L(U1) + Q(U0,U1) + Q(U1,U0) = 0, which can also be written
JU0

U1 = 0 where JU0
∈ R

N×N+1 is the jacobian matrix of R evaluated at
U0.

• order 2 ≤ p ≤ n : JU0
Up + Σp−1

i=1 Q(Ui,Up−i) = 0

The original nonlinear problem has therefore been reduced to a series of n

linear systems of Ne equations. However, at each order, the linear systems are
under-dimensioned since they have Ne+1 unknowns. The additional equations
required are obtained by inserting Eq. (19) into the definition of the path
parameter a given above. This gives:

• order 1 : Ut
1U1 = 1

• order 2 ≤ p ≤ n : Ut
1Up = 0

2.4.3 Comments:

• The original nonlinear system of Ne equations has been transformed into n

linear systems of Ne equations, which have to be solved successively (as in
classical perturbation methods), i.e., Up is deduced from terms occuring at
lower orders.

• The range of utility of a truncated power series is generally limited because
the series have a finite radius of convergence. Once each Up (p ∈ [1 . . .N ])
has been found, the range of utility of the series expansion (19) is defined
by the value amax such that

∀a ∈ [0 amax], ||R(U(a))|| ≤ ǫr (20)

where ǫr is a user-defined tolerance parameter (see ([24,32]) for details of
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the amax calculation). Note that the range of utility amax is generally ap-
proximately equal to the radius of convergence of the series ([33]).

• The series expansion and the associated range of utility amax only define
one part of the branch of solutions, which is called a section. To determine
the entire branch, it is necessary to restart the whole series calculation from
successively updated starting points U0. The simplest way of performing
this updating is to take the end point of a previously computed section as
the starting point for the next section. This is the principle of continuation
with the ANM. Finally, the entire branch is given as a succession of different
branch sections, where the length of each section is automatically given by
its range of utility amax.

• The ANM continuation approach has the following advantages:
· the solution branch is known analytically, section by section.
· since all the linear systems to be solved have the same Jacobian matrix,

the computational cost of the series (19) is low.
· since the size of the section is given by the convergence properties of the

current step, ie, by the values of amax, the ANM continuation algorithm
does not require any special step-length control strategies.

· the ANM continuation algorithm is highly robust, even when the branch
contains sharp turns. Branch switching can therefore be easily performed,
using small pertubations in the system.

2.5 Implementation in the MANLAB software program

2.5.1 A brief presentation of MANLAB

MANLAB is an interactive software program for the continuation and bifur-
cation analysis of algebraic systems, based on ANM continuation. The latest
version is programmed in Matlab using an objet-oriented approach ([34]).
MANLAB has a Graphical User Interface (GUI) with buttons, on-line inputs
and graphical windows for generating, displaying and analysing the bifurca-
tion diagram and the solution of the system. To enter the system of equations,
the user has to provide three vector valued Matlab functions corresponding
to the constant, linear and quadratic operators L0, L and Q. As an example,
take the biochemical reaction system used by Doedel et Al in ([5])

r1(u1, u2, λ) = 2u1 − u2 + 100 u1

1+u1+u2
1

− λ = 0

r2(u1, u2, λ) = 2u2 − u1 + 100 u2

1+u2+u2
2

− (λ + µ) = 0.
(21)

Introducing the following additional variables v1 = u1 +u2
1, v2 = u2 +u2

2, v3 =
1

1+v1
and v4 = 1

1+v2
, the system can be rewritten with quadratic polynomial
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nonlinearities as follows,

0 + 2u1 − u2 − λ + 100u1v3 = 0

−µ + 2u2 − u1 − λ + 100u2v4 = 0

0 + v1 − u1 − u2
1 = 0

0 + v2 − u2 − u2
2 = 0

−1 + v3 + v1v3 = 0

−1
︸︷︷︸

L0

+ v4
︸ ︷︷ ︸

L(U)

+ v2v4
︸ ︷︷ ︸

Q(U,U)

= 0

(22)

The first two equations correspond directly to Eq ( 21). The last four define
the auxilliary variables v1, v2, v3, v4. The constant, linear and quadratic terms
in each equation have been split to define the three operators L0, L and Q. In
the MANLAB software program, the unknowns are collected in a single vector
U = [u1, u2, v1, v2, v3, v4, λ], and the three operators are given by the following
vector valued functions ( µ = 0.05 in the case of this example ) :

function [L0] = L0 function [L] = L(U) function [Q] = Q(U,V)

L0=zeros(6,1); L=zeros(6,1); Q=zeros(6,1);

L0(1)= 0; L(1)=2*U(1)- U(2) -U(7); Q(1)=100*U(1)*V(5);

L0(2)= -0.05; L(2)=2*U(2)- U(1) -U(7); Q(2)=100*U(2)*V(6);

L0(3)= 0; L(3)=U(3)-U(1); Q(3)= -U(1)*V(1);

L0(4)= 0; L(4)=U(4)-U(2); Q(4)= -U(2)*V(2);

L0(5)= -1; L(5)=U(5); Q(5)= U(3)*V(5);

L0(6)= -1; L(6)=U(6); Q(6)= U(4)*V(6);

2.5.2 Implementation of the periodic solution continuation in MANLAB

To compute the branches of periodic solutions, the system has to be first
recasted in the form of Eq. (3) with account of the additional decomposition
(15). This is probably the most unusual and difficult task for a new user.
Subsequently, it is only necessary to provide the MANLAB software program
with the operator m(.), c0, c1, l(.) l1(.) and q(., .) . The functions L0, L and
Q, which are the actual input for MANLAB, have been programmed once for
all, using the expression in Eq. (18) and the formulas given in annex 1. The
examples presented in this paper are available online ([6]).
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3 The case of a periodically forced system

We now focus on periodically forced (non-autonomous) systems:

Ẏ = f(t, Y, λ) (23)

where f is periodic in t, with the period T (forcing period). We look for periodic
solutions (responses) with a period pT or T

p
, where p is an integer. A classical

strategy consists in transforming Eq. (23) into an augmented autonomous
system ([3]), by adding an oscillator with the desired forcing period in the
system of equations, for instance ([7]).

In what follows, a direct approach will be used. It consists in expanding the
forcing term into harmonics, and taking them into account in the balance
of individual harmonics. This appraoch is illustrated below with two further
examples.

Example 4: Forced Duffing oscillator.

The normalized forced Duffing oscillator is the non-autonomous equation:

ü + 2µu̇ + u + u3 = f cos(λt) (24)

We take the damping coefficient µ and the force amplitude f constant, and use
the forcing angular frequency as the varying parameter λ. By using v(t) = u̇(t)
and w(t) = u2(t), this equation can be recast as follows

u̇ = v

v̇ = f cos(λt) −2µv − u −uw

0
︸︷︷︸

m(Ż)

= 0
︸ ︷︷ ︸

c(t,λ)

w
︸ ︷︷ ︸

l(Z)

−uu
︸ ︷︷ ︸

q(Z,Z)

(25)

where Z = [u, v, w]t, and the forcing term is deliberately put into c. The
forcing frequency is now related to the response frequency by putting λ = ω

or possibly, λ = pω (p is an integer). The term c(t) is then expanded into
harmonics with respect to ω.

This results in slight changes in the procedure:

• because of the synchronization of the response and the forcing, the phase
condition has to be removed. Note that the parameter λ is no longer an
unknown, since it was chosen as a multiple of ω. In comparison with the case
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of an autonomous system, both the number of equations and the number
of unknowns have decreased by one.

• in the final system (17)(18), the operators C1 and L1 disappear and the
forcing amplitude f has to be accounted for in L0

Lastly, we take the Raylegh-Plesset equation, which is used to model the large
amplitude vibrations of a gas bubble in a fluid. The forcing is handled slightly
differently and this example also shows how to cope with a power of −3.

Example 5: The forced Rayleigh-Plesset equation ([35]).

Let R be the radius of the vibrating bubble, and R0 the radius at rest. The
equation of motion of the bubble is

RR̈ +
3

2
Ṙ2 = A{(R0

R
)3 − 1} + B cos(λt) (26)

where A and B are fixed. We introduce the normalized radius u = R
R0

and the

(normalized) velocity v = Ṙ
R0

. Dividing Eq (26) by R2
0 and defining a = A

R2
0

,

b = B
R2

0

, we get the first order system

u̇ = v

uv̇ = a(u−3 − 1) − 3
2
v2 + b cos(λt)

(27)

We now introduce the following auxiliary variables x = 1
u
, y = x2, and z = v2,

and arrive at

u̇ = v

v̇ = a(y2 − x) − 3
2
xz + bx cos(λt)

(28)

After undergoing this transformation, the system is quadratic but the forcing
term has now been multiplied by the unknown function x, and it is no longer
a constant term with respect to the unknown. We introduce another auxilliary
variable r(t) = cos(λt), and replace the term bx cos(λt) by bxr. Finally, we
obtain the following system, where the first two equations stand for Eq (28)

14



and the last four define the auxilliary variables.

u̇ = 0 + v +

v̇ = 0 + (−ax) + ay2 − 3
2
xz + bxr

0 = 1 + 0 + (−ux)

0 = 0 + y + (−xx)

0 = 0 + z + (−vv)

0
︸︷︷︸

m(Ż)

= − cos(λt)
︸ ︷︷ ︸

c(t)

+ r
︸ ︷︷ ︸

l(Z)

+
︸ ︷︷ ︸

q(Z,Z)

(29)

Here the unknown vector is Z = [u, v, x, y, z, r]t, and the forcing term is clearly
present in the operator c.

4 Numerical results on selected examples

In the following selected examples, the numerical results obtained using the
approach presented in this paper are either compared with time-domain sim-
ulations to show the validity of our approach, or used to illustrate particular
features: the influence of the number of harmonics in the case of the Van der
Pol oscillator, the ability to follow period-doubling bifurcations in that of the
Rössler system, the ability to follow a direct or inverse Hopf bifurcation in
that of the clarinet model, and to illustrate a forced system, in that of the
Duffing oscillator.
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Figure 1. The Van der Pol oscillator (Eq. (4)): Comparison between the harmonic
balance results and those obtained with a time domain simulation. Influence of the
number of harmonics H taken into account ((a) H=10, (b) H=50).
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Example 1: The Van der Pol oscillator. Numerical results obtained on the
Van der Pol oscillator (Eq. (4)) are presented in Fig. 1. Good agreement was
obtained with the results of a time domain simulation, performed using Matlab
ODE solvers. As expected, the number of harmonics H in the solution sought
by the harmonic balance method had to be adapted to span the bandwith of
the solution obtained by direct integration. In the case of Fig. 1, λ = 3, which
requires having a relatively high H to match the reference solution.

Example 2: The Rössler system. The ability to follow period-doubling bi-
furcations is illustrated in Fig. 2. Following these bifurcations is more difficult
in the case of autonomous systems than in forced systems, since the period
of oscillation is also unknown. Moreover, since a T -periodic solution is also a
2T -periodic solution, one cannot expect the value of the period obtained by
the harmonic balance process to be doubled when crossing a period-doubling
bifurcation. The strategy used here therefore consists in introducing complex
subharmonic amplitudes as additional unknowns. To detect K period-doubling
bifurcations, the solution is then sought as:

Z(t) = Z0 +
H∑

k=1

Zc,k cos(
k

2K
ωt) +

H∑

k=1

Zs,k sin(
k

2K
ωt) (30)

When the solution belongs to the T -periodic solution branch, Zc,k|k=1..K−1 = 0
and Zs,k|k=1..K−1 = 0. When the solution belongs to the 2T -periodic solution
branch, Zc,k|k=1..K−1,k 6=2K−1 = 0 and Zs,k|k=1..K−1,k 6=2K−1 = 0. One practical
consequence in terms of the computational cost is that in order to span the
same bandwidth, the number of harmonics has be mulitplied by 2K . This
case is illustrated in Fig. 2 where H = 10 from the T -periodic solution to
H = 22 × 10 = 40 after two period-doubling bifurcations.

Example 3: The clarinet model.

Two typical examples of the bifurcation diagrams obtained with the clarinet
model are shown in Fig. 3. These pictures focus on the oscillation threshold
in order to show the robustness of the method, even at singular points. As
can be seen from both pictures, the radius of convergence of the power series
expansion decreases when approaching a bifurcation point (and hence the
length of each section of a branch lying between two consecutive points in
Fig. 3 decreases). This behaviour is typical of ANM ([33]).

Example 4: The forced Duffing oscillator

Figure 4 shows the frequency-amplitude diagram of the response obtained with
the method presented here. A classical bent resonance curve can be observed,
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Figure 2. The Rössler system (Eq. (7) with a = b = 0.2): Comparison between the
results obtained using the harmonic balance method and a time domain simula-
tion. These three figures show the ability of the method to follow the sub-harmonic
cascade from (a) λ = 2.5 (perdiod T ), to (b) λ = 3.5 (period 2T after a first peri-
od-doubling bifurcation) and (c) λ = 4 (period 4T after a second period-doubling
bifurcation)
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α3 = 0.25, α4 = 0.3, α5 = 0.34): depending on the length of the resonator, the
bifurcation will be either a direct Hopf bifurcation (left picture, L = 0.22) or an
inverse Hopf bifurcation (right picture, L = 0.2).
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Figure 4. Duffing oscillator, Eq. (24) with µ = 0.1 and f = 1.25 as in ([19]). The
figure shows the amplitude of the harmonics 1, 3 and 5 versus the frequency forcing
ω. Solid line : results when 5 harmonics are included (H=5 in Eq. (11)). Dash line
: results when 9 harmonics are included. The figure on the right is a zoom of the
region ω < 0.6.

as well as some additional peaks corresponding to superharmonic resonances.

Note that only the individual amplitude Ai =
√

(u2
c i + u2

s i) of the odd har-
monics have been plotted, since the even harmonics (A0, A2, A4, . . .) are zero.
The computation of this branch of periodic orbits required 25 steps of MAN-
continuation when 5 harmonics were included, and 35 steps when 9 harmonics
were included. The curves obtained for harmonics 1 and 3 were slightly hanged
when shifting from H = 5 to H = 9 harmonics in Eq. (11). The curve obtained
for A5 is more affected, which confirms the logical result that more than 5 har-
monics have to be used to obtain an accurate result with harmonic 5. We also
checked that the curve obtained for A5 was only very slightly modified when
shifting from H = 9 to H = 11 harmonics in Eq. (11).
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5 Discussion and Conclusion

The key idea in this study is the quadratic recast. It is worth pointing out
that the present method contains two quadratic recasts. The first one, which
occurs in the time domain, transforms the original system (1) into (3), and
is presented in section 2.2. The second one transforms the algebraic system
(13) obtained with the HBM, into the final system (17) which is solved by the
ANM. The operators in (13) and (17) are linked by (16) and (18). This point
accounts for many of the characteristics of the method presented here:

• The whole procedure takes place in the frequency domain using an analyt-
ical expression for the system to be solved (as with the classical harmonic
balance) and allows to use an arbitrarily high number of harmonics (as with
the AFT procedures).

• In the ANM continuation, no iterative process are used to solve the algebraic
system, and hence no problems of convergence arise. The computational cost
is almost predictible and fairly rather low. On the contrary, convergence of
the iterative process can be difficult with AFT procedures ([39, sect. 4.6,
p117]).

• There is no need for FFT/IFFT procedures, which increases the computa-
tional load in the case of AFT approaches.

• No temporal discretization has to be performed (since the whole procedure
is in the frequency domain), and there is therefore no need to cope with
aliasing.

• There is no need to use numerical schemes to compute derivatives. Since the
problem is a quadratic one , the Jacobian is calculated analytically and this
can be done very easily. This is a considerable advantage of the approach
presented here. Indeed, as stated by [39, p17], usually ”analytical calculation
of the Jacobian involves considerable calculation and transformation” but
on the other hand, when considering numerical calculation of the Jacobian,
”for very nonlinear circuits, the error introduced in the Jacobian estima-
tion results in inaccurate updates of the unknowns and a large number of
iterations and possibly no convergence”.

As stated in [12], to apply HB, ”it is always necessary to write specific com-
putation programs for different nonlinear models”. Here, on the contrary, the
procedure is simple and rather general because of the natural splitting between
the automated part, which is independent of the problem (i.e. the transforma-
tion from operators c, l, q to operators L0,L,Q and the ensuing solving using
the ANM), and the part which depends on the particular problem to be solved
(the writing of operators c, l, q) which is let to the users. From the point of
view of the users, this means that the work required is relatively easy and the
software is simple to use. In addition, very few parameters have to be defined
by the users: the number of harmonics in the solution and parameter ǫr in Eq.
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(20), which controls the accury of the ANM computation.

In this paper, we have presented only small-sized systems for the sake of sim-
plicity. The method can be obviously extended in principle to large systems of
equations although this may require some additional technical work, and in-
troduce limitations due to the lack of computer ressources. In [36], the method
has been applied to compute the forced responses of geometrically nonlinear
elastic structures discretized using the finite element method. It is well known
that with problems of this kind, the equations of motion are second order
differential equations in terms of the displacement nodal variables u, and that
they show a polynomial cubic nonlinarity. Choosing the nodal velocity v and
the second Piola-Kirchhoff S (at the Gauss point) as auxiliary variables, the
system of equations can easily be written in the form of a first order sys-
tem with quadratic polynomial non linearities.When a cosine forcing term is
applied, they read (in the discrete form)

u̇ = v

Mv̇ = − ∫

V (BL + BNL(u))tSdv + Fcos(λt)

S = D(BL + 1
2
BNL(u))u

(31)

where M is the mass matrix, D is the Hooke operator and BL and BNL are the
linear and nonlinear strain-displacement operators [37]. In this form, the gov-
erning equations consist in a group of first order differential equations (velocity
definition, equation of motion) and a group of algebraic equations (constitu-
tive law at the Gauss point of the finite elements). Both groups are quadratic
in u and S. The algebra given in annex 1 has been directely introduced into
a home-made FEM code, at the element level.

To conclude, it is proposed to discuss the limitations of this method and
suggest some possible lines of future research. First of all, it is worth noting
that when the original system is not directly in the same quadratic form as
Eq. (3), introducting auxiliary variables, as done in this paper, examples may
lead to additional (possibly non-physical) solutions. For example, in the case
of the clarinet model (example 3), a variable v =

√
γ − p is introduced, and

then further defined by the quadratic equation v2 = γ − p. This definition
corresponds to v = ±√

γ − p. In practical terms, this means that the user has
to check that the branch of solution computed corresponds to a positive v.

The main limitation of the method presented is that the original systems
cannot all be put into the quadratic form Eq. (3). For this reason, problems
where one or several relations are given in the frequency domain (typically,
when some variables are linked through an impedance) cannot be treated.
Similar difficulties arise when the original system contains functions (trigono-
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metric functions, exponential functions, non-integer powers function, etc) that
are applied to the unknowns. The classical pendulum model θ̈ + sin(θ) = 0 is
a good example of systems of this kind. In these cases, we can generally intro-
duce new variables and new differential equations, so that the functions are
generated by the system itself. In the case of pendulum model, v = θ̇ and the
two new variables s(t) = sin(θ(t)) and c(t) = cos(θ(t)) are introduced. Taking
the derivative with respect to time for the last two equations, we obtain

θ̇ = v

v̇ = −s

ṡ = cv

ċ = −sv

(32)

This quadratic system corresponds to the pendulum model, provided the fol-
lowing two initial conditions are added

s(0) = sin(θ(0))

c(0) = cos(θ(0))
(33)

The application of the HBM to Eq. (32) will now be quite straighforward,
but, because of Eq. (33), the final algebraic system will not be quadratic. In
these cases, the application of the ANM continuation is still feasible but this
requires more elaborate algebra for computating the power series, as explained
in ([38,32]). The efficiency of the present method on the pendulum model will
be tested in a near future. Another interesting idea would be to test whether
this method can be used to solve regularized non-smooth dynamic problems,
and for instance, the case of vibrating systems with contact conditions and
friction laws.
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A Appendix

Here, we give the expression for the operators M , C, L and Q in Eq. (13) in
terms of m, c, l, q and H . We recall that Eq. (13) is obtained by substituting
Eq. (11) into Eq. (3) and by collecting the terms with the same harmonic
index (cosines and sines). The inputs of M , L and Q are the vector U , which
contains the Fourier coefficients of Z(t)

U = [Zt
0, Z

t
c,1, Z

t
s,1, Z

t
c,2, Z

t
s,2, . . . , Z

t
c,H, Zt

s,H]t (A.1)

A.1 Constant term

The constant vector c is associated with the harmonic zero. The operator C

is simply

C = [ct, 0t, 0t, . . .]t (A.2)

A.2 Linear term

For the linear operator l, we have

l(Z(t)) = l(Z0 +
∑H

k=1 Zc,k cos(kωt) + Zs,k sin(kωt))

= l(Z0) + l(Zc,1) cos(ωt) + l(Zs,1) sin(ωt) + l(Zc,2) cos(2ωt) + . . .
(A.3)

The operator L is

L(U) = [l(Z0)
t, l(Zc,1)

t, l(Zs,1)
t, l(Zc,2)

t, l(Zs,2)
t, . . . , l(Zc,H)t, l(Zs,H)t]t (A.4)

For the linear operator m, we have

m(Ż(t)) = m(
∑H

k=1 Zs,kkω cos(kωt) − Zc,kkω sin(kωt))

= 0 + m(Zs,1)ω cos(ωt) − m(Zc,1)ω sin(ωt)

+2m(Zs,2)ω cos(2ωt) + . . .

(A.5)

The operator M is

M(U) = [0t, m(Zs,1)
t,−m(Zc,1)

t, 2m(Zs,2)
t,−2m(Zc,2)

t, . . .

. . . , Hm(Zs,H)t,−Hm(Zc,H)t]t
(A.6)
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A.3 Quadratic term

With the notation Z(0) = Z0 and Z(i) = Zc,i cos(ωt) + Zs,i sin(ωt), the decom-
position of Z(t) is conveniently rewritten as

Z(t) =
H∑

i=0

Z(i) (A.7)

For the operator q, we have

q(X(t), Y (t)) =
∑H

i=0

∑H
j=0 q(X(i), Y (j))

= q(X(0), Y (0)) +
∑H

i=1 q(X(i), Y (0))

+
∑H

j=1 q(X(0), Y (j)) +
∑H

i=1

∑H
j=1 q(X(i), Y (j))

(A.8)

When i ≥ 1 and j ≥ 1, q(X(i), Y (j)) give harmonics i + j and i− j as follows:

q(X(i), Y (j)) = 1
2
{q(Xc,i, Yc,j) − q(Xs,i, Ys,j)} cos((i + j)ωt)

+1
2
{q(Xc,i, Ys,j) + q(Xs,i, Yc,j)} sin((i + j)ωt)

+1
2
{q(Xc,i, Yc,j) + q(Xs,i, Ys,j)} cos((i − j)ωt)

+1
2
{q(Xs,i, Yc,j) − q(Xc,i, Ys,j)} sin((i − j)ωt)

(A.9)

By grouping the terms with the same harmonics index, and canceling any
harmonics higher than index H , we have

q(X(t), Y (t)) = q0 +
H∑

k=1

qc,k cos(kωt) + qs,k sin(kωt) (A.10)

with

q0 = q(X0, Y0) +
H∑

j=1

1

2
{q(Xc,j, Yc,j) + q(Xs,j, Ys,j)} (A.11)

and when i ≥ 1

qc,i = {q(Xc,i, Y0) + q(X0, Yc,i)} +
∑i−1

j=1

1

2
{q(Xc,j , Yc,i−j) − q(Xs,j , Ys,i−j)}

+

H∑

j=i+1

1

2
{q(Xc,j , Yc,j−i) + q(Xs,j , Ys,j−i)} +

1

2
{q(Xc,j−i, Yc,j) + q(Xs,j−i, Ys,j)}

(A.12)
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qs,i = {q(Xs,i, Y0) + q(X0, Ys,i)} +
∑i−1

j=1

1

2
{q(Xc,j , Ys,i−j) + q(Xs,j , Yc,i−j)}

+

H∑

j=i+1

1

2
{−q(Xc,j , Ys,j−i) + q(Xs,j , Yc,j−i)} +

1

2
{q(Xc,j−i, Ys,j) − q(Xs,j−i, Yc,j)}

(A.13)

References

[1] A. H. Nayfeh and D.T. Mook, Nonlinear oscillations, Wiley series in nonlinear
science, 1979.

[2] W. Szemplinska-stupnicka, The behaviour of nonlinear vibrating systems -Vol

I- fondamental concepts and methods : application to single-degree-of-freedom

systems, Kluwer academic publishers, 1990.

[3] R. Seydel, From equilibrium to Chaos, Practical bifurcation and stability

analysis, Interdisciplinary Applied Mathematics (Vol 5) Springer Verlag, 1994.

[4] A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical

Computational and Experimental Methods, Wiley series in nonlinear science,
1995.

[5] E. Doedel and H.B. Keller and J.P. Kernevez, Numerical Analysis and Control
of Bifurcation Problems (I) Bifurcation in Finite Dimensions, International

Journal of Bifurcation and Chaos 1(1991) 439-528.

[6] http://manlab.lma.cnrs-mrs.fr/ (last successfully accessed, 17th dec. 2008).

[7] E.J. Doedel, Lecture notes on numerical analysis of nonlinear equations, in: B.
Krauskopf, H.M. Osinga and J. Galan-Vioque (Eds.), Numerical Continuation

methods for dynamical systems, Springer Verlag, 2007, pp.1-49.

[8] Krylov and Bogoliubov, Introduction to Nonlinear Mechanics, Princeton
University Press, New Jersey, 1947, English translation of Russian edition from
1936.

[9] M. Urabe, Galerkin’s procedure for nonlinear periodic systems, Arch. for

Rational Mechanics and Analysis 20(1965) 120-152.

[10] A. Stokes, On the approximation of nonlinear oscillations, Journal of differential

equations 12(1972) 535-558.

[11] M. S. Nakhla and J. Vlach, A piecewise harmonic balance technique for
determination of periodic response of nonlinear systems, IEEE Trans. Circuit

Theory 23(1976) 85-91.

[12] Z.K. Peng, Z.Q. Lang, S.A. Billings, G.R. Tomlinson, Comparisons between
harmonic balance and nonlinear output frequency response function in nonlinear
system analysis, Journal of Sound and Vibration 311(2008) 56-73.

24



[13] S.L. Lau , Y.K. Cheung , Amplitude incremental variational principle for
nonlinear vibration of elastic systems, ASME Journal of Applied Mechanics

28(1981) 959-964.

[14] V. P. Iu , Y.K. Cheung , Non linear vibration analysis of multilayer
sandwich plates by incremental finite elements, Part I Theoretical development,
Engineering Computation 3(1986) 36-42.

[15] C. Pierre, A. A. Ferri, H. Dowell , Multi-harmonic analysis of dry friction
damped systems using an incremantal harmonic balance method, ASME

Journal of Applied Mechanics 52(1985) 958-964.

[16] F.H. Ling, X.X. Wu , Fast Galerkin method and its application to determine
periodic solutions of non-linear oscillators, International Journal of Non-linear

Mechanics 22(1987) 89-98.

[17] S. Navicet, C. Pierre, F. Thouverez, L. Jéséquel, A dynamic Lagrangian
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[34] R. Arquier, Une méthode de calcul des modes de vibrations nonlinéaires de
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méthode asymptotique numérique, Comptes rendus de l’Académie des Sciences,

Paris 324(1997) Serie IIb 171-177.

[39] B. Troyanovsky, Frequency Domain Algorithms for simulating large signal
distortion in semiconductor devices, PhD Thesis, Stanford University, 1997.

26


