
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Semantics-aware image understanding / Pasini, Andrea. - (2021 Oct 19), pp. 1-141.
Original

Semantics-aware image understanding

Publisher:

Published
DOI:

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2934670 since: 2021-10-27T13:08:21Z

Politecnico di Torino

Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (33.th cycle)

Semantics-aware
image understanding

Andrea Pasini
* * * * * *

Supervisors
Prof. Elena Baralis, Supervisor

Prof. Benoit Huet, Co-supervisor

Doctoral Examination Committee:
Prof. Rosa Meo, Referee, Università degli studi di Torino
Prof. Elisa Quintarelli, Referee, Università degli studi di Verona

Politecnico di Torino
September 2021

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Andrea Pasini

Turin, September 2021

www.creativecommons.org

Summary

Deep learning models are characterized by high complexity and low interpretabil-
ity, which are the payload for obtaining precise results in difficult tasks such as im-
age understanding. Moreover, these models may suffer from an inadequate semantic
understanding of the input data, as they are typically focused on a limited task
(e.g., classifying images). Conversely, the human brain can learn from different real
world activities and derive a more complete semantic knowledge. In this thesis, we
design a methodology for inferring semantic knowledge directly from images, with
the aim of enhancing image understanding tasks. Our work focuses on the study
of object relationships, such as relative position and size, to infer a better semantic
understanding of the analyzed pictures.

Our research provides a first application called SAD, a Semantic Anomaly De-
tection method to identify anomalies in the predictions of semantic segmentation
neural networks. Semantic object relationships are exploited to derive an inter-
pretable knowledge base, describing common configurations of normal objects. Our
methodology highlights potential classification errors made by a neural network
by identifying uncommon object relationships according to the learned knowledge
base. The detected anomalies are presented to the user in an interpretable way,
facilitating the analysis of the neural network accuracy.

Afterwards, we present SImS (Semantic Image Summarization), a framework
designed to summarize big image collections. This task finds applications such as
providing previews of personal albums (e.g., Google Photos) or suggesting thematic
collections based on user interests (e.g., Pinterest). These objectives require a com-
plete semantic understanding of the image collection, as simple visual features and
textual tags would not be sufficiently informative. To achieve this goal, we pro-
pose a technique based on frequent subgraph mining, which analyzes scene graphs.

iii

These data structures are automatically derived from the images by our algorithm
and allow a complete representation of the image content. The output summary
consists of a set of frequent scene graphs describing the underlying patterns of
the collection. These results are more interpretable and provide more interesting
descriptions with respect to previous techniques. Moreover, in the experimental re-
sults we show that our patterns achieve high summary quality in terms of coverage
and diversity.

iv

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Elena Baralis,
who made me grow during the Ph.D. period as researcher and teaching assistant.
I also thank the reviewers of my thesis committee, Prof. Rosa Meo and Prof.
Elisa Quintarelli, for their highly-valuable advice that allowed this thesis to grow
in clarity and completeness. I also appreciated their positive comments that made
me proud of this three-year work and encouraged me for my professional future.

I’d like to thank all the other professors - Paolo Garza, Daniele Apiletti, and
Luca Cagliero - I collaborated with in this period. I would like to acknowledge
all the colleagues at Lab5, for the time spent working together, hanging out, and
during summer-school periods. In particular, a great thank to Eliana, who started
this journey with me, Evelina, who integrated me in the group, and Elena, for her
suggestions (and the nice walks between Politecnico and the train station). Thanks
Flavio and Giuseppe, colleagues and roommates for a short but intense period,
Francesco for his great technical advice, and Alessandro who is from my same town
and shared with me a lot of pleasant train journeys. All of the Lab5 members were
also fundamental to confront ideas and have support during 2020, which as we all
know, has been full of difficulties. A special thanks to my parents and my brother,
who supported (and bore) me in the most critical periods. I would also like to
thank my cousin, Elisa, who was fundamental to encourage me to not give up with
setbacks, my mentor Alex, and my friends (engineering colleagues) Luca and Ivan.

vi

Contents

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Dissertation plan and research contribution 3

1.1.1 Dissertation plan . 4

2 Background 5
2.1 Image annotation tasks . 5

2.1.1 Classification . 6
2.1.2 Object detection . 8
2.1.3 Semantic segmentation . 10
2.1.4 Instance segmentation . 11
2.1.5 Panoptic segmentation . 12

2.2 The role of contextual information 14
2.2.1 Context types . 14
2.2.2 Contextual information for object recognition 15

2.3 Scene graphs . 19

3 Diving into semantic image understanding: Position relationships 21
3.1 Related works on relative position 22

3.1.1 Coordinate-based positions 22
3.1.2 Discrete positions with bounding boxes 23
3.1.3 String-based methodologies 24

3.2 Semantic segmentation to panoptic segmentation 27
3.3 Relative position computation . 29

vii

3.3.1 Relative position features 31
3.4 Experimental evaluation . 35

4 SAD: detecting anomalies in image classification by means of se-
mantic relationships 37
4.1 Related works in the anomaly detection field 40

4.1.1 Unsupervised methods . 41
4.1.2 Supervised methods . 42
4.1.3 Semi-supervised methods . 43

4.2 The Semantic Anomaly Detection approach 44
4.3 Knowledge Base Definition . 46

4.3.1 Object Positions . 50
4.3.2 Object Sizes . 50
4.3.3 Co-Occurrence . 52

4.4 Anomaly Detection . 56
4.4.1 Anomaly-Only method . 58
4.4.2 Delta method . 58
4.4.3 WTA method . 59

4.5 Experimental evaluation . 60
4.5.1 Dataset . 60
4.5.2 Knowledge base analysis . 61
4.5.3 Anomaly detection . 64
4.5.4 Lessons learned . 69

5 SImS: Semantic Image collection Summarization with frequent
subgraph mining 71
5.1 Related works on image summarization 75

5.1.1 Extraction of image features 76
5.1.2 Image summarization methodologies 78

5.2 Related works on frequent subgraph mining 83
5.3 Frequent Scene Graph mining . 84

5.3.1 Running time . 84
5.3.2 High-entropy relationships 85
5.3.3 Repeated items . 86

5.4 Semantic Image Summarization . 87

viii

5.5 Summarization patterns . 88
5.6 Scene graph computation . 90
5.7 Pairwise Relationship Summary generation 90
5.8 Scene graph preprocessing . 92

5.8.1 Edge pruning . 93
5.8.2 Node pruning . 94

5.9 Scene graph mining . 96
5.10 Evaluation methodology . 97
5.11 Experimental evaluation . 101

5.11.1 Pairwise Relationship Summary generation 102
5.11.2 Scene Graph Summary generation 105
5.11.3 Comparison with other summarization techniques 109

6 Conclusion and future works 113

Bibliography 117

ix

List of Tables

3.1 Relative position labels for a subject-reference pair. 29
3.2 Rules to extract relative position features from strings. 31
3.3 F1 score for the pairwise relative position computation. 36
4.1 Properties and associated categories. 46
4.2 Certainty Factor examples. 62
4.3 Area relationship examples. 63
4.4 Position relationship examples. 63
4.5 Number of detected anomalies in 2000 test images. 65
4.6 Precision and recall for the exception and normal classes. 67
5.1 Relative position labels for an edge connecting a subject-reference

pair. 88
5.2 SGS generation results on whole COCO training set (118K images). 106
5.3 SGS generation results on whole COCO training set (118K images). 107

x

List of Figures

2.1 Image classification examples with AlexNet [64]. 7
2.2 Object detection examples with YOLO [91]. 9
2.3 Examples of semantic segmentation for COCO [76] (left) and Cityscapes

[28] (right) datasets. 10
2.4 Differences between semantic and instance segmentation, on COCO

[76] dataset. 11
2.5 Examples of panoptic segmentation [60] on COCO dataset. 12
2.6 Simplified example of panoptic segmentation labeling. 13
2.7 Example of scene graph overlapped to a picture. 19
3.1 Projection of 2D objects to a 3D space [24]. 22
3.2 Issues with position computation by means of bounding boxes. . . . 24
3.3 Examples of string-based image representation. 25
3.4 Object occlusion. The airplane is split by the man into two regions. 27
3.5 Extraction of connected components. 28
3.6 Object positions. This image provides some examples of position

relationships between a subject (light blue region marked with s)
and a reference (yellow region marked with r). 30

3.7 String-based feature extraction. 32
3.8 Bounding-box-based feature extraction. 34
3.9 Labeled samples from our position dataset. 35
4.1 Example of anomaly detected by SAD on the ADE20K dataset. . . 39
4.2 The Semantic Anomaly Detection process. 44
4.3 Histograms for different minsup and thrh values. 61
4.4 Histograms for each category. minsup=10. 62
4.5 Anomaly detection results, Configuration a. 66
4.6 Anomaly detection results, Configuration b. 66

xi

4.7 Delta method results, using only co-occurrence histograms 68
4.8 Delta method results, using only position and size histograms . . . 68
5.1 Comparison between traditional summaries [119]. 72
5.2 Example of summary patterns extracted by SImS from the COCO

dataset. 74
5.3 Extraction of visual features to characterize images. 76
5.4 Image representation with Bag Of Words (BOW). 77
5.5 The semantic gap with visual features. 78
5.6 Image summarization with Self Organizing Maps [31]. 79
5.7 Example of frequent scene graphs presenting high-entropy relation-

ships. 85
5.8 Example of crowded images with repeated items. 86
5.9 Example of frequent scene graphs presenting repeated items. 86
5.10 SImS architecture. 87
5.11 Example of image representation by means of scene graphs. 89
5.12 Node pruning. 95
5.13 Subgraph isomorphism. 98
5.14 Support distribution of PRS histograms. 102
5.15 minsuph sensitivity. 103
5.16 Entropy distribution of PRS histograms. 104
5.17 Example histograms in the PRSf . 105
5.18 Examples of frequent graphs and represented images, minsup=0.001

(config. 5). 108
5.19 Quantitative comparison between SImS and k-Medoids on COCO

Subset 1 (driving-skiing, 4865 images). 110
5.20 Quantitative comparison between SImS and k-Medoids on COCO

Subset 2 (garden-church, 890 images). 110
5.21 Qualitative comparison on COCO Subset 1 (“skiing”, “driving”),

with 5 summary elements. 111
5.22 Qualitative comparison on COCO Subset 2 (“church”, “garden”),

with 12 summary elements. 112

xii

Chapter 1

Introduction

During the last years, deep learning techniques are achieving increasingly higher
performances in tasks such as image recognition, natural language processing, and
sound analysis. The availability of big and heterogeneous data sets allows teach-
ing these models how to recognize patterns characterized by high complexity and
variability. Deep neural networks rely on many stacked layers to generate abstract
representations of the input data and provide the final result, for example a class
label or a segmentation mask, in the case of images. These complex structures
allow understanding and classifying data with very high precision. However, the
knowledge hidden in the inner layers of deep neural networks is not easily accessible
since it is encoded in the form of numerical hyperparameters. For this reason, the
inference process adopted by these kinds of models cannot be easily interpreted
by human beings. Moreover, training a model for addressing a single task (e.g.,
classifying images), does not allow it to generalize the learned knowledge. Indeed,
for example, gaining experience in multiple tasks and environments is fundamen-
tal for the human brain to understand more general patterns underlying the real
world [30].

Following the previous considerations, deep learning models can suffer from an
inadequate semantic understanding of the analyzed data. Fortunately, the appli-
cation of semantics may help to tackle this issue. Semantic information can be
provided by external sources, such as ontologies, or it can be derived directly from
data, following a set of formal rules and procedures. Such representations can be
used for obtaining interpretable descriptions of the analyzed data, with applications

1

Introduction

in the fields of image understanding, speech recognition, and text processing.

Ontologies represent one of the most common approaches for encoding seman-
tics. These formal languages, such as OWL (Web Ontology Language) [11], allow
representing knowledge by means of concepts, properties, and relationships. Ab-
stract concepts and categories (e.g., city, road), can be mapped to object instances
(e.g., Turin, SP33) and form knowledge graphs or knowledge bases (e.g., Con-
ceptNet [108], WordNet [82]). These data structures find common applications in
data management tools for organizations and information retrieval. Furthermore,
knowledge bases can be exploited by expert systems to address tasks such as medi-
cal diagnosis, fraud detection, and computer vision [7, 98]. In this thesis, we define
semantics by means of high-level relationships between visual objects, with the aim
of addressing different image understanding tasks.

Semantic reasoning finds analogies with the working principles of the human
intellect, which is able to work with both low-level details and complex abstract
representations [30]. In speech recognition and visual understanding, our brain
considers local low-level proofs about sounds and objects, integrating them with
higher-level contextual information [9]. Indeed, a high-quality interpretation of the
external world requires an overall analysis of the available information. Unclear
sounds or occluded objects can be reconstructed thanks to previous experiences
and the abstract modeling of the real world priors. Different works in computer
vision adopted this idea to improve standard image recognition techniques, either
by creating new models [73] or by post-processing the results [39]. In our work,
we will exploit contextual information as well, focusing on object relationships to
describe the image content.

Although the research community aims at designing complex models with a full
semantic understanding of the input patterns and with high-accuracy predictions,
research studies have shown that another key property of machine learning models
is interpretability. When deploying complex architectures to sensible fields, such
as medicine, the final user may be interested in understanding the main reasons
why the model produced a certain outcome. This requirement finds applications in
trust, fairness, and debugging purposes [45, 94]. Deep learning models are known
to be low-interpretable models (black boxes), as their internal weights hide the
complexity of the reasoning underlying a certain prediction. Interpretability can be
enhanced by analyzing the behavior of a model under slight variations of the input

2

1.1 – Dissertation plan and research contribution

or by analyzing its internal parameters [47]. Additionally, the research community
is moving toward models that are interpretable by design. To this aim, our work
relies on interpretable ways of representing semantics, such that the final results
can be described with simple rules and visual representations.

Thesis statement: The aim of this thesis is to model the behavior of visual
data by means of semantic and interpretable descriptions. The extracted knowl-
edge can be exploited to enhance image understanding tasks by inspecting possible
classification errors made by neural network models and to derive interpretable
summaries from big image collections. The next section provides the complete
dissertation plan.

1.1 Dissertation plan and research contribution
In this thesis, we aim at demonstrating that the introduction of semantic infor-

mation in the computer vision field can enhance the understanding of the visual
content and it is fundamental for generating interpretable and reliable results. As
we will describe in Chapter 2, many image understanding techniques are purely
based on deep learning models, which are hardly interpretable and require many
labeled data samples.

Conversely, our research focuses on the extraction of semantic patterns from
visual objects, trying to explicitly model contextual information and the overall de-
scription of the image. The proposed semantic approach is based on reasonings at
object-level, which allow inspecting high-level patterns in a set of images. We man-
aged to introduce this methodology in two computer vision fields, where the research
community mainly considered lower level features (e.g., simple visual descriptors
of the image) or black-box models such as deep neural networks. Specifically, we
modeled the semantic image understanding task as a knowledge extraction process
from a set of labeled images, with the following goals: (i) Learning common object
relationship patterns to identify anomalies in labeled images (SAD [88]), and (ii)
learning common object patterns to summarize the content of an image collection
(SImS).

Both research lines share the same way of representing the visual information
inside images. In particular, we designed a process to extend the semantic content

3

Introduction

of panoptic and semantic image segmentation, which are techniques that mainly
rely on deep learning models, as we will show in Section 2.1. Even if deep learning
models can provide a detailed labeling of the input images, this information is
limited to the association of pixels with a given object category. In our work we
improve image understanding by introducing object relationships of different types,
such as the relative position, co-occurrence and size. In Chapter 3 we describe our
technique for inferring object relationships directly from pixelwise object labeling
(i.e., semantic and panoptic segmentation).

We proposed a first application of the semantic reasoning about object rela-
tionships with our work on Semantic Anomaly Detection (SAD [88]). This study
has the aim of identifying potentially misclassified objects in semantic segmenta-
tion, by comparing the input images with common high-level object patterns that
are learned from a training dataset. In Chapter 4, after providing an overview of
previous works in anomaly detection, we describe in detail the proposed semantic
approach.

The second application, called Semantic Image Summarization (SImS [pasini2020sims]),
exploits a similar learning pattern with the goal of summarizing an input image
collection labeled with panoptic segmentation. We use Frequent Subgraph Mining
techniques (FSM) to mine the important patterns that will be included in the final
summary. Differently from our method, previous works (see Section 5.1.2) typically
generate summaries based on visual features such as color histograms or Scale In-
variant Feature Transform (SIFT). We show in Chapter 5 that our approach, based
on the representation of the images with semantic scene graphs, is able to provide
more interpretable and effective summaries.

1.1.1 Dissertation plan

This thesis is organized as follows. Chapter 2 provides background knowledge
describing the fundamental image understanding tasks and their limitations. Chap-
ter 3 describes a novel methodology for deriving object relationships, focusing on
relative position. The aforementioned classifier is exploited in Chapter 4 to define
SAD, our method for Semantic Anomaly Detection, and in Chapter 5 to derive im-
age collection summaries. Finally, Chapter 6 draws conclusions and outlines future
works.

4

Chapter 2

Background

Before describing the proposed research, we provide a complete overview of image
understanding tasks, focusing on various types of image representation. Specifically,
in Section 2.1 we will analyze the different image labeling approaches, in Section 2.2
we will describe previous works on visual context modeling, and in Section 2.3 we
will review related works on scene graph representation.

2.1 Image annotation tasks
In the seventies, the earliest works in image classification were mainly based

on template matching and part-based models [36]. The issues with these hand-
crafted feature extraction methods were the high amount of effort for their design
and the low scalability to more complex tasks. To contrast these problems, one of
the first attempts of handwritten digits classification by means of trainable feature
extractors was proposed in 1989 by LeCun et al. [70]. This work is popular for
being the pioneer of a new type of neural networks based on trainable filters. The
samples they used for training their model were then extended in 1998, giving rise
to the famous MNIST dataset [71]. Later in 2012, with modern deep convolutional
neural networks (CNNs), Ciregan et al. [25] succeeded in reaching approximately
human performance in digit recognition.

The complexity of hand-written digit recognition tasks, in terms of image sizes
and number of classes, was no more enough challenging and it was soon enhanced
by more advanced classification problems. For example, in 2006-2007 the Pascal

5

Background

VOC (Visual Object Classes) [34] project proposed new classification and detection
benchmarks, focused on a wider variety of object classes. The dataset consisted of
9,963 images retrieved from Flickr and 20 object classes, such as animals, objects,
and people. A subset of these images provided also pixel-level annotations to ad-
dress the object segmentation task. In 2009, dataset size increased again with the
Cifar-10 dataset [63], which provided 60,000 image samples belonging to 10 object
classes (e.g., “airplane”, “cat”).

These new benchmarks brought researchers to design new architectures based on
convolutional layers, achieving high-quality results. As a consequence, the growth
of model complexity (i.e., number of parameters), which augments the likelihood
of overfitting, required more and more data for the training process. Hence, a new
attempt to scale up dataset size was the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [96], launched in 2010. The aforementioned benchmark
contains 1.2 million training images with 1000 object categories, extracted from
the ImageNet dataset [32]. Annotations include image classification and object
detection labels. AlexNet [64], with 60 million parameters and 500,000 neurons,
was one of the first models to successfully address the ILSVRC challenge, and for
this reason it is considered one of the most influential papers published in com-
puter vision. Together with prediction models, also dataset annotation techniques
did significant improvements, relying on crowdsourcing frameworks where different
workers are asked to either draw bounding boxes or validate the quality of existing
annotations [109].

In the last ten years, newer datasets like Microsoft COCO [76], Cityscapes [28],
and ADE20K [125] enhanced the complexity of image understanding, including
many annotated objects in a single picture and proposing new tasks such as instance
segmentation and panoptic segmentation [60]. To clarify the complex panorama of
this research field, in the following we provide a categorization of the main image
recognition tasks that have been developed so far.

2.1.1 Classification

One of the most straightforward image understanding tasks is represented by
classification, which consists of describing a picture by assigning a single class la-
bel among a predefined set. Image classification algorithms typically output the

6

2.1 – Image annotation tasks

Figure 2.1: Image classification examples with AlexNet [64].

final class label or a discrete probability distribution specifying the likelihood of
each class. Unfortunately, a single textual tag is not sufficient to describe com-
plex visual scenes. For this reason, image classification datasets usually provide
pictures containing one or few objects of the same type (e.g., a pet, a person, or
a flower). Common applications of this approach are image retrieval, automatic
personal album organization, user recognition, and medical data analysis.

Convolutional neural networks (CNNs) proved to be the best models for ad-
dressing image classification. These architectures are composed of different building
blocks, such as convolutional layers and pooling filters. The former are responsible
of a multi-stage feature extraction process, which consists of applying many slid-
ing filters to transform the input features (or the input image for the first layer).
Instead, pooling layers act as down-sampling filters to reduce the amount of pro-
cessed information. Typically, CNNs terminate with a final softmax layer that is
responsible for the generation of the output class vector with the different class
likelihoods [44].

Various convolutional architectures have been proposed in literature. Most of
these CNNs are used as backbones for detection and semantic segmentation, as we
will see in the next sections. The turning point for the progress of convolutional
networks is represented by AlexNet [64], which was successfully trained on the
ImageNet dataset. This was the first method that managed to tackle the complexity
of ImageNet, characterized by a very large number of classes and high in-class
variability. Figure 2.1 shows some classification examples provided to AlexNet,
where the confidence vectors of the predicted classes are shown in the form of

7

Background

histograms below each image.

The structure of AlexNet consists of a deep convolutional neural network with
five convolutional layers, three pooling layers and a 1000-neuron softmax layer. Its
performances were overcome by VGGNet in 2014 [104], characterized by very small
(i.e., 3x3) convolution filters and 16-19 weight layers. Even deeper models were pro-
posed in 2015 by Google, such as Inception-v1 (GoogLeNet) [110]. This network is
made of 22 convolutional layers with multiple size filters (i.e., 1x1, 3x3, 5x5). Un-
fortunately, such a high number of layers requires much data for the training phase
and it more likely brings to the vanishing gradient issue. This problem occurs dur-
ing back-propagation, where the derivative of the prediction error becomes smaller
and smaller while flowing toward the input layer. A solution was proposed in 2016
with Residual networks [51], characterized by residual connections that allow the
gradient to skip some convolutional layers when necessary. This architectural so-
lution was fundamental to reach up to 152 stages, and it was precursor of other
recent models like Inception-v4 [111].

Despite the wide range of applications, image classification is far from being
considered a general methodology for image understanding. Indeed, it cannot iden-
tify multiple objects in the same picture and it is not designed to inspect object
relationships. In the next section, we will focus on a task that partially solves this
issue, namely object detection.

2.1.2 Object detection

Object detection requires to automatically inspect the position of each object in
a picture and assign the correct class labels. It finds many applications, such as
artificial vision for robotics or autonomous driving, security systems, and search-
engines. The object positions are identified by means of enclosing rectangles, called
bounding boxes. Specifically, the output of an object detection model is required
to include a tuple of 4 values indicating the bounding box position and size (i.e.,
x, y, width, height) for each object. Every bounding box is then associated with a
class probability vector.

The first object detection models worked by iteratively applying a classification
CNN to rectangular subsets of the image at different scales. The rectangular regions
with the highest prediction confidence were then included in the final result. Among

8

2.1 – Image annotation tasks

Figure 2.2: Object detection examples with YOLO [91].

these architectures, the R-CNN (2014) [43] was based on a region proposal method
that used selective search to define up to two thousand bounding boxes where
the CNN should be applied. This model was accurate but very slow since the
convolutional neural network had to be executed for each proposed region.

To speed up the process, the Fast R-CNN [42] architecture derives a features
map for the whole image, using VGG as backbone [104]. Afterwards, selective
search is applied to the picture to propose a set of bounding boxes. These regions
are exploited for cropping the features map at the specified positions. This opera-
tion, called ROI (Region Of Interest) pooling, allows deriving a set of features for
each bounding box without running multiple times the convolutional layers. Each
cropped features map can be finally processed with an MLP or an SVM classifier
to derive the output labels.

This detection architecture was further refined in 2015 with Faster R-CNN [92],
where selective search was replaced by a more efficient technique. Specifically, a
region proposal network analyzes the features map to automatically derive the can-
didate bounding boxes. This operation reduces running time and allows obtaining
better region proposals. A significant improvement was then brought by Redmon
et al. with YOLO (You Only Look Once, Figure 2.2) [91], convolutional neural
network (whose backbone is inspired by GoogLeNet [110]) that takes as input the
whole image and directly predicts both the bounding box coordinates and the class
vectors.

9

Background

Figure 2.3: Examples of semantic segmentation for COCO [76] (left) and Cityscapes
[28] (right) datasets.

2.1.3 Semantic segmentation

Semantic segmentation became popular with the need for more detailed labeling
information. Indeed, differently from classification and detection, this task requires
assigning an object class to each pixel of the image. This allows inspecting the
presence of different objects, their position and shape, being suitable to address
complex challenges such as autonomous driving, drone flight control, and robot-
assisted surgery.

Datasets like Microsoft COCO [76], Cityscapes [28], and ADE20K [125] provide
the correct annotation format to train semantic segmentation models in differ-
ent domains. For example, Microsoft COCO presents 200K labelled images with
80 general purpose object categories (e.g.,“car”, “cup”) and 53 stuff classes (i.e.,
uncountable objects like “sky”). Other datasets are more specialized on a given
domain, such as Cityscapes that focuses on street view images, with 30 different
class labels. Figure 2.3 shows some examples of segmented images from COCO and
Cityscapes.

Typically, the output of semantic segmentation is described with a three-dimen-
sional matrix of shape nClasses×imageWidth×imageHeight. This entails a very
complex task since, for each pixel of the image, the model is required to generate
a vector with the class probabilities. The first methods for image segmentation
were based on graphical models such as Conditional Random Fields (CRF) [65].
Later, with the development of convolutional neural networks, encoder-decoder
architectures became more popular. Inside these models, the encoder is responsible
for extracting a set of features whose size (i.e., width and height) is typically smaller
than the one of the input image. The decoder has the task of upsampling these

10

2.1 – Image annotation tasks

(a) Semantic segmentation. (b) Instance segmentation.

Figure 2.4: Differences between semantic and instance segmentation, on COCO
[76] dataset.

features to match the dimension of the input picture and generate the final class
labels. U-Net (2015) [95] and Seg-Net (2017) [8] are just some example neural
networks following this architecture.

A lot of efforts have been made to improve the ability of these networks of consid-
ering contextual information, which is deemed to have high importance in this task.
For example, some attempts exploited CRFs to understand the image globally and
refine the final class labels [66]. However, these approaches were very slow and lost
their popularity with newer neural networks. Indeed, recent methods successfully
increased the receptive field (i.e., the amount of analyzed context) of convolutional
neural networks by means of dilated convolutions (DeeplLab, 2017 [22]) and pyra-
mid pooling layers (PSPNet, 2017 [123]).

2.1.4 Instance segmentation

Whereas semantic segmentation helps to describe visual objects in a very precise
way, it still does not completely capture the semantic content of an image. Specifi-
cally, some objects with the same class (e.g., two or more cars, Figure 2.4a) may be
touching together. With semantic segmentation, it would not be possible to distin-
guish the different object instances in this case. Moreover, occluded objects may
be split into two or more segments in the same picture: In this situation, it would
not be possible to understand whether the segments belong to the same instance.
Differently from semantic segmentation, object detection can tackle this issue as
each bounding box represents a single object instance. However, as a drawback,
detection approximates object shapes with rectangular bounding boxes.

11

Background

(a) Object instances (Z). (b) Class labels (L). (c) Panoptic segmentation.

Figure 2.5: Examples of panoptic segmentation [60] on COCO dataset.

Instance segmentation brings the advantages of both semantic segmentation and
object detection by identifying object instances with a bounding box and their
shapes with a boolean mask (Figure 2.4b). The most popular architecture for
instance segmentation is called Mask R-CNN [52], which is composed of a region
proposal network followed by a model for classifying the objects and a decoder
structure for generating the boolean masks.

2.1.5 Panoptic segmentation

Panoptic segmentation is a very recent computer vision task introduced in
2018 [60] with the Microsoft COCO dataset. The word panoptic derives from
Greek and has the meaning of overall view: The objective is to merge instance seg-
mentation and semantic segmentation within the same operation. COCO dataset
distinguishes between countable objects, such as “car” or “table”, and stuff classes,
which refer to uncountable elements, like “sky” or “grass”. In the case of countable
objects, instance segmentation labels are provided, while for stuff classes the an-
notations are encoded with the semantic segmentation format. More specifically,
panoptic segmentation assigns to each pixel of the analyzed image (i) a class label
and (ii) an object identifier. Pixels that are labeled with stuff classes are associated
with a placeholder identifier equal to −1, as their instances are not defined. The
final output (Figure 2.5c) is encoded with two matrices (Z, L) with the same size
of the input image. The former, Z (Figure 2.5a), specifies the object identifier of
each pixel, while L (Figure 2.5b) associates the class label.

To clarify this description, Figure 2.6 shows panoptic segmentation applied to
a very small-resolution image. This simplified picture reminds to a room with
two red paintings on the background and a yellow table leaning on the blue floor.

12

2.1 – Image annotation tasks

(a) Object instances (Z). (b) Class labels (L).

Figure 2.6: Simplified example of panoptic segmentation labeling.

Figure 2.6a depicts the object identifier matrix Z. It declares the presence of three
object instances: 2 squares with identifier 1 and 3 (suppose they represent paintings
on a wall), and a table with identifier 2. All the other pixels are identified with the
placeholder −1, which means either they do not belong to a specific class or they
belong to stuff annotations. Figure 2.6b completes the analysis by depicting the
labeling matrix L. Specifically, it shows that the two instances 1 and 3 belong to
the same class 12 (i.e., painting), while the instance with identifier 2 belongs to class
9 (i.e., table). The blue pixels, which belong to a stuff annotation (marked with
−1 in Figure 2.6a), are labeled with class 34 (i.e., floor). Finally, the background
pixels are labeled in L with −1, which means that their class is not specified (either
because a model is not able to recognize it, or because the ground-truth labels in
the considered dataset do not include a background class).

The first approaches to panoptic segmentation worked by applying heuristics
to merge the results generated from separate instance segmentation and semantic
segmentation models [60]. Some of these techniques also defined ways of addressing
occlusion issues between the predicted instances [68]. Other models, instead, take
the advantage of a single convolutional neural network to directly produce the
desired output [59, 116, 117].

In this thesis, we will exploit panoptic segmentation to derive object relation-
ships, such as the relative position, and infer the necessary contextual information
for anomaly detection (see Chapter 4) and image collection summarization (see
Chapter 5). In the next section, we will review previous works on contextual in-
formation modeling, with the aim of better understanding the contribution of this
thesis.

13

Background

2.2 The role of contextual information
Interesting studies on the human brain processes that are responsible for ob-

ject recognition show that contextual information plays a very important role [9].
Specifically, reasoning on context is fundamental when trying to recognize objects
that are partially occluded or that are too far for being properly in focus [87].
For instance, many different object categories may be visually similar, such as a
calculator and an old mobile phone. In these cases, the different context frames,
such as the environment type (e.g., “kitchen”, “garden”) or the other surrounding
objects in the image, have demonstrated to be helpful in the recognition task for
the human brain [9].

In another study, Biederman et al. [13] demonstrated the importance of contex-
tual information for human subjects by inspecting object relationships. The author
identified five different types of relationships between objects in the same image:
(i) interposition, describing objects occluding each other, (ii) support, for objects
that are lying on surfaces, (iii) object co-occurrence in specific scenes, (iv) position
in the image, and (v) relative size between objects. The study showed that object
recognition suffers from a violation of such common relationships, causing a slower
detection process or inaccurate interpretations.

2.2.1 Context types

Deep learning models for object recognition (i.e., detection or segmentation)
are typically based on the appearance of visual features, such as colors, textures,
edges, and shapes. These architectures implicitly include contextual information
thanks to a wide receptive field of convolutional filters. Whereas the increase of the
receptive field may be a solution for capturing more context [22, 123], a parallel
research branch in computer vision is focused on the integration of deep learning
models with explicit contextual information.

Literature works inspect the usage of context in two different ways. Some meth-
ods exploit post-processing techniques to refine the class labels of the identified ob-
jects, while others embed context modeling directly inside neural networks. More-
over, two types of contextual information have been identified: local context and
global context [39]. Local context is defined as the information that can be retrieved
from the immediate surroundings of the object to be recognized. For example, when

14

2.2 – The role of contextual information

trying to distinguish a soccer player from a tennis player, the color of the playing
field around the person may help in the detection. Visual features, such as colors
and textures, are not the only type of information that should be considered for
local context. Indeed, the relationships between the target object and those in
its neighborhood can be exploited for a better scene understanding. For example,
the relative position between objects could describe common patterns in real-world
scenes, such as “chair is likely near table” or “water bottle is likely on table”, which
could be useful for refining the predicted object labels. Also scale relationships
may be used for this purpose. For example, a bush will be typically smaller than a
person, while a tree will be taller. Since scale context is more difficult to be consid-
ered due to perspective reasons, some methodologies solve this issue by mapping
perceptual object sizes to their real ones by means of perspective reasoning [24].

Global context is instead more focused on the semantic meaning of the overall
scene. To make an example, if the image under analysis represents a kitchen, this
knowledge will help in recognizing objects like “oven” and “sink” that occur with a
higher probability in this kind of scene. The relative position between objects may
be also used for global context. For instance, the estimation of the object classes
in a given scene could be refined based on the overall configuration of the objects
in the image.

2.2.2 Contextual information for object recognition

To give some additional details about the usage of contextual information, we
propose in this section a review of popular methods in literature. We divide our
analysis by focusing first on the methodologies that exploit contextual information
by integrating the results of standard object detectors. Afterwards, we will review
other techniques based on deep learning models that embed context directly into
the neural network.

Context as a separate building block

Instance level reasoning is certainly one of the most effective ways of modeling
context. For example, Zitnick et al. [129] inspected the importance of contextual
features, like co-occurrence, absolute and relative object location, for interpreting

15

Background

generated image clip arts. They exploited a statistical measure, called mutual infor-
mation, to understand the effect of each context type when trying to select scenes
with semantically equivalent meanings. Similarly, Divvala et al. [33] conducted an
empirical study on real images about context in object detection. They employed
different types of contextual information, including global context (e.g., scene-level
features), co-occurrence, absolute position, and size. The empirical results of these
works demonstrated that high-level semantic information is fundamental for the
tasks of image classification and understanding.

Simple detection algorithms focus on a limited number of context types. For in-
stance, some of them only rely on the co-occurrence of the object classes, computed
by counting the number of times an object pair appears in the training pictures.
The results of baseline detection models are then typically refined by means of
Conditional Random Fields (CRFs) [89]. The authors in [80] proposed a novel
way of modeling object co-occurrence, without explicitly considering object classes.
Their approach builds a visual memex, which is a graph containing as nodes all
the dataset object instances, described with their visual features. A first type of
graph edges connects visually similar object instances, which more likely belong to
the same class. Additionally, another set of contextual edges connects the object
instances that appear in the same image in the training set. When a new image is
being labeled, its object instances are compared with the ones in the visual memex,
then both contextual edges and visual similarities are used to refine the initial labels
predicted by a baseline classifier.

A similar methodology is exploited in [72] for a different purpose. Given the
application of a baseline detection method to a set of images, the output objects
that present lower prediction confidence (i.e., they may be misclassified) are consid-
ered to discover possible new class labels in an unsupervised way. The contextual
information of these objects is described by means of relative position relationships
(e.g., above, below) with other instances in the image. At this point, the visual
features of the low-confidence objects in the dataset, together with their context
vector, are clustered to discover new categories. The obtained cluster centroids can
be used to describe the discovered classes from a visual and contextual point of
view.

Galleguillos et al. model the global contextual information by means of co-
occurrence and relative position, which is described with a set of discrete values:

16

2.2 – The role of contextual information

Above, below, inside, around. In their work, images are firstly segmented by color,
then each region is classified by a Bag of Features model (BoF). A post-processing
step, based on a CRF, is employed to modify the class labels using the co-occurrence
probabilities and the relative position of the objects. Similarly, in [24] the authors
designed a context model based on Gaussian models. For the whole training set, co-
occurrence and relative position are modeled with Gaussian distributions to define
the common behavior of each class. Detections on new images are obtained by
solving an optimization problem that takes as input the class scores of the baseline
detector and the statistical context model.

In the field of semantic segmentation, Myeong et al. [85] integrated context into a
Markov Random Field (MRF) model. The proposed system, given a query image to
be segmented, extracts the k most similar samples from the training set, according
to global features such as color histograms, spatial pyramid [69], and gist (i.e.,
exploiting PCA components to extrapolate a synthesis of the image content) [86].
Among the retrieved images, they consider object pairs as context exemplars to
improve the labeling of the query picture.

Context embedded in deep learning models

Differently from the methodologies described so far, some works propose deep
learning models that directly embed context reasoning in their framework. Some
of these papers address local context modeling, while others are more focused on
global context.

Region-based CNNs (R-CNNs, see Section 2.1.2) rely on the ROI pooling mod-
ule, which provides to the final classifier only the information included in the
bounding box under analysis. To obtain better results, useful local contextual
information can be considered by augmenting the ROI size. Gidaris et al. [41] pro-
posed an R-CNN-based model that embraces this approach. Specifically, for each
proposed ROI, other bounding boxes including local context information are gen-
erated. These bounding boxes consist of the outer part of the original ROI (i.e., a
bigger bounding box containing both the object under analysis and local context),
and the left/right/up/down regions. The latter include only context, without in-
formation of the object under analysis. After their generation, the original ROI
and the context bounding boxes are exploited for ROI pooling to obtain the final
features and feed them to the final classifier. Another similar R-CNN is proposed

17

Background

in [127]. This network, called CoupleNet, is capable of integrating standard ROI
pooling with a double-sized region that also includes local context.

The authors in [121] suggested to use contextual bounding box features (such
as [41] and [127]) with an additional gating module. They motivate their work with
two example images. In the former, the detection of a rabbit head is facilitated
by the identification of the rabbit ear. In the latter, the rabbit ear brings damage
to the correct detection (e.g., a girl wearing a hat with rabbit ears). To solve this
issue, they designed a methodology based on message passing to propagate local
contextual information only when really necessary for the detection.

Global context, together with the local one, have been integrated into the same
model by Jianan Li et al. [73]. For the local context, they consider multiple-
scale bounding boxes around each Region Of Interest, while for the global context
they include information from the full image features, filtered with an attention-
based block to exclude misleading information. The neural network responsible
for the classification of each ROI concatenates the contextual information with the
object features and provides the final results. The global image information is also
exploited in [12]. In this case, the whole picture is processed by a Recurrent Neural
Network (RNN) responsible for summarizing the contextual information. In the
following, we review some other interesting techniques that consider global context
in a very different way. These few methods embed in the deep neural networks
specific building blocks for context reasoning at instance level.

Chen et al. [23] introduced a spatial memory for context reasoning, demonstrat-
ing that their model is capable of recognizing very small and low-resolution objects.
The proposed model outputs the different detections by iterating multiple times on
the same image. At each step, the input image and the information of the previous
detections (i.e., the spatial memory) are considered for generating a new bounding
box. The spatial memory is updated at each iteration, by including the predicted
object and its position in the image.

A different approach based on instance-level reasoning was proposed in [78]. The
detection process is modeled as a graph structure inference task, where the objects
are represented with nodes and their relationships with edges. The architecture is
composed of a GRU (Gated Recurrent Unit, a type of RNN) for each node, which
has the aim of identifying the correct class label for the corresponding bounding

18

2.3 – Scene graphs

Figure 2.7: Example of scene graph overlapped to a picture.

box. A message-passing system among the different GRUs is adopted to model
the contextual information. At each iteration the GRU hidden states are updated
based on the exchanged messages and, at the end of the process, the final object
labels are given. When designing the types of messages exchanged by the GRUs, the
authors considered both scene-level contextual information and object relationships.
Specifically, the feature vectors associated with object relationships include, for each
object pair, the relative position and size (computed with bounding box margins),
and the ROI visual features.

Finally, Hu et al. [55] designed a novel attention model for object detection. A
relation module is integrated into standard R-CNN architectures to inspect object
relationships. For each object pair, the attention system computes a feature vector
including object relative positions and relative visual features. The description
of each bounding box, necessary for the final classification, is built by adding the
relationship contributions generated by the attention module for all the object pairs.

2.3 Scene graphs
In this section, we review some previous works that use the concept of scene

graph, which we will use to model contextual information in the next chapters
of this thesis. This specific graph structure includes nodes, typically representing
object instances, and edges of different types, usually encoding different relationship
categories. Figure 2.7 depicts an example scene graph with position relationships.

19

Background

In computer vision, one of the most popular applications of scene graphs is
image retrieval. For example, Fisher et al. [37] look for similar images by comparing
scene graphs derived from 3D meshes. The scene graphs include relative position
relationships among the detected objects and they are compared by means of graph
kernels. Another option for image retrieval is to use textual descriptions of the
image content. The sentences are first translated to scene graphs by means of
recurrent neural networks, then they are used to retrieve meaningful pictures from
the dataset [14, 100].

A second common application of scene graphs is image generation. Some litera-
ture works focused on the design of deep learning models, based on graph convolu-
tional neural networks, that analyze scene graphs and generate realistic images [6,
57, 99, 114]. The scene graphs used in these works can be manually generated (e.g.,
from the Visual Genome Dataset [62]) or automatically derived from a query image
by looking at the relative position of the different object bounding boxes.

As we will detail in Chapter 3 and 5, in our work we generate enhanced scene
graphs by including fine-grained object relationships, automatically derived from
panoptic segmentation labels. We will show that deriving the relative position
directly from bounding boxes or object centroids [40, 57] is more limited than the
proposed methodology.

20

Chapter 3

Diving into semantic image
understanding: Position
relationships

As anticipated in the previous chapter, an important part of our contribu-
tion lies in the computation of object relationships to enhance the understand-
ing of image semantics. The learned representation will be exploited later in
this thesis for anomaly detection (SAD) [88] and image collection summarization
(SImS) [pasini2020sims]. Among the different types of relationships, this chapter
focuses on the analysis of the relative position between object pairs (e.g., “above”,
“inside”). We design a technique to derive the relative position starting from ei-
ther semantic or panoptic segmentation. In the case of semantic segmentation,
an additional effort must be performed to identify the different object instances,
as shown in Section 3.2. Conversely, by definition, panoptic segmentation already
distinguishes the different objects. Section 3.3 presents the classification process
that we specifically designed to compute the relative position between each pair of
objects in the same image. The effectiveness of this methodology is instead verified
in Section 3.4.

21

Diving into semantic image understanding: Position relationships

(a) 2D image. (b) Horizontal section in the 3D
representation.

Figure 3.1: Projection of 2D objects to a 3D space [24].

3.1 Related works on relative position
One of the key aspects of our SAD approach and SImS is the computation of

the relative position between objects. We aim at inspecting semantic relationships,
such as “on” or “inside”, which can be accurately detected by considering the shape
of the objects inside the image.

In the following, we provide a review of previous work that attempted to infer
object positions. We organize the section as follows. First, we will describe the
methodologies that compute object positions with a set of coordinates in the 2D
or 3D space. Afterwards, we will focus on other techniques that consider bounding
boxes and object centroids to derive discrete position descriptors (e.g., “above”,
“below”). Finally, we detail the previous works on string-based methodologies that
inspired our technique.

3.1.1 Coordinate-based positions

Myung Jin Choi et al. [24] base their approach on the location of bounding
box centers. They show how to infer the object positions in the 3D world by only
exploiting bi-dimensional coordinates and the average size of an object in the real
world (e.g., 1.70 for a person). Let ly, lh be the vertical position of the bounding box
center, and the bounding box height of a specific object. The perceptual vertical
position (i.e., ly) is 0 at the center of the image, lower than 0 below the center

22

3.1 – Related works on relative position

and greater than 0 above. For example, Figure 3.1a depicts these variables for
three skaters (p1, p2, p3) detected by a segmentation model. A horizontal red line
highlights the horizon of the image. Let H be the average physical height of the
object in the real world, inferred exclusively based on the object class. For this
task the authors used a dataset that associates each object class with its average
height. The technique for inferring the 3D coordinates firstly consists in computing
the distance between the object and the observer (i.e., depth). This process is
based on the assumption that the higher is the perceptual height of the object
in the image, the closer is the observer. Hence, depth is given by Ld = H/lh.
For example, in Figure 3.1a, p2 and p3 have the same perceptual height and are
depicted at the same depth (Ld) in Figure 3.1b. Conversely, p1 is closer as it has a
greater perceptual height. The vertical position Ly of an object in the 3D world is
computed with a similar heuristic reasoning. With a fixed Ly, the objects that are
further from the observer (i.e., higher Ld) appear closer to the horizon (i.e., lower
|ly|) in the 2D image. Hence, Ly = ly ·Ld. For example, in Figure 3.1a, p2 is further
from the observer than p1. In the meantime p2 is also closer to the horizon than
p1. Indeed, the two objects are depicted at the same height in Figure 3.1b. Even
if these heuristic reasonings work in many cases, they typically fail with different
perspectives (e.g., when the horizon is not in the middle of the image) and occluded
objects (i.e., the height is erroneously inferred).

A second approach that exploits the coordinates of object centroids for com-
puting positions is [72]. Differently from [24] this model infers a depth map using
object occlusion and visual cues as specified in [54]. Specifically, depth is exploited
as an additional feature together with the centroid coordinates.

3.1.2 Discrete positions with bounding boxes

These methods follow the approach of assigning a position label (such as “above”
or “below”) for a given object pair. This allows to obtain a high level semantic de-
scription of the position, without referring to numerical values that are hardly in-
terpretable. Galleguillos et al. [40] extract 3 features to model the relative position
between two objects i, j. The first one analyzes the vertical position by measuring
the difference between the y component of the object centroids. The other two
features measure the percentage of overlap of bounding box of i with respect to the
bounding box j and viceversa. The authors finally compute a feature vector for

23

Diving into semantic image understanding: Position relationships

(a) Actual shape. (b) Bounding boxes.

Figure 3.2: Issues with position computation by means of bounding boxes.

each object pair (i, j) in the dataset, then use clustering to learn, in an unsupervised
manner, four groups of positions: above, below, inside, around. Differently from
the technique we provide in our work, this methodology is unsupervised and does
not inspect the object shapes (i.e., bounding boxes are often too coarse to describe
the objects). They also do not distinguish between objects that are touching and
those that are far in the image.

A similar work is represented by [93], where the authors identify 6 discrete
positions (i.e., left, right, up, down, touch, and front) by inspecting bounding box
centers and their overlap. Even if this technique tries to inspect touching objects,
simple bounding box overlap may not be sufficient to achieve this task. Indeed, the
bounding box shapes may be misleading since the objects may not occupy all the
rectangular region. Bounding boxes are also too coarse for distinguishing between
positions like “inside” and “above”. Figure 3.2a provides an example to confirm this
reasoning. The bridge depicted in the image (object a) is visually positioned on a
river (object b). However, Figure 3.2b shows that, when considering only bounding
boxes, the correct position relationship cannot be inferred (i.e., bounding box b is
inside bounding box a). This issue is due to the irregular shape of the objects that
cannot be accurately approximated with the enclosing rectangle.

3.1.3 String-based methodologies

We previously highlighted the need for better shape descriptors that provide
the necessary information for computing object positions. When focusing on the
vertical ordering of the objects in an image, the work proposed by Chang et al.
[21] highlights an interesting solution. This method considers each object in the

24

3.1 – Related works on relative position

(a) Bounding box projections [21]. (b) Five vertical scans [107].

Figure 3.3: Examples of string-based image representation.

image as a separate shape. These elements are inspected in pairs (i, j) to infer their
relative positions. Specifically, the algorithm extends vertically the bounding box
of i until it intersects the shape of j. The sub-regions of j that originate from the
intersection with the extension of the bounding box of i are identified in the image.
For example in Figure 3.3a the bounding box of object a is extended to intersect b.
This generates the sub-regions b2, b4. Similarly, c is projected to b, generating b5.
After this step, the image is described by means of vertical strings that specify the
ordering of the obtained sub-regions. More specifically, each string contains, from
left to right, the name of the sub-regions that appear in order from the top to the
bottom of the image. For example, Figure 3.3a can be described with the strings
{b1}, {b4 a b2}, {b3}, {c b5}. The authors used these string representations to query
image databases (e.g., identifying recurring patterns inside strings), but this kind
of descriptions could be also used for inferring the relative vertical position for a
specific object pair. However, we identified two limitations of this representation.
The first drawback is that it cannot describe when two object are touching vertically.
Indeed, if there is some void space between the two objects, this will not be encoded
by the string. Moreover, the bounding box projections may be too coarse for a
correct understanding of the object positions. For example, object a is between
b2 and b4 in Figure 3.3a. However, b4 represents a very thin region with respect
to a. A more “fuzzy” approach should be able to consider the importance of each
sub-region based on its wideness. For example, object a could be considered above
object b, since the sub-region b4 is not sufficiently wide to justify the relationship a
inside b. We will show in Section 3.3 how our methodology overcomes the mentioned

25

Diving into semantic image understanding: Position relationships

issues.

A second work on string-based representations [107] derives the vertical object
ordering by means of five equally spaced vertical scans of the image. The picture
is firstly segmented by uniform color regions (i.e., objects). Afterwards, for each of
the five scans, the algorithm specifies a string with the order of the detected objects
from top to bottom. An example is depicted in Figure 3.3b, where the five scans
output the following strings: {b}, {a b}, {a b}, {b}, {b}. For a better compression of
the generated representation, the authors propose to derive a matrix M where each
cell mi,j counts the number of times that object i is found before j in the image
strings. In this way M allows understanding the vertical ordering of two objects
(e.g., if the sequence ij is found many times, then object i can be considered above
j). The approach suffers from similar problems of [21], as the vertical scans are
very few representative of the image and may miss important regions (e.g., region
c in Figure 3.3b).

From the previous works mentioned so far, we obtain the following takeaways.
The simplification of object shapes to centroids or bounding boxes yields imprecise
computations of the relative position. For this reason we inspired from the works
on string representation [21, 107] to obtain more detailed results. Specifically, the
idea of string-representations is extended in our work to identify finer details in the
images and generate features for training a relative position classifier. In our work
we selected 9 discrete relative position labels to inspect the vertical position of the
objects. Differently from the other methods, we enhance the semantic relation-
ships by distinguishing between “above” and “on” to identify when the objects are
touching. Furthermore, when the objects are not vertically aligned, differently from
[93] we do not distinguish between “left” and “right”, since images can be typically
mirrored horizontally without changes in their meaning. Conversely, we distinguish
between “side”, “side-up” and “side-down”, to better inspect the vertical position
even when the objects are not aligned along the vertical axis.

26

3.2 – Semantic segmentation to panoptic segmentation

Figure 3.4: Object occlusion. The airplane is split by the man into two regions.

3.2 Semantic segmentation to panoptic segmen-
tation

The algorithm we designed for computing relative object positions, which will be
described in Section 3.3, requires the identification of the different object instances
in the image. For a more general applicability, we aim at executing our classifier on
the output of either semantic segmentation or panoptic segmentation. Remind from
Section 2.1.3 and Section 2.1.5 that semantic segmentation is designed to assign a
class label for each pixel in the image, without identifying object instances. Hence,
this representation is not suitable to identify which pixels belong to the same real-
world object. For example, if the shapes of two cars are touching, with the output of
semantic segmentation we are not able to distinguish them as two separate objects.
Conversely, with panoptic segmentation we can categorize the image content into
stuff (uncountable objects, such as sky or grass) and instances (countable objects,
such as car or person). In the case of instances, we are also able to distinguish
between different objects even if their shapes are touching.

In this section we define a preprocessing step that allows obtaining object in-
stances also from semantic segmentation, with the limitation that distinct objects
should not be touching together to be correctly identified. Specifically, we provide a
heuristic technique to convert semantic segmentation results to the standard format
used for panoptic segmentation (Section 2.1.5).

The proposed method assumes that each object is characterized by a fully con-
nected region in the image, which maintains the same class for all its pixels. This
simplifying assumption may be violated in specific cases, as depicted in Figure 3.4.

27

Diving into semantic image understanding: Position relationships

Figure 3.5: Extraction of connected components.

In this example, a person is dividing the airplane on the background into two dis-
tinct parts (i.e., a, b). This occlusion issue cannot be solved with the information
provided by semantic segmentation. To avoid this drawback, panoptic segmenta-
tion should be directly computed on the image, without applying the conversion to
semantic segmentation as described in this section.

Let L be a matrix assigning a class label to each pixel of the image (i.e., semantic
segmentation). Our technique performs a breadth first search (BFS) to discover
patches of adjacent pixels with the same class. We call each distinct patch of adja-
cent pixels with the name connected component. Afterwards, the algorithm assigns
a unique identifier to each connected component, assuming that each of them rep-
resents a distinct object instance. This allows us to obtain a new matrix Z that
assigns each pixel to the correct object identifier (i.e., connected component). The
obtained matrices (L, Z) are then coherent with the definition of panoptic segmen-
tation, as previously described in Section 2.1.5. Figure 3.5 depicts an example of
connected component detection. In Figure 3.5a, the image colors provide a visu-
alization of the matrix L, which is the result of a standard semantic segmentation
classifier. Specifically, the green pixels belong to class chair. The instance matrix
Z, computed by our BFS methodology, is shown in Figure 3.5b. We highlighted
the different connected components of class chair with four distinct colors and nu-
merical identifiers in range [1, 4]. These components represent the four instances of
class chair identified in the matrix Z.

28

3.3 – Relative position computation

Label Description

above s is above r without contact
below s is below r without contact
on s is on top of r with contact
hanging s is below r with contact
side s and r are not vertically aligned
side-up s and r are not vertically aligned, s is in a higher position
side-down s and r are not vertically aligned, s is in a lower position
inside s pixels are inside r shape
around s pixels are around r shape

Table 3.1: Relative position labels for a subject-reference pair.

3.3 Relative position computation
In this section we describe our algorithm for computing the relative position be-

tween two objects. Based on the considerations made in Section 3.1, we accurately
designed a technique relying on the string representation. This way of modeling
an image allows inspecting the relative vertical position, which is relevant for scene
understanding since pictures are not symmetric along this direction. For example,
regions like “ceiling” and “floor” cannot be exchanged along the vertical axis. On
the contrary, the horizontal position is less significant because the scenes can often
be flipped horizontally without producing any change of meaning. Moreover, un-
derstanding whether two objects are touching along the vertical axis is important to
understand structural relationships in the represented scene. For example, it could
be fundamental to understand whether an object is laying on a specific surface, or
it is just above without contact. Our modified version of the string representation
is capable of recognizing these details, giving the possibility of defining 9 different
relative position labels. The list of labels that can be assigned to a pair of objects
in the same image is provided in Table 3.1. Each position describes how a subject
(s) is positioned with respect to a reference (r).

The above/below positions describe a subject that is at the same horizontal
position of the reference, but it is vertically separated by an interleaving region.
This allows inspecting pairwise relationships where there is no contact between the
objects. Figure 3.6a depicts two examples of the above property. The first one
represents a building above the street, while in the second one you find a room
where a slide viewer is above the floor, separated by a thin region belonging to

29

Diving into semantic image understanding: Position relationships

Figure 3.6: Object positions. This image provides some examples of position re-
lationships between a subject (light blue region marked with s) and a reference
(yellow region marked with r).

the background wall. When the subject and the reference are instead touching and
vertically aligned, they apply to the on/hanging positions. If the subject is laying
on the reference, we use on (Figure 3.6b), while hanging when the subject’s top
touches the bottom edge of the reference. In the case where the two objects are
one inside the other, we assign them to the inside (s included in r, as shown in
Figure 3.6c) and around (s surrounding r) positions. Finally, when the two objects
are not vertically aligned we define the side, side-up, side-down positions. As
previously anticipated, we do not distinguish between “left” and “right” positions,
but we identify the different heights (i.e., up, down) where the subject is located.
The side position (Figure 3.6d) is selected when the subject is at the same height
of the reference. The 9 properties described so far are mutually exclusive (i.e., only
one can apply to a specific object pair) and symmetric. This means that the relative
position classifier can be applied only once for each pair, after selecting which of
the two objects is the subject. When inverting the role of subject and reference
in the same pair, the associated relative position can be derived by selecting the
opposite class label (e.g., above-below, on-hanging, inside-around, ...).

As anticipated in the beginning of Chapter 3, our position classifier derives
the string representation from images labeled with panoptic segmentation (or with
semantic segmentation that has been post-processed as described in Section 3.2).
Let s, r be the object identifiers (extracted from the panoptic segmentation matrix
Z) of a subject and reference, respectively. Our algorithms assigns to the object
pair one among the 9 relative position labels presented in Table 3.1. This classifier

30

3.3 – Relative position computation

Rule Label Applies if Example strings (Zx)

r1 s on r r is directly after s {..., s, r, ...}
r2 s hanging r s is directly after r {..., r, s, ...}
r3 s above r r is after s with interleaving region {s, ..., r}
r4 s below r s is after r with interleaving region {r, ..., s}
r5 s around r r is between s {s, r, s} or {s, ..., r, ..., s}
r6 s inside r s is between r {r, s, r} or {r, ..., s, ..., r}
r7 other none of other statements applies {r, s, r, s}

Table 3.2: Rules to extract relative position features from strings.

infers the relative position based on a set of features that are retrieved from Z. The
training process was conducted on a dataset of manually labeled samples that we
built specifically for this task, due to the unavailability of existing online resources.
More details on the choice of the classifier and on the position dataset are given
in Section 3.4. In the following we provide a complete description of the feature
extraction process.

3.3.1 Relative position features

We distinguish between two groups of features that are exploited by our algo-
rithm: (i) string-based, and (ii) bounding-box-based. The first group (f1 − f7) relies
on an extension of the standard string based representation we described in Sec-
tion 3.1. Since it inspects the ordering of the objects along the vertical axis, this
description does not provide information when the subject and the reference are
not vertically aligned. To this aim, bounding-box-based features (f8 − f11) exploit
the position of the enclosing rectangles of each object to detect the side, side-up,
side-down labels.

In the following paragraphs we describe the way string-based features are com-
puted. The algorithm extracts column by column the information from the matrix
Z, which associates the object identifiers to each pixel. Each column of pixels in
Z is encoded as a vector, then compressed to reduce the computational complexity
of the next parts of the algorithm. Specifically, we merge all consecutive pixels
with the same object identifier. The resulting compressed column is called string,

31

Diving into semantic image understanding: Position relationships

Figure 3.7: String-based feature extraction.

denoted as:

Zx = {z1, · · · , zi, · · · , zn}, x ∈ [1, width(Z)]

where x is the horizontal position of the column in Z, zi are the object identifiers,
and width(Z) is the number of columns in the matrix Z. The string representation
of the image can be exploited to compute the string-based features separately for
each object pair s, r. Our technique considers only the strings Zx ∈ Z that contain
both objects s and r. All the other strings are not analyzed, since they do not
provide information about the relative vertical ordering of the two objects. At this
point, the set of rules described in Table 3.2 are applied to the selected strings for
a specific object pair (s, r), with the aim of detecting the object positions column
by column. For example, rule r1 (s on r) applies to a string when it contains r that
is immediately after s, which entails that the subject is touching the top edge of
the reference. Indeed, the elements zi in Zx with lower values of i are located next
to the top of the image, while the ones with higher index are close to the bottom.
The rules are mutually exclusive (only one rule can be assigned to a string), but
different rules may apply to the various strings of the same object pair. An example
of the string-based approach is provided in Figure 3.7, where we inspect the relative
position between a bird (subject) and a house wall (reference). The image confirms
how a specific object pair may have strings applying to different rules.

The final string-based features are then designed to bring the information of the
rule-matching process to the position classifier. Specifically, for each rule (r1 -r7),
our technique generates a corresponding feature that counts the number of strings

32

3.3 – Relative position computation

Zx for which the rule applies. We formalize this concept with:

fi = count(ri, Z, s, r)
min(ws, wr)

, i ∈ [1,7]

where fi is a feature, count(ri, Z, s, r) is the number of strings in Z that contain s, r

and satisfy rule ri, ws and wr are the width of the subject and reference respectively.
The width of subject and reference objects corresponds to the horizontal pixel
span that covers their shape. The count value is divided by the minimum width
between the two objects for a normalization purpose. In this way, the output
feature represents a percentage of columns (i.e., strings) with respect to the total
of the object with the smallest width. Note that other normalization options are
not suitable for this computation. For example, dividing by max(ws, wr) excessively
penalizes these features, giving them very low values when one of the two objects
is much larger than the other. Conversely, dividing by the number of strings that
contain both s and r would not consider the width of the objects. In this last case,
objects that have a high horizontal overlap (i.e., strings where both object appear)
relative to their size would be considered in the same way as those with a lower
overlap. This behavior could negatively affect a fuzzy decision between side (i.e.,
with low horizontal overlap relative to the object size) and the other classes where
the objects are vertically aligned.

String-based features cannot provide information about the vertical position of
s and r when these objects are not vertically aligned. This is due to the fact that in
that case there are no strings where the two objects appear together. This reasoning
justifies the need for integrating the previously mentioned features with bounding-
box-based attributes. These features are computed by inspecting the position and
size of the object bounding boxes.

Specifically, we first define a set of measures that are exploited to construct the
final features:

dx1 = right(r) − left(s), dx2 = left(r) − right(s)
dy1 = bottom(r) − top(s), dy2 = top(r) − bottom(s)

where the functions top(), bottom() describe the position of the vertical margins
of the bounding boxes and left(), right() describe the horizontal ones. Figure 3.8
provides an example of object pair for which we highlighted these quantities. Note

33

Diving into semantic image understanding: Position relationships

Figure 3.8: Bounding-box-based feature extraction.

how they can be either positive or negative and they consider both the object sizes
and the distance between the bounding boxes.

34

3.4 – Experimental evaluation

Finally, the four bounding-box-based features are computed by normalizing these
values:

f8 = dx1/max(|dx1|, |dx2|), f9 = dx2/max(|dx1|, |dx2|)
f10 = dy1/max(|dy1|, |dy2|), f11 = dy2/max(|dy1|, |dy2|)

This normalization is necessary to consider the distances between the two objects
in percentage with respect to their size. For example, bigger objects should be
separated by a wider space to be considered perceptually distant.

The set of string-based and bounding-box-based features are finally computed
for each object pair and used as input by a random forest classifier (see Section 3.4)
to decide one among the 9 position labels defined in the beginning of this section.

3.4 Experimental evaluation
In this section we first provide the details on the dataset we designed for training

the position classifier. Afterwards, we describe the tuning phase of the final model,
showing quantitative results. The labeled dataset, together with the classifier im-
plementation, are openly available in our code repository:

https://github.com/AndreaPasini/SImS

Our dataset with relative position samples was created by manually labeling 700
images from the training set of Microsoft COCO [76]. We designed a labeling tool
that selects a random object pair for each image to be annotated. The task of the
annotator was to select one among the 9 position labels for the highlighted subject-
reference pair. Some examples of annotated images are depicted in Figure 3.9. After

Figure 3.9: Labeled samples from our position dataset.

35

https://github.com/AndreaPasini/SImS

Diving into semantic image understanding: Position relationships

Classifier above around below hanging inside on side side-down side-up macro-avg

KNN 0.89 0.93 0.95 0.90 0.92 0.78 0.82 0.89 0.92 0.89

RBF-SVC 0.89 0.94 0.92 0.84 0.94 0.82 0.75 0.88 0.85 0.87

Decision tree 0.92 0.95 0.94 0.91 0.93 0.86 0.78 0.92 0.82 0.89

Random forest 0.93 0.96 0.98 0.92 0.95 0.93 0.85 0.94 0.88 0.93

Average 0.91 0.94 0.95 0.89 0.93 0.85 0.80 0.91 0.87 0.89

Table 3.3: F1 score for the pairwise relative position computation.

this process we got 1000 labeled object pairs, from which we extracted a balanced
dataset. Specifically, in the end we obtained 540 images including 60 examples for
each position label.

The goal of the position classifier is to assign a position label for each object
pair. To this aim, it takes as input the features defined in Section 3.3. We inspected
the performances of the following list of classifiers available in the scikit-learn li-
brary [17]: decision tree, SVM, random forest, naive bayes, KNN. Each model has
been evaluated with leave-one-out cross-validation and a grid search methodology.
Specifically, for decision trees and random forests we inspected the maximum depth
hyperparameter in range 5-35 with step 5. In the case of random forests we tuned
the number of estimators in range 10-100 with step 5. Finally, for KNN we set
the value of k in 5-15 with step 5. The best configuration for each classifier has
been selected by considering the macro-average F1 score among the 9 classes. This
grid-search process, including the feature extraction step and the actual classifica-
tion took 4 hours on the following hardware configuration: Intel Xeon Gold 6140,
CPU @ 2.30GHz, RAM 40 GB. The results of the best configurations are provided
in Table 3.3. They show that the best macro-average score (0.93) is achieved by
a random forest with maxdepth=20 and 35 estimators, while RBF-SVM performs
the worst. Moreover, when looking at the average of the classifier scores separately
for each class (i.e., last line of Table 3.3), it may be noticed that the side label is
the one with the lowest value. This is due to the frequent ambiguities between the
three positions side, side-up, side-down, where sometimes it is difficult to assign a
sharp category.

These experiments conclude the analysis of relative object positions. In the next
chapters we will exploit the obtained classifier to derive interesting insights from a
set of images and enhance their semantic understanding.

36

Chapter 4

SAD: detecting anomalies in
image classification by means of
semantic relationships

As we have seen in Section 2.2, contextual information is fundamental for the
object recognition task. The studies made by Biederman et al. [13], showed that
different types of relationships such as object co-occurrence, relative position and
relative size, play an important role also for the human brain. In their experi-
ments the authors presented different images to the patients, some of them with
objects that violated their usual relationships. For example they proposed objects
in unlikely positions (e.g., a couch floating in the air), elements outside their usual
context, or objects with a not plausible size when compared to the other scene
elements. The experiments showed that the object detection time for the human
brain was higher when the images presented these kinds of anomalies. Motivated
by these evidences, in our work we exploited different contextual information types
to inspect anomalies in the semantic segmentation results generated by artificial
neural networks.

Anomaly detection is a well-known data mining task that aims at detecting data
that deviates from its expected behavior. This technique finds applications in many
safety critical environments, such as intrusion detection in network systems or fraud
detection [4, 5]. The identification of outlier documents in textual data [128] or the
inspection of anomalies in video sequences are other common applications [77, 79].

37

SAD: detecting anomalies in image classification by means of semantic relationships

In our work we focused on the inspection of anomalies in semantic segmentation (see
Section 2.1.5) results by analyzing the global context of each object. The anomalies
that we detect are related to the semantic meaning of the objects in the image.
Hence, we do not consider the visual appearance of the single objects, but we focus
their relationships (e.g., co-occurrence, size and position) and their class label.

The experiments of this work aim at detecting anomalies inside semantic seg-
mentation results. Since this technique does not provide the information of the
object instances, but only pixel-wise labeling of the image, our methodology dis-
tinguishes between objects by looking at connected pixel regions, as we detailed
in Section 3.2. Alternatively, instance (or panoptic) segmentation could be used
to directly show the different object instances in the image. Nevertheless, we are
interested in inspecting the classification errors that typically occur when a model
does not take into consideration the semantic analysis of object relationships. For
this reason we focused on semantic segmentation, which is instance-agnostic, with
the aim of showing why it is more error-prone with respect to instance or panop-
tic segmentation. Moreover, even if panoptic segmentation is more accurate, it is
also much slower when performing the computation and this could sometimes be a
motivation for choosing simpler (but more error-prone) semantic segmentation al-
gorithms. Our technique could then be used to inspect anomalies in the segmented
images, hence highlighting possible errors and providing an alert to the final user.

Inspired by [13], in this work we model three types of contextual information:
(i) object co-occurrence to inspect object classes that frequently appear together in
the same image, (ii) relative position to understand the configuration of the objects
in the image, and (iii) relative size between objects. The proposed methodology,
called SAD (i.e., Semantic Anomaly Detection) [88], learns common patterns that
characterize the different object classes by analyzing a labeled training set, then
builds an interpretable knowledge base to store this information. The knowledge
base is made of a set of interpretable rules modeling normal data and can be ex-
ploited to understand whether an object is anomalous with respect to the context.
Objects that deviate from the set of rules in the knowledge base are deemed to be
anomalous. Specifically, SAD exploits the collected information to automatically
detect anomalies among the labeled objects, highlighting possible classification er-
rors made by the segmentation model. Finally, our methodology can show, in an
interpretable way, the pieces of information of the knowledge base that have been

38

SAD: detecting anomalies in image classification by means of semantic relationships

Figure 4.1: Example of anomaly detected by SAD on the ADE20K dataset.

used to detect the anomaly. We exploit this anomaly detection method to pursue
the objective of showing that segmentation models that do not make explicit usage
of the contextual information (e.g., PSPNet [123]) lack of a complete understand-
ing of the image and may make important errors. Moreover, when ground truth is
not available, our methodology can be used to assess the quality of the segmented
labeled images.

Figure 4.1 provides an example of anomaly that has been detected by SAD. The
query image has been taken from the ADE20K [125] dataset, and automatically
labeled by the PSPNet neural network. The segmented image is shown in Fig-
ure 4.1b, where we highlighted two objects with yellow and blue. The two objects
a and b are assigned to the classes wall and ceiling, respectively. At this point, if
we consider the relative position between a and b, we can see that the yellow patch
(a) of pixels is partially on the blue patch (b). This would entail that a wall object
has been found on a ceiling object. From a semantic point of view, this relationship
is meaningless, since we are used to see walls supporting ceiling and not viceversa.
SAD tries to emulate human reasoning by drawing a set of rules from the knowl-
edge base and inspecting the likelihood of the different object relationships. In this
example, it finds that wall on ceiling is an unlikely situation (probability <0.01),
hence it presents an anomaly as output (Figure 4.1c). From this observation it
can reasonably be pointed out that the semantic segmentation model has made
an error in the classification of either of the two objects. Specifically, the object b
should be classified as door, instead of ceiling. This example shows how the detec-
tion of anomalous object configurations allows identifying classification errors and

39

SAD: detecting anomalies in image classification by means of semantic relationships

providing a human readable description of the detected issue.

In general, SAD is interpretable, as it is able to point out the potentially misclas-
sified objects and show the rules that helped in detecting the anomaly. Moreover,
even if no anomalies are detected, the likelihood of the object relationships in the
image may provide a semantic enrichment of the image description.

Based on these preliminary considerations, the main research contribution within
this work is threefold: (i) we exploit semantic object relationships as contextual in-
formation to inspect classification anomalies (ii) the generated knowledge base and
the detected anomalies are interpretable since they are provided in the form of se-
mantic rules that describe object relationships (iii) the approach is semi-supervised
and does not require a training set with ground truth anomalies.

The next sections are organized as follows. Section 4.1 presents related works
on anomaly detection. Afterwards, Section 4.2 describes the overview of the SAD
approach, Section 4.3 goes in depth with the knowledge base definitions, while
Section 4.4 details the anomaly detection algorithm. Finally, Section 4.5 describes
the experimental results.

4.1 Related works in the anomaly detection field
In this section we provide an overview of the different anomaly detection al-

gorithms that have been proposed in literature, with focus on highlighting the
differences with the proposed Semantic Anomaly Detection.

The anomaly detection tasks can be categorized based on three anomaly types:
point, group, and contextual anomalies [4]. Point anomalies are defined as those
single data points that deviate from the characteristics of the common samples in
a specific dataset. For example Zhuang et al. [128] detected outlier documents
by means of statistical measures defined on the document topics, while in [113]
the authors proposed a clustering-based network anomaly detection method to
inspect NetFlow data. Instead, Group anomalies identify a set of instances whose
global behavior deviate from the expected patterns in a dataset. An example of
this task was provided in [79], where the authors inspected anomalous pedestrian
motion patterns by means of mixture models defined on dynamic textures. Finally,
Contextual anomalies highlight instances that are anomalous only within a specific

40

4.1 – Related works in the anomaly detection field

context. In other words, an instance may be considered as abnormal depending on
the contextual information and not only on its own features. SAD leverages on this
type of anomalies, as it relates the objects with the contextual information of the
whole image.

A second way of categorizing anomaly detection tasks consists in distinguishing
them based on the recognition algorithm. Specifically, anomalies can be detected
by means of supervised, unsupervised, and semi-supervised methods.

4.1.1 Unsupervised methods

Unsupervised techniques do not require training data specifying which types of
samples should be considered anomalous. Among these techniques, clustering is
one of the most widely adopted solutions. Specifically, clustering algorithms can
be exploited to highlight contextual anomalies by identifying the data points that
deviate too much from the modeled clusters.

For example, Hayes et al. [50] identify contextual anomalies in streaming sensor
networks by leveraging on clustering. Specifically, they apply the k-Means algo-
rithm to group the different sensors in the network by means of their recorded
values and their associated meta-data. After this process, each cluster identifies a
sensor profile, whose characteristics are modeled by training a Gaussian predictor.
Each Gaussian model is trained on the past history of the values recorded by the
sensors belonging to a specific profile. During the anomaly detection phase, the
new values streamed by each sensor are analyzed by the Gaussian predictor of the
corresponding sensor profile to identify their likelihood. Finally, the values that
obtain a low score are deemed to be anomalous within the context defined by the
sensor profile.

A second example of contextual anomaly detection based on clustering was pro-
vided by Liu et al. in [77]. They analyze time series of satellite images, with the
aim of detecting unusual warming and cooling events. The outliers are detected
when a pixel or a region is highly different from its spatial-temporal neighbors (i.e.,
regions that are close both in space and time). To this aim, each image region
is described with pixel-level and object-level features. Afterwards, the regions are
clustered with an extended Expectation-Maximization algorithm that iteratively
aggregates Gaussian clusters. Small groups and isolated elements are deemed to be

41

SAD: detecting anomalies in image classification by means of semantic relationships

outliers, hence possible events that require an action by domain experts.

The main issue with the described techniques is that they are not interpretable,
as they only rely on numerical features and provide the final outliers without de-
scribing the reasons why they differ from normal data. Differently, our technique
makes use of additional semantic information that contributes to obtain a human
readable report of the final anomalies.

4.1.2 Supervised methods

Supervised methods rely on training examples to learn modeling both anomalies
and normal data. To this aim, they typically exploit classification and regression
algorithms. For example, in [10] the authors developed an intrusion detection sys-
tem that includes both supervised and unsupervised algorithms. Their objective
consists in detecting anomalous network packets, by inspecting a set of connection-
based features, such as source and destination IPs/ports. Network packets are first
analyzed in an unsupervised manner to identify suspicious data. Specifically, each
packet is considered as a transaction [3] whose items are represented by connection
attributes. The proposed algorithm applies frequent itemset mining on attack-free
packets to describe normal instances. Afterwards, it repeats the analysis on other
data including attacks in the same time interval. Therefore, the system recog-
nizes suspicious frequent itemsets that are not present in the description of normal
data. The packets including the suspicious itemsets can sometimes represent false
positives, hence their are manually analyzed by specialized annotators. A super-
vised classifier is finally trained on the ground truth provided by the annotators to
distinguish between real attacks and false positives.

Related to a similar application, the authors in [1] propose to train a decision-
tree-like rule based classifier for distinguishing between different types of anomalies,
such as DoS attacks, scans and botnets. Also in this case, the classifier is trained by
means of hand-labeled data. Similarly, Zhang et al. [122] propose a neural network
model to address the same task.

One of the most common issues of supervised methods is the fact that labeled
data is not always available. Moreover, they are typically not able to detect new
types of anomalies that have not been described in the training data. These kinds
of issues can be solved with semi-supervised techniques, as we describe in the next

42

4.1 – Related works in the anomaly detection field

paragraphs.

4.1.3 Semi-supervised methods

Semi-supervised techniques learn from training data describing only normal in-
stances. Afterwards, they detect anomalies as the samples that deviate from the
normal behavior of training set points. These approaches are typically based on sta-
tistical methods (e.g., mixture models) that model the probabilistic distribution of
the features of normal data. An example of semi-supervised technique is presented
in [38], where they identify anomalies in telementry data, which consists of time
series recorded by satellites and orbital transfer vehicles. This methodology learns
the distribution of normal time series by means of Principal Component Analysis
(PCA). Specifically, each time series is first windowed, then described by means
of high-dimensional features. Afterwards, the algorithm extracts the direction of
the Principal Components related with these training data and compares it with
the one of new incoming samples. Anomalies are detected when the difference in
direction is above a predefined threshold.

Laxhammar et al. [67] inspect anomalous vessel traffic by modeling normal data
with a Probability Density Function (PDF), such as Gaussian Mixture Models or
adaptive Kernel Density Estimators. Since there is no information about anomalous
data, their PDF cannot be estimated. Hence, the likelihood of new data, computed
with the PDF of normal instances, can be used as an indication of the degree to
which the observation is normal. To this aim, a threshold for detecting anomalous
data must be defined.

The method proposed in [15] exploits a semi-supervised technique in the com-
puter vision field, with a similar goal to the one proposed in our work. Specifically,
they detect irregularities of visual data by means of spatial ensembles. Given a
segmented query image, they extract a set of representative regions described with
visual features. The spatial configuration of the extracted patches is then compared
with the examples in a training database. Finally, if a similar configuration cannot
be found, the query image is deemed to be anomalous. An important weakness of
this work is that the authors do not consider the semantic information of the ana-
lyzed images. Indeed, relative positions are computed by means of object centroids,
without analyzing discrete values as we propose in SAD. Moreover, they only rely

43

SAD: detecting anomalies in image classification by means of semantic relationships

on visual features and do not interpret objects classes.

Our method relies on semi-supervised algorithms, as well. Similarly to other
techniques, we learn the characteristics of normal samples and define anomalies as
the instances with a likelihood below a predefined threshold. Interestingly, SAD
differentiates from previous works since it describes normal data by means of inter-
pretable semantic rules. The semantic relationships we define among objects are
able to derive more abstract information with respect to what could be obtained
by simple visual features.

4.2 The Semantic Anomaly Detection approach
We begin to describe SAD with an overview of its main building blocks, depicted

in Figure 4.2.

Knowledge base definition. This is the core process of SAD, which is respon-
sible for the semantic information extraction and summarization from a labeled
image collection. Images labeled with ground-truth semantic segmentation are first
analyzed to identify object instances, then parsed to derive the knowledge base.
This is defined as a collection of semantic rules modeling the behavior of normal
data. As described in Section 4.1, this methodology can be categorized with the
semi-supervised anomaly detection approaches.

The knowledge base stores information on common object relationships of the

Figure 4.2: The Semantic Anomaly Detection process.

44

4.2 – The Semantic Anomaly Detection approach

following three types: (i) object co-occurrence, (ii) relative position, and (iii) rela-
tive size. The collected rules are stored in the form of histograms, representing the
probability distributions of the different object configurations. Section 4.3 provides
the details on the knowledge base definition and its extraction phase.

Instance-aware Semantic Segmentation. This step of the process is re-
sponsible for the generation of automatically labeled images that will be evaluated
by the anomaly detection process. It is composed of two blocks: (i) Semantic im-
age segmentation and (ii) Connected components detection. The semantic image
segmentation model can be chosen among those available in literature, and it rep-
resents the model being evaluated by SAD. In the experimental section of this work
we chose PSPNet [123], which was winner of the ImageNet segmentation challenge
in 2016. However, other deep learning models for semantic segmentation [8, 22,
120] can be used interchangeably.

The connected components detection phase is instead designed to highlight the
different object instances starting from the semantic segmentation result. As we
have described in Section 3.2, this step looks for the different object instances by
applying a BFS algorithm that detects patches of adjacent pixels with the same
class. Each patch of pixels (i.e., connected component) identifies a distinct object
instance. The final result is encoded in the panoptic segmentation format, to store
both object classes and instance identifiers.

Anomaly Detection The anomaly detection phase takes as input a query im-
age, whose objects have been classified, and the previously extracted knowledge
base. The objective is the inspection of possibly misclassified objects by identi-
fying anomalies in their configuration, according to the likelihoods stored in the
knowledge base. The details of this process are provided in Section 4.4, while the
effectiveness of the SAD methodology is shown in Section 4.5.

Once an anomaly is detected, the anomalous configuration could be used to
improve the knowledge base with an active training process. For example, when
the same type of anomaly is found many times during inference, the system could
start to consider that object configuration as normal and add it into the knowledge
base. However, this process may not work properly when the neural network under
evaluation tends to make repeating errors, which could be erroneously considered
as normal after some iterations. To avoid this drawback, the anomalies that occur

45

SAD: detecting anomalies in image classification by means of semantic relationships

Table 4.1: Properties and associated categories.

Category Properties

position above, below, on, hanging, inside, around,
side-up, side, side-down

width bigger, same, smaller
height bigger, same, smaller
area bigger, same, smaller
co-occurrence co-occurs, ¬co-occurs

many times and could be used to improve the knowledge base should be manually
evaluated. We reserve these considerations and analyses for future developments of
our technique.

4.3 Knowledge Base Definition
As anticipated in Chapter 4, our knowledge base includes different types of global

contextual information: (i) relative object position, (ii) relative object size, and
(iii) object co-occurrence. We modeled these three types of information with the
same notation, to make the knowledge base more uniform and easily interpretable.
In the following we provide the definitions (i.e., property, triplet, T -histogram)
useful to describe the patterns collected in the knowledge base.

Definition 1 (Property). A property p describes the relationship between two ob-
jects inside the same image. Each property belongs to a specific category c.

Categories are defined to represent the different types of relationships that SAD
is able to model in the knowledge base. Some examples are the relative position
or the co-occurrence. The full list of properties, associated with their categories, is
provided in Table 4.1.

The properties and categories defined so far are exploited to describe the seman-
tic relationships between objects of different classes within the same image. Each
relationship is represented with a data structure we call triplet.

Definition 2 (Triplet). Let sl (subject label) and rl (reference label) be two object
classes. Let c be the category of a property. A triplet T = ⟨sl, c, rl⟩ describes the

46

4.3 – Knowledge Base Definition

relationships for each property of category c between two objects of class sl and rl.

This permits inspecting different types of relationships between a specific pair of
object classes (sl, rl). The two variables (sl, rl) represent object classes and must
not be confused with object instances. Indeed, the objective of our knowledge base
is to describe the normal behavior of objects with specific classes, without referring
to a specific image. To make an example, if we want to describe the relative position
between bottle and table we will use T = ⟨bottle, position, table⟩.

The last concept useful to define the knowledge base is represented by his-
tograms. Each triplet is uniquely associated with a histogram (T -histogram) that
quantitatively describes the likelihood of the different properties (e.g., “above”,
“below”) of the triplet category (e.g., “position”) for the specified class pair (sl, rl).

Definition 3 (T -histogram). Let T = ⟨sl, c, rl⟩ be a triplet. A T -histogram h(T)
is given by

h(T) = [l(p1), . . . , l(pi), . . . , l(pN)]

where each value l(pi) specifies the likelihood that the subject sl and the reference rl

of T satisfy a particular property pi of category c, and N is the number of properties
belonging to category c.

The different likelihoods in a T -histogram represent a discrete probability dis-
tribution, as they are constrained in range [0,1] and add up to one. They are
computed from the training data during the knowledge base definition step by in-
specting the images that contain the two objects with class sl, rl. For example,
the triplet T1 = ⟨bottle, position, table⟩ and the histogram h(T1) = [l(below)=0.90,
l(side-down)=0.1, l(above)=0.0, ...] indicate that bottles are 90% of the time on
the table. Properties with 0 likelihood in the histogram are omitted for the sake of
brevity.

The knowledge base KB is finally modeled as the set containing the extracted
histograms:

KB = {h(T) | T ∈ L × ||C|| × L}

where L × ||C|| × L is the set of possible triplets that can be generated, being ||C||
the number of property categories and L the number of object classes.

47

SAD: detecting anomalies in image classification by means of semantic relationships

Algorithm 1 SAD: knowledge base definition
Input: Labeled images DI

Output: Knowledge base histograms KB
1: KB = {}
2: for all I in DI do
3: (L, Z) = connectedComponents(I)
4: for all (s, sl, r, rl) in objectPairs(L, Z) do
5: for all c ∈ C \ {co-occurrence} do
6: p = computeProperty(s, c, r, Z)
7: T = ⟨sl, c, rl⟩
8: h(T) = getOrCreateHistogram(KB, T)
9: increment(h(T), p)

10: end for
11: end for
12: updateCo-occurrence(KB, Z)
13: end for
14:
15: for all h(T) in KB do
16: h(T) = h(T)/sum(h(T))
17: end for
18: return KB

The pseudo-code for the computation of the knowledge base is provided in Al-
gorithm 1. The algorithm takes as input the ground-truth dataset of segmented
images DI and generates as output the set of histograms in KB. From the com-
putational point of view, the algorithm has complexity O(||DI || × ||P || × ||C||),
where ||DI || is the number of dataset images, ||P || is the average number of object
pairs in each image, and ||C|| is the number of property categories. Line 1 initial-
izes an empty set that is going to be filled in the next iterations over the different
images (line 2). From each image the connected components are extracted (line 3,
see Section 3.2 for details), generating the object instances in the panoptic format
(L, Z), where L is the matrix containing class labels and Z is the matrix containing
object identifiers (see Section 2.1.5). The algorithm continues by iterating on all
the possible object pairs in the image (line 4), where s, r are the object identifiers
and sl, rl are their respective class labels. Given the specified object pair, SAD
operates separately for all the different categories c (line 5). Specifically, it com-
putes the property value for s, r by inspecting the object pixels inside the matrix
Z (line 6). Note that the co-occurrence category is not computed at this stage

48

4.3 – Knowledge Base Definition

since it requires auxiliary information about the number of times that s and r do
not appear together. This specific property is updated separately at the end of the
for loop (line 12). Details on property computation, separately for each type, are
provided in the next sections.

Afterwards, the algorithm prepares the triplet T (line 7) and retrieves the associ-
ated histogram, if present, from the knowledge base (line 8). If the histogram is not
available in KB, then it is created and initialized as a void histogram. Subsequently,
SAD increments the count of the property p in the histogram h(T) (line 9). This
operation has the objective of counting the number of object pairs with class ls, lr

that satisfy the property p. Since the resulting histograms should model discrete
probability distributions, the final step (line 15) consists in normalizing the his-
togram counts. Specifically, for each histogram h(T) = [l(p1), . . . , l(pi), . . . , l(pN)],
the algorithm divides its values l(pi) by their sum. In this way, each l(pi) is the
conditional probability of satisfying property pi, given the two object classes sl, rl.

After this process, the knowledge base will approximately contain L × L × C

histograms, where L is the number of object classes and C is the number of cat-
egories defined in Table 4.1. However, not all the histograms represent relevant
information due to (i) an insufficient number of training samples for a given object
pair, or (ii) the absence of preferred properties that are satisfied by the two object
classes. Hence, we reduce the knowledge base size by filtering the most relevant
information. The histograms that are kept in the knowledge base are those that
satisfy the following two criteria: (i) they are supported by a minimum number
of training pairs, and (ii) they show likelihood distributions modeling the concepts
always and never. According to the former, the algorithm keeps in the knowledge
base only the histograms that satisfy the following condition:

support(h(T)) ≥ minsup

where support(h(T)) indicates the number of training pairs used to derive the his-
togram and minsup is a threshold, whose value is discussed in Section 4.5.

Following the second criterion, a histograms is deemed to be relevant when it
presents an unbalanced probability distribution, which means that the object pair
tends to satisfy some particular properties, but not the others. For example, the
histogram [l(above)=0.99, l(below)=0.0, l(inside)=0.01, ...] models an object pair

49

SAD: detecting anomalies in image classification by means of semantic relationships

where the subject is always above reference, while the histogram [l(above)=0.4,
l(below)=0.0, ...] specifies that the subject is never below the reference. Hence,
the histograms satisfying the presented criterion should describe meaningful rela-
tionships such as “tree is never below river” or “carpet is always on the floor”. To
identify these patterns, we only select the histograms that satisfy at least one of
the following constraints:

(i) h(T) contains only one likelihood l(pi) > thrh

(ii) h(T) contains at least one likelihood l(pi) < 1 − thrh

where thrh specifies a tolerance threshold, whose value is discussed in Section 4.5.
The first constraint identifies the histograms that present a property with a very
high likelihood (i.e., modeling the always concept). The second one identifies those
that present one or more low likelihoods modeling the never concept.

In the following sections we describe in details the different types of properties
and the way they are computed by SAD from the segmented images. As specified
in Algorithm 1, these properties are computed by means of the computeProperty()
and updateCo-occurrence() methods, that take as input the segmented image in the
panoptic segmentation format (L, Z), generated from semantic segmentation with
the method connectedComponents(I).

4.3.1 Object Positions

The first type of contextual information modeled in this work is relative position.
The different properties that can be assigned to this category are listed in Table 4.1.
To derive the relative position between objects, we exploit the classifier that we
designed in Section 3.3. The model takes as input the image encoded with the
panoptic segmentation format (L, Z) and assigns a position label to the specified
object pair (s, r). More formally, we can use the notation:

computeProperty (s, position, r, Z) = applyPositionClassifier (s, r, Z)

4.3.2 Object Sizes

The second relationship category we consider is the relative size between ob-
jects in the same picture. We define three different categories for describing the

50

4.3 – Knowledge Base Definition

relative size (i.e., width, height and area), which can assume the following property
values: bigger, same, smaller (see Table 4.1). In the following we detail how these
properties are assigned to an object pair in the picture under analysis.

Size is evaluated separately for width and height, since these two categories
could highlight interesting object relationships. For example the algorithm may
learn of objects that are taller than others (e.g., a tree with respect to a bush) and
others that are wider (e.g., a bench with respect to a chair). Width and height are
computed by comparing the size of the object bounding boxes in percentage with
respect to the image size.

Let s, r be two object identifiers in the panoptic segmentation matrix Z. SAD
assigns (computeProperty() function, used in Algorithm 1) the property values for
the category width according to the following criteria:

computeProperty (s, width, r, Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bigger, if w(s)/w(r) > 1 + thr

smaller, if w(r)/w(s) > 1 + thr

same, otherwise

where w(s) and w(r) are the width (in percentage) of the bounding boxes of s and
r, and thr represents a tolerance value for distinguishing between the three cases.

For example, if the subject s is 80% wider than the reference r and thr = 0.75,
then the computed property will be bigger. In the experimental evaluation we
inspected that variations of thr in the range between 0.7 and 0.9 do not significantly
affect the results of the anomaly detection phase.

The relative height is computed in a very similar way to width:

computeProperty (s, height, r, Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bigger, if h(s)/h(r) > 1 + thr

smaller, if h(r)/h(s) > 1 + thr

same, otherwise

where h(s) and h(r) are the height (in percentage) of the bounding boxes of s and
r.

The last relative size category, the area, has been defined to inspect the space
occupancy of the objects within their bounding box. Specifically, some objects may

51

SAD: detecting anomalies in image classification by means of semantic relationships

have a very large bounding box, but only cover a small percentage of area inside
it. For example objects such as a “ladder”, or a “fence”, which are characterized
by the presence of holes in their body, present a lower value of area even if the
bounding box covers a large part of the image.

Based on this definition, the area relationship is computed with:

computeProperty (s, area, r, Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bigger, if area(s)/area(r) > 1 + thra

smaller, if area(r)/area(s) > 1 + thra

same, otherwise

where:
area(⋆) = #pixels of ⋆

imageWidth · imageHeight , ⋆ ∈ {s, r}

The denominator of area(⋆) has the purpose of making the measure independent
of the image size. Similarly to the relative size, the threshold thra ranges between
0.7 and 0.9.

4.3.3 Co-Occurrence

The last way of modeling global context for a given image is object co-occurrence.
When analyzing the class label for a specific object, this should be coherent with
those in the surroundings. For example inside an indoor scene with objects such
as “table” and “sink”, we may expect other indoor objects, while we would be
surprised in discovering things like “zebra” or “boat”. To adapt this reasoning to
our methodology, we consider again object pairs and analyze the likelihood they
should appear in the same picture. Hence, the co-occurrence probability can be
exploited to detect anomalous objects in the segmentation results.

Before analyzing our approach for inspecting co-occurrence, we first review the
most common measures of association between two variables. In statistics, corre-
lation allows inspecting the relationships between two numerical variables.

One of the most famous correlation coefficients is the Pearson’s one [16]. Let
X, Y be two random variables with variance σX , σY , respectively. Pearson’s corre-
lation is defined as:

corr(X,Y) = cov(X, Y)
σXσY

52

4.3 – Knowledge Base Definition

where cov(X, Y) is the covariance between the two variables. Pearson’s score takes
values in range [−1, 1], where 1 indicates a perfect direct linear relationship, while
−1 indicates a perfect inverse linear relationship. Values close to 0 entail low
correlation. This coefficient is suitable for continuous variables, hence it does not
represent a proper choice for our approach that aims at inspecting correlations
between object classes in the images.

For the discrete case, the chi-squared test evaluates how likely two variables
present different values by chance [16]. Let X, Y be two categorical random vari-
ables X, Y . The chi-squared test computes the p-value for the null hypothesis H0
that there is no relationship between the two variables. The first step to obtain chi-
squared statistics is creating a matrix Oi,j that specifies in each cell the number of
samples with a specific pair of values X = xi, Y = yj. Afterwards, a second matrix
Ei,j is created, where each cell contains the expected number of samples we would
obtain if X and Y were statistically independent. Chi-squared statistics are then
computed by comparing the actual values and the expected ones: χ2 = (Oi,j−Ei,j)2

Ei,j
.

The output chi-squared score is given by the sum of all the elements in χ2. Lower
values entail that X and Y are not correlated. Finally, the analysis can be com-
pleted by computing the p-value [16] for χ2 to understand whether H0 can be
refused (i.e., X and Y present a correlation). In our case study, modeling class
co-occurrence with chi-squared could be implemented by assigning to X and Y the
labels of object class pairs that co-occur in the same image. However, the output
of the test would not be sufficiently informative, as it could state whether there is
a correlation between the class pairs, but it would not be able to detail which of
them are the most correlated (e.g., deriving that car is correlated with road since
they co-occur many times).

Mutual information is another correlation metric that can be computed for two
categorical variables. It measures the amount of information shared by the two
variables X, Y . This metric is again not suitable for our analysis, since it presents
the same limitations cited for chi-squared.

Frequent itemset mining approaches [3] implement interesting ways of analyz-
ing correlations between discrete items. These techniques work with the concept
of transaction, which is defined as a collection of discrete items (e.g., ‘a, b, c’).
Multiple transactions can be collected together to obtain a transactional database,

53

SAD: detecting anomalies in image classification by means of semantic relationships

which is suitable to be analyzed by frequent itemset mining algorithms. This re-
search field introduced metrics such as confidence and lift, designed to inspect the
correlation between items inside the transactions (e.g., detect which items are most
frequently bought together in a supermarket).

Let a, b be two items occurring in a transactional database. Confidence [112]
is defined as the conditional probability P (a|b) = #(a, b)/#(b), where #(a, b) is
the number of transactions including both a and b, while #(b) is the number of
transactions containing b. This probability value allows inspecting how it is likely
to have a in a transaction, if b is present. Hence, it can be interpreted as a measure
of correlation between two different item types.

To apply this reasoning to our class co-occurrence problem, we model each pic-
ture as a transaction and the set of contained object labels as the items. When a
picture contains more instances with the same class, the object is represented with
just one item in the transaction. By computing confidence between two class labels
sl, rl (subject and reference), we can inspect the likelihood of finding one object
given the presence of the other in the same image.

Lift [112] is a second well-known metric in the itemset mining field. It returns a
measure of correlation between two items. It is defined as:

lift(a, b) = P (a ∧ b)
P (a)P (b) = P (a|b)

P (a)

It takes values greater than 1 when the two items are positively correlated (the
presence of one of them encourages the presence of the other). When lift is 1, a

and b are independent, while for values < 1 the presence of one item discourages
the presence of the other. Differently from confidence, which inspects the condi-
tional probability of one item with respect to the other, lift allows understanding
negative correlations (when it is < 1). For example we may expect that object
classes like “table” and “chair” would increase the probability of having “bottle”,
but would decrease instead the likelihood of “boat” or “grass”. However, as a draw-
back, lift is symmetric. Indeed, in the case of positive or negative correlation, this
metric cannot specify the causality between the two items (e.g., whether it is a that
encourages/discourages the presence of b or vice-versa).

Due to the limitations of the presented metrics, in our work we exploit the

54

4.3 – Knowledge Base Definition

Certainty Factor (CF) measure to model co-occurrence probability. This metric was
presented for the first time in the expert system MYCin [53, 102]. The Certainty
Factor is asymmetric (it allows understanding the causality of the relationships
between the two classes a, b) and it allows inspecting both positive and negative
correlations. These two properties are not satisfied together by the previously
mentioned metrics.

The certainty factor is defined as the difference between the Measure of Be-
lief (MB), which specifies the increase of probability of having sl in a transaction
containing rl, and the Measure of Disbelief (MD), which specifies the decrease of
probability of sl given rl.

Let sl, rl be a class pair. Its associated CF is defined as [102]:

CF(sl, rl) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P (sl|rl) − P (sl)
1 − P (sl)

, if P (sl|rl) > P (sl)

P (sl|rl) − P (sl)
P (sl)

, otherwise

The value of CF ranges between −1 and +1. When P (sl|rl) is greater than P (sl),
the presence of rl increases the likelihood of sl. On the contrary, if P (sl|rl) < P (sl)
then rl discourages the presence of sl. In the first case, the positive likelihood
increment (i.e., P (sl|rl) − P (sl)), is normalized with the probability of not having
sl in the transaction (i.e., 1 − P (sl)). This factor helps to increase the module
of the (positive) certainty factor when sl already has a high probability of being
found in the transactions, hence even a small numerator should be considered as
meaningful. In the second case, the negative likelihood increment is normalized
with the probability of having sl in the transaction. This time, the normalization
increases the module of the (negative) certainty factor when sl has a low probability
of being found in the transactions. Hence, if P (sl) is small, even a small decrease
of probability caused by rl should be treated as meaningful.

The certainty factor is computed from the training images by evaluating the
support count of each item pair (i.e., the number of transactions in which it is
contained), denoted as #(sl, rl). We also collect the support counts of the items
separately, i.e., #(sl), #(rl), then compute the conditional probabilities required for

55

SAD: detecting anomalies in image classification by means of semantic relationships

the CF. The different counts are updated with the function updateCo-occurrence()
in Algorithm 1 (line 12).

The choice of using the CF for modeling co-occurrence is due to its asymmet-
ric behavior for the two classes, differently from lift (or correlation) defined for
association rules [112]. Another commonly used metric is confidence [112] (i.e.,
P (sl|rl) = #(sl, rl)/#(rl)) that, similarly to CF, is not symmetric, but does not
relate the presence of one class to the absence of the other.

After computing the CF for all the possible class pairs, class co-occurrences are
modeled in the knowledge base with the triplets T = ⟨sl, co-occurrence, rl⟩ and the
following histogram:

h(T) =[l(co-occurs) = CFnorm,

l(¬co-occurs) = 1 − CFnorm]

where CFnorm is the certainty factor normalized between 0 and 1. To normalize
CF, which ranges in [-1, 1], we exploited the min-max normalization equation:

CFnorm = (CF(sl, rl) − min(CF))/(max(CF) − min(CF)) = (CF(sl, rl) + 1)/2

The generated histograms are finally stored in the knowledge base, as specified in
Algorithm 1.

4.4 Anomaly Detection
The main goal of the SAD approach consists in detecting potentially misclassified

objects from segmented images. Anomalous objects are highlighted when they are
involved in at least a relationship that does not satisfy the configuration rules stored
in the knowledge base. To avoid false positives in the anomaly detection phase, we
also introduce the concept of supporter. Supporters represent object pairs which
are strongly consistent with at least one configuration rule in the knowledge base.

The method for extracting anomalies and supporters is shown in Algorithm 2.
The input of the procedure consists of a segmented image I to be analyzed and the
knowledge base (KB) that associates histograms with triplets, while the output is
the set of anomalies and supporters detected in the analyzed image. The complexity

56

4.4 – Anomaly Detection

Algorithm 2 SAD: anomaly detection
Input: Segmented image I, knowledge base histograms KB
Output: Set of anomalies and supporters An, Sup

1: An = {}
2: (L, Z) = connectedComponents(I)
3: for all (s, sl, r, rl) in objectPairs(L, Z) do
4: for all c in C do
5: p = computeProperty(s, c, r, Z)
6: T = ⟨sl, c, rl⟩
7: h(T) = getHistogram(KB, T)
8: l(p|T) = getLikelihood(h(T), p)
9: l(¬p|T) = 1 - l(p|T)

10: if l(¬p|T) > thrh then
11: An = An ∪ anomaly(s, r, conf = l(¬p|T))
12: end if
13: if l(p|T) > thrh then
14: Sup = Sup ∪ supporter(s, r, conf = l(p|T))
15: end if
16: end for
17: end for
18: return An, Sup

of the anomaly detection algorithm is O(||P || × ||C||), where ||P || is the number of
object pairs in the image and ||C|| is the number of property categories.

The first operation consists in preparing the object instances in the panoptic seg-
mentation format (line 2). Afterwards, SAD iterates on all the object pairs and all
the property categories (lines 3, 4). For the selected pair and category, it computes
the associated property and triplet (lines 5, 6), as discussed in Section 4.3. At this
point, the knowledge base is exploited to inspect the likelihood of the computed
property for the selected triplet T , with classes sl, rl and category c (lines 7, 8).
Next, it complements the likelihood to generate l(¬p|T), which represents the prob-
ability of having an object pair with classes sl, rl that does not apply to property p.
When this likelihood is greater than the threshold thrh (defined in Section 4.3), an
anomaly is detected for the object pair s, r with confidence conf = l(¬p|T) (lines 10,
11). Indeed, anomalies have higher confidence when the likelihood of p is lower.
As opposite concept to anomalies, a supporter between two objects has confidence
conf = l(p|T) and it is selected only if this value is greater than thrh (line 14).

57

SAD: detecting anomalies in image classification by means of semantic relationships

After the detection of anomalies and supporters, SAD exploits them to label
each object as normal or exception with respect to the contextual information.
This binary classification task aims at demonstrating that the detected object rela-
tionships can help in the detection of misclassified objects in the segmented image.
We inspect three approaches: (i) the Anomaly-Only Method, (ii) the Delta Method,
and (iii) the WTA method. All of them are experimentally evaluated in Section 4.5.
The general principle of the proposed methods relies on the hypothesis that objects
with many anomalies and few supporters will more likely present a classification
error performed by the neural network.

4.4.1 Anomaly-Only method

This method assigns the exception class to all the objects which are either the
subject or the reference of at least one contextual anomaly in An. More formally,
let z be an object identifier in Z and Anz the set of anomalies for which z is either
the subject or the reference. Its anomaly detection label is defined with:

label(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exception, if ||Anz|| > 0

normal, otherwise

As discussed in Section 4.5, this method shows a high recall for the exception class,
but a lower precision.

4.4.2 Delta method

We design a second methodology to detect misclassified objects, which considers
both anomalies and supporters. Let z be the object under analysis, Anz, Supz the
set of anomalies and supporters for which z is either the subject or the reference.
The Delta method computes a score for the object z in the following way:

score(z) =
∑︂

sup∈Supz

conf(sup) −
∑︂

an∈Anz

conf(an)

where conf(sup) and conf(an) are the confidence scores of supporters and anoma-
lies, respectively. The higher the score (i.e., the supporters are stronger than the
anomalies), the most likely is the fact that z has been given the correct label during

58

4.4 – Anomaly Detection

Algorithm 3 WTA Method
Input: Anomalies and supporters An, Sup, object identifier matrix Z
Output: Labeled objects normal, exception

1: scores = {}, normal = objects(Z), exception = {}
2: for all z in normal do
3: scores(z) = ∑︁

sup∈Supz
conf(sup) − ∑︁

an∈Anz
conf(an)

4: end for
5: while ||An|| > 0 do
6: z′ = arg min

z∈Z
scores(z)

7: An = removeAnomalies(An, z′)
8: exception = exception + z′

9: normal = normal \ z′

10: end while
11: return normal, exception

semantic segmentation. Hence, the final anomaly label is given based on whether
the obtained score is positive:

label(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exception, if score(z) < 0

normal, otherwise

4.4.3 WTA method

The WTA (Worst Take All) method is designed to prevent accurate objects
from being labeled as exception. Indeed, since anomalies are defined between object
pairs, it is possible that only one of the two objects has been misclassified, while the
other one is correct. Assigning the exception label to both objects could generate in
the result many false positives. Differently from the Delta method, WTA tends to
penalize only the worst object which is involved in each pairwise anomaly, reducing
the number of false exceptions.

The pseudocode of this method is presented in Algorithm 3. In the beginning,
the set normal is initialized with all the object identifiers in Z (line 1) and exception
is prepared as an empty set. During the process, some of the objects in the normal
set will be moved to exception. Firstly, the system computes the scores of the
objects in normal as specified for the Delta method (lines 2, 3). After this step, a

59

SAD: detecting anomalies in image classification by means of semantic relationships

while loop iterates until An is empty. At each iteration the object z′ with the lowest
score (i.e., the most anomalous) is selected and all the anomalies where z′ is either
the reference or the subject are removed from the set An (lines 6, 7). Afterwards,
z′ is moved from normal to the exception set. The loop continues until all the
anomalies in An have been removed. In the end, the sets normal and exception are
returned by the algorithm as the final labeled objects.

4.5 Experimental evaluation
This section describes in details the experimental results obtained with the ap-

plication of the SAD methodology. We divide the analysis into four subsections,
providing (i) the description of the selected dataset, (ii) the insights that can be
derived from the extracted knowledge base, (iii) the anomaly detection results, and
(iv) the lessons learned. The implementation of SAD is openly available in our code
repository: https://github.com/AndreaPasini/SAD2019

4.5.1 Dataset

We extracted the knowledge base and performed the anomaly detection exper-
iments on the MIT Scene Parsing Benchmark [84]. Its data samples have been
generated starting from the ADE20K dataset [125]. The selected benchmark is a
rich collection of 20,000 training samples and 2,000 test images, depicting both
indoor and outdoor sceneries. These pictures are pixel-wise annotated, highlight-
ing objects from 150 different classes. Some pixels of the labeled images are not
assigned to a class, due to unrecognizable objects (e.g., occlusion issues) and to
the presence of some objects whose class is not included in the predefined set of
labels for this dataset. These missing regions are ignored by SAD, as specified
in the challenges built on the Scene Parsing Benchmark. In our experiments, we
extract the knowledge base from the training samples and we apply SAD anomaly
detection to assess the behavior of a deep convolutional neural network applied to
the test images. Specifically, the convolutional neural network studied in this work
is the pre-trained PSPNet model [123].

60

https://github.com/AndreaPasini/SAD2019

4.5 – Experimental evaluation

0.6 0.7 0.8 0.9 1.0
thrh

0

10000

20000

30000

hi

st
og

ra
m

s

minsup=5
minsup=10
minsup=50
minsup=100

Figure 4.3: Histograms for different minsup and thrh values.

4.5.2 Knowledge base analysis

In Section 4.3 we defined the knowledge base and its main components. We
also specified that not all the histograms in the knowledge base are kept, but the
minsup filter (i.e., minimum support) and thrh (i.e., threshold to identify always
and never histograms) are applied to select the relevant information. Figure 4.3
shows the number of resulting histograms while varying these two parameters. On
the training set of the MIT Scene Parsing Benchmark, we obtained up to 34,000
histograms for minsup = 5, thrh = 0.6. Their number diminishes to about 13,000
for minsup = 100, thrh = 0.6. Besides, the amount of histograms decreases with
increments of thrh. For example, with minsup = 5 and thrh = 0.99 we get about
10,000 histograms in the result.

We further analyze the number of histograms separately for the different prop-
erty categories defined in Section 4.3. Figure 4.4 provides this information for thrh

in range [0.6, 0.99]. With the setting thrh = 0.6, 0.7, the histograms of the different
categories are balanced in number. This means that all of the defined property cat-
egories are useful to generate meaningful histograms describing the training data.
By increasing the threshold value to 0.99, the final number of histograms becomes
unbalanced instead. Specifically, the position category presents a very high amount
of histograms (approximately 5,500), which means it is more reliable and informa-
tive than the other categories (presenting less than 500 histograms each).

We continue our analysis of the knowledge base by showing some qualitative
examples of its content. Table 4.2 reports the values of the Certainty Factor (CF)

61

SAD: detecting anomalies in image classification by means of semantic relationships

Figure 4.4: Histograms for each category. minsup=10.

Table 4.2: Certainty Factor examples.

Class Pair CF Class Pair CF

wall, oven 1.00 sky, microwave -0.99
wall, sink 0.99 cabinet, road -0.99
floor, sofa 0.96 sofa, car -0.99
bed, pillow 0.94 sky, countertop -0.99
building, sidewalk 0.93 floor, hill -0.98
sky, mountain 0.91 lamp, river -0.98

associated to some of the object pairs that can be found in the training set. On the
left part of the table, some examples of positive CF are provided. We remind that
a positive CF implies class pairs that are positively correlated. More specifically,
the presence of the reference in an image entails a higher probability of the subject
in the same picture. Consider for example the first class pair (i.e., wall-oven). It is
associated with a very high CF, which indicates that every time the “oven” object is
found in an image, also “wall” will occur. Indeed, this specific object pair identifies
frequent indoor scenes included in the dataset. Since the Certainty Factor metric is
not symmetric, CF(oven, wall) takes a different value: 0.008. To justify this result,
we can reason on the fact that the presence of a “wall” does not always entail

62

4.5 – Experimental evaluation

Table 4.3: Area relationship examples.

Class Pair Sup Histogram

plate, swivel chair 25 bigger=0.00 same=0.00 smaller=1.00
light, microwave 378 bigger=0.02 same=0.06 smaller=0.92
runway, van 20 bigger=0.95 same=0.05 smaller=0.00
painting, pool table 271 bigger=0.03 same=0.04 smaller=0.94

Table 4.4: Position relationship examples.

Class Pair Sup Histogram

runway, sky 151 below=0.87 side-down=0.1
ball, pool table 33 inside=0.91 above=0.03
light, sink 1321 side-up=0.83 above=0.17
armchair, cradle 35 side=0.8 side-up=0.06
painting, pillow 1709 side-up=0.6 above=0.3 side=0.1
bus, path 31 side-up=0.6 above=0.16 on=0.1
curtain, window 8077 side=0.6 on=0.14

the presence of “oven” (i.e., indoor scenes are not always representing kitchens).
Nevertheless, even if the value of CF(oven, wall) is small, it is still positive, which
indicates that the presence of “wall” does not discourage the one of “oven”. The
right part of Table 4.2 reports instead some examples of negative Certainty Factor.
For example, the presence of “sky” in an image strongly discourages the presence
of “microwave”, which is an indoor object. This pattern also occurs for the other
pairs in the right part of the table, which contain objects belonging to different
environments.

Some examples of relative area histograms are provided in Table 4.3. The first
column of the table reports the class pairs (i.e., subject and reference), while the
second one shows the support of the associated histogram. The likelihood values of
the histograms are finally shown in the third column. Specifically, each histogram
describes the discrete probability distribution of the relative object sizes, including
the following three properties: bigger, same, smaller. From the examples, we can
learn that 95% of the “runways” are bigger than “vans” and 94% of the times a
“painting” is smaller than a “pool table”. Even if, for perspective reasons, the
apparent size of the objects may be distorted, we can see from the examples that

63

SAD: detecting anomalies in image classification by means of semantic relationships

the proposed methodology is typically able to identify interesting relationships that
describe real-world objects.

We conclude the analysis of the knowledge base by providing some examples of
relative position histograms in Table 4.4. We reduce cluttering by showing only the
most relevant likelihood values of each histogram. The first line of Table 4.4 states
for example that “runways” are typically below “sky” (87%), and the second line
shows how “balls” can be typically found inside “pool tables”.

4.5.3 Anomaly detection

This subsection analyzes the results obtained with the anomaly detection tech-
niques described in Section 4.4. In these experiments, the knowledge base extracted
from the training set of the MIT Scene Parsing Benchmark is exploited to detect
anomalies in the test set. Each test image is first segmented with the PSPNet
model, then processed by SAD.

As described in Section 4.3, our technique is based on two parameters for the
selection of the histograms in the knowledge base. We perform the following ex-
periments by defining two parameter configurations:

(i) Configuration a, with minsup = 10, thrh = 0.98 for co-occurrence and thrh =
0.99 for position and size.

(ii) Configuration b, with minsup = 10, thrh = 0.98 for co-occurrence and thrh =
0.97 for position and size.

The first configuration requires, for the position/size categories, highly-confident
histograms to detect anomalies, while the latter relaxes this constraint to exploit
a higher number of histograms, even if they are less reliable. Variations of these
thresholds in a small range (e.g., [0.95, 0.99]) do not significantly affect the results
in the anomaly detection phase. Other sensitivity experiments on thrh are provided
later in the text.

Table 4.5 presents the number of detected anomalies for the two configurations
defined so far. The total number of anomalies seems to be very high (i.e., 4581
for Config. a, 6731 for Config. b), compared to the number of test images (i.e.,
2000). Actually, since each image presents many class pairs, the presence of a single
misclassified object may yield many anomalies in the same picture. To verify this

64

4.5 – Experimental evaluation

Table 4.5: Number of detected anomalies in 2000 test images.

Config. Total Total (%) Position Area Width Height Co-occurrence
Config. a 4581 6.4 1242 35 14 20 3270
Config. b 6731 9.3 3347 69 19 26 3270

concept and have a better estimate, the second column of Table 4.5 presents the
percentage of object pairs (with respect to the total in the dataset) that are involved
in anomalies. These numbers show that only 6.4 and 9.3 percent of the total object
pairs in the test images are affected by anomalies.

The other columns of Table 4.5 provide the number of anomalies separately for
each relationship category. It is worth noting that co-occurrence determines most of
the anomalies for the two configurations. Also the position category generates more
anomalies than the others: 1242 for Configuration a and 3347 for Configuration b.
The highest number of position anomalies for Configuration b is consistent with
the results we previously showed in Figure 4.4. Indeed, with higher thrh values,
the number of position histograms overcomes the amount of co-occurrence ones,
increasing the probability of having anomalies of type position.

We can now analyze the quality of the detected anomalies by identifying misclas-
sified objects with the three methods presented in Section 4.4. The analysis can be
performed by inspecting the distribution of the discovered anomalies with respect
to a quality metric typically used for evaluating semantic segmentation [29], called
pixel accuracy. This metric is defined as the percentage of correct pixels predicted
by the neural network model. It can be computed either on the overall pixels of
the images to be recognized, or separately for each object. In the latter case, an
object with pixel accuracy equal to zero is totally misclassified by the segmentation
model. Conversely, when accuracy is one, the object has been correctly recognized.
Finally, when the pixel accuracy takes intermediate values in the range [0, 1], it is
likely that some parts of the object are recognized, but some others are confused
with the background or the neighbor objects.

We expect that the detected anomalies will more likely involve objects that are
partially or totally misclassified, while avoiding as much as possible those with high
accuracy. Figure 4.5 and 4.6 show the results for Configuration a and b, respectively.

65

SAD: detecting anomalies in image classification by means of semantic relationships

(a) Anomaly only method. (b) Delta method. (c) WTA method.

Figure 4.5: Anomaly detection results, Configuration a.

(a) Anomaly only method. (b) Delta method. (c) WTA method.

Figure 4.6: Anomaly detection results, Configuration b.

Each figure provides the results obtained with the corresponding configuration,
separately for the Anomaly only, the Delta, and the WTA methods. The height of
the histogram bins represents the number of objects in the test images whose pixel
accuracy takes the values specified by the labels on the horizontal axis. Since the
semantic segmentation model used in all the experiments is always PSPNet, the
histogram heights are the same for all the charts in Figure 4.5 and 4.6. Finally, the
number of objects is expressed in percentage with respect to the total predicted by
the neural network in the test set. Consider that the segmentation model typically
predicts more objects that the correct ones in the ground truth. Many of the
additional objects labeled by PSPNet are just noisy patches of pixels, hence they
will have pixel accuracy close to zero.

From the histograms, it can be immediately noticed how the semantic segmen-
tation model tends to (i) predict object classes totally wrong, or (ii) almost-totally
correct. The intermediate cases (e.g., accuracy values in range [0.1, 0.75]) present
fewer objects. Despite the high number of objects classified with a very low ac-
curacy (almost the 25% with accuracy < 0.1), the total pixel accuracy obtained

66

4.5 – Experimental evaluation

Table 4.6: Precision and recall for the exception and normal classes.

Config. Method
Precision
(Ex)

Recall
(Ex)

Precision
(Norm)

Recall
(Norm)

Macro avg.
precision

Macro avg
recall

1 a Anomaly only 0.55 0.39 0.71 0.82 0.63 0.61
2 a Delta 0.66 0.21 0.68 0.94 0.67 0.58
3 a WTA 0.62 0.19 0.68 0.93 0.65 0.56

4 b Anomaly only 0.50 0.56 0.74 0.70 0.62 0.63
5 b Delta 0.63 0.29 0.70 0.91 0.67 0.60
6 b WTA 0.59 0.29 0.69 0.89 0.64 0.59

by PSPNet on the test images is 0.8, which can be considered a good value. The
reason is due to the fact that many of the almost-zero accuracy objects are just very
small noisy patches of pixels, which weakly contribute to lower the final accuracy.

Consider now the two parts inside the bins, colored differently. The upper one,
highlighted in red, represents the number of objects that are classified as exception
by the specified anomaly detection method. The lower part of the histograms,
depicted in blue, represents the objects that are classified as normal. On average,
Configuration b (Figure 4.6) shows a higher number of exception objects than the
one in Configuration a. This is due to the relaxed constraint on thrh for position
and size histograms in Configuration b. Indeed, more histograms in the knowledge
base imply a higher number of detected anomalies. The Anomaly-only method is
capable of assigning the exception class to many of the objects presenting a very
low accuracy. Unfortunately, it also gives the exception class to very accurately
classified objects. The Delta and the WTA methods predict instead a lower number
of exception items, reducing the recall of exceptions among objects with low pixel
accuracy. Conversely, they improve the prediction quality on high-accuracy objects,
which are almost totally not involved by anomalies.

To better inspect the results from a quantitative point of view, we can assess
the quality of the anomaly detection methods in the following way. We consider
an object labeled with the exception label as a true positive if its pixel accuracy is
lower than 75% (i.e., it is not totally recognized by the neural network). Conversely,
the objects with higher pixel accuracy labeled as exception are considered false
positives. With these definitions, it is possible to evaluate SAD by computing
standard classification measures, such as precision and recall. Table 4.6 shows these
results for the two experimental configurations and the three different anomaly
detection methods.

67

SAD: detecting anomalies in image classification by means of semantic relationships

Figure 4.7: Delta method results, using only co-occurrence histograms

Figure 4.8: Delta method results, using only position and size histograms

As expected, for the exception class, the Anomaly only method presents the
highest recall and the lowest precision, since it considers both the objects involved
by an anomaly as if they have been misclassified by the neural network. The Delta
method shows instead the best precision for the exception class and the best re-
call for normal data. These results highlight how this method is able to recognize
exception objects in a precise way, whilst not affecting normal data. Similar con-
siderations can be done for the WTA method, which presents on average slightly
lower results with respect to the Delta method. From this analysis, we can see how
the Delta method is the best trade-off between precision and recall on the exception
class. Unfortunately, the WTA method did not produce improvements despite the
attempt of reducing false positives with a more complex algorithm.

68

4.5 – Experimental evaluation

Given the promising results obtained with the Delta method, we further analyze
its sensitivity with respect to the thrh threshold. Figure 4.7 and 4.8 depict precision,
recall, and f1 when varying this threshold. To analyze separately the influence of
different categories, in Figure 4.7 only co-occurrence histograms are exploited for
the prediction, while in Figure 4.8 only position and size histograms are considered.
In Figure 4.7, precision increases significantly with thrh > 0.95, but recall becomes
lower. The highest f1 score is established at thrh = 0.8, with precision 0.68. In
Figure 4.8, precision is lower than 0.6 until thrh = 0.97. At thrh = 0.99 recall
decreases to 0.2, but precision becomes comparable to the one obtained with co-
occurrence histograms at thrh = 0.8.

4.5.4 Lessons learned

We have seen how the SAD methodology can automatically derive a knowledge
base describing, in an interpretable way, a set of training images. The results on
anomaly detection show that SAD can correctly detect many low accuracy objects.
In particular, the Delta method yields the most promising results, highlighting ex-
ception objects with a good trade-off between precision and recall. Unfortunately,
the choice made while designing the WTA method did not provide any other im-
provements, reason why this methodology is not presented in our paper [88]. Fi-
nally, the sensitivity analysis of the Delta approach demonstrates that the threshold
values to be set for our algorithm present smooth trends, which entails the possi-
bility of choosing a good value without an excessive fine-tuning.

69

70

Chapter 5

SImS: Semantic Image collection
Summarization with frequent
subgraph mining

We have shown in Chapter 4 how contextual information and object relationships
can be used for a better understanding of the image content and the inspection of
possible errors in semantic segmentation. This chapter presents a second case study
that leverages on object relationships and data mining techniques for summarizing
image collections.

A first application of image collection summarization could be the generation of
highlights and previews of personal albums (e.g., Google Photos) [58, 103]. Addi-
tionally, services such as Pinterest and Flickr could exploit the generated summaries
to identify and suggest thematic collections based on user interests. Video-sharing
platforms (e.g., Youtube) may also derive semantic summaries from video frames to
automatically generate tags and categories [46]. Finally, another important appli-
cation of image summarization can be found in the deep learning field. Specifically,
image understanding tasks require huge amounts of labeled data for the training
process. To improve this learning phase, data samples should be characterized by a
high coverage of all the visual scenes a model has to recognize and a high diversity
to avoid overfitting issues [18, 126]. Image collection summaries could be useful to
assess these characteristics while designing training datasets.

71

SImS: Semantic Image collection Summarization with frequent subgraph mining

Figure 5.1: Comparison between traditional summaries [119].

Previous methods for image collection summarization typically rely on low-level
visual features or on simple textual tags associated to each picture (e.g., Flickr
image tags). Commonly, the output generated by these techniques is a subset of the
input images or a set of image patches extracted from the original dataset. There
are two main issues that characterize these summarization approaches. The former
is that the usage of visual features and image tags does not allow capturing the
semantic information of the pictures. Indeed, object classes and their relationships
should be considered for a more effective analysis. The second issue is related to
the output format of the generated summary. In fact, using a subset of the input
collection does not allow to easily evaluate the representativity of the result. For
example, the output could contain hidden patterns that are not immediately visible
to the final user, reducing interpretability.

Figure 5.1 depicts the output of 6 traditional summarization techniques, each
showing exactly 9 summary pictures. By inspecting these images, a user may easily
infer that the input collection contains natural landscapes. However, there are no
explicit cues about which semantic content is really important to summarize the
collection. Some questions that a user could be interested in are: “Does sky appear
in all images?”, “Is the airplane in the k-Medoids result important, or just the sky
around it?”.

72

SImS: Semantic Image collection Summarization with frequent subgraph mining

SImS, acronym for Semantic Image Summarization, is our technique to extract
semantic summaries from large image collections. Differently from previous meth-
ods, it is designed to analyze the semantic content of the input dataset, in terms
of object classes and relationships. The resulting summary consists of a set of
abstract patterns that recurrently occur in the collection, paired with example im-
ages. Specifically, these output patterns are encoded in the form of scene graphs
(see Section 2.3), which describe frequent object configurations discovered in the
images under analysis. This characteristic makes our methodology more inter-
pretable and semantics-aware. Additionally, frequent scene graphs generated by
SImS can represent a source of information to answer queries such as “Find the
Pinterest boards that show a person on a bike” or, more complex, “two people on
the same bike”. Other applications could involve the output patterns to create com-
plex textual descriptions considering object relationships, such as “In the collection
you can typically find scenes with a castle surrounded by vegetation”. The novelty
of SImS consists in applying frequent subgraph mining algorithms to analyze the
scene graphs associated to the input images. In this work, we also extend the se-
mantic information of standard scene graphs with fine-grained relationship types
describing the relative position between objects. Specifically, SImS automatically
derives them by applying the position classifier defined in Section 3.3 to images
labeled with panoptic segmentation methods [59, 117].

Our technique considers two types of patterns: (i) frequent pairwise object re-
lationships, and (ii) frequent scene graphs. Similarly to the SAD approach (see
Chapter 4), frequent pairwise object relationships describe the distribution of the
object configurations with a set of histograms. This first type of patterns is stored
by SImS in the Pairwise Relationship Summary (PRS), which has a similar struc-
ture to the knowledge base defined for the SAD method. In this work, we only
focus on relative position relationships, which is the most relevant type for describ-
ing the image content, as we learned from the anomaly detection experiments in
Section 4.5. Figure 5.2 depicts some examples of PRS histograms. Specifically, it
shows that the analyzed collection presents images where the pairs “mountain-sky”
and “car-sky” frequently occur. Moreover, the two histograms report that the ob-
ject “mountain” is typically found hanging (i.e., below with contact) from “sky”,
while “car” is typically located below “sky”.

73

SImS: Semantic Image collection Summarization with frequent subgraph mining

Figure 5.2: Example of summary patterns extracted by SImS from the COCO
dataset.

The second type of patterns, called frequent scene graphs, represents the core
result of SImS and describes common multi-object configurations detected in the
input dataset. These patterns extend the concept of frequent pairwise object re-
lationships defined in SAD. We show in the experiments how these scene graphs
represent meaningful summaries of the input collection. Additionally, similarly to
SAD histograms, they can provide actionable commonsense knowledge for image
understanding tasks [2, 97]. The bottom-left part of Figure 5.2 presents an example
of SGS graph that involves 4 different objects at the same time. Specifically, it is
representative of 140 pictures in the collection (support value), where “mountain”
object is hanging from “sky”, while “person” and “car” are below “sky”. In the bot-
tom right of Figure 5.2, we finally provide one of the 140 pictures that include this
example graph. Unfortunately, the extraction of such semantic patterns (i.e., the
SGS) by means of frequent subgraph mining techniques has a high computational
complexity and tends to generate redundancies in the output summary. Both issues
can be solved by applying an effective preprocessing technique we designed in our
work.

74

5.1 – Related works on image summarization

We recap the main contributions of SImS in the following.

(i) We define two types of summarization patterns: Frequent pairwise object re-
lationships (PRS), and frequent scene graphs (SGS). Differently from previous
work, our summaries are semantics-aware and more interpretable.

(ii) The relative position between objects is described with a novel set of fine-
grained labels, defined in Section 3.3.

(iii) The scene graphs analyzed by SImS are automatically generated from panop-
tic segmentation exploiting our relative position classifier.

(iv) We designed a scene graph preprocessing step to remove redundant informa-
tion and reduce the running time of the frequent subgraph mining process.

We organize the next sections as follows. In Section 5.1 we review previous works
on image summarization, highlighting the contribution of the proposed methodol-
ogy. Next, in Section 5.2, we present the main techniques for frequent subgraph
mining, which is a core building block for extracting the SGS in SImS. In Sec-
tion 5.3 we highlight the main issues with applying frequent subgraph mining on
scene graphs without an appropriate preprocessing. The overview of the SImS pro-
cess is provided in Section 5.4, while the details of its building blocks are described
from Section 5.5 to 5.9. The summary evaluation metrics are shown in Section 5.10
and the experiments are finally described in Section 5.11.

5.1 Related works on image summarization
As previously introduced, image collection summarization aims at extracting

important patterns to briefly describe huge sets of pictures. A very common way to
approach this task consists in selecting a subset of the pictures that are considered
to be more important to summarize the collection [19, 105]. These approaches
typically describe images with visual features such as color histograms or Scale
Invariant Feature Transform (SIFT). Then, feature vectors are used to inspect
recurring patterns and extract the most significant images. The generated summary
aims at a good coverage (i.e., all the patterns and scene types in the collection should
be represented) and a high diversity (i.e., the images presented in the result should
not be redundant in terms of visual aspect and semantic content).

75

SImS: Semantic Image collection Summarization with frequent subgraph mining

(a) Input image (b) RAC (c) SIFT

Figure 5.3: Extraction of visual features to characterize images.

5.1.1 Extraction of image features

The first way of categorizing previous works in image summarization involves
the type of features used to characterize the images. An effective feature extraction
should be able to inspect different image aspects such as colors, textures and shapes.
These techniques have been widely studied in the earliest years of computer vision,
before the development of convolutional neural networks designed to automatically
learn the feature extraction process. Instead of exploiting hand-designed features,
some summarization techniques rely on more complex ones directly extracted from
pretrained convolutional neural networks. In the following, we describe some exam-
ples of visual features used in previous works, with the aim of better understanding
the semantic gap with respect to the information exploited by SImS.

Color histograms are one of the most well known feature extraction techniques
used in literature. Each histogram is a fixed-size vector that describes the image by
means of the color distribution of the pixels. This technique is suitable to generate
a global feature vector for the image, but unfortunately one single color histograms
does not provide spatial information. For this reason, a widely used approach
consists in dividing the image in coarse regions or super-pixels, then computing a
color histogram for each of them. A variant of this approach is Regional Average
Colors (RAC), where the average color is picked instead of the complete color
histogram (Figure 5.3b).

To better inspect the presence of shapes inside the image, corner and edge de-
tection algorithms have been designed. Scale Invariant Feature Transform (SIFT)
is a technique for detecting keypoints of different types to describe the image (Fig-
ure 5.3c). Keypoints are characterized by their position in the image and a feature
vector (e.g., 64/128 features) describing the shape that has been recognized, such

76

5.1 – Related works on image summarization

Figure 5.4: Image representation with Bag Of Words (BOW).

as specific types of edges or corners.

Since the number of detected keypoints in a picture is not predefined, the gener-
ation of a fixed-size feature vector for each image cannot be immediately performed.
The BOW representation (i.e., Bag Of Words) is typically used to solve this prob-
lem. Figure 5.4 depicts the main steps to derive BOW vectors from images. Given
an input image, the algorithm matches the feature vector of each detected keypoint
with the nearest neighbor found in a dictionary of P prototypes. Every image is
then described with a count vector (BOW) that specifies the number of matches
for each of the P prototypes. The dictionary with prototypes is typically learned
by running k-Medoids on a big set of keypoints extracted from the input image
collection.

The features described so far can visually characterize a picture. However, vi-
sually similar images may have different semantic meanings, while similar images
from a semantic point of view can present different visual aspects. Figure 5.5a
depicts an example of two visually similar images that present different semantic
concepts. Indeed, the picture on the left represents a cottage house, while the one
on the right shows a dog house. The usage of contextual information (e.g., the pres-
ence of the dog next to the house, with the same size) could help in distinguishing
between the two images. Instead, in Figure 5.5b two bedrooms are shown. The
visual appearance of the two scenes is quite different, but there are some objects
in common, such as bed and pillows, that help in understanding the scene type.
As we will describe, SImS takes into consideration also the image content in terms
of objects and their positions, which will help in the generation of semantics-aware
and interpretable summaries.

77

SImS: Semantic Image collection Summarization with frequent subgraph mining

(a) Visually similar.

(b) Semantically similar.

Figure 5.5: The semantic gap with visual features.

5.1.2 Image summarization methodologies

Different image collection summarization techniques have been proposed. In
general, they share the same definition of summary, which is a subset of the initial
collection and can be formalized as follows.

Given a dataset of images DI , the summary is defined as the subset

SI ⊆ DI , |SI | <= N

where N is the upperbound that specifies the maximum summary size. In the
following, we review the main types of image summarization methods that share
this formal definition, by providing some example papers that are well known in
the community. We start by analyzing methods that only rely on visual features,
describing first unsupervised techniques based on clustering, then optimization-
based techniques. Finally, we analyze previous works that also introduced semantic
analyses on the image content, used together with visual features.

Clustering techniques can be considered as one of the most frequent approaches
in literature. Deng et al. [31] use Self Organizing Maps (SOM) [61] to recognize

78

5.1 – Related works on image summarization

Figure 5.6: Image summarization with Self Organizing Maps [31].

similar images based on visual features. In this approach they use Regional Average
Colors (RAC) to describe each image. Specifically, the picture frame is divided into
25 squared non-overlapped blocks and the average color is picked from each of them
(Figure 5.3b). They also use a set of Gabor filters [81] to characterize textures in
each region. The resulting feature vectors, extracted from all the images in DI , are
provided to an 8 × 8 SOM that is responsible for learning a weight configuration
describing the input collection. Finally, the images that generate the highest neuron
activations are selected to take part of the summary SI and displayed to a 2D plane.
Specifically, as depicted in Figure 5.6, each summary image is associated with the
neuron that shows the highest activation and positioned by projecting the neuron
weight vector with Principal Component Analysis (PCA).

Hadi et al. exploit the k-Medoids clustering technique [49] to generate sum-
maries. For the feature extraction they rely on SIFT keypoints, building feature
vectors with a Bag Of Words (BOW) representation. After extracting BOW vec-
tors, k-Medoids is run on all the images and the medoids are picked to build the
final summary. Other techniques [124] include some preprocessing to filter unim-
portant SIFT features (e.g., using RANSAC) and exploit a different clustering
technique called Affinity Propagation clustering, which does not require presetting
the number of representative images.

A different category of approaches define a metric to be optimized when choosing
the subset of summary images. Specifically, the subset SI is selected by optimizing

79

SImS: Semantic Image collection Summarization with frequent subgraph mining

a function Q(•) that establishes the quality of the summary, under a maximum
summary size constraint (N):

S∗
I = arg max

SI

Q(SI), SI ⊆ DI ∧ |SI | <= N

An example is the work proposed in [115], where the objective function Q(•) is
designed with a mixture of M submodular functions:

Q(SI) =
M∑︂

m=1
wmfm(SI)

Each component in the mixture of functions measures a different quality aspect of
the generated summary, such as coverage and diversity. All of the defined submod-
ular functions analyze the distance between images, measured by comparing their
feature vectors (e.g., color histograms, SIFT features, super-pixels). Specifically,
the coverage of the subset SI , is higher when the summary images are similar to
the majority of those in the initial image collection DI . An example (but many
others are defined in [115]) of coverage function used in the mixture could be:

fcov1(SI) =
∑︂

i∈DI

∑︂
j∈SI

si,j

where si,j is the similarity between two images i and j. Similarly, the diversity of
the subset SI can be measured by inspecting the distances among summary images:

fdiv1(SI) =
∑︂
i∈SI

∑︂
j∈SI ,i<j

di,j

The final mixture Q(•) considers all the functions defined so far to obtain the best
quality summary. Images are selected by optimizing this score with an accelerated
greedy algorithm for submodular functions [83].

A second way of defining the summarization task as an optimization method
consists in minimizing the reconstruction error of the whole collection starting from
the summary. For example, Yang et al. [119] use BOW feature vectors (based
on SIFT) to compute linear combinations between summary images in SI and
verify that they are able to reconstruct the feature vectors of the complete set DI .
Specifically, the feature vector vi of an image i ∈ DI can be reconstructed with the

80

5.1 – Related works on image summarization

following linear combination:

vi =
∑︂

j∈SI

αijvj ∀ i ∈ DI

where vj are the feature vectors of the summary images and αij is the coefficient
associated to vj for reconstructing vi. The summarization approach aims at mini-
mizing the reconstruction error in L2 norm, defined as:

err =
∑︂

i∈DI

||vi −
∑︂

j∈SI

αijvi||

The authors propose to solve the optimization problem with simulated annealing,
which avoids local minima and efficiently searches the optimal solution.

As previously described, the pure usage of visual features may yield incorrect or
incomplete summaries. We discovered some previous works that can be considered
pioneers in introducing semantic features for image summarization. Fan et al.
[35] exploit the semantic information contained in textual annotations associated
with the images. Specifically, they organize the summarization process in two
levels. First, they divide the set of input images in semantic groups based on
image descriptions, then they summarize separately the different groups based on
visual features. The first step is achieved by considering each image in DI as a
textual document and performing Latent Semantic Analysis (LSA) on its tokens.
The result is the definition of a set of semantic topics (e.g., airplanes, pets) and the
division of the images in fuzzy clusters based on the agreement with the extracted
topics. Each of these semantic clusters is then analyzed and summarized from a
visual point of view by means of color histograms and texture descriptors. This step
avoids visual redundancies that may be present in groups of images with the same
semantic meaning. Therefore, the last summarization step consists in dividing each
semantic cluster into a second level of groups, by means of visual features. The
images that are closest to the centroids of the second-level groups are considered
as representative to summarize each first-level (i.e., semantic) cluster.

Differently to [35], where the semantic analysis is conducted separately from
the visual one, another approach [20] proposes a multimodal analysis. Each image
is represented with BOW feature vectors that involve both visual and semantic
aspects. Hence, the dataset is represented with two matrices (Xv for visual features,

81

SImS: Semantic Image collection Summarization with frequent subgraph mining

Xt for textual ones) where rows represent the images and columns provide the
attribute values. The visual features are encoded with BOW vectors extracted
from SIFT keypoints, while textual attributes are defined with count vectors (one
attribute for each distinct token). The multimodal analysis consists in applying a
latent topic analysis with Non-negative Matrix Factorization (NMF) to Xv and Xt.
The result is a matrix that specifies the degree of agreement of each image to the
discovered multimodal topics. Finaly, for each of the discovered topics, the top-k
most representative images (i.e., those with the highest weights) are selected and
added to the summary SI .

The approach proposed by Samani et al. in [98] presents some new important
characteristics with respect to the previously analyzed methods. Specifically, they
apply an image classifier to the samples in the collection to be summarized. This
operation allows obtaining a set of abstract concepts to describe the images with-
out having access to textual tags or captions. However, since the available image
classifiers are typically designed to recognize general object categories, these ob-
ject classes may not be suitable to describe a domain-specific image dataset. For
example the generic class “amphitheater” could be translated to “Colosseum”, if
the system knew that the image dataset is referring to Rome city. To this aim,
the authors propose to map class labels with a domain ontology (such as DBpedia)
that contains specific knowledge about the image collection to be analyzed. This
operation allows a better semantic description by mapping each image with the
associated domain concepts. The feature vectors with the mapped concepts are
then used to compute a similarity graph between images. The final summary is
computed by picking the most relevant images with the graph centrality metric.

Although these methods ([20, 35, 98]) try to involve semantic information in
terms of image captions and tags, they do not consider further analyses of the
object relationships and they all model the final summary with an image subset.
In the next sections, we show how SImS is able to overcome these limitations by
bringing the summarization task to a next level in terms of semantic understanding.

The summarization method proposed by Simon et al. in 2007 [103] differenti-
ates from the techniques analyzed so far. The aim of the paper is to summarize
large photo collections about world’s important sites, such as cities and monu-
ments. They define the concept of scenes and views. A scene S is a physical site
in the world (e.g., the Colosseum or the Giza pyramid complex), while a view V

82

5.2 – Related works on frequent subgraph mining

is an image that corresponds to a scene subset in terms of visible 3D keypoints.
For example, in the case of a church scene, different views may depict various de-
tails such as the outdoor structure or internal elements like columns and frescoes.
The proposed summarization approach considers a single scene S and processes
a dataset of images (DI,S) representing different views of S. The authors encode
DI,S with a term-document matrix, where terms (columns) are the 3D keypoints
of the scene and documents (rows) are the views described with a 1-hot vector.
Specifically, these row vectors highlight which keypoints are visible in each view.
The 3D keypoints used as terms are automatically learned by the system and they
are computed exploiting SIFT descriptors. The summary images SI,S ⊆ DI,S are
selected with a greedy algorithm that minimizes a cost function evaluating diver-
sity and coverage. The authors also define a second method to summarize image
collections including multiple scenes by introducing a 2-level hierarchy. First, the
different scenes are identified by matching SIFT descriptors between images, then
for each scene the term-document matrix is build to define the final summaries. The
idea of modeling scenes is partially exploited also in our technique, SImS. Indeed,
a scene can be thought as a common multi-object pattern that frequently occurs in
the collection. For example, a kitchen may be thought as a scene including objects
such as “table”, “chair”, “oven”, “sink” configured in a specific way.

5.2 Related works on frequent subgraph mining
SImS performs the extraction of frequent patterns by means of frequent subgraph

mining (FSM) techniques. This data mining task has a great variety of applications
in other research fields such as biology, chemistry, and web data analysis. The
algorithms for frequent subgraph mining can be categorized in different ways [48,
56, 90]. Considering the input type, these techniques can be designed to analyze
a single big graph, or several smaller ones. The input graphs can be directed or
undirected, dynamic or static. Also the output type can change with the algorithm.
For example, exact FSM techniques return all the frequent subgraphs, while inexact
methods just return a subset. Finally, FSM techniques can be categorized according
to the algorithmic approach, such as Apriori- or pattern-growth-based.

In our work, we considered two state-of-the-art algorithms to mine frequent
patterns from the labeled scene graphs. The first one is gSpan [118], an exact FSM

83

SImS: Semantic Image collection Summarization with frequent subgraph mining

technique based on a Depth First Search approach. This algorithm requires a low
amount of memory and it is suitable for very large graph collections. The second
method is SUBDUE [26], an inexact algorithm based on graph compression. In
our experiments, we will show summarization results exploiting both gSpan and
SUBDUE, highlighting their pros and cons.

5.3 Frequent Scene Graph mining
The Scene Graph Summary (SGS) represents the core output of our semantic

image summarization method. As anticipated in the previous sections, we extract
frequent scene graphs by means of FSM techniques. Unfortunately, trying to di-
rectly use FSM algorithms on the scene graphs of a specific image collection has
shown to suffer from the three following issues: (i) a very long running time, (ii) the
presence of high-entropy relationships and (iii) the presence of repeated items.

5.3.1 Running time

With a preliminary analysis (see Section 5.11.2) we note that FSM algorithms,
specifically SUBDUE and gSpan, take several minutes or even hours to produce
the result when applied to big collections such as the Microsoft COCO dataset [60].
Moreover, gSpan has a variable running time that depends on its hyperparameter
minsup. This value specifies the minimum percentage of transactions where a scene
graph should occur to be included in the final result. Since gSpan is a DFS-based
algorithm, the lower is minsup the higher is the running time to generate the
summary. Conversely, with higher values of minsup, more patterns are excluded
and the search space drastically reduces. Unfortunately, the excluded patterns,
even if with low frequency, may sometimes represent interesting insights about the
image collection. Less frequent, but representative, scenes are likely to be present
in large image collections and for this reason a trade-off between running time and
the number of discovered patterns should be found.

84

5.3 – Frequent Scene Graph mining

tree

sky

on

pavement

below

below

(a)

tree

sky

on

pavement

hanging

below

(b)

tree

sky

on

pavement

side

below

(c)

Figure 5.7: Example of frequent scene graphs presenting high-entropy relationships.

5.3.2 High-entropy relationships

The second drawback that emerges when applying FSM algorithms to scene
graphs is the presence of redundant information in the output summary. As de-
scribed in Section 5.1.2 summarization methods should generate non-redundant
summaries, characterized by a high coverage with respect to the initial image col-
lection. In complex image datasets, the large number of distinct object classes and
the presence of many objects inside the same image brings to crowded scene graphs
with irrelevant information. We call high-entropy relationships the edges that con-
nect a pair of two specific classes if their relative position takes many different
values in the input scene graphs (i.e., the objects with these two classes do not
have a preferred relative position). These object pairs damage the final result, as
they will contribute to obtain many similar frequent graphs, where the same object
classes are connected by slightly different relationships.

For example, the object pair “pavement, tree” is characterized by a high-entropy
relationship, as it appears in the COCO dataset with the “below”, “hanging”, or
“side” relative positions. Figures 5.7a, 5.7b, and 5.7c show three examples of fre-
quent scene graphs, generated by an FSM algorithm, where the object pair “pave-
ment, tree” appears in the same context, but with a different position relationship.
Since all the other nodes and edges in the two graphs are the same, the presence of
both graphs in the SGS does not provide useful information as it reduces diversity.

85

SImS: Semantic Image collection Summarization with frequent subgraph mining

Figure 5.8: Example of crowded images with repeated items.

car

road

above

sky

below

car

below

(a)

car

road

above

sky

below

car

below

car

below

(b)

Figure 5.9: Example of frequent scene graphs presenting repeated items.

5.3.3 Repeated items

Some object classes typically occur multiple times in the same image. For exam-
ple, a picture representing a city square will contain many people, while a road scene
will have many cars inside (Figure 5.8). The scene graphs associated with these
images contain many nodes with the same class label and many low-informative
relationships. After applying FSM on the scene graphs, the presence of repeated
items contributes to obtain redundant frequent graphs with the same item included
multiple times. Moreover, the summary could contain graphs with the same infor-
mative content, which only differ for the number of repetitions of a specific object
class. Figures 5.9a and 5.9b show two of these frequent scene graphs, where the
object “car” occurs two times in the first one and three times in the second one.
Both graphs refer to a city scene, with “sky”, “road” and “car” objects. From a
semantic point of view the two graphs are equivalent and should not be present
together in the same SGS to increase diversity.

86

5.4 – Semantic Image Summarization

Figure 5.10: SImS architecture.

5.4 Semantic Image Summarization
SImS generates the output summaries, namely the PRS and the SGS, by apply-

ing frequent subgraph mining to the input scene graphs. We provide in Section 5.5
the formal definitions of scene graphs and of the two summary types. Afterwards,
in Section 5.6-5.9 we describe the algorithmic component of each part of our algo-
rithm. Figure 5.10 depicts the overview of SImS, whose building blocks are briefly
outlined in the following.

Scene graph computation. This step is responsible for the transformation of a
segmented image into a scene graph. Similarly to SAD, the process involves the
relative position computation algorithm described in Section 3.3, which is applied
to all the images in the collection being summarized.

Pairwise Relationship Summary generation. This building block inspects
frequent pairwise object relationships in terms of relative position. The algorithm
takes as input the collection of scene graphs generated at the previous stage, then
collects the statistics about each object class pair in a similar way we defined for
SAD (see Section 4.3). The summarized information, in the form of histograms, is
stored in the PRS.

Scene graph preprocessing. As specified in Section 5.3, the scene graphs must
be further preprocessed to reduce running time and avoid redundancies in the result.
The preprocessing of scene graphs works by exploiting the summarized knowledge
in the PRS.

Scene graph mining. During this step, SImS applies a frequent subgraph mining
algorithm to the preprocessed scene graphs in order to generate the final Scene
Graph Summary (SGS).

87

SImS: Semantic Image collection Summarization with frequent subgraph mining

Label Description
above s is above r without contact
below s is below r without contact
on s is on top of r with contact
hanging s is below r with contact
side s and r are not vertical aligned
side-up s and r are not vertical aligned, s is in a higher position
side-down s and r are not vertical aligned, s is in a lower position
inside s pixels are inside r shape
around s pixels are around r shape

Table 5.1: Relative position labels for an edge connecting a subject-reference pair.

5.5 Summarization patterns
The PRS and the SGS summaries are designed to characterize frequent object

relationships occurring in the input collection. The PRS describes pairwise rela-
tionships by means of discrete probability distributions, while the SGS exploits the
scene graph data structure. Scene graphs are used not only in the SGS, but also in
the first stage of the algorithm to represent the input images.

We define a scene graph with the directed graph:

G = (V, E, lv, le)

where V is the set of vertices, E are the edges, lv(•) is a function that assigns a
class label to each vertex, and le(•) is a function assigning a relationship type to
each edge. Every vertex v ∈ V is associated to an object instance in the panoptic
segmentation of a specific image, while lv(v) specifies its object class (e.g., “ship”,
“sky”). An edge connecting a pair of objects represents instead their position
relationship. Specifically, two object instances s ∈ V (subject), r ∈ V (reference)
are linked by a relationship if there exists an edge e = (s, r), e ∈ E. The relationship
type is specified by the edge label le(e) and corresponds to a specific relative position
among the 9 labels we defined in Section 3.3. We recall these relationships with
a summary in Table 5.1. For a better understanding of this formal definition, we
depicted in Figure 5.11 a visual example of scene graph associated to a segmented
image with three object instances (i.e., “car”, “sky”, “mountain”). In this example,

88

5.5 – Summarization patterns

(a) Input image, with panoptic segmen-
tation.

(b) Associated scene graph.

Figure 5.11: Example of image representation by means of scene graphs.

the “sky” object is connected with “car” according to the relationship “above” and
it is also connected with “mountain” following the relationship “on”.

The main summary generated by SImS, called SGS, is defined as a set of fre-
quent multi-object patterns represented with scene graphs. Specifically, it can be
formalized with:

SGS = {G1, . . . , Gi, . . . , G|SGS|}

where each Gi is a frequent scene graph derived from the input collection by means
of an FSM algorithm such as gSpan or SUBDUE, and |SGS| is the number of
summary graphs.

The Pairwise Relationship Summary is instead composed of a set of patterns
inspecting common relative position relationships found among the object pairs
in the collection under analysis. The probabilities of finding each specific relative
position label for a give class pair is modeled in the form of histograms (i.e., discrete
probability distributions).

Let sl ∈ L (subject label), rl ∈ L (reference label) be two object classes, where
L is the set of object class labels available in the input collection. The discrete
probability distribution that models the likelihoods of the position labels for two
objects with classes sl, rl is defined with the following histogram:

h(sl, rl) = {P (p1|sl, rl), ..., P (pi|sl, rl), ..., P (pn|sl, rl)}

where each value P (pi|sl, rl) reports the likelihood that a subject with class sl and

89

SImS: Semantic Image collection Summarization with frequent subgraph mining

a reference with class rl are located with a relative position pi.

To make an example, the histogram:

h(floor, tv) = {P (side-down|floor, tv) = 0.11, P (below|floor, tv) = 0.82, ...}

allows understanding that the input collection contains images where “floor” and
“tv” co-occur and 82% of the times “floor” is below (without contact) the “tv”. The
lower likelihood values in the histogram are omitted for brevity.

The Pairwise Relationship Summary (PRS) is then defined as the set of his-
tograms that are generated from the input collection by considering all the class
pairs. More formally:

PRS = {h(sl, rl) | (sl, rl) ∈ L × L}

where the cartesian product L × L represents all the possible class pairs.

5.6 Scene graph computation
This processing step consists of the transformation of an image labeled with

panoptic segmentation (L, Z) into a scene graph. The object identifiers in the
panoptic segmentation matrix Z (see Section 2.1.5) are exploited to form the dif-
ferent scene graph nodes v ∈ V . Afterwards, the matrix containing object class
labels (i.e., L) is used to define the function lv(•) mapping each vertex id to the
associated class. Finally, every pair of vertices is linked by the edges e ∈ E, each
labeled with the function le(•) that exploits the output of our relative position
classifier (see Section 3.3).

5.7 Pairwise Relationship Summary generation
After the generation of scene graphs, their information is used to build the

PRS by considering common pairwise patterns. With a process similar to the one
described for SAD, given each class pair sl, rl, we count the percentage of times that
two objects with these classes appear at a specific relative position. The pseudocode
of this process is described in Algorithm 4.

90

5.7 – Pairwise Relationship Summary generation

Algorithm 4 SImS: PRS extraction
Input: Scene graphs GI , minsuph, maxentrh

Output: filtered patterns PRSf

1: PRS = {}
2: for all (Vi, Ei, lv,i, le,i) in GI do
3: for all e = (s, r) in Ei do
4: sl = lv,i(s), rl = lv,i(r)
5: p = le,i(e)
6: h(sl, rl) = getOrCreateHistogram(PRS, sl, rl)
7: increment(h(sl, rl), p)
8: end for
9: end for

10:
11: for all h(sl, rl) in PRS do
12: sup(h(sl, rl)) = sum(h(sl, rl))
13: h(sl, rl) = h(sl, rl)/sup(h(sl, rl))
14: ent(h(sl, rl)) = entropy(h(sl, rl))
15: end for
16:
17: PRSf = filter(PRS, minsuph, maxentrh)
18: return PRSf

The main loop (line 2) iterates on all the scene graphs of the input collection,
while the inner loop (line 3) iterates on all the edges in the selected graph. From
each edge, SImS extracts the information of the subject and reference class labels
(line 4), then the relative position le,i(e) (line 5). Afterwards, it retrieves (or creates
if it does not exist) from the PRS the histogram associated to the class pair (line 6)
and increments the count corresponding to position p (line 7). At the end of the
main loop, it normalizes the histogram counts to obtain the discrete probability
distributions describing the frequent pairwise patterns (line 11). The normalization
is made by dividing the histogram values with the number of object pairs that
updated the histogram counts (i.e., their support).

Finally, the PRS histograms are filtered to keep only the most relevant informa-
tion and reduce the summary size. The filtering process is based on two measures
that describe the quality of each histogram: support and entropy. The support
of the class pair is computed on histogram counts before normalization (line 12)

91

SImS: Semantic Image collection Summarization with frequent subgraph mining

and measures the reliability of the collected information. Indeed, the more train-
ing samples represent the histogram, the higher is the likelihood that the inferred
pattern is less affected by noise.

Entropy is instead a quantity defined in information theory for discrete probabil-
ity distributions [101]. It measures the average level of information present in the
distribution. Let h(sl, rl) be a histogram distribution in the PRS and P (pi|sl, rl)
be the likelihood associated with position pi. The information content carried by
an event where two objects with classes sl, rl satisfy the position pi is:

I(pi|sl, rl) = −log(P (pi|sl, rl))

Indeed, when P (pi|sl, rl) is low and the event is verified (i.e., sl, rl satisfy position
pi), the quantity of information is higher because the event is unexpected. Entropy
averages the information content for all the possible events (i.e., positions pi in our
case) in the histogram distribution. It is defined as:

entropy(h(sl, rl)) = E[−log(P (pi|sl, rl)] = −
∑︂

i

P (pi|sl, rl)log(P (pi|sl, rl))

The product −P (pi|sl, rl)log(P (pi|sl, rl) is lower when P (pi|sl, rl) is either 0 or 1.
Instead, it is higher when P (pi|sl, rl) is close to 0.5. This means that unbalanced
histograms that present few likelihoods with values close to 1 and many values close
to 0 will have a lower entropy. Conversely, a histogram where all the positions pi

share almost the same likelihood, will present a higher entropy. In our analysis we
are interested in keeping the histograms with a low entropy, which describe object
pairs satisfying a small predefined set of relative positions.

According to this reasoning, SImS filters out the histograms that have a high
support and a low entropy value (line 17), storing the result in PRSf . The threshold
values minsuph and maxentrh will be discussed in Section 5.11.1.

5.8 Scene graph preprocessing
In Section 5.3 we inspected the main drawbacks that occur by applying Frequent

Subgraph Mining directly to the scene graphs. The scene graph preprocessing de-
scribed in this section aims at reducing the FSM running time and avoiding the

92

5.8 – Scene graph preprocessing

Algorithm 5 SImS: scene graph preprocessing
Input: Scene graphs GI , PRSf

Output: Preprocessed scene graphs
1: for all (Vi, Ei, lv,i, le,i) in GI do
2: for all e = (s, r) in Ei do
3: if h(lv,i(s), lv,i(r)) /∈ PRSf then
4: Ei = Ei \ e
5: end if
6: end for
7:
8: V = copy(Vi)
9: while ||V || > 0 do

10: vi = pop(V)
11: for all vj ∈ V do
12: if equivalent(vi, vj) then
13: V = V \ vj

14: Vi = Vi \ vj

15: Ei = Ei \ {∀e ∈ Ei | r = vj ∨ s = vj}
16: end if
17: end for
18: end while
19: end for
20: return GI

presence of redundancies (i.e., repeated items, high-entropy relationships) in the
final summary. To this aim, we designed the edge pruning and the node pruning
steps that are applied directly after the generation of the scene graphs. The details
of these two steps are provided in the next subsections, while Algorithm 5 shows
the pseudocode for the whole preprocessing pipeline. The effectiveness of the pro-
posed preprocessing, in terms of summary quality and reduction of running time,
is accurately verified in Section 5.11.2.

5.8.1 Edge pruning

This part of the preprocessing has the goal of reducing the presence of high-
entropy relationships. This is achieved by exploiting the information collected in
the PRSf summary. Specifically, high-entropy relationships are defined to be the
edges adjacent to each pair of vertices s, r whose class labels (i.e., lv(s), lv(r)) are
associated to a histogram h(lv(s), lv) that is not relevant (i.e., due to high entropy or

93

SImS: Semantic Image collection Summarization with frequent subgraph mining

low support). More formally, an edge e = (s, r) ∈ E of a scene graph G(V, E, lv, le)
is deemed to be a high-entropy relationship if:

h(lv(s), lv(r)) /∈ PRSf

Therefore, the input scene graphs are pruned by removing all the edges with high
entropy (lines 2-4 of Algorithm 5). The lower number of edges reduces running time
during FSM, whilst maintaining the important information that will contribute to
the final SGS.

5.8.2 Node pruning

This second part of the preprocessing algorithm aims at detecting repeated items
in the scene graphs. The process is performed by comparing each single node with
the others in the same graph. Specifically, we deem two nodes to be equivalent if
they share the same object class and they are connected with the same relationship
types to other objects in the image. An example of equivalent nodes may be the
presence of many cars that are all positioned “on road” and “below sky” in the
same city scene. Including of all these nodes is not necessary for the summary,
hence only one of them will be kept by the algorithm. In the following, we first
show the definition of equivalent nodes, then detail the node pruning process by
presenting its pseudocode.

The definition of equivalent nodes requires two functions that describe the out-
bound and the inbound edges of each vertex v.

Definition 4 (outbound edge description). Let v ∈ V be a vertex in a scene graph
G = (V, E, lv, le). Outbound edges are described with the following set:

out(v) = {(le(e), lv(vk)) | e = (v, vk) ∈ E}

where e are the outbound edges of v with outbound nodes vk.

By means of this function, the labels of the outbound edges and the outbound
nodes are collected in the set of tuples (le(e), lv(vk)). A symmetric definition pro-
vides the description of inbound edges.

94

5.8 – Scene graph preprocessing

car

road

on

sky

below

below

car

on

below

(a) Equivalent nodes.

road

sky

below

car

on

below

(b) Pruned graph.

Figure 5.12: Node pruning.

Definition 5 (inbound edge description). Let v ∈ V be a vertex in a scene graph
G = (V, E, lv, le). Inbound edges are described with the following set:

in(v) = {(le(e), lv(vk)) | e = (vk, v) ∈ E}

where e are the inbound edges of v with inbound nodes vk.

The concept of node equivalence exploits the previous definitions. Specifically,
two nodes are equivalent if they share the same class label and the same description
of inbound and outbound nodes.

Definition 6 (node equivalence). Let vi, vj ∈ V be two nodes. They are equivalent
if:

lv(vi) = lv(vj) ∧ in(vi) = in(vj) ∧ out(vi) = out(vj)

With this definition, we can detect and remove nodes that share the same se-
mantic information (i.e., the same object class and the same labels for inbound and
outbound edges). A visual example of equivalent nodes is provided in Figure 5.12a,
where two objects with label “car” are positioned in the same way with respect to
“road” and “sky”. After node pruning, the result is shown in Figure 5.12b: Only
one of the two “car” objects has been kept in the graph.

95

SImS: Semantic Image collection Summarization with frequent subgraph mining

The process for removing equivalent nodes is detailed in Algorithm 5. In line 8
the procedure copies into V the set of vertices of the analyzed graph. The set V

is exploited as auxiliary data structure to track all the processed vertices: When
it becomes empty (line 9), the node pruning process is complete. Instead, the
original set Vi will be updated at each iteration, by removing the unnecessary nodes
according to the pruning algorithm. The procedure iterates by removing from V

one element (i.e., vi) at a time (lines 9, 10). The selected vertex vi is compared to
all the remaining vertices in V , to search for equivalent nodes that will be removed.
Specifically, in lines 13-14 each equivalent node vj is removed from both the copy
V (to avoid being processed again in the next while-loop iterations) and Vi (the
original scene graph). All the edges e ∈ Ei that are adjacent to vj are removed
from the graph, as well (line 15).

Before describing the final step of SImS that involves scene graph mining, we
highlight the reason why node pruning is applied after edge pruning and not vicev-
ersa. The node equivalence condition requires a complete matching of the edge la-
bels. This condition is difficult to be verified when the scene graphs present many
high-entropy relationships. For example, two nodes may share exactly the same
edge labels with the exception of a single high-entropy relationship that assumes
two different values. Node pruning benefits from the previous application of edge
pruning, which removes high-entropy relationships and increases the probability of
finding equivalent nodes.

5.9 Scene graph mining
The Scene Graph Summary is generated from the preprocessed scene graphs by

means of a state-of-the-art Frequent Subgraph Mining algorithm. In our exper-
imental setting we inspected the usage of both gSpan and SUBDUE, which are
designed to work with labeled graphs. Specifically, in Section 5.11.2 we analyze the
obtained results, by varying the FSM algorithm configuration. The frequent graphs
extracted with FSM are stored in the SGS, which is the final summary provided by
SImS. The SGS also contains the support value of each frequent graph, allowing a
better understanding of its importance to represent the input images.

In order to obtain a more complete visual representation of the final summary,
SImS associates each frequent graph with an example image. This operation is

96

5.10 – Evaluation methodology

performed by comparing each Gi in the SGS with the scene graphs associated
to the images in the input collection. Specifically, SImS extracts from the input
collection the smallest super-graph of each pattern Gi (i.e., it only includes the
important information to represent the frequent pattern). The images associated
to the selected super-graphs are collected for depicting the final visual summary.

5.10 Evaluation methodology
As anticipated in Section 5.1, image collection summarization methods must be

able to provide summaries without redundancies and with a high representativity
of the input collection. To this aim, in this work we analyze SImS result by means
of two frequently adopted metrics: coverage [98, 106] and diversity [20, 115].

Since the dataset under analysis does not come with ground-truth summaries,
the evaluation techniques such as ROUGE [75], V-ROUGE [115] and VERT [74]
cannot be applied. Specifically, ROUGE is a set of recall-based metrics that analyze
the overlap between the predicted summary and a reference summary (i.e., the
ground truth). These metrics are designed to compute the percentage of n-grams or
skip-grams matching with the reference. V-ROUGE implements the same principles
of ROUGE in the computer vision field. In particular, skip-grams and n-grams are
substituted by visual words that describe the image content (e.g., SIFT descriptors,
color histograms or super-pixels). Finally, VERT is designed to evaluate video
summaries in the form of ranked keyframes. This metric measures the precision of
the position of each keyframe in the predicted ranking with respect to the reference
ones.

SImS output differs from standard summaries as it consists of a set of frequent
scene graphs. For this reason, also the standard definitions of coverage and diversity
cannot be directly used. Hence, we propose in the following a slight modification
of these two metrics to fit our case study.

We define coverage as a value in range [0, 1], which is higher when the final
summary is sufficiently representative of the scene graphs in the input collection.
Our coverage definition is based on the subgraph isomorphism property [27].

Graph isomorphism can be used to identify equivalent graphs that carry the
same information. Let Vi and Vj be the set of vertices of two graphs Gi and Gj,

97

SImS: Semantic Image collection Summarization with frequent subgraph mining

(a) Example of isomorphic graphs.

(b) Graph G2 is subgraph isomorphic to G1.

Figure 5.13: Subgraph isomorphism.

respectively. Graph isomorphism is a bijection f : Vi → Vj that maps the vertices of
the two graphs and satisfies the following property. Let vx, vy ∈ Vi be two vertices
of Gi. The corresponding nodes of Gj (f(vx), f(vy) ∈ Vj) must be adjacent (i.e.,
connected by an edge) if and only if vx, vy are adjacent in Gi.

In the case of labeled graphs the bijection f must also satisfy the property
lv(vx) = lv(f(vx)) ∧ lv(vy) = lv(f(vy)) (i.e., the mapped nodes must have the same
label). Furthermore, when considering node adjacency, the label of the edge ei

connecting vx and vy must be the same of the one connecting f(vx) with f(vy).

Figure 5.13a shows two isomorphic graphs (G1, G2), where the bijection function
maps the nodes in the following way: f(v1) = vb, f(v2) = va, f(v3) = vc. Note how
the class labels of the mapped vertices are the same (i.e., both v1 and vb belong
to class car) and the edge labels among adjacent nodes are identical (i.e., the edge
that connects v1 to v2 and the one connecting vb to va have both label on).

Subgraph isomorphism extends the previous definition to identify when a graph
is a subset of another one. Specifically, subgraph isomorphism applies to two graphs
Gi, Gj when at least a subgraph of Gi is isomorphic to Gj. Figure 5.13b depicts
two graphs satisfying this property. Specifically, graph G2 is isomorphic to the
subgraph of G1 including nodes v1, v2, v3.

As previously mentioned, our metric for evaluating the summary coverage is

98

5.10 – Evaluation methodology

based on subgraph isomorphism. Specifically, a scene graph in the input collection
is represented by the summary if at least one of its subgraphs is isomorphic to a
graph in the SGS. Every image in the input collection should be represented to
obtain a full coverage.

Definition 7. (represented graph). Let Gi be an arbitrary scene graph in the input
collection GI . Gi is represented in the SGS if the following function is true:

represented(Gi, SGS) =

⎧⎪⎨⎪⎩1, if ∃ Gj ⊆ Gi | Gj ∈ SGS

0, otherwise

where the operator ⊆ indicates subgraph isomorphism.

Definition 8. (coverage). Let SGS be a summary and GI the input scene graphs.
We define SGS coverage with respect to GI as:

coverage(SGS, GI) =
∑︂

Gi∈GI

represented(Gi, SGS)/|GI |

where |GI | is the number of images in GI .

Coverage values range from |SGS|/|GI | to 1. Higher values are given for better
quality summaries.

To assess redundancy in the provided summary, diversity specifies the average
dissimilarity between graphs in the SGS. A high diversity should be presented by
a good quality summary. We define two different metrics: (i) node diversity, and
(ii) edge diversity.

Remember that the output graphs in the SGS are characterized by the presence
of low-entropy relationships thanks to the edge pruning step (see Section 5.8).
For this reason, two graphs with the same nodes may be considered semantically
equivalent. In the case of node diversity, graph dissimilarities can be reasonably
measured by only analyzing node labels. Specifically, the dissimilarity between two
graphs can be defined as the complement of Intersection over Union (IoU) between
their node labels.

99

SImS: Semantic Image collection Summarization with frequent subgraph mining

Definition 9. (node dissimilarity). Let Gi, Gj be two graphs in the SGS. Their
node dissimilarity is defined as:

nd(Gi, Gj) = 1 − |lv(Gi) ∩ lv(Gj)|
|lv(Gi) ∪ lv(Gj)|

(5.1)

where lv(Gi), lv(Gj) represent the node labels of Gi and Gj respectively.

Node diversity is finally computed as the average node dissimilarity of SGS graphs.

Definition 10. (node diversity). Let SGS be a scene graph summary. Its node
diversity is defined as:

diversityn(SGS) =

⎧⎪⎪⎨⎪⎪⎩
∑︁

Gi,Gj∈SGS,i<j

nd(Gi,Gj)
|SGS|∗(|SGS|−1)/2 if |SGS| > 1

1 otherwise
(5.2)

where Gi and Gj are summary graphs.

This metric ranges in [0, 1]. Higher values imply a better summary because the
summary graphs contain non-redundant information.

We define a second metric, edge diversity, which takes into consideration edge
labels when comparing graphs. This metric exploits a function that describes the
list of edges in a scene graph with a set of tuples.

Definition 11. (edge description). Let Gi be a scene graph in the SGS. Its edges
are described with:

edges(Gi) = {(lv(vj), le(e), lv(vk)) | e = (vj, vk) ∈ E} (5.3)

where e is an edge of Gi connecting the nodes vj, vk, while lv(vj) and lv(vk) are the
node labels, and le(e) is the edge label.

Similarly to node dissimilarity, we define the edge dissimilarity and edge diversity
by exploiting edge descriptions.

Definition 12. (edge dissimilarity). Let Gi, Gj be two graphs in the SGS. Their
edge dissimilarity ed is defined as:

ed(Gi, Gj) = 1 − |edges(Gi) ∩ edges(Gj)|
|edges(Gi) ∪ edges(Gj)|

(5.4)

100

5.11 – Experimental evaluation

Definition 13. (edge diversity). Let SGS be a scene graph summary. Its edge
diversity is defined as:

diversitye(SGS) =

⎧⎪⎪⎨⎪⎪⎩
∑︁

Gi,Gj∈SGS,i<j

ed(Gi,Gj)
|SGS|∗(|SGS|−1)/2 if |SGS| > 1

1 otherwise
(5.5)

where Gi and Gj are summary graphs.

5.11 Experimental evaluation
The Microsoft COCO dataset [60] is suitable for our experimental evaluation, as

its images are labeled with panoptic segmentation. COCO contains 118K pictures
annotated with 53 stuff classes and 80 object labels. It also presents a great variety
of contents and represented scenes, with a high number of labeled objects for each
image. We used its ground-truth labels to analyze the effectiveness of our sum-
marization method regardless of the panoptic segmentation model. Other datasets
including panoptic annotations, such as Cityscapes [28] and ADE20K [125], are less
suitable due to the lower variety of represented scenes (e.g., only road pictures or
indoor ones), but could be analyzed with appropriate changes on the input data
preprocessing pipeline. From a technical point of view, the only drawback of chang-
ing dataset and applying SImS is related to the design of the preprocessing steps
for reading the panoptic annotations, which may be encoded with different formats.

We organize the next subsections as follows. First, we evaluate the results of the
PRS extraction step on the COCO images. Afterwards, we will assess the effective-
ness of the scene graph preprocessing steps (i.e., node and edge pruning). Next,
we will move on with the analysis of different frequent subgraph mining algorithms
and configurations, focusing on summary quality and running time. Finally, we
will show a qualitative and quantitative comparison with previous summarization
techniques.

All the experiments presented in this section are run with the following hard-
ware configuration: Intel Xeon Gold 6140, CPU @ 2.30GHz, RAM 40 GB. Our
summarization algorithm is fully implemented in Python 3, while the frequent sub-
graph mining process relies on available online C implementations [26, 118]. The

101

SImS: Semantic Image collection Summarization with frequent subgraph mining

Figure 5.14: Support distribution of PRS histograms.

complete source code of SImS is provided in our GitHub repository:
https://github.com/AndreaPasini/SImS

5.11.1 Pairwise Relationship Summary generation

The Pairwise Relationship summary is built directly after creating the scene
graphs on the whole COCO dataset. The extraction of the scene graphs, containing
5M relationships in total, takes 4 hours, while the PRS is generated from the scene
graphs in about 20 seconds. The resulting PRS contains 7867 histograms, whose
support distribution is depicted in Figure 5.14. Since the curve is positively skewed,
to obtain a gaussian-shaped distribution and increase readability, we have shown
the horizontal axis values in log-scale.

The high number of histograms in the PRS is reduced by means of the PRS fil-
tering phase, described in Section 5.7. Specifically, the minsuph and the maxentrh

thresholds are imposed to select the most relevant histograms. We enforce minsuph

to improve the running time of the frequent subgraph mining process. Setting
higher values allows reducing the outlier histograms in the PRSf (i.e., those sup-
ported by few elements) and decreasing the FSM time. To identify feasible values for
this threshold, we performed a sensitivity analysis by inspecting the range [0, 10000]
(which corresponds to [0%, 5%] with a relative support). The sensitivity analysis is
conducted on the full COCO dataset, running gSpan with minsup = 0.01 as graph
mining method. We consider the effect of minsuph on both the SGS size and the

102

https://github.com/AndreaPasini/SImS

5.11 – Experimental evaluation

two summary evaluation metrics, namely coverage and diversity.

0 2000 4000 6000 8000 10000
minsuph

100

150

200

250

300

|S
G
S|

0 2000 4000 6000 8000 10000
minsuph

0.3

0.4

0.5

0.6

0.7

0.8 coverage
diversity

(a) Number of SGS graphs.

0 2000 4000 6000 8000 10000
minsuph

100

150

200

250

300

|S
G
S|

0 2000 4000 6000 8000 10000
minsuph

0.3

0.4

0.5

0.6

0.7

0.8 coverage
diversity

(b) SGS quality.

Figure 5.15: minsuph sensitivity.

Figure 5.15a depicts the number of summary histograms while varying minsuph.
With increasing values of the threshold, the summary size climbs from 269 to a
maximum of 321 at minsuph = 2000. The increase is due to the elimination of
outlier relationships (i.e., supported by few items) that helps the node pruning
step to obtain simpler graphs. Indeed, a better simplification of the input graphs
implies a higher presence of frequent patterns. Instead, when the value of minsuph

grows too much, the number of graphs decreases as the removal of nodes and edges
from the input images starts causing the presence of empty graphs (which are not
considered in the FSM process).

The sensitivity of the SGS quality with respect to changes of minsuph is shown
in Figure 5.15b. The presence of a very stable plateau for both coverage and
diversity can be immediately seen for minsuph in [0, 1000]. Specifically, coverage
remains fixed to 0.43, while diversity fluctuates between 0.80 and 0.81. Note that if
diversity and coverage are approximately constant in range [0, 1000], the number of
SGS graphs increases, instead. This entails that the SGS graphs that are included
in the result while increasing minsuph are meaningful (i.e., they do not reduce
diversity), but they are representative of the same images (i.e., coverage does not
increase). Finally, once we increase additionally minsuph after the plateau, both
coverage and diversity start to slightly decrease. For this reason, choosing values
in [0, 1000] is a good choice from the summary quality point of view, remembering
that the higher is minsuph and the lower is the running time. In all the following

103

SImS: Semantic Image collection Summarization with frequent subgraph mining

Figure 5.16: Entropy distribution of PRS histograms.

experiments in this section we conventionally fixed minsuph = 64, computed with
the median of the support distribution in log-scale (see Figure 5.14).

Focusing again on the PRS characteristics, Figure 5.16 provides the distribu-
tion of the histogram entropy before and after applying the minsuph threshold.
The chart highlights how this filter removes the bin with close-to-zero entropy his-
tograms, which are typically characterized by a low support (i.e., few noisy sample
pairs).

PRS histograms are further filtered with the maxentrh threshold that allows
selecting those with a representative distribution concentrated on few relative po-
sitions. For this purpose, we consider two reference histograms characterized by
only 2 and 3 non-zero elements among the 9 position relationships. We calculate
their entropy values, denoted as entropy@2 and entropy@3, and use them as refer-
ence for choosing maxentrh. Figure 5.16 shows the position of these two reference
values with vertical lines. Many of the collected histograms fall beyond the two
maximum entropy values, as they contain high-entropy relationships. Specifically,
with minsuph = 64, maxentrh = entropy@2 we obtain 77 histograms in PRSf (i.e.,
0.9% of the original ones). Instead, if we set maxentrh to entropy@3, the number of
histograms in PRSf is 277 (3%) . The value entropy@3 proves to be a better trade-
off between the histogram representativity and their number. Hence, we select this
threshold value for the following experiments.

To conclude the analysis of the PRS, Figure 5.17 provides a qualitative overview

104

5.11 – Experimental evaluation

Figure 5.17: Example histograms in the PRSf .

by showing some example histograms. The distributions in this chart show, for
example, that the pair “sea, sky” satisfies the relationships below and hanging,
while the pair “ceiling, chair” is mostly characterized by the relationship above.

5.11.2 Scene Graph Summary generation

In this section we conduct an ablation study of the building blocks of SImS.
The analysis focuses on different aspects, such as running time, summary size,
and quality. We separately assess (i) the graph preprocessing step, by turning
on/off the edge and node pruning procedures, (ii) the FSM algorithm, changing
between gSpan and SUBDUE, and (iii) the value of minsup in the case of gSpan.
Table 5.2 reports the running time of the FSM process and some statistics about
the output graphs. The first three lines of the table show the results for gSpan

105

SImS: Semantic Image collection Summarization with frequent subgraph mining

Configuration Statistics

Config. Alg. Minsup
Edge
pruning

Node
pruning

Scene graph
mining time

N.
graphs

Avg. N.
nodes

Std. N.
nodes

1 gSpan 0.010 N N 15h 55m 6184 5.29 2.05
2 gSpan 0.010 Y N 4h 30m 186 4.20 2.22
3 gSpan 0.010 Y Y 3s 276 3.11 0.97

4 gSpan 0.001 N N -
5 gSpan 0.001 Y Y 7s 9865 5.24 1.80

6 SUBDUE - Y N 12h 184 19.89 8.94
7 SUBDUE - Y Y 17m 48 6.15 2.35

Table 5.2: SGS generation results on whole COCO training set (118K images).

with minsup = 0.01, evaluating separately the graph preprocessing steps. The
fourth and fifth lines decrease minsup to 0.001, while the last two lines provide the
outcomes for SUBDUE.

Focusing on the running time of the frequent subgraph mining process, the first
line of Table 5.2 confirms that the application of gSpan without any preprocessing
takes a very long time (i.e., 16 hours). If we introduce edge pruning, the algorithm
takes 4 hours and 30 minutes (config. 2), while, by activating also node pruning,
it only requires 3 seconds. With a lower value of minsup (i.e., 0.001 in config. 4)
and without any preprocessing, the FSM algorithm does not finish within 2 days.
On the contrary, if we activate the two preprocessing steps, FSM converges in 7
seconds (config. 5 in Table 5.2). A similar conclusion can be drawn from config. 6
and 7, using SUBDUE. Indeed, the node pruning procedure manages to reduce the
processing time from 12 hours to 17 minutes. Finally, these results show that gSpan
presents the best time performance among the two FSM algorithms.

Let us inspect the effects of graph preprocessing on the amount of frequent
graphs and the number of nodes. Table 5.2 provides the Avg. N. nodes and Std. N.
nodes columns, which indicate the average and the standard deviation of the number
of nodes in the SGS graphs. With gSpan, the edge pruning step diminishes the
number of graphs from 6184 (config. 1) to 186 (config. 2). This is a first indicator
of its ability of reducing redundancies in the SGS. Conversely, the application of
node pruning slightly increases the amount of frequent graphs (from 186 in config.
2 to 276 in config. 3). Indeed, since the average number of nodes tends to decrease
(from 5.29 in config. 1 to 3.11 in config. 3), the simplification of the scene graphs
helps the FSM process to detect a higher number of frequent graphs. Instead,

106

5.11 – Experimental evaluation

Configuration Statistics

Config. Alg. Minsup
Edge
pruning

Node
pruning Coverage

Node
diversity

1 gSpan 0.010 N N 0.43 0.60
2 gSpan 0.010 Y N 0.43 0.69
3 gSpan 0.010 Y Y 0.43 0.81

4 gSpan 0.001 N N -
5 gSpan 0.001 Y Y 0.48 0.75

6 SUBDUE - Y N 0.24 0.35
7 SUBDUE - Y Y 0.24 0.38

Table 5.3: SGS generation results on whole COCO training set (118K images).

when decreasing the value of minsup to 0.001 (config. 5), the number of graphs
increases (9865) and their average number of nodes climbs to 5.24. Bigger graphs
can be more interesting to describe complex frequent scenes in the input images.
SUBDUE graphs are few in number (48 in config. 7), but they tend to have a
higher number of nodes (avg = 6.15) due to the nature of FSM algorithm.

To conclude this ablation analysis, we provide the values of coverage and node
diversity in Table 5.3, computed as shown in Section 5.10. In the case of gSpan
with minsup = 0.01 (config. 1-3), the value of coverage is fixed to 0.43 when
varying the preprocessing configuration. This implies that node and edge pruning
are able to simplify the FSM process, whilst maintaining coverage. Moreover, since
the preprocessing step is designed to reduce redundancies in the SGS, the node
diversity increases from 0.60 to 0.81. With minsup = 0.001 coverage increases
to 0.48, while diversity becomes slightly lower (0.75) due to the higher number
of graphs. Finally, SUBDUE proves to be the worst also in terms of summary
quality. Indeed, it only reaches coverage 0.24 and diversity 0.38. Low coverage
is due to the generation of bigger, hence more specific summary graphs. Indeed,
this algorithm aims at finding the graphs which allow the best compression when
they are substituted in the input collection with a single representative node. Also
diversity is penalized by the presence of bigger graphs with few differences in terms
of node labels.

In conclusion, when applying SImS to the whole COCO dataset, config. 3 and
config. 5 proved to be the best settings in terms of coverage, diversity and run-
ning time, also demonstrating the effectiveness of the preprocessing steps. Some

107

SImS: Semantic Image collection Summarization with frequent subgraph mining

bottle

ceiling

below

oven

above

sink

above

counter

above

(a) Indoor scene,
sup=138

boat

sky

below

sea

hanging

sand

below

hanging

(b) Seaside,
sup=140

car

sky

below

road

below

clock

above

pavement

below

(c) City, sup=145

person

sky

below

grass

below kite

below

inside

(d) Outdoor
scene, sup=406

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.18: Examples of frequent graphs and represented images, minsup=0.001
(config. 5).

examples of scene graphs in the SGS generated by config. 5 are depicted in Fig-
ure 5.18 (a-d), while Figure 5.18 (e-l) shows some images extracted from the input
collection that are represented by the previous scene graphs.

108

5.11 – Experimental evaluation

5.11.3 Comparison with other summarization techniques

We proceed the evaluation of SImS by comparing its results with a widely used
summarization baseline. Since there are no available online resources, we imple-
mented the technique proposed in [49], based on k-Medoids clustering applied to
visual features. Following the standard implementation, we extract SIFT features
from the input images and convert them to feature vectors of size 1000 by means
of the Bag Of Words methodology described in Section 5.1.2. The k-Medoids clus-
tering algorithm is then applied to the features matrix with different values of k,
to inspect several summary sizes. The implementation of this baseline technique is
available in our online repository.

Since k-Medoids is not scalable to big data collections, we conducted the com-
parison with SImS on two subsets of COCO. The images of the subsets are chosen
based on their topic. Specifically, we selected the pictures according to the textual
captions provided in the Microsoft COCO annotations. The first subset (i.e., Sub-
set 1) includes the images whose caption contains the words “skiing” or “driving”.
Hence, this first experiment focuses on the inspection of common patterns among
images representing a specific action. The second subset (i.e., Subset 2) is built by
selecting images whose caption includes either “garden” or “church”, focusing this
time on the description of two different places that can be found in COCO. The
two subsets contain 4865 and 890 images, respectively. Other subsets with different
topics can be analyzed without significant changes in the final results.

The choice of exploiting image captions to build the subset, instead of considering
scene graph object classes, allows a fair comparison between the two summarization
methods. In particular, it avoids bias caused by a selection based on the same
information contained in the scene graphs used by SImS, but that is not available
to k-Medoids.

To compare the two summarization methods, we enforce the number of output
summary elements to a fixed value k. In the case of k-Medoids, we use k to choose
the number of medoids of the clustering process, while for SImS we exploit this value
to select the top-k frequent graphs in the SGS. In the experiments, we analyzed
k values in range [2, 20]. SImS algorithm is run with the hyperparameter setting
shown in config. 3 (Table 5.2). The evaluation of the two techniques is performed by
means of coverage and diversity of the output summaries, following the definitions

109

SImS: Semantic Image collection Summarization with frequent subgraph mining

Figure 5.19: Quantitative comparison between SImS and k-Medoids on COCO
Subset 1 (driving-skiing, 4865 images).

Figure 5.20: Quantitative comparison between SImS and k-Medoids on COCO
Subset 2 (garden-church, 890 images).

presented in Section 5.10. Since k-Medoids does not output scene graphs, we adopt
the following procedure for a fair comparison. We collect the k output images of k-
Medoids, while for SImS we pick the k images from the output scene graphs, using
the methodology described in Section 5.9. Afterwards, we extract the scene graphs
from these two sets of images, following the algorithm shown in Section 5.6. Finally,
we extract the most meaningful information with the node and edge pruning steps,
then we compute coverage and diversity on the obtained scene graphs.

Figure 5.19 and 5.20 show the values of coverage and diversity for the two meth-
ods on Subset 1 and Subset 2, respectively. Due to the long running time, the
results provided by k-Medoids were obtained with a single run of the algorithm
and a fixed random seed. For Subset 1 both methods provide a higher coverage
with respect to Subset 2. In Figure 5.19, SImS easily reaches a high coverage with
few graphs (k = 5, coverage=0.76), while k-Medoids can touch coverage 0.68 only
with k = 18. Also in Figure 5.20, SImS shows the best coverage for all the summary
sizes. With k = 12 it reaches its best coverage value (0.44). Moreover, SImS node
and edge diversity are always higher or equal to the ones of k-Medoids in both
subsets. Typically, SImS node diversity tends to decrease with a higher number of

110

5.11 – Experimental evaluation

graphs. In Subset 1 node diversity touches its minimum value (0.67) at k = 14,
while k-Medoids can only reach a maximum of 0.68 at k = 19. A similar trend
is described by edge diversity, which also inspects the information carried by edge
labels. Finally, SImS shows better diversity also in Subset 2.

We conclude the analysis with a qualitative comparison between the two meth-
ods. Figure 5.21 and 5.22 provide the output images for Subset 2 (with k = 5) and
Subset 3 (with k = 12), respectively. In Figure 5.21, both methods depict images
containing people skiing and cars/trucks. SImS also highlights the most significant
objects in these images, providing the frequent patterns. K-Medoids shows a lower
coverage as it includes objects with a lower frequency in the input collection. For
example, a picture with a man on a carriage (i.e., driving topic) appears in Fig-
ure 5.21a. This object is not included in SImS results, as its class is not frequent in
the dataset. In Subset 2, SImS highlights how cars and clock towers are frequent

(a) KMedoids summary.

(b) SImS summary.

Figure 5.21: Qualitative comparison on COCO Subset 1 (“skiing”, “driving”), with
5 summary elements.

111

SImS: Semantic Image collection Summarization with frequent subgraph mining

(a) KMedoids summary.

(b) SImS summary.

Figure 5.22: Qualitative comparison on COCO Subset 2 (“church”, “garden”),
with 12 summary elements.

items appearing in the collection (Figure 5.22b), which is not immediately visible
from the k-Medoids images (Figure 5.22a).

112

Chapter 6

Conclusion and future works

This thesis contributes to the state-of-the-art in image understanding by provid-
ing novel approaches based on semantics. In these chapters, we claimed and proved
that an in-depth analysis of the objects inside images and their semantic relation-
ships is fundamental to enhance the comprehension of visual data. We divided
our discussion into three correlated topics: (i) Detection of the relative position
between objects, (ii) anomaly detection in semantic segmentation, and (iii) image
collection summarization.

In Chapter 3, we laid the foundation for the automatic derivation of object rela-
tionships. Specifically, we focused on the definition of 9 fine-grained relative position
labels, capable of, for example, distinguishing between “on with” and “on without”
contact, or between “side, side-up, side-down”. Our methodology demonstrated
to be able of analyzing the relationships between object shapes, without simpli-
fying them to centroids or bounding boxes, as in previous works. To this aim,
our technique was designed to process either semantic segmentation or panoptic
segmentation annotations, which provide a very detailed description of the object
shapes. Since semantic segmentation does not include any information about object
instances, we proposed to inspect them by means of a connected-components detec-
tion algorithm. The labeled instances were then exploited to derive a novel set of
string-based features, which are able to capture fine details about the shapes of the
different objects. Furthermore, bounding-box-based features integrated the string
representation to identify the object positions when they are not vertically aligned.
The final relative position classifier, based on random forests, achieved high F-score

113

Conclusion and future works

and proved to be capable of correctly distinguishing between the previously defined
fine-grained relationships.

Object relationships, such as relative position, size, and co-occurrence, can be
exploited for identifying possible classification errors made by segmentation neu-
ral networks. In Chapter 4 we presented SAD (Semantic Anomaly Detection), a
technique for anomaly detection based on an automatically-derived, interpretable,
knowledge base. Our novel methodology inspects a set of ground-truth images,
labeled with semantic segmentation, and extracts a set of interpretable rules de-
scribing the average behavior of the different objects. These rules, stored in the
knowledge base, were defined by means of histograms representing discrete proba-
bility distributions. After the training process, the knowledge base was exploited to
inspect anomalies in semantic segmentation results. Specifically, object pairs that
do not follow the behavior of normal instances are deemed to be possible classifi-
cation errors. We defined and tested three anomaly detection methods, showing
that we are able to identify objects with a low pixel accuracy predicted by the
segmentation model.

The last topic of this thesis was focused on a further application of object rela-
tionships. In Chapter 5, we demonstrated the usage of scene graphs, specifying ob-
ject relative positions, in a research field called image collection summarization. We
proposed SImS (Semantic Image Summarization), which can automatically build a
novel type of summaries based on scene graphs. First, the relative position classifier
defined in Chapter 3 was exploited to build scene graphs starting from panoptic
segmentation, where nodes represent objects and edges model the position rela-
tionships. Afterwards, SImS extracts two types of patterns: (i) the PRS (Pairwise
Relationship Summary), inspecting common pairwise object relationships, and (ii)
the SGS (Scene Graph Summary), inspecting frequent multi-object patterns. The
application of frequent subgraph mining techniques to the scene graphs showed to
be an effective way of deriving summarization patterns from the input collection.
We demonstrated that our technique, relying on the semantic description of the
image content, is able to overcome previous methods in terms of coverage and di-
versity. Moreover, the final results provided by SImS enjoy a higher interpretability,
thanks to the presentation of frequent scene graphs paired with example images.
Finally, the designed preprocessing technique, including edge and node pruning, has
proved to be effective in reducing running time and improving summary diversity.

114

Conclusion and future works

Future works may extend the semantic content of the object relationships used
by SAD and SImS. For example, the semantics of our graphs, nowadays focused on
position relationships, could be integrated by actions (e.g., “racket hits ball”) and
object properties (e.g., “a grey van”). In the case of SAD, also external ontologies
could be used as prior knowledge to enhance the content of the knowledge base
and model more complex object relationships. The SAD approach, which is a
general methodology for detecting anomalies, could be also experimented in other
domains, e.g., textual documents. A further possible application of SAD could be
the prediction of the quality of segmented images based on the detected anomalies,
useful to assess predictions when ground truth is not available. In the case of SImS,
further improvements could be brought by post-processing the SGS summaries to
enhance coverage and diversity. Also other semantic approaches for pairing the
images with the output frequent scene graphs could improve the results. Finally,
semantic hierarchies among the SGS graphs could be introduced for a better and
interactive visualization.

115

Bibliography

[1] Tarek Abbes, Adel Bouhoula, and Michael Rusinowitch. “Efficient decision
tree for protocol analysis in intrusion detection”. In: International Journal
of Security and Networks 5.4 (2010), pp. 220–235.

[2] Somak Aditya, Yezhou Yang, and Chitta Baral. “Integrating knowledge and
reasoning in image understanding”. In: arXiv preprint arXiv:1906.09954
(2019).

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. “Mining association
rules between sets of items in large databases”. In: Acm sigmod record.
Vol. 22. 2. ACM. 1993, pp. 207–216.

[4] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. “A survey of
network anomaly detection techniques”. In: Journal of Network and Com-
puter Applications 60 (2016), pp. 19–31.

[5] Mohiuddin Ahmed, Abdun Naser Mahmood, and Md Rafiqul Islam. “A sur-
vey of anomaly detection techniques in financial domain”. In: Future Gen-
eration Computer Systems 55 (2016), pp. 278–288.

[6] Oron Ashual and Lior Wolf. “Specifying object attributes and relations in
interactive scene generation”. In: Proceedings of the IEEE International Con-
ference on Computer Vision. 2019, pp. 4561–4569.

[7] Muhammad Nabeel Asim et al. “A survey of ontology learning techniques
and applications”. In: Database 2018 (2018).

[8] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation”. In: IEEE
transactions on pattern analysis and machine intelligence 39.12 (2017), pp. 2481–
2495.

117

BIBLIOGRAPHY

[9] Moshe Bar. “Visual objects in context”. In: Nature Reviews Neuroscience
5.8 (2004), pp. 617–629.

[10] Daniel Barbará et al. “ADAM: a testbed for exploring the use of data mining
in intrusion detection”. In: ACM Sigmod Record 30.4 (2001), pp. 15–24.

[11] Sean Bechhofer et al. “OWL web ontology language reference”. In: W3C
recommendation 10.02 (2004).

[12] Sean Bell et al. “Inside-outside net: Detecting objects in context with skip
pooling and recurrent neural networks”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2016, pp. 2874–2883.

[13] Irving Biederman, Robert J Mezzanotte, and Jan C Rabinowitz. “Scene
perception: Detecting and judging objects undergoing relational violations”.
In: Cognitive psychology 14.2 (1982), pp. 143–177.

[14] MHT de Boer et al. “Applying semantic reasoning in image retrieval”. In:
(2015).

[15] Oren Boiman and Michal Irani. “Detecting irregularities in images and in
video”. In: International journal of computer vision 74.1 (2007), pp. 17–31.

[16] Sarah Boslaugh. Statistics in a nutshell: A desktop quick reference. " O’Reilly
Media, Inc.", 2012.

[17] Lars Buitinck et al. “API design for machine learning software: experiences
from the scikit-learn project”. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. 2013, pp. 108–122.

[18] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. “Coco-stuff: Thing and
stuff classes in context”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2018, pp. 1209–1218.

[19] Jorge Camargo, Fabio González, and Rodolfo Torres. “Visualization, sum-
marization and exploration of large collections of images: State of the art”.
In: Latin-American Conference On Networked and Electronic Media. LAC-
NEM. 2009.

[20] Jorge E Camargo and Fabio A González. “Multimodal latent topic analysis
for image collection summarization”. In: Information Sciences 328 (2016),
pp. 270–287.

118

BIBLIOGRAPHY

[21] Shi-Kuo Chang et al. “An intelligent image database system”. In: IEEE
Transactions on Software Engineering 14.5 (1988), pp. 681–688.

[22] Liang-Chieh Chen et al. “Rethinking atrous convolution for semantic image
segmentation”. In: arXiv preprint arXiv:1706.05587 (2017).

[23] Xinlei Chen and Abhinav Gupta. “Spatial memory for context reasoning in
object detection”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 4086–4096.

[24] Myung Jin Choi et al. “Exploiting hierarchical context on a large database
of object categories”. In: Computer vision and pattern recognition (CVPR),
2010 IEEE conf. on.

[25] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. “Multi-column deep neu-
ral networks for image classification”. In: 2012 IEEE conference on computer
vision and pattern recognition. IEEE. 2012, pp. 3642–3649.

[26] Diane J Cook and Lawrence B Holder. “Substructure discovery using mini-
mum description length and background knowledge”. In: Journal of Artificial
Intelligence Research 1 (1993), pp. 231–255.

[27] Luigi P Cordella et al. “A (sub) graph isomorphism algorithm for match-
ing large graphs”. In: IEEE transactions on pattern analysis and machine
intelligence 26.10 (2004), pp. 1367–1372.

[28] Marius Cordts et al. “The Cityscapes Dataset”. In: CVPR Workshop on The
Future of Datasets in Vision. 2015.

[29] Gabriela Csurka et al. “What is a good evaluation measure for semantic
segmentation?.” In: BMVC. Vol. 27. Citeseer. 2013, p. 2013.

[30] Stanislas Dehaene. Consciousness and the brain: Deciphering how the brain
codes our thoughts. Penguin, 2014.

[31] Da Deng. “Content-based image collection summarization and comparison
using self-organizing maps”. In: Pattern Recognition 40.2 (2007), pp. 718–
727.

[32] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee.
2009, pp. 248–255.

119

BIBLIOGRAPHY

[33] Santosh K Divvala et al. “An empirical study of context in object detec-
tion”. In: 2009 IEEE Conference on computer vision and Pattern Recogni-
tion. IEEE. 2009, pp. 1271–1278.

[34] Mark Everingham et al. “The pascal visual object classes (voc) challenge”.
In: International journal of computer vision 88.2 (2010), pp. 303–338.

[35] Jianping Fan et al. “A novel approach to enable semantic and visual image
summarization for exploratory image search”. In: Proceedings of the 1st ACM
international conference on Multimedia information retrieval. 2008, pp. 358–
365.

[36] Martin A Fischler and Robert A Elschlager. “The representation and match-
ing of pictorial structures”. In: IEEE Transactions on computers 100.1 (1973),
pp. 67–92.

[37] Matthew Fisher, Manolis Savva, and Pat Hanrahan. “Characterizing struc-
tural relationships in scenes using graph kernels”. In: ACM SIGGRAPH
2011 papers. 2011, pp. 1–12.

[38] Ryohei Fujimaki, Takehisa Yairi, and Kazuo Machida. “An approach to
spacecraft anomaly detection problem using kernel feature space”. In: Pro-
ceedings of the eleventh ACM SIGKDD international conference on Knowl-
edge discovery in data mining. 2005, pp. 401–410.

[39] Carolina Galleguillos and Serge Belongie. “Context based object categoriza-
tion: A critical survey”. In: Computer vision and image understanding 114.6
(2010), pp. 712–722.

[40] Carolina Galleguillos, Andrew Rabinovich, and Serge Belongie. “Object cat-
egorization using co-occurrence, location and appearance”. In: Computer Vi-
sion and Pattern Recognition (CVPR), 2008. IEEE Conf. on. IEEE, pp. 1–
8.

[41] Spyros Gidaris and Nikos Komodakis. “Object detection via a multi-region
and semantic segmentation-aware cnn model”. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 1134–1142.

[42] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international con-
ference on computer vision. 2015, pp. 1440–1448.

120

BIBLIOGRAPHY

[43] Ross Girshick et al. “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2014, pp. 580–587.

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The
MIT Press, 2016. isbn: 0262035618.

[45] Bryce Goodman and Seth Flaxman. “European Union regulations on algo-
rithmic decision-making and a “right to explanation””. In: AI magazine 38.3
(2017), pp. 50–57.

[46] Palash Goyal et al. “Cross-modal Learning for Multi-modal Video Catego-
rization”. In: arXiv preprint arXiv:2003.03501 (2020).

[47] Riccardo Guidotti et al. “A survey of methods for explaining black box
models”. In: ACM computing surveys (CSUR) 51.5 (2018), pp. 1–42.

[48] Büsra Güvenoglu and Belgin Ergenç Bostanoglu. “A qualitative survey on
frequent subgraph mining”. In: Open Computer Science 8.1 (2018), pp. 194–
209.

[49] Youssef Hadi, Fedwa Essannouni, and Rachid Oulad Haj Thami. “Video
summarization by k-medoid clustering”. In: Proceedings of the 2006 ACM
symposium on Applied computing. 2006, pp. 1400–1401.

[50] Michael A Hayes and Miriam AM Capretz. “Contextual anomaly detec-
tion in big sensor data”. In: Big Data (BigData Congress), 2014 IEEE Int.
Congress on. IEEE. 2014, pp. 64–71.

[51] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[52] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 2961–2969.

[53] David Heckerman. “The certainty-factor model”. In: Encyclopedia of Artifi-
cial Intelligence, (1992), pp. 131–138.

[54] Derek Hoiem et al. “Recovering occlusion boundaries from a single image”.
In: 2007 IEEE 11th International Conference on Computer Vision. IEEE.
2007, pp. 1–8.

121

BIBLIOGRAPHY

[55] Han Hu et al. “Relation networks for object detection”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 3588–3597.

[56] Chuntao Jiang, Frans Coenen, and Michele Zito. “A survey of frequent
subgraph mining algorithms”. In: The Knowledge Engineering Review 28.1
(2013), pp. 75–105.

[57] Justin Johnson, Agrim Gupta, and Li Fei-Fei. “Image generation from scene
graphs”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 1219–1228.

[58] Gunhee Kim, Seungwhan Moon, and Leonid Sigal. “Joint photo stream and
blog post summarization and exploration”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2015, pp. 3081–3089.

[59] Alexander Kirillov et al. “Panoptic feature pyramid networks”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 6399–6408.

[60] Alexander Kirillov et al. “Panoptic segmentation”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2019, pp. 9404–
9413.

[61] Teuvo Kohonen. Self-organizing maps. Vol. 30. Springer Science & Business
Media, 2012.

[62] Ranjay Krishna et al. “Visual genome: Connecting language and vision us-
ing crowdsourced dense image annotations”. In: International Journal of
Computer Vision 123.1 (2017), pp. 32–73.

[63] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features
from tiny images”. In: (2009).

[64] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[65] L’ubor Ladický et al. “Associative hierarchical crfs for object class image
segmentation”. In: 2009 IEEE 12th International Conference on Computer
Vision. IEEE. 2009, pp. 739–746.

122

BIBLIOGRAPHY

[66] L’ubor Ladický et al. “What, where and how many? combining object detec-
tors and crfs”. In: European conference on computer vision. Springer. 2010,
pp. 424–437.

[67] Rikard Laxhammar, Goran Falkman, and Egils Sviestins. “Anomaly detec-
tion in sea traffic-a comparison of the gaussian mixture model and the ker-
nel density estimator”. In: Information Fusion, 2009. FUSION’09. 12th Int.
Conf. on. IEEE. 2009, pp. 756–763.

[68] Justin Lazarow et al. “Learning instance occlusion for panoptic segmenta-
tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 10720–10729.

[69] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. “Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene categories”.
In: 2006 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’06). Vol. 2. IEEE. 2006, pp. 2169–2178.

[70] Yann LeCun et al. “Backpropagation applied to handwritten zip code recog-
nition”. In: Neural computation 1.4 (1989), pp. 541–551.

[71] Yann LeCun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[72] Yong Jae Lee and Kristen Grauman. “Object-graphs for context-aware visual
category discovery”. In: IEEE transactions on pattern analysis and machine
intelligence 34.2 (2012), pp. 346–358.

[73] Jianan Li et al. “Attentive contexts for object detection”. In: IEEE Trans-
actions on Multimedia 19.5 (2016), pp. 944–954.

[74] Yingbo Li and Bernard Merialdo. “VERT: automatic evaluation of video
summaries”. In: Proceedings of the 18th ACM international conference on
Multimedia. 2010, pp. 851–854.

[75] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Sum-
maries”. In: Text Summarization Branches Out. Barcelona, Spain: Associ-
ation for Computational Linguistics, July 2004, pp. 74–81. url: https :
//www.aclweb.org/anthology/W04-1013.

[76] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: Euro-
pean conference on computer vision. Springer. 2014, pp. 740–755.

123

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013

BIBLIOGRAPHY

[77] Qi Liu et al. “Unsupervised detection of contextual anomaly in remotely
sensed data”. In: Remote Sensing of Environment 202 (2017), pp. 75–87.

[78] Yong Liu et al. “Structure inference net: Object detection using scene-level
context and instance-level relationships”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2018, pp. 6985–6994.

[79] Vijay Mahadevan et al. “Anomaly detection in crowded scenes”. In: 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. IEEE. 2010, pp. 1975–1981.

[80] Tomasz Malisiewicz and Alyosha Efros. “Beyond categories: The visual memex
model for reasoning about object relationships”. In: Advances in neural in-
formation processing systems. 2009, pp. 1222–1230.

[81] Bangalore S Manjunath and Wei-Ying Ma. “Texture features for browsing
and retrieval of image data”. In: IEEE Transactions on pattern analysis and
machine intelligence 18.8 (1996), pp. 837–842.

[82] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

[83] Michel Minoux. “Accelerated greedy algorithms for maximizing submodular
set functions”. In: Optimization techniques. Springer, 1978, pp. 234–243.

[84] “MIT Scene Parsing Benchmark, http://sceneparsing.csail.mit.edu/”. In:
(2016).

[85] Heesoo Myeong, Ju Yong Chang, and Kyoung Mu Lee. “Learning object re-
lationships via graph-based context model”. In: Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 2727–
2734.

[86] Aude Oliva and Antonio Torralba. “Building the gist of a scene: The role
of global image features in recognition”. In: Progress in brain research 155
(2006), pp. 23–36.

[87] Devi Parikh, C Lawrence Zitnick, and Tsuhan Chen. “Exploring tiny images:
The roles of appearance and contextual information for machine and human
object recognition”. In: IEEE transactions on pattern analysis and machine
intelligence 34.10 (2011), pp. 1978–1991.

124

BIBLIOGRAPHY

[88] Andrea Pasini and Elena Baralis. “Detecting Anomalies in Image Classifi-
cation by Means of Semantic Relationships”. In: 2019 IEEE Second Inter-
national Conference on Artificial Intelligence and Knowledge Engineering
(AIKE). IEEE. 2019, pp. 231–238.

[89] Andrew Rabinovich et al. “Objects in context”. In: Computer vision, 2007.
ICCV 2007. IEEE 11th int. conf. on. IEEE. 2007, pp. 1–8.

[90] T Ramraj and R Prabhakar. “Frequent subgraph mining algorithms-a sur-
vey”. In: Procedia Computer Science 47 (2015), pp. 197–204.

[91] Joseph Redmon et al. “You only look once: Unified, real-time object detec-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 779–788.

[92] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: Advances in neural information processing
systems. 2015, pp. 91–99.

[93] Wei Ren, Maneesha Singh, and Sameer Singh. “Image retrieval using spa-
tial context”. In: Proceedings of the 9th international workshop on systems,
signals and image processing. 2002, pp. 44–49.

[94] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should
I trust you?" Explaining the predictions of any classifier”. In: Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining. 2016, pp. 1135–1144.

[95] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference
on Medical image computing and computer-assisted intervention. Springer.
2015, pp. 234–241.

[96] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”.
In: International journal of computer vision 115.3 (2015), pp. 211–252.

[97] Fereshteh Sadeghi, Santosh K Kumar Divvala, and Ali Farhadi. “Viske: Vi-
sual knowledge extraction and question answering by visual verification of
relation phrases”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 1456–1464.

125

BIBLIOGRAPHY

[98] Zahra Riahi Samani and Mohsen Ebrahimi Moghaddam. “A knowledge-
based semantic approach for image collection summarization”. In: Multime-
dia Tools and Applications 76.9 (2017), pp. 11917–11939.

[99] Brigit Schroeder, Subarna Tripathi, and Hanlin Tang. “Triplet-Aware Scene
Graph Embeddings”. In: Proceedings of the IEEE International Conference
on Computer Vision Workshops. 2019, pp. 0–0.

[100] Sebastian Schuster et al. “Generating semantically precise scene graphs from
textual descriptions for improved image retrieval”. In: Proceedings of the
fourth workshop on vision and language. 2015, pp. 70–80.

[101] Claude Elwood Shannon. “A mathematical theory of communication”. In:
The Bell system technical journal 27.3 (1948), pp. 379–423.

[102] Edward H Shortliffe and Bruce G Buchanan. “A model of inexact reasoning
in medicine”. In: Mathematical biosciences 23.3-4 (1975), pp. 351–379.

[103] Ian Simon, Noah Snavely, and Steven M Seitz. “Scene summarization for
online image collections”. In: 2007 IEEE 11th International Conference on
Computer Vision. IEEE. 2007, pp. 1–8.

[104] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[105] Anurag Singh and Deepak Kumar Sharma. “Image Collection Summariza-
tion: Past, Present and Future”. In: Data Visualization and Knowledge En-
gineering. Springer, 2020, pp. 49–78.

[106] Pinaki Sinha. “Summarization of archived and shared personal photo col-
lections”. In: Proceedings of the 20th international conference companion on
World wide web. 2011, pp. 421–426.

[107] John R Smith et al. “Decoding image semantics using composite region
templates”. In: Content-Based Access of Image and Video Libraries, 1998.
Proceedings. IEEE Workshop on. IEEE. 1998, pp. 9–13.

[108] Robyn Speer, Joshua Chin, and Catherine Havasi. “Conceptnet 5.5: An open
multilingual graph of general knowledge”. In: arXiv preprint arXiv:1612.03975
(2016).

126

BIBLIOGRAPHY

[109] Hao Su, Jia Deng, and Li Fei-Fei. “Crowdsourcing annotations for visual
object detection”. In: Workshops at the Twenty-Sixth AAAI Conference on
Artificial Intelligence. 2012.

[110] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

[111] Christian Szegedy et al. “Inception-v4, inception-resnet and the impact of
residual connections on learning”. In: Thirty-first AAAI conference on arti-
ficial intelligence. 2017.

[112] Pang-Ning Tan et al. Introduction to data mining, 2nd Edition. 2018.

[113] Duygu Sinanc Terzi, Ramazan Terzi, and Seref Sagiroglu. “Big data analytics
for network anomaly detection from netflow data”. In: Computer Science and
Engineering (UBMK), 2017 Int. Conf. on. IEEE. 2017, pp. 592–597.

[114] Subarna Tripathi et al. “Compact scene graphs for layout composition and
patch retrieval”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops. 2019, pp. 0–0.

[115] Sebastian Tschiatschek et al. “Learning mixtures of submodular functions
for image collection summarization”. In: Advances in neural information
processing systems. 2014, pp. 1413–1421.

[116] Huiyu Wang et al. “MaX-DeepLab: End-to-End Panoptic Segmentation with
Mask Transformers”. In: arXiv preprint arXiv:2012.00759 (2020).

[117] Yuwen Xiong et al. “Upsnet: A unified panoptic segmentation network”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 8818–8826.

[118] Xifeng Yan and Jiawei Han. “gspan: Graph-based substructure pattern min-
ing”. In: 2002 IEEE International Conference on Data Mining, 2002. Pro-
ceedings. IEEE. 2002, pp. 721–724.

[119] Chunlei Yang et al. “Image collection summarization via dictionary learning
for sparse representation”. In: Pattern Recognition 46.3 (2013), pp. 948–961.

[120] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by dilated
convolutions”. In: arXiv preprint arXiv:1511.07122 (2015).

127

BIBLIOGRAPHY

[121] Xingyu Zeng et al. “Crafting gbd-net for object detection”. In: IEEE trans-
actions on pattern analysis and machine intelligence 40.9 (2017), pp. 2109–
2123.

[122] Zheng Zhang et al. “HIDE: a hierarchical network intrusion detection system
using statistical preprocessing and neural network classification”. In: Proc.
IEEE Workshop on Information Assurance and Security. 2001, pp. 85–90.

[123] Hengshuang Zhao et al. “Pyramid scene parsing network”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 2881–2890.

[124] Ye Zhao, Richang Hong, and Jianguo Jiang. “Visual summarization of image
collections by fast RANSAC”. In: Neurocomputing 172 (2016), pp. 48–52.

[125] Bolei Zhou et al. “Scene parsing through ADE20k dataset”. In: Proc. CVPR.
2017.

[126] Bolei Zhou et al. “Scene parsing through ade20k dataset”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 633–641.

[127] Yousong Zhu et al. “Couplenet: Coupling global structure with local parts
for object detection”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 4126–4134.

[128] Honglei Zhuang et al. “Identifying semantically deviating outlier documents”.
In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. 2017, pp. 2748–2757.

[129] C Lawrence Zitnick and Devi Parikh. “Bringing semantics into focus using
visual abstraction”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2013, pp. 3009–3016.

128

