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Résumé :Dans ce rapport, on présente un modèle hyperbolique d’écoulement multiphasique incluant la com-
paction dynamique irréversible de poudres. Ce modèle doit être capable de remplir quatre principaux objectifs.
Le premier objectif concerne le caractère irréversible de la compaction des poudres. Quand un lit de poudres
est soumis à un cycle de charge-décharge, le volume final est plus petit que le volume initial. Afin de traiter
ce problème d’hystérésie, on construit un modèle avec relaxation. Durant la phase de charge, on suppose que
l’équilibre mécanique a lieu, ce qui correspond à une relaxation instantanée des pressions. Dans la phase de
décharge, on suppose au contraire qu’une transformation mécanique a lieu, conduisant à un état mécanique
hors équilibre. Par conséquent, durant chacun de ces cycles, les vitesses du son des modèles limites sont très
différentes. Ces différences dans les propriétes acoustiques sont la cause justement du caractère irréversible
du processus de compaction. Le second objectif est relié auxeffets dynamiques, là où la pression et les ondes
de chocs jouent un rôle important. La dynamique des ondes estassurée par l’hyperbolicité du modèle et l’on
tient compte aussi bien de la compressibilité des phases quedes énergies de configuration. Le troisième objectif
concerne les effets multidimensionnels aux interfaces matérielles. En effet, la plupart des processus de com-
paction font intervenir dessurfaces libres. Par conséquent, le modèle doit être capable de traiter de problèmes
d’interfaces entre des fluides purs et des mélanges granulaires. Enfin, le quatrième objectif concerne la perméa-
tion des gaz qui peut jouer un rôle important dans certains cas spécifiques de compaction de poudres. Se pose
alors la question délicate de description de ces vitesses multiples.
Ces quatre points sont considérés dans un modèle unique appartenant à la classe des modèles des interfaces
diffuses. La capacité du modèle a traiter ces phénomènes estvalidée dans des situations où chaque effet est
considéré séparément. En particulier, le caractère irréversible de la compaction est considéré et validé sur plu-
sieurs exemples : expérience sur un matériel énergétique (HMX granulaire), compaction granulaire de NaCl. À
part les équations d’état des matériaux (pressions granulaires et hydrodynamiques, et les énergies associées), le
modèle est de plus exempt de paramètre ajustable. On reproduit enfin les effets de perméation des gaz à l’aide
d’un modèle de dérive des vitesses, et une analyse sur la production d’entropie. Le modèle résultant est validé
sur un cas test de tube à choc où une onde de choc traverse un litgranulaire de forte densité et montre un accord
parfait avec l’expérience.

∗ E.P.I. SMASH – Polytech’Marseille/IUSTI – 5 rue E. Fermi – 13453 Marseille Cédex 13
† University Institute of France, same address
‡ Richard.Saurel@polytech.univ-mrs.fr
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Mots-clés : Interfaces solides, compaction de poudres, écoulements compressibles multiphasiques, analyse
asymptotique, équations hyperboliques, équation d’état
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Dynamic Powder Compaction Model with Velocity Drift Effects

Abstract: A multiphase hyperbolic model for dynamic and irreversiblepowder compaction is built. Four
important points have to be addressed in this aim. The first one is related to the irreversible character of
powder compaction. When a granular media is subjected to a loading-unloading cycle the final volume is
lower than the initial one. To deal with this hysteresis phenomenon a multiphase model with relaxation is
built. During loading, mechanical equilibrium is assumed corresponding to stiff mechanical relaxation, while
during unloading non-equilibrium mechanical transformation is assumed. Consequently, the sound speeds of
the limit models are very different during loading and unloading. These differences in acoustic properties are
responsible for irreversibility in the compaction process. The second point is related to dynamic effects where
pressure and shock waves play an important role. Wave dynamics is guaranteed by the hyperbolic character
of the equations. Phase compressibility well as configuration energy are taken into account. The third point
is related to multidimensional situations that involve material interfaces. Indeed, most processes with powder
compaction entailfree surfaces. Consequently the model has to be able to solve interfaces separating pure
fluids and granular mixtures. Finally, the fourth point is related to gas permeation that may play important
role in some specific powder compaction situations. This poses the difficult question of multiple velocities
description. These four points are considered in a unique model fitting the frame of multiphase theory of
diffuse interfaces. The ability of the model to deal with these various effects is validated on basic situations,
where each phenomenon is considered separately. Special attention is paid to the validation of the hysteresis
phenomenon that occurs during powder compaction. Basic experiments on energetic material (granular HMX)
and granular NaCl compaction are considered and are perfectly reproduced by the model. Except for the
material equations of state (hydrodynamic and granular pressures and energies) that are determined on the basis
of separate experiments found in the literature, the model is free of adjustable parameter. Gas permeation effects
are then restored in the two-phase flow model on the basis of velocity drift and entropy production analysis.
It is validated against shock tube experiments involving shock interaction with dense granular bed, showing
excellent agreement.

Key-words: Material interfaces, powder compaction, compressible multiphase flows, asymptotic analysis,
hyperbolic equations, equation of state
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1 Introduction

When a granular bed is subjected to mechanical loading, local deformations occur resulting in
rearranged deformed grains that form a compact porous solid. Such a process is irreversible. As a
matter of fact, if the loading stress is removed, the porous solid slightly expands but never turns back
to its initial volume. The main difficulty in modelling such effect relies on its irreversible character.
The literature on powder compaction provides at least threetypes of models :

– the first class is connected to quasi-static plasticity modelling in solids ([9, 23, 2, 20]). This
approach usually considers powder mixture compressibility but neglects solid phase one. This
restricts these models to weak compression waves, excluding strong shocks.

– The second one considers granular media at the discrete level where a large number of particles
is simulated by considering contact forces between them ([21]).

– The third one deals with multiphase flow modelling of granular media ([3, 31, 4, 15, 5, 22]).
In the present work, irreversible compaction of powders is addressed in the context of multiphase
flow theory of granular materials. There are some advantageswith this approach. First, large scale
experiments and engineering applications are easier to address with a continuous model of hetero-
geneous media. Second, wave dynamics is of fundamental importance in many applications dealing
with shocks and explosions. Some success has been reached inthis area with Baer and Nunziato
([3]) type model, except for the two following issues :

1. First, this type of model is unable to predict compacted powder zones after loading-unloading
cycles that may occur, for example, after compression and expansion of a given granular
sample. Progress in this direction has been done by Gonthier([10, 11]).

2. Second, the original formulation is unable to solve interface problems, or material interfaces
such as those separating a fluid and a granular mixture. Methods to solve interface conditions
in the context of compressible fluids governed by different equations of state have been built
during the last two decades with the pioneer works of Karni (1994) [16], and Abgrall (1996)
[1]. Multiphase flow models have been used in this aim [31] in order to solve interface condi-
tions with correct thermodynamics at interfaces, but in thecontext of fluid–fluid interfaces
only.

The aim of the present work is to build a multiphase flow model able to deal with irreversible com-
paction and to solve interfaces separating fluids and granular mixtures, in the presence of pressure
waves.

To do so, we first build a mechanical equilibrium model, with asingle velocity and a single stress.
For that purpose, we assume that the energy of the system is the sum of the hydrodynamic energy
plus a configuration (or granular) energy that depends on other variables, such as volume fractions,
particle radius, specific volumes and entropies. The concept of configuration pressure, or granular
pressure, is introduced in particular in Passman et al. (1984) [24]. We then ask the flow model to
respect conservation of mass, mixture momentum, mixture energy and to be adiabatic. From these
constraints, the pressure definition that appears in the momentum equation is obtained, as well as
the mechanical equilibrium condition. This analysis is carried out in section2. However, this mecha-
nical equilibrium model, already presented by Kapila et al.(2001) [15] is reversible. It is therefore
unable to predict the hysteresis phenomenon such as compaction. In order to model irreversibility
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the following phenomenon is observed : consider a loading–unloading cycle as depicted in figure1.1
in the plane (stress :P )–(mixture specific volume :ν = 1/ρ ).

P

ν
ν

′

0
ν0

FIG. 1.1:Schematic representation of a loading–unloading cycle fora powder sample, in the plane
P–ν

During the compression stage, the mixture specific volume decreases and reaches its minimum
value for the applied stress. During unloading, the pressure variation is stiff for a small specific
volume variation. It means hat the mixture sound speed

c2 = −ν2 ∂P

∂ν

∣∣∣∣
s

,

in the compression stage is much lower than the one involved in the expansion stage. Based on this
observation we are going to build a non-equilibrium model that possesses two limit sound speeds :

– anequilibrium sound speed that will be the one of the mechanical equilibrium model. This
sound speed will be the lowest one and will show up during the compression stage;

– a frozensound speed, larger than the preceding one that will show up during the expansion
stage.

The general model will be thus a non-equilibrium model with relaxation. The relaxation term ex-
presses the degree of local stress disequilibrium. When therelaxation time tends to infinity, the

RR n° 7347



6 Saurel & al.

frozen sound speed is recovered and used during the expansion stage, while when the relaxation
time tends to zero, the asymptotic limit of the non-equilibrium model corresponds to the mecha-
nical equilibrium one. This model, with low sound speed, will be used during compression. Then
the non-equilibrium model couples two limit models : with frozen sound speed on the one hand and
equilibrium sound speed on the other hand, by using a unique formulation. The switch from one
limit model to the other one is achieved by means of the relaxation parameter. Before examining the
details of this relaxationswitch, the non-equilibrium model with relaxation is studied in section 3.
Thermodynamic closure of both models is addressed in section 4, where thermodynamic equations
of state (EOS) are presented, as well as a new granular EOS. Tosolve the flow model, a numerical
method is needed. The system consists in a non-conservativehyperbolic set of equations with re-
laxation. A similar system has been studied in the context offluid mixtures by Saurel et al. (2009)
[34]. Extension of this method to the granular flow model is detailed in section5. Validations are then
addressed in section6. The ability of the model to propagate compression and expansion waves is de-
monstrated, as well as its capabilities to capture fluid-granular mixture interfaces. Comparisons with
several experiments are done, in particular regarding successive hysteresis-type loading-unloading
cycles. In section7, discussion about the relaxation parameter switch is givenon the basis of basic
plasticity theory arguments, combined with an analysis of the various non-equilibrium stages that
occur during the compaction process. That discussion intends to justify that switch. We show, in
particular, that the model is free of parameters. In section8, the flow model is extended to gas per-
meation effects. A Darcy type law, obtained from the asymptotic analysis of the Baer and Nunziato
(1986) [3] model in the limit of stiff mechanical relaxation is obtained, following Guillard and Duval
(2007) [12]. Corresponding drift effects are thus restored in the Kapila et al. (2001) [15] mechanical
equilibrium model in a thermodynamically consistent manner, based on entropy production analy-
sis (Saurel et al., 2008 [33]). Consistency is also achieved with respect to the parent model from
which this reduced model is derived. The corresponding velocity non-equilibrium model is valida-
ted against shock tube experiments, involving shock interaction with dense granular beds, showing
excellent agreement in section9. Conclusions are given in section10.

2 Mechanical equilibrium model

A granular medium is different from a fluid mixture by severalaspects, one of them being the
presence of intergranular contacts. Due to grain contacts,the medium presents resistance to compres-
sion related to efforts that exert in the grains around each contact point. At the macroscopic scale,
these efforts can be summarized with an additional equationof state that expresses the compression
resistance, with the help of agranular pressureor configuration pressure. The configuration energy
associated with that configuration pressure can be derived.It can be understood as the energy stored
in elasto-plastic layers around each contact point.Granular pressureas a function of solid volume
fraction can be determined easily by experimental means. Anexcellent description of experimental
facility and corresponding measurements are given in Kuo etal. (1980) [18].

There are some advantages with this thermodynamic approachbased onconfigurationpressure
and energy. The effects occurring at grain scale, such as rearrangements and plastic deformations are
summarized in simple functions, linking macroscopic variables. Therefore the difficulty of solving
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complex multidimensional effects at grain scale is replaced by the experimental determination of
granularEOS parameters.

The aim of this section is to develop a flow model involving these physical effects specific to
granular media. The model building method consists in taking the total system energy as a function
of the various problem variables and to obtain :

– the mechanical equilibrium condition,
– the form of the pressure term that exerts in the momentum equation.
The mechanical equilibrium condition is then differentiated along a particle trajectory and the-

refore provides the volume fraction evolution equation that closes the system of classical balance
equations : mass conservation for each phase, momentum and energy conservation for the mixture,
entropy conservation for each phase and conservation of thenumber of particles per unit volume.

Let us assume that the total energy of the system is the sum of the classical thermodynamic
internal energye, augmented by the configuration (or granular) energyB plus the kinetic energy :

E = E +
1

2
u2 , (2.1)

with
E = e + B , (2.2)

and
e =

∑

k

Yk ek , B =
∑

k

Yk Bk . (2.3)

Here, for example,k = 1 stands for the solid phase andk = 2 corresponds to the gas phase; so,
in that caseB2 = 0. However, we keep that general formulation as it is more convenient to get
symmetrized relations in what follows.

The internal energyek = ek(νk,sk) of phasek depends on the specific volumeνk and the
specific entropysk. The configuration energyBk associated with the solid deformed layers around
each grain surface is assumed to be a function of five variables :Bk = Bk(αk,Rk,νk,sk,Yk) where

– αk is the volume fraction of phasek, the dependence on which is obvious, since it is well
known the energy to transfer into a granular bed is a functionof the volume fraction at the end
of the compaction process;

– Rk is the particle radius of the grains. Dependence on that variable cannot be excluded a priori;
– the thermodynamic pair of variables(νk,sk) may also influence the value ofBk;
– Yk = (αρ)k/ρ is the mass fraction,ρk = 1/νk is the density andρ =

∑
k αk ρk is the mixture

density.
It is more convenient for the calculations to replace the dependence onRk by the dependence on
the number of particles per unit massnk, defined bynk = Nk/ρ, whereNk is the number of
particles per unit volume. The particle radiusRk, considered as spherical for simplicity, is linked to
the preceding variables by the relation :

νk Yk =
4

3
π R3

k nk . (2.4)

RR n° 7347



8 Saurel & al.

Define
D

Dt
=

∂

∂t
+ u

∂

∂x
, then the classical balance laws are given hereafter :

∂ρ

∂t
+

∂(ρ u)

∂x
= 0 , mixture mass conservation, (2.5)

DYk

Dt
= 0 , mass conservation for phasek , (2.6)

Dsk

Dt
= 0 , entropy conservation for phasek , (2.7)

∂(ρ u)

∂t
+

∂(ρ u2 + P )

∂x
= 0 , mixture momentum conservation, (2.8)

∂(ρ E)

∂t
+

∂

∂x
[(ρ E + P ) u] = 0 , mixture total energy conservation. (2.9)

In the absence of both coalescence and fracture, we may write

∂Nk

∂t
+

∂(Nk u)

∂x
= 0 ,

and therefore get
Dnk

Dt
= 0 . (2.10)

2.1 Definitions ofP and configuration pressures and energies

In equation (2.8), the mixture pressureP is an unknown function which needs to be defined.
Note that the phase entropies are assumed to be constant along their trajectory, therefore the trans-
formations (loding–unloading) are considered as reversible with this model. The irreversible feature
of the compaction process will be addressed later on with thenon-equilibrium model.

By combining the momentum and total energy equations, we getthe following mixture total
internal energy equation

DE

Dt
+ P

Dν

Dt
= 0 , (2.11)

with E = e + B andν = 1/ρ. Using relations (2.5)–(2.10), and definitions of bothe andB, we get

DE

Dt
=
∑

k

Yk

[
∂ek

∂νk

∣∣∣∣
sk

Dνk

Dt
+

∂Bk

∂αk

∣∣∣∣
nk,νk,sk,Yk

Dαk

Dt
+

∂Bk

∂νk

∣∣∣∣
αk,nk,sk,Yk

Dνk

Dt

]
. (2.12)

In order to enlight the notations, we will simply denote by
∂B

∂ξk
for all ξk ∈ {αk,nk,νk,sk,Yk} to

define the partial derivative ofBk w.r.t. ξk, where all variables butξk from whichBk depends on are

INRIA
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set constant. Since the thermodynamic pressurePk is defined by

Pk = −
∂ek

∂νk

∣∣∣∣
sk

,

and the specific volume of phasek may be expressed as

νk =
αk

Yk
ν ,

then, using (2.6) we have
Dνk

Dt
=

αk

Yk

Dν

Dt
+

ν

Yk

Dαk

Dt
,

and (2.12) can therefore be rewritten by

DE

Dt
+

[
∑

k

αk

(
Pk −

∂Bk

∂νk

)]
Dν

Dt
= −ν

[
∑

k

(
Pk − αk ρk

∂Bk

∂αk
−

∂Bk

∂νk

)
Dαk

Dt

]
. (2.13)

Now, for (2.11) and (2.13) to be in accordance to each other, it is sufficient to set :

P =
∑

k

αk

(
Pk −

∂Bk

∂νk

)
, (2.14)

and

Pk − αk ρk
∂Bk

∂αk
−

∂Bk

∂νk
= Pj − αj ρj

∂Bj

∂αj
−

∂Bj

∂νj
, ∀ k , j , k 6= j . (2.15)

Equation (2.14) corresponds to the thermodynamic mixture pressure definition, while equation (2.15)
represents the mechanical equilibrium condition. These two definitions are consecutive to the choice
of the system energy definition subjected to the constraints(2.5)–(2.10).

Dependence on the phase compressibility is usually neglected during the compaction process.
As a matter of fact, at moderate loading, each particle volume can be considered unchanged. When
loading intensity increases, the bed porosity conversely decreases and the compressible effects be-
come gradually important, typically for pressures greaterthan 100 MPa. It is therefore commonly
assumed that

∂Bk

∂νk
= 0 .

All these facts thus lead to the only dependence ofBk on αk and consequently, the mechanical
equilibrium condition reduces to

Pk − αk ρk
dBk

dαk
= Pj − αj ρj

dBj

dαj
, k 6= j . (2.16)

We are now able to define thegranularpressure, denoted byβk by setting

βk = αk ρk
dBk

dαk
. (2.17)

RR n° 7347



10 Saurel & al.

From this definition, we may deduce the configuration energyBk :

Bk =

∫ αk

α0

k

βk

αρk
dα , (2.18)

whereα0
k is the initial value ofαk, the value from which compaction energy starts to be effective.

Denoteπk
def
= Pk − βk, and the common value equilibrium pressure byΠ, then the equilibrium

condition (2.16) becomes
πk = πj = Π , ∀ k , j , k 6= j ; (2.19)

and withβ
def
=
∑

k(αkβk) standing for themixture compaction pressure, the thermodynamic mixture
pressureP is given by :

P = Π + β =
∑

k

αk Pk . (2.20)

The granular pressure (2.17) expressed as a function of the volume fractionαk can be determined
quite easily by experimental means (see Kuo et al. (1980) [18], Elban and Chiarito (1986) [7]). It
is then necessary to find a fitting curve. Example of such a fitting function is given in Bdzil et al.
(1999) [4] :

βs = −τ (αs − α0
s)

log(1 − αs)

1 − αs
,

where the subscripts stands for the solid granular material, andα0
s andτ are two given positive

constant numbers.
In section4, we will adddress another option offering better properties regarding both granular

energy and granular sound speed. At this point, we assume that such a granular equation of state is
given.

2.2 Volume fraction equation

In order to determine the volume fraction evolution equation, the mechanical equilibrium condi-
tion (k 6= j) :

Pk(ρk,sk) − βk(αk,ρk) = Pj(ρj ,sj) − βj(αj ,ρj) ,

is differentiated along a trajectory, giving :

c2
k

Dρk

Dt
+ ρk Γk Tk

Dsk

Dt
−

βk

ρk

Dρk

Dt
−

(
βk

αk
+ αk ρk

d2Bk

dαk
2

)
Dαk

Dt
=

c2
j

Dρj

Dt
+ ρj Γj Tj

Dsj

Dt
−

βj

ρj

Dρj

Dt
−

(
βj

αj
+ αj ρj

d2Bj

dαj
2

)
Dαj

Dt
.

From (2.7) and the mass evolution equations, the relation written above reduces to
(

ρk c2
k

αk
+ αk ρk

d2Bk

dαk
2

)
Dαk

Dt
+
(
ρk c2

k − βk

) ∂u

∂x
=

(
ρj c2

j

αj
+ αj ρj

d2Bj

dαj
2

)
Dαj

Dt
+
(
ρj c2

j − βj

) ∂u

∂x
.

(2.21)

INRIA
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As the saturation constraints may be read as

∑

k

Dαk

Dt
= 0 , (2.22)

resolution of (2.22)–(2.21) results in the following expressions defining the evolution equations of
the volume fractionsαk :

Dαk

Dt
= −

αk

ρk C2
k

(
(ρk c2

k − βk) − ρ C2
∑

l

αl

ρl C2
l

(ρl c2
l − βl)

)
∂u

∂x
, (2.23)

with

C2
k = c2

k + α2
k

d2Bk

dαk
2

, (2.24)

and
1

ρ C2
=
∑

l

αl

ρl C2
l

. (2.25)

2.3 Equilibrium model summary

The mechanical equilibrium model can thus be expressed by the following system of equations
(k = 1 , 2) :

Dαk

Dt
= −

αk

ρk C2
k

(
(ρk c2

k − βk) − ρ C2
∑

l

αl

ρl C2
l

(ρl c2
l − βl)

)
∂u

∂x
,

∂(αk ρk)

∂t
+

∂(αk ρk u)

∂x
= 0 ,

∂(ρ u)

∂t
+

∂(ρ u2 + P )

∂x
= 0 ,

∂(ρ E)

∂t
+

∂ [(ρ E + P )u]

∂x
= 0 ;

(2.26)

with thegranular pressureβk defined by (2.17), the mechanical equilibrium condition (2.19) and
the mixture pressureP defined by (2.20). The mixture total energy is defined by

E = E +
1

2
u2 , E = e + B =

∑

k

Yk Ek , Ek = ek + Bk ,

and definitions ofC2
k (resp.C2) as given by (2.24) (resp. by (2.25)).
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12 Saurel & al.

2.4 Acoustic properties

We now focus our attention on the acoustic wave propagation in such material mechanical equili-
brium mixtures. This is also an important point regarding the hyperbolic properties of the governing
equations. In order to determine the wave propagation speed, let us write down the mixture pressure
evolution equation :

DP

Dt
=

DPk

Dt
−

Dβk

Dt
+
∑

j

(
βj

Dαj

Dt
+ αj

Dβj

Dt

)

= c2
k

Dρk

Dt
−

βk

ρk

Dρk

Dt
−

(
βk

αk
+ αk ρk

d2Bk

dαk
2

)
Dαk

Dt

+
∑

j

[
βj

Dαj

Dt
+ αj

(
βj

ρj

Dρj

Dt
+

(
βj

αj
+ αj ρj

d2Bj

dαj
2

)
Dαj

Dt

)]
.

Using now the mass equation and the volume fraction equation(2.23), we get

DP

Dt
+



ρ C2




∑

j

αj

ρj C2
j

(
ρj c2

j − βj

)



2

−
∑

j

(
αj

(
ρj c2

j − βj

)2

ρj C2
j

− αj ρj c2
j

)


∂u

∂x
= 0 .

The sound speed square

CW
2 = C2




∑

j

αj

ρj C2
j

(
ρj c2

j − βj

)



2

−
1

ρ

∑

j

(
αj

(
ρj c2

j − βj

)2

ρj C2
j

− αj ρj c2
j

)
, (2.27)

corresponds to the equilibrium sound speed square in the granular medium. In the absence of gra-
nular pressure (βj = 0), (2.27) corresponds to the definition of the well known non-monotonic
Wood sound speed [36]. System (2.26) is therefore hyperbolic with characteristic speedsu, u+ CW ,
u − CW .

2.5 Thermodynamic closure

Using both the pure phase equations of state, the mixture energy and pressure definitions together
with the mechanical equilibrium conditions, there is no difficulty to determine the mixture equation
of state.

For sake of simplicity, we give what this mixture equation ofstate is, when all compressible
materials are assumed to be governed by the stiffened gas equation of state (EOS). This EOS is quite
accurate for description of gases, liquids and solids at high pressures. This method of defining the
mixture EOS is not restricted to this particular example. Mie Grüneisen or any other convex EOS
can be considered as well.

With the stiffened gas EOS, the energy, pressure and densityare linked by the following relation

ρk ek =
Pk + γk Pk,∞

γk − 1
, (2.28)
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whereγk andPk,∞ are positive constants, usually determined by using the reference curves of the
materials. Hugoniot curves are usually used, but saturation curves may be used for special purposes
(see [19]). Returning now to our example, the mixture total internalenergy reads as (E = e + B,
Ek = ek + Bk)

ρ E =
∑

k

αk ρk Ek . (2.29)

Using (2.28) in (2.29), we get

ρ E −
∑

k

αk γk Pk,∞

γk − 1
−
∑

k

αk ρk Bk =
∑

k

αk Pk

γk − 1
. (2.30)

With the mixture pressure definition (2.20) and the mechanical equilibrium condition (2.19), we may
thus write

P = πk + β = Pk − βk +
∑

j

αj βj .

Inserting the above relation in (2.30), we get

ρ e −
∑

k

αk γk Pk,∞

γk − 1
= (P − β)

(
∑

k

αk

γk − 1

)
+
∑

k

αk βk

γk − 1
,

and the mixture equation of state reads as

P =

ρ e −
∑

k

(
αk

γk − 1

)
(γk Pk,∞ + βk)

∑

k

(
αk

γk − 1

) + β ,

=

ρ E −
∑

k

(
αk

γk − 1

)
(γk Pk,∞ + βk) −

∑

k

αk ρk Bk

∑

k

(
αk

γk − 1

) + β .

(2.31)

System (2.26) is now closed by (2.31). This mechanical equilibrium model is able to describe wave
propagation in granular mixtures. However, it is unable to reproduce compaction irreversibility. To
reach this aim, we are going to build a non-equilibrium modelwith relaxation that will tend in some
limit to system (2.26). The mechanical equilibrium model will be used during the loading process
only, while unloading will be treated by the non-equilibrium model presented below.

3 Non equilibrium model

The non-equilibrium model must involve two main features :

1. the non-equilibrium model must tend to the mechanical equilibrium one when mechanical
relaxation effects are stiff;
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14 Saurel & al.

2. the non-equilibrium sound speed must be greater than the equilibrium one, as it is usually the
case for non-equilibrium models.

On this basis, we propose the following model, which is an extension of the model given by Saurel
et al. (2009) in [34], for fluid-fluid interfaces, to the case of granular mixtures :

Dα1

Dt
= µ πr ,

∂(αρ)k

∂t
+

∂ ((αρ)k u)

∂x
= 0 ,

∂ ((αρE)k

∂t
+

∂ ((αρE)k u)

∂x
+ (αP )k

∂u

∂x
= −δk πI µ πr ,

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 ,

∂(ρE)

∂t
+

∂ ((ρE + P )u)

∂x
= 0 ;

(3.1)

whereδk = k
′

− k, k = 1 , 2, k
′

= 2 if k = 1, andk
′

= 1 if k = 2. For any flow variablef ,
and in all that follows,fr stands for the difference of the phase variablesfk : fr = f1 − f2, hence,
hereπr = π1 − π2. It is implicit in this formulation thatk = 1 corresponds to the solid granular
phase whilek = 2 stands for the gas phase. We recall hereafter the definitionsof the main variables
involved in system (3.1) :

πk = Pk − βk ,

Ek = Ek +
1

2
u2 , Ek = ek + Bk ,

E =
∑

k

YkEk , P =
∑

k

αkPk ,

πI =
Z2 π1 + Z1 π2

Z1 + Z2
, Zk = ρkck , c2

k =

Pk

ρ2
k

−
∂ek

∂ρk

∣∣∣∣
Pk

∂ek

∂Pk

∣∣∣∣
ρk

.

The generalized interfacial pressureπI given above, has been determined through the Riemann pro-
blem solution as given by Saurel et al. (2003) in [32].
The main point of this model relies on the relaxation parameterµ

µ =

{
+∞ , if π1 > π2 ,

0 , otherwise .
(3.2)

Thus, during loading, the weak compressibility of the solidwill imply π1 > π2, and a stiff pressure
relaxation coefficient will be used. As it is shown in appendix A, such a treatment is equivalent to the

INRIA



Dynamic Powder Compaction Model with Velocity Drift Effects 15

direct resolution of the equilibrium model (2.26). During unloading, vanishing relaxation coefficient
will be used.
This non-equilibrium model (3.1) thus contains two limit models :

1. the mechanical equilibrium model (2.26), when the relaxation parameterµ tends to infinity,
2. afrozenmodel when this parameter is set to zero.

It is now necessary to analyze these two models, as it is also important to examine the physical
meaning of the relaxation parameterµ as a function ofπ1 andπ2. This is addressed in a specific
section7, after validation of this non-equilibrium model against experimental results. Let us check
before, the accordance of this model with the fundamental principles of thermodynamics.

3.1 Energy conservation

System (3.1) contains three energy conservation equations : two of themare addressed to the
evolution of each phase total internal energyEk, while the last one stands for the total mixture
energy conservation. Consequently, this system is over-determined but is still compatible. Numeri-
cal resolution of interface problems with fluid-fluid and fluid-granular mixture interfaces requires
compatible over-determined system, in particular for wavetransmission. The fundamental reason
is that the phase energy equations are not in conservative form. The total mixture energy equation,
being conservative, ensures a proper treatment of the two non-conservative internal energy equations
in the single phase limit, i.e. on both sides of a material interface, even in the presence of shocks.
This justifies why the total mixture energy is needed for numerical reasons, as shown by Saurel et
al. (2009), in [34].
For both theoretical and numerical reasons, let us first check the compatibility of these three energy
equations. With the notation conventions given previously,k = 1 , 2, the equation of the total internal
energyEk may be written by

ρ
D

Dt
(YkEk) + (αP )k

∂u

∂x
= −δk πI µ πr ; (3.3)

now summing the equations (3.3), for k = 1 , 2 and adding the kinetic energy obtained from the
mixture equation lead to the following resulting equation

ρ
D

Dt

(
Y1E1 + Y2E2 +

1

2
u2

)
+

∂ (Pu)

∂x
= 0 ,

which corresponds to the total mixture equation of system (3.1).

3.2 Entropy inequality

Let us show now that the non-equilibrium model is in agreement with the entropy inequality
requirement. An equivalent form of equation (3.3) is

(αρ)k
Dek

Dt
+ (αP )k

∂u

∂x
= −δk (πI + βk)µ πr .
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With the help of the volume fraction equation and the mass conservation equation of phasek, the
velocity divergence can be expressed by

∂u

∂x
= −

1

αk

Dαk

Dt
−

1

ρk

Dρk

Dt
= −

δk

αk
µ πr −

1

ρk

Dρk

Dt
,

and the internal energy equation now reads as

(αρ)k
Dek

Dt
−

(αP )k

ρk

Dρk

Dt
= δk(πk − πI)µ πr .

With the help of the Gibbs identity for phasek, we get

(αρT )k
Dsk

Dt
= −δk(πI − πk)µ πr .

Now replacingπI by its definition, we get

πI − πk = −
Zk

Z1 + Z2
(πk − πk′ ) = −δk

Zk

Z1 + Z2
πr ,

and the entropy equation of phasek becomes

(αρT )k
Dsk

Dt
=

Zk

Z1 + Z2
µ π2

r ,

which shows a non negative entropy production for each phasek, and therefore ensures the mixture
entropy production to be non negative as well.

3.3 Frozen model

During the unloading stage, the relaxation parameter is setto zero (µ = 0). It is interesting to
examine the acoustic properties of the corresponding model, as the hesteresis phenomenon, shown
in figure1.1, is expected to be reproduced due to the change in the acoustic behaviour whenµ varies
from +∞ to 0.

The frozen limit model corresponds to the system (3.1), whenµ = 0. An alternative formulation
of this system may be expressed by

∂W

∂t
+ A(W )

∂W

∂x
= 0 ,
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with the vector of variablesW and the matrixA(W) defined by

W =





α1

s1

s2

u
P1

P2




, A(W) =





u 0 0 0 0 0

0 u 0 0 0 0

0 0 u 0 0 0

Pr/ρ 0 0 u α1/ρ α2/ρ

0 0 0 ρ1c
2
1 u 0

0 0 0 ρ2c
2
2 0 u





.

The eigenvalues of this matrix correspond to the following wave speeds





λ0 = u ,
λ1 = u − cf ,
λ2 = u + cf .

Here, the frozen sound speedcf is defined by

c2
f = Y1c

2
1 + Y2c

2
2 . (3.4)

This sound speed is much greater than the mechanical equilibrium sound speedCW given by (2.27),
as shown in appendixB. Moreover, this result guarantees the hyperbolicity of thenon-equilibrium
model (3.1).

3.4 Limit system whenµ → +∞

During compression, the relaxation parameter is assumed tobe stiff (µ → +∞). It is important
to show that the asymptotic limit of the non equilibrium model (3.1), whenµ → +∞, corresponds
to the mechanical equilibrium model (2.26). This is detailed in appendixA.

It is now clear that formulation (3.1) contains two limit models, each one being hyperbolic and
having its own mixture sound speed definition. Closure of this model is ensured by finally defining
appropriate equations of state and relaxation parameterµ. The first point is the objective of the
following section. Justification of the relaxation parameter setting is examined in section7.

4 Equations of state

Since powder compaction situations involve two thermodynamic phases (solid and gas), three
equations of state are needed. As a matter of fact, and since each material is considered as being
compressible, we need an equation of state for each of the twophases, in order to express its ther-
modynamic behaviour. A third equation of state is also needed to express the intergranular pressure
linked to its corresponding configuration energy.
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4.1 Thermodynamic equations of state

For the sake of simplicity, and not because it is restricted to, each material is assumed to obey the
stiffened gasequation of state (EOS). This formulation is able to deal with both gas and condensed
phases. It reads as

Pk = (γk − 1)ρkek − γkPk,∞ . (4.1)

γk andPk,∞ are characteristic positive parameters of a given material. They are generally determined
from a given reference curve (mostly from the experimental Hugoniot curve), as detailed e.g. by Le
Métayer et al. (2004) in [19]. Example of some material data are listed in table1.

ρ0 (kg/m3) γ P∞ (Pa)
Air 1 1.4 0
Liquid water 1 000 4.4 6 × 108

HMX 1 903 5.5 31 × 108

NaCl (solid) 2 165 4.2 63 × 108

TAB . 1: Stiffened gas EOS data of some materials under interest for powder compaction

4.2 Granular equation of state

When dealing with solid-gas mixtures, only the solid phase is subjected to intergranular efforts
and contains consequently configurational energy. The granular EOS is determined by quasi-static
compression of powders. The system volume is measured, and the solid volume fraction of the
granular bed is deduced, as a function of the applied stress.This type of experiment is described e.g.
by Kuo et al. (1980) in [18], Elban and Chiarito (1986) in [7], and more recently by Jogi (2003) in
[14], where successive loading-unloading cycles have been studied.

It is possible to fit corresponding curves (granular pressure β – solid volume fractionα) by the
following function, defining the configuration energy (the granular pressure will be defined subse-
quently)

B(α) =

{
Ba(α) , if α0 < α < 1 ,

0 , otherwise ;
(4.2)

whereα0 corresponds to the solid volume fraction when then granularpressure is zero, and

Ba(α) = a[(1 − α) log(1 − α) + (1 + log(1 − α0)) (α − α0) − (1 − α0) log(1 − α0)]
n . (4.3)

This volume fraction limit depends on the powder material, on its grain morphology or its granulo-
metry and so on. It is clear from (4.2)–(4.3) thatB(α0) = 0. a andn are also characteristic positive
parameters of a given powder, and more precisely on its response during quasi-static loading.
For the present model, it is necessary to formulate the first and second derivatives ofBk given by

INRIA



Dynamic Powder Compaction Model with Velocity Drift Effects 19

equivalent relations (4.2)–(4.3) definingBk. The first derivative ofBk w.r.t. αk is

dBk

dαk
=

{
Bak

′

(αk) , if αk,0 < αk < 1 ,

0 , otherwise ,

(4.4)

with

Bak

′

(αk) = −ak nk (log(1 − αk) + 1)

(
Bak

(αk)

ak

)(nk−1)/nk

. (4.5)

Obviously,
dBk

dαk
(αk,0) = 0 , whennk > 1 .

This ensures the tangency of the pressure curve with the volume fraction axis atαk = αk,0. We are
now able to define the granular pressureβk

βk = (αρ)k
dBk

dαk
. (4.6)

Since the second derivative ofBk is also needed in the definition of the solid granular speed of
sound, we give its definition below :

d2Bk

dαk
2

=






B
′′

ak
(αk) , if αk,0 < αk < 1 ,

0 , otherwise ,
(4.7)

with

B
′′

ak
(αk) = aknk

[
1

1 − αk

(
Bk(αk)

ak

)(nk−1)/nk

+

+ (nk − 1)(log(1 − αk) + 1)

(
Bk(αk)

ak

)(nk−2)/nk

]
.

(4.8)

By using Jogi experimental data [14], based on granular HMX, with particle size around 100µm,
we have obtained the fitting curve in lines, shown on figure4.1, on the basis of definition (4.6) and a
configuration energy given by (4.2)–(4.3).

Using Duberg and Nyström experiments (1986) [6], based on solid granular NaCl, we have
obtained the results shown in figure4.2.

Now, all the data we need to validate our model are available,and we can therefore perform
the numerical validation for wave dynamics tests in powder media and check how the compaction
hysteresis phenomenon is reproduced.
Appropriate numerical schemes have been derived by Saurel et al. (2009), in [34] for a simplified
situation of a fluid-fluid model. Extension to the present model of a similar algorithm can be used
here, and we give in the following section the additional modifications of that algorithm in the
granular compaction context.
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FIG. 4.1:Approximation of the experimental compression curve (boldred lines) for granular HMX,
following Jogi [14], by the granular equation of state (4.2)–(4.3) and (4.6), in thin green lines.
The fitting parameters are determined in the zone where the curves are superimposed. Function
behaviour for extrapolated data is shown when the solid volume fraction tends to one. Obviously,
compressible effects involved in the thermodynamic equation of state become important in this range.
Fitting parameters in the solid volume fraction0.63–0.93, are : a = 3× 104 Pa and n = 1.1 . The
percentage of the theoretical maximum density is defined by :%TMD = (αsρs)/ρs,0 .

5 Numerical method

The non-equilibrium model (3.1) is close to the two-phase model studied by Saurel et. al (2009),
in [34]. The numerical method described in that reference paper proceeds in three main steps :

1. HYPERBOLIC STEP: solution of the non-equilibrium system without relaxation terms;
2. RELAXATION STEP: determination of the equilibrium pressure and corresponding volume

fraction variables;
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FIG. 4.2:Approximation of the experimental compression curve (boldred lines) for granular NaCl,
following Duberg and Nyström [6], by the granular equation of state (4.2)–(4.3) and (4.6) in thin
green lines. The fitting parameters are determined in the zone where the curves are superimposed.
Function behaviour for extrapolated data is shown when the solid volume fraction tends to one.
Obviously, compressible effects involved in the thermodynamic EOS become important in this range.
Fitting parameters in the solid volume fraction range0.55–0.9 are : a = 5×104Pa and n = 1.02
(%TDM = (αsρs)/ρs,0 ).

3. INTERNAL ENERGY RESET: use the equilibrium volume fraction in the mixture EOS, based
on the mixture energy conservation (2.31), then determine the corrected equilibrium pressure
and reset each corresponding phase internal energy.

In the present context of granular materials, the system of equations solved in the hyperbolic step is
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stated as (k = 1 , 2) :

Dα1

Dt
= 0 ,

∂(αρ)k

∂t
+

∂ ((αρ)ku)

∂x
= 0 ,

∂ ((αρ)kek)

∂t
+

∂ ((αρ)keku)

∂x
+ αkPk

∂u

∂x
= 0 ,

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 ,

∂(ρE)

∂t
+

∂ ((ρE + P )u)

∂x
= 0 ;

(5.1)

where

P =
∑

k

αkPk , E = E +
1

2
u2 , E = e + B .

So the only difference with the formulation used in [34] for the hyperbolic step lies in the definition
of the total mixture energyE, since it involves both a thermodynamic (e) and a granular (B) energy
part. The internal phase energy equation formulation in (5.1) has been simplified from the formula-
tion given by (3.1), using the granular Gibbs identity (2.17).
The third step of this method (that is, the internal phase energy reset), is also unchanged w.r.t. [34].
The only change lies in the mixture EOS formulation (2.31) that is used instead of its fluid variant
mixture EOS formulation.
The second step (pressure relaxation), is however quite different, since the mechanical equilibrium
condition is different as well. Note this relaxation step isperformed only ifπ1 > π2.
Let us now detail the relaxation step. The system of differential equations that has to be solved is
(k = 1 , 2) :

dα1

dt
= µ πr ,

d(αρ)k

dt
= 0 ,

d ((αρ)kEk)

dt
= −δkπIµπr ,

d(ρu)

dt
= 0 ,

d(ρE)

dt
= 0 ,

in the limit µ → +∞, and where

πI =
Z2π1 + Z1π2

Z1 + Z2
, Ek = ek + Bk .
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Since only the equilibrium solution is required, the aim is to replace this sytem of ordinary differen-
tial equations by an algebraic system. After some manipulations, the internal phase energy equations
become (k = 1 , 2) :

dEk

dt
+ πI

dνk

dt
= 0 ,

with νk = 1/ρk. The integral form of that system of two equations is

Ek − E0
k + π̂I,k (νk − ν0

k) = 0 ,

where

π̂I,k =
1

νk − ν0
k

∫ ∆t

0

πI
dνk

dt
dt .

Following Saurel et al. (2009) [34], a sufficiently accurate estimation of the interfacial pressure
average may be obtained by setting :

π̂I,k = π ,

which represents the equilibrium state pressure definition.
So the system of equations to be solved is

ek(P,νk) + Bk(αk,ρk) − ek(P 0
k ,ν0

k) − Bk(α0
k,ρ0

k) + π (νk − ν0
k) = 0 , k = 1 , 2 . (5.2)

Since the apparent densities(αρ)k remain constant during the relaxation step and the volume frac-
tions may be expressed asαk = (αρ)k νk, system (5.2) may be reformulated by

ek(P,νk) + Bk(νk) − ek(P 0
k ,ν0

k) − Bk(ν0
k) + π (νk − ν0

k) = 0 , k = 1 , 2 .

This system involves three unknowns : the specific phase volume variablesνk, (k = 1 , 2), and the
equilibrium pressure variableπ. Its closure is ensured by the saturation constraint

∑
k αk = 1 . This

saturation condition can also be expressed more conveniently by
∑

k

(αρ)k νk = 1 . (5.3)

Let be more explicit by taking the example of materials governed by thestiffened gasEOS (4.1).
Each internal phase energyek can therefore be replaced by a function of the thermodynamicpressure
Pk and the specific volumeνk :

ek = νk
Pk + γk Pk,∞

γk − 1
.

Each phase pressurePk can be expressed with the help of the equilibrium stress as a function ofπ :

Pk = π + βk(αk,ρk) .

In that specified context, system (5.2) becomes

π + βk + γkPk,∞

γk − 1
νk + Bk −

P 0
k + γkPk,∞

γk − 1
ν0

k − B0
k + π (νk − ν0

k) = 0 .
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Note that in state "0", corresponding to the state reached atthe end of the hyperbolic state, the equi-
librium pressureπ has not been used, since that state is out of mechanical equilibrium. Rearranging
terms after some manipulations, allows us to write that

νk =
(P 0

k + γkPk,∞ + (γk − 1)π) ν0
k + (γk − 1) (B0

k − Bk)

βk + γk (π + Pk,∞)
. (5.4)

We recall that the variablesBk and βk, both functions of the pair(αk,ρk) may be rewritten as
functions ofνk only, so the equation (5.4) is finally expressed as a function of the specific volume
variableνk to be determined. For a given estimate of the equilibrium pressureπ, specific volumes
νk are solution of (5.4). This pressure estimate is correct if the constraint relation (5.3) is fulfilled. A
Newton type algorithm is appropriate to solve this problem.

6 Test problems and validations

We recall that our model has been built to deal with the three main following features :

1. irreversibility of powder compaction,
2. wave dynamics (shock and expansion waves),
3. computational resolution of interfaces separating fluids and granular mixtures problems.

The goal of this section is therefore to check the ability of the model to simulate these various
phenomena and to validate it through a panel of appropriate test problems.

6.1 Compaction of a powder sample

Let us consider a HMX powder sample (as used by Jogy in [14]) of 1.5 cm length, with an initial
solid fraction set to0.63 . The sample is pressed by a right moving piston at imposed velocity of
1 m/s . The right wall boundary is at rest ans is assumed to be undeformable. This is depicted in
figure6.1.

FIG. 6.1:Schematic representation of a powder press process.
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The computational domain involves100 cells. Here, the method described in section5 has been
used with an extended version on moving meshes. The corresponding solution is shown in figure6.2
at timest = 25.5 µs , t = 51.0 µs , and t = 76.4 µs .

FIG. 6.2:Propagation of a weak compaction wave in the mixture. Mixture pressure (P = α1P1 +
α2P2 ), phase pressuresPk , mixture velocityu and solid volume fractionα1 profiles are shown
at times 25.5 µs , 51.0 µs and 76.4 µs . The compression wave is dispersed and produces a weak
solid volume fraction increase. The phase pressure difference between the gas phase (dashed lines)
and the solid phase (solid lines), due to the granular pressure, is visible on the top right graph. The
compaction wave reflects on the tube end wall at the last instant. Stiff pressure relaxation is used,
corresponding to the mechanical equilibrium model.

The propagation mechanism shown in figure6.2, is very fast, compared to the piston motion
velocity. Multiple reflexions occur between the two boundaries during the slow piston motion, ren-
dering the various variable fields quasi-uniform, and therefore only functions of the time.
With the same piston velocity, the same powder sample is pressed again up to a solid volume fraction
of 0.80 ; then, the piston is removed back slowly (with a velocity setat−0.01 m/s ), until the mixture
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pressure reaches the atmospheric pressure value. At this time, the piston motion is stopped. Flow
variables being uniform in space, only their time evolutionis shown in figure6.3.

The first top left graph of figure6.3shows the time evolution of the piston velocity. That velocity
is initially positive, then it becomes negative for about1.5 ms , and is zero when the mixture pressure
value reaches the atmospheric pressure one. The piston trajectory is depicted in the top right graph.
The mixture pressure increases during compression, then decreases rapidly when the piston velocity
is negative, even if this value is close to zero. This is a consequence of the change in the mixture
speed of sound in our model, that ranges from the mechanical equilibrium one whenµ → +∞ to
the frozen one, whenµ = 0. The solid volume fraction increases during compression and remains
unchanged during expansion. Thus, the granular medium stays compact. The thermodynamic solid
pressureP1 has the same time evolution behaviour than the mixture pressure, that both decrease
abruptly during expansion. The solid phase thus recovers the atmospheric pressure value at the end
of the cycle. Conversely, the gas phase stays compressed in the granular pores, as shown in the right
graph at the third row of figure6.3. The graph related to thetotal pressures(Pk − βk) , shows
the stress equality during the compression stage, while enhancing disequilibrium creation during the
expansion stage. That disequilibrium is not surprising : atthe end of the cycle, the solid pressure has
reached the atmospheric pressure value, but thegranular pressureβ1, which represents the effect
of the plastic stress at the granular scale is still present.At last, the most characteristic graph is the
last bottom right graph of figure6.3, where the mixture pressure is depicted as a function of the
compression rate (we recall that%TDM = (αρ)1/ρ1,0 , whereρ1,0 represents the standard density
of the solid phase). The compression rate exhibits a slight decrease during the expansion stage,
due to the mixture compressibility. Indeed, the expansion curve around80%TDM is not strictly
vertical. This last graph clearly shows the ability of the model to predict/reproduce the hysteresis
phenomenon of powder compaction.
We now address the same experiment tests of Jogi [14], with 3 successive loading–unloading cycles.
In these examples, the solid volume fraction has been recorded at the end of each unloading stage.
For the first cycle, the powder sample is pressed up to the solid volume fraction value of0.75 , then
the stress is relaxed. In the second cycle, the same sample iscompressed again, until the solid volume
fraction value attains0.809 , and the stress is relaxed again. In the last third cycle, themixture is
pressed now up to a solid volume fraction value of0.938 , then the stress is relaxed again once
more. Results of the full series of the three cycles are givenin figure6.4, and compared to Jogi’s
experimental data results.

Similar agreement of results have been obtained by Gonthier(2003, 2004), in [10, 11], with
his model compared to Jogi’s experimental results. However, the two-phase flow model of Gonthier
contains explicitly an extra function corresponding to theunloaded solid volume fraction. This ad-
ditional function needs extra experimental efforts for itsmodel’s calibration and this is not what we
are looking for with our model.
To end with our validation tests concerning the powder compaction irreversibility feature, we want
to show the ability of the present model to deal with different kinds of powder materials. So let us
consider a NaCl powder sample, as studied by Duberg and Nyström (1986) in [6]. EOS parameters
are given in table1 and in figure4.2. The comparison between model predictions and experiments
is shown in figure6.5.
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FIG. 6.3:Time evolution of the main flow variables for a loading–unloadingcycle with HMX powder
sample. The maximum value of the solid volume fraction set to80 %, is reached at timet = 3 ms ,
and remains unchanged during the unloading stage. The hesteresis cycle is shown on the last right
bottom graph.
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FIG. 6.4:Mixture pressure evolution as a function of the compressionrate (%TDM = (αρ)1/ρ1,0 ),
for three successive loading–unloadingcycles of HMX powder sample. Experimental data are shown
in thin green lines and numerical results in bold red lines. The agreement is very good for a model
free of any adjustable parameter.

Figure6.5 shows up a good agreement between the model’s numerical results and the experi-
mental ones.
In the following subsection, we examine the ability of the model to deal with large amplitude wave
propagation, as well as interfaces separating pure fluids togranular mixtures.

6.2 Wave and interface dynamics validation tests

In all the following tests, the granular material corresponds to a HMX powder sample with its
corresponding EOS parameters as given by table1 and figure4.1.
So, let us consider ashock tubeof 1 m length, involving a high pressure chamber on the left, filled
with a gas at the initial pressure value set to0.1 GPa , and a low pressure chamber on the right,
filled with the same granular material as the one studied in figures6.2–6.4, at a pressure set to the
atmospheric pressure value. The gas is governed by the idealgas EOS, with air polytropic coefficient.
An initial volume fraction discontinuity is therefore present in the tube at the abscissa0.5 m . In order
to prevent division by zero in the flow model, the initial solid fraction in the left chamber is set to
106 ; in the right chamber, the solid volume fraction is set to0.63 . The initial solid phase density
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FIG. 6.5:Mixture pressure evolution as a function of the compressionrate for a NaCl powder sample.
Experimental data are depicted in thin green lines and numerical results in bold red lines.

is set constant in the whole domain and is equal to1 903 kg/m3 . Both initial states are assumed
to be at rest. The aim of this test problem is to evaluate the ability of the model to compute right
facing shock and associated bed compaction, left facing expansion wave and the interface evolution
separating the nearly pure gas phase from the solid powder mixture. Results are given in figure6.6
at timet = 0.38 ms . The mesh contains1 000 computational cells.

On the left top graph of figure6.6, the left facing expansion wave and right facing shock are
clearly visible. At the interface location, visible on the bottom right graph, both pressure and velocity
are perfectly continuous. The phase pressure graph shows the solid pressure evolution in lines and
the gas pressure one in dashed lines. The pressure difference between the two phase pressures is due
to the granular pressure effect. On the left, the solid pressure reaches a very low level and is not in
equilibrium with the gas phase pressure, as the left part of the domain corresponds to an expansion
process. This has no consequence since the solid volume fraction in this region is very small.
The same test is rerun with an increased initial gas pressurevalue in the left chamber by a factor of
100 (i.e. 10 GPa ), in order to simulate conditions close to detonation product contact with granular
media. Corresponding computational results are shown in the different graphs of figure6.7, at time
t = 36 µs.

This test shows the ability of the model to deal with interfaces separating fluids to solid granular
mixtures in severe conditions, where the fluid behaviour of granular materials is recovered as a limit.
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FIG. 6.6: Shock tubetest with high gas pressure on the left and solid granular mixture on the
right. Interface conditions of equal mixture pressure and equal velocities are perfectly matched. The
granular mixture is compacted by the shock wave.

The phase pressure difference under such conditions in the granular bed becomes insignificant.
Let us consider now the symmetric situation with the expansion of a high pressure solid granular
bed. In the left chamber, the granular bed is at the initial pressure value of10 GPa . On the right, gas
is present and at the atmospheric pressure. In these conditions, the model uses now a zero relaxation
parameter (µ = 0), and we want to demonstrate its numerical ability of solving these interfaces. This
is the aim of the results shown in the four graphs of figure6.8.

All these various tests presented in this subsection show the capabilities of the model to deal with
various kinds of interface problems :

1. when the granular bed is under compression, which corresponds to using the model with stiff
relaxation in compaction zones (µ → +∞),

2. when the granular bed is under expansion, which relates tothe use of the frozen non-equilibrium
model, (µ = 0), to express the irreversible character of powder compaction.
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FIG. 6.7: Shock tubetest with high gas pressure on the left ans solid granular mixture on the right.
Interface conditions of equal mixture pressure and equal velocities are once more prefectly matched.
The pressure difference between the phase pressures in the compacted zone in the right chamber now
vanishes, showing the negligible effects of granular pressure in such high gas pressure conditions,
at least regarding wave dynamics. The fluid limit is recovered.

Both limit models are suitable for solving interface problem simulations.

6.3 Two–dimensional example test

The goal of this subsection is to show that both model and numerical method are able to deal with
complex multidimensional phenomena, as such appearing during the impact and penetration of a
projectile into a solid granular bed. This is illustrated byan example given in figure6.9, where a solid
projectile (considered as non-deformable), impacts a solid granular mixture. That solid projectile is
made of copper (ρCu = 8 900 kg/m3 ), and moves to the right at the initial velocity set to10 m/s .
The copper projectile has an initial radius length of0.1 m . The other problem dimensions are given
in figure6.9.
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FIG. 6.8: Shock tubetest with high solid granular mixture pressure on the left and low gas pressure
on the right. Interface conditions of equal mixture pressure and equal phase velocities are again
perfectly matched, even in the absence of relaxation effects (µ = 0).

Here again, the HMX powder considered for this simulation isthe same as previously used in the
tests presented in the previous subsections, the initial HMX density is equal to1 903 kg/m3. The
granular bed has an initial solid volume fraction value of0.63 . The surrounding air, as well as the
air contained in the powder mixture, has the initial densityvalue equal to1 kg/m3 .

The flow behaviour is clearly different in figure6.10, when irreversibility is accounted for, es-
pecially in the projectile wake. This can be important for example when determining the amount of
ejected powder due to the projectile impact.
This type of computation involves 3 materials : the air, the granular powder, and the solid projectile.
Model and numerical method extension to an arbitrary numberof phases is straightforward. The
non-deformable character of the solid projectile is solvedwith the correction procedure detailed in
Petitpas et al. (2009), [26].
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FIG. 6.9:Schematic representation of the initial conditions duringthe impact of a copper projectile
into a granular mixture made of HMX powder and with an initialsolid volume fraction value set to
0.63 .

6.4 Shock induced powder compaction test

We now finally examine the ability of the model against experimental data for shock propa-
gation in powder samples. Corresponding experiments have been done by Sandusky and Liddiard
(1985), [30]. In the following test case, the granular material corresponds to a HMX powder with
the following granular EOS parameters :

αs,0 = 0.73 , a = 104 , n = 1.05 .

The thermodynamic HMX parameters are those given in table1. We assume the porosity to be filled
with air with a densityρ = 1.2 kg/m3 , and γ = 1.4 . At the initial time, the HMX-air mixture is
assumed to be at rest, and a piston impacts the granular bed atvarious velocities. In figure6.11, we
compare experimental data (cross symbols) with numerical results (lines). The shock wave speed,
shock wave pressure and the percent theoretical maximum density after compaction, for various
piston velocities, are presented. As shown in the differentgraphs of figure6.11, the results show an
excellent agreement.

7 Relaxation parameter switch discussion

The non-equilibrium model (3.1) is able to link, in an unique formulation, thefrozen modelwith
the corresponding sound speedc2

f = Y1c
2
1 + Y2c

2
2 , when µ = 0 , and themechanical equilibrium

model(2.26), whenµ → +∞. The irreversible powder compaction cycle depicted in figure1.1, has
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REVERSIBLE IRREVERSIBLE

a) t = 73 ms

b) t = 147 ms

c) t = 221 ms

d) t = 295 ms

e) t = 368 ms

FIG. 6.10:Qualitative flow behaviour during the impact of a solid projectile into a granular bed.
On the left graph column, the mechanical equilibrium model has been solved by the help of the non-
equilibrium one, which corresponds to using stiff relaxation parameter everywhere (µ → +∞ ).
On the right graph column, the switch (3.2) is used, which corresponds to irreversible compaction.
Computed results are shown at times a)t = 73 ms, b) t = 147 ms , c) t = 221 ms, d) t = 295 ms
and e)t = 368 ms.

indeed been successfully reproduced, as shown in figures6.4and6.5, with the following relaxation
parameter switch setting :

µ =

{
+∞ , if π1 > π2 ,

0 , otherwise .
(7.1)

Before explaining thisswitchprocedure, it is first important to agree with the assumptionthis func-
tion µ is a simplified analogue of a certainly much more sophisticated function, which still remains
to be determined, but this is not the aim of the present report.

Powder compaction may be considered as involving at least four different physical stages :

1. Stress accumulation: during the early events of granular bed compaction, acoustic waves pro-
pagate and reflect on both the solid piston and wall boundaries, making the mixture pressure
to increase, in particular those acoustic waves related to the solid phase. Elastic deformations
appear but are of low amplitude, due to the high resistance ofelastic bodies to deformation.
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FIG. 6.11:Comparison between numerical (lines), and experimental (cross symbols) results for wave
speeds, pressure and theoretical maximum density in the shocked state, for various piston impact
velocities.

During that stage, the solid volume fraction is nearly constant, and therefore the right hand
side of the solid volume fraction evolution equation is close to zero, so that the relaxation
parameter might be considered as being close to zero as well.Even with a small compression
rate (e.g. a little few percent), the stress phase differential (π1 −π2) , exceeds the plastic limit
YP . For HMX, that limit is of the order of100 MPa (see Khasainov et al., 1981, [17]). Then,
the process undergoes plastic deformation.

2. Plastic deformation: plastic deformations result in stress relaxation, i.e.π1 = π2 , at the end
of the relaxation process. That process obviously occurs ata finite rate, but if the details of this
relaxation process are not of interest, and if only the equilibrium state is in concern, then the
relaxation parameterµ can be set to be stiff, (µ → +∞ ). During that stage, plastic stresses
increase, as well as the granular bulk pressureβs , that summarizes their effects. It is important
to recall that this relaxation process occuring during thisplastic regime is irreversible.
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3. Frozen unloading: plastic stresses aroung gas pores are now present and summarized by the
bulk pressureβs . Is the piston is removed, the solid pressure rapidly adjusts to the external
pressure (e.g. the atmospheric pressure), while the plastic stresses at the pore scale remain
present and unchanged. As plastic deformation is irreversible, both pore volumes and solid
volume fraction are unchanged. This corresponds to considering thefrozen model( µ = 0 ),
and the granular bed remains compacted and out of equilibrium.

4. Long time relaxation: if the compacted granular solid bed is left by its own under those non-
equilibrium conditions for a very long time (say, several months or even years), stress relaxa-
tion will occur, resulting in compact solid dislocation production.

Our aim is not to model stages1. and4. To illustrate stages1. and2., let us consider once more the
same granular HMX sample, underfrozencompression, corresponding to the so calledstress accu-
mulationstage, followed by the finite rate relaxation step, corresponding to theplastic deformation
stage. During the second stage, the relaxation parameter isarbitrarily set to µ = 10−6 Pa−1 s−1 .
The powder sample is compressed by a relative volume of 1 % only. In order to illustrate the scale of
this transformation, stages1. and2. are both depicted in the same graph together with experimental
data as shown in the figure7.1.

FIG. 7.1:Decomposition of stages1. (left side of red curveµ = 0) and2. (right side of red curveµ
is finite) of the compaction process for an HMX sample. The plastic limit is exceeded during stage1.
Those events are shown in red lines. The end state of the relaxation path belongs to the equilibrium
curve of the considered material (experimental results arerepresented by green lines).

During stage1., the mixture pressure increases dramatically, since the solid volume fraction is
frozen and the solid medium is weakly compressible. Considering µ = 0 in stage1, is certainly
excessive, and yet shows that the plastic limit of100 MPa for HMX can be overpassed easily (stress
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differential at the spike value isπ1−π2 = 180 MPa ). Then plastic relaxation occurs and the mixture
pressure decreases dramatically, to finally reach the equilibrium curve.
Since the equilibrium curve has been attained after plasticdeformations, which are obviously irre-
versible, the unloading stage3. will occurat constant solid volume fraction. This justifies the use of
the settingµ = 0, during the unloading stage3.
In most of the partical applications we are interested in, there is no need to model nor describe the
detailed phenomena occuring in stages1. and2. Only the final equilibrium relaxed state of stage2.
is needed. This is achieved by considering theµ → +∞ setting in place of both stage1.–2. full
description. This justifies theswitch(7.1). Note that this switch procedure renders the model free of
any adjustable parameter.
Nevertheless, the model presented in this report has one limited aspect relying on the single velocity
restriction, that is assumed in the description of multiphase mixtures. In some applications, gas (or
liquid) permeation in granular beds or media may have significant effects. Obviously, those effects
cannot be represented by the present model. For those effects to be accounted for, we need to extend
the present model in order to restore the velocity drift effects. This is the goal of the following sec-
tion : we will propose a full non equilibrium model (two velocities, two pressures), from which we
will show all the sub-models presented in this report are derived.

8 A compaction model with velocity drift effects

The compaction model (3.1), is a temperature non-equilibrium two-phase flow model with a
single velocity. In some specific situations, fluid permeation in granular beds may have significant
effects that have therefore to be accounted for. Following the work of Guillard and Duval (2007),
[12], a Darcy type law can be obtained to model drifts effects. This Darcy law has been obtained on
the basis of asymptotic analysis of the velocity non-equilibrium Baer and Nunziato model (1986),
[3], in the barotropic case. We extend here that approach to non-barotropic fluids in the presence of
granular effects.

8.1 The full non-equilibrium model

The Baer and Nunziato model, [3], considers each phase to be compressible and evolving withits
own velocity, temperature and pressure. The system is hyperbolic and involves 7 partial differential
equations for two phases in one space dimension. Its naturalgeneralization to the case of granular
mixtures and in absence of both heat and mass transfers may bestated as (notations and index
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conventions are the same as stated previously,k = 1 , 2) :

∂α1

∂t
+ uI

∂α1

∂x
= µ πr ,

∂(αρ)k

∂t
+

∂(αρ)kuk

∂x
= 0 ,

∂(αρu)k

∂t
+

∂
(
αk(ρu2 + P )k

)

∂x
= δk

(
πI

∂α1

∂x
− λur

)
,

∂(αρE)k

∂t
+

∂ (α(ρE + P )u)k

∂x
= δk

(
πI uI

∂α1

∂x
− λuI

′

ur − µ πI
′

πr

)
.

(8.1)

We recall thatπr = π1 −π2 and ur = u1 −u2 and are associated to stress and velocity relaxation
parametersµ and λ respectively.δk = k

′

− k , with k = 1 , 2 and k
′

= 2 if k = 1 and k
′

= 1
if k = 2 . The total phase energyEk is defined with the help of the generalized total internal energy
Ek involving the granular configuration energyBk and the usual phase internal energyek , by

Ek = Ek +
1

2
u2

k , Ek = ek + Bk .

Following the work of Saurel et al. (2003), [32], the interfacial variables are defined by

uI = uI
′

− sgn

(
∂α1

∂x

)
πr

Z1 + Z2
, uI

′

=
Z1u1 + Z2u2

Z1 + Z2
;

πI = πI
′

− sgn

(
∂α1

∂x

)
Z1Z2

Z1 + Z2
ur , πI

′

=
Z2π1 + Z1π2

Z1 + Z2
.

(8.2)

Here,Zk = ρkck is the acoustic impedance of phasek.
The Darcy type law, responsible for gas penetration, is obtained from an asymptotic analysis of the
flow model (8.1), in the limit of stiff mechanical relaxation. To perform that analysis, it is more
convenient to express the system (8.1) in terms of physical primitive variables (density, velocity,
pressure). Denoting

Dk

Dt

def
=

∂

∂t
+ uk

∂

∂x
,

the corresponding primitive equations are summarized hereafter :

Dkαk

Dt
= δk

[(
Zk′

Z1 + Z2
− Yk′

)
ur

∂αk

∂x
+ µ

′

πr

]
,

αk

[
Dkρk

Dt
+ ρk

∂uk

∂x

]
= −ρk

Dkαk

Dt
,

αk

[
ρk

Dkuk

Dt
+

∂Pk

∂x

]
= −δk

[(
βk + δk

Zk

Z1 + Z2
πr

)
∂α1

∂x
+ λ

′

ur

]
,

αk

[
DkPk

Dt
− c2

k

Dkρk

Dt

]
= Γk

[
Zk′

Z1 + Z2
λ

′

u2
r +

Zk

Z1 + Z2
µ

′

π2
r + 2

Z1Z2

(Z1 + Z2)2
πr ur

∂αk

∂x

]
;

(8.3)
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where
∂ek

∂Pk

∣∣∣∣
ρk

=
1

ρkΓk
,

∂ek

∂ρk

∣∣∣∣
Pk

=
Pk

ρ2
k

−
c2
k

ρk Γk
,

µ
′

= µ +
1

Z1 + Z2

∣∣∣∣
∂α1

∂x

∣∣∣∣ , λ
′

= λ +
Z1Z2

Z1 + Z2

∣∣∣∣
∂α1

∂x

∣∣∣∣ .

Noticing that the left hand side of the last equation of system (8.3) is exactly equal to

αkρkΓkTk
Dksk

Dt
,

we easily derive the entropy evolution equation for phasek :

αkρkTk
Dksk

Dt
=

Zk′

Z1 + Z2
λu2

r+
Zk

Z1 + Z2
µ π2

r+
Zk

(Z1 + Z2)2

∣∣∣∣
∂αk

∂x

∣∣∣∣

(
Zk′ ur + sgn

(
∂αk

∂x

)
πr

)2

,

which clearly shows that non negative entropy production isensured for each phasek. Obviously,
non negative entropy production of the mixture is consequently guaranteed.

8.2 Supplementary important equations

8.2.1 Equation forur

Combining the phase velocity equations of system (8.3), results in the following equation for
ur = u1 − u2 :

∂ur

∂t
+

∂

[
ur

(
u −

Yr

2
ur

)]

∂x
=

1

ρ Y1Y2

(
Y1

∂(α2P2)

∂x
− Y2

∂(α1P1)

∂x
+ πI

′

− λ
′

ur

)
. (8.4)

This last relation, which has been obtained without any assumption, is important for the determina-
tion of the Darcy type law, that will be determined around themechanical equilibrium limit.

8.2.2 Mixture equations

From system (8.1), we can esily derive the following mixture equations for mass ρ , momentum
(ρ u) and total energyE , in a conservative form :

∂ρ

∂t
+

∂(ρ u)

∂x
= 0 ,

∂(ρ u)

∂t
+

∂
(
ρ u2 + P + ρ Y1Y2u

2
r

)

∂x
= 0 ,

∂(ρ E)

∂t
+

∂ [(ρ E + P ) u + ρ Y1Y2urHr]

∂x
= 0 ,

(8.5)
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where 




ρ = α1ρ1 + α2ρ2 , P = α1P1 + α2P2 ,

u = Y1u1 + Y2u2 , Yk =
(αkρk)

ρ
,

E = E +
1

2

(
u2 + Y1Y2u

2
r

)
, E = e + B ,

e = Y1e1 + Y2e2 , B = Y1B1 + Y2B2 ,

Hr = H1 − H2 , Hk = Ek +
Pk

ρk
,

(8.6)

respectively define the mixture mass, pressure, velocity, phasek mass fraction, mixture total energy,
mixture total internal energy, mixture internal energy, mixture compaction energy, total phase en-
thalpy difference and phasek total enthalpy. Note that because of the mixture and phase mass
conservations, and for any flow variablef , we have






∂(ρ f)

∂t
+

∂ ((ρ f)u)

∂x
= ρ

Df

Dt
,

∂(αkρkf)

∂t
+

∂ ((αkρkf uk))

∂x
= (αkρk)

Dkf

Dt
,

(8.7)

and in the particular casef = Y1f1 + Y2f2, we get

∂(αρf)1 + (αρf)2
∂t

+
∂ ((αρfu)1 + (αρfu)2)

∂x
= (αρ)1

D1f1

Dt
+ (αρ)2

D2f2

Dt
=

∂(ρ f)

∂t
+

∂ (ρ f u + ρ Y1Y2urfr)

∂x
.

(8.8)

Relations (8.7)–(8.8) are written down here because they will be used many times inthis report.
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The term
1

2
Y1Y2u

2
r ,

represents aturbulent energydue to the relative motion, while the term

ρ Y1Y2u
2
r ,

represents the corresponding associatedturbulent pressure. Note that thoseturbulent terms appear
naturally as just a consequence of accounting for the relative velocity ur. The mass equation of
phasek can therefore be rewritten equivalently either by (k = 1 , 2 ) :

∂(αkρk)

∂t
+

∂ (αkρk u + δkρ Y1Y2ur)

∂x
= 0 , (8.9)

or in terms of the mass fractionYk = (α ρ)k/ρ (Y1 + Y2 = 1) by

ρ
DYk

Dt
= −δk

∂ (ρ Y1Y2ur)

∂x
. (8.10)

We can deduce the mixture total internal energy equation, from the mixture total energy equation
given in (8.5) :

ρ
DE

Dt
+ P

∂u

∂x
+

∂ (ρ Y1Y2urHr)

∂x
= −ρ Y1Y2ur






∂ur

∂t
+

∂

(
ur

[
u −

Yr

2
ur

])

∂x





, (8.11)

where

Hr = H1 −H2 , Hk = hk + Bk , hk = ek +
Pk

ρk
.

8.2.3 Entropy equations

With the notations used before, it can be shown that the entropy equation for phasek can be
rewritten by (k = 1 , 2 ) :

∂(αρs)k

∂t
+

∂ ((αρs)ku + δkρ Y1Y2ursk)

∂x
=

1

Tk

(
Zk′

Z1 + Z2
λu2

r +
Zk

Z1 + Z2
µ π2

r +
Zk

(Z1 + Z2)2

∣∣∣∣
∂αk

∂x

∣∣∣∣

(
Zk′ ur + sgn

(
∂αk

∂x

)
πr

)2
)

.

(8.12)
and the mixture entropy equation by (s = Y1s1 + Y2s2 ) :

Tm

2

[
∂(ρ s)

∂t
+

∂ [ρ (s u + Y1Y2ursr)]

∂x

]
=

(
τ̄ λ

′

u2
r + (1 − τ̄ )µ

′

π2
r

)
− 2

Z1Z2

(Z1 + Z2)2
urπrτr

∂α1

∂x
,

(8.13)

RR n° 7347



42 Saurel & al.

where

Tm = 2

(
1

T1
+

1

T2

)
−1

,

τk =
Tk

T1 + T2
, τr = τ1 − τ2 ,

τ̄ =
T̄

T̄ + T̃
, T̄ =

Z1T1 + Z2T2

Z1 + Z2
, T̃ =

Z2T1 + Z1T2

Z1 + Z2
,

(8.14)

respectively represent a global mixture temperature (Tm ), an average coefficient (τk ) defined from
the phase temperaturesTk , the average coefficient differenceτr , a mixture average coefficient
( τ̄ ) defined from the mixture temperatures̄T and T̃ themselves defined as averaging the phase
temperaturesTk with the averaging impedance coefficientsZk/(Z1 + Z2) . Note that

T̄ + T̃ = T1 + T2 , τ̄ =
Z1τ1 + Z2τ2

Z1 + Z2
, 2

τ̄

Tm
=

Z2

Z1 + Z2

1

T1
+

Z1

Z1 + Z2

1

T2
. (8.15)

Those entropy equations, as written above, and again obtained without any sort of approximation,
will be usefull for expressing the volume fraction evolution equation of the reduced model resulting
from the asymptotic analysis presented in the following subsection.

8.2.4 Internal energy equations

In this subsection, we give the formulations of the phase internal energy equations since they
will be needed later and also because their expressions willdiffer according to the approach chosen
to determine the RHS ofD(α1)/Dt .
From the phase total energy equations in (8.1), after some calculations, it can be shown that the
phase internal energy equations may be expressed under the following form (k = 1 , 2 ) :

∂(αρe)k

∂t
+

∂ ((αρe)ku)

∂x
+ δk

∂

∂x
(ρ Y1Y2urek) + (αP )k

∂u

∂x
+ δkPk

∂

∂x

(
ρ Y1Y2ur

ρk

)
=

Zk′

Z1 + Z2
λ

′

u2
r − δk

(
Pk − δk

Zk

Z1 + Z2
πr

)
Dα1

Dt
+

Zk

Z1 + Z2

(
Yk′ +

Zk′

Z1 + Z2

)
πrur

∂αk

∂x
.

(8.16)

8.3 Asymptotic analysis

The asymptotic analysis presented hereafter mainly follows the lines of Kapila et al. [15]. Each
flow variablef is assumed to be smooth enough to possess the following stable asymptotic expansion

f = f̄ + o(ǫ2) , f̄ = f (0) + ǫ f (1) ,

wheref (0) represent the mechanical equilibrium state off andf (1) a small perturbation close around
that equilibrium state. Conversely, the mechanical relaxation parameters are assumed to be stiff,
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namely :

µ
′

=
µ0

ǫ
, 0 < µ0 = cste < +∞ ,

λ
′

=
λ0

ǫ
, 0 < λ0 = cste < +∞ .

With these assumptions and notations, we get that, for the asymptotic expansion to be stable, and
sinceo(ǫ−1) term appears when inserting in (8.3), the following mechanical equilibrium constraints
have to be held : 




π

(0)
1 = π

(0)
2 = π(0) ,

u
(0)
1 = u

(0)
2 = u(0) , or equivantlyu(0)

r = 0 ,
(8.17)

where π(0) = (α1π1)
0 + (α2π2)

0 .
The Darcy type law is obtained from the zero expansion of the relative velocity equation (8.4) :

λ0 u(1)
r = Y

(0)
1

∂(α2P2)
(0)

∂x
− Y

(0)
2

∂(α1P1)
(0)

∂x
+ π(0) ∂α

(0)
1

∂x
. (8.18)

With the help of (8.17) and the mixture pressure definition, (8.18) may be rewritten as

u(1)
r =

1

λ0

(
(α1 − Y1)

(0) ∂P (0)

∂x
− α

(0)
2

∂(α1β1)
(0)

∂x
+ α

(0)
1

∂(α2β2)
(0)

∂x

)
.

The first order expansion of the relative velocityūr may therefore be expressed by

ūr = u(0)
r + ǫ u(1)

r =
1

λ′

(
(α1 − Y1)

(0) ∂P (0)

∂x
− α

(0)
2

∂(α1β1)
(0)

∂x
+ α

(0)
1

∂(α2β2)
(0)

∂x

)
, (8.19)

with λ
′

=
λ0

ǫ
. Note that relation (8.19) has another equivalent expression, which will be used later

and written down hereafter (we omit the(0) index and setur = ūr) :

ur =
1

λ′

(
(Y1 − α1)

∂π

∂x
− Y2

∂(α1β1)

∂x
+ Y1

∂(α2β2)

∂x

)
. (8.20)

Finally, neglecting allo(ǫ2) terms, we can formulate the following reduced flow model accounting
for permeation effects, which is obtained from solving for the first order expansion of the flow
variables (here, no overlined variables are written to enlight the notations;k = 1 , 2) :

∂(αρ)k

∂t
+

∂ ((αρ)k u)

∂x
+ δk

∂ (ρ Y1Y2ur)

∂x
= 0 ,

∂(ρ u)

∂t
+

∂
(
ρ u2 + P

)

∂x
= 0 ,

∂(ρ E)

∂t
+

∂ [(ρ E + P )u + ρ Y1Y2urHr]

∂x
= 0 ,

(8.21)
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with 




ur =
1

λ′

(
(α1 − Y1)

∂P

∂x
− α2

∂(α1β1)

∂x
+ α1

∂(α2β2)

∂x

)
,

π1 = π2 ,

E = E +
1

2
u2 , P = α1P1 + α2P2 ,

E = Y1E1 + Y2E2 , Ek = ek + Bk .

(8.22)

Remark 8.1 Note that both theturbulent pressure
(
ρ Y1Y2u

2
r

)
andturbulent energy

(
(Y1Y2u

2
r)/2

)

are absent in the above system; this is due to the mechanical equilibrium constraint u(0)
r = 0 and

the relation (u2
r)

(1) = 2 u
(1)
r u

(0)
r = 0 , leading to u2

r = (u2
r)

(0) + ǫ (u2
r)

(1) = 0 .

Remark 8.2 The above reduced model is the result of considering first order velocity, zero order
pressure state variables in the full non–equilibriumparentmodel (8.1), (8.5).

System (8.21)–(8.22) is not closed as temperature disequilibrium is present. Closure of that sys-
tem requires the determination of an appropriate volume fraction equation, that should be in accor-
dance with the entropy inequality requirement. We will showin the following section that this can be
done consistently w.r.t. the full disequilibriumparentmodel (8.1), (8.5). Before that, we write down
the following mixture entropy equation directly deduced from (8.13) which becomes, with the same
asymptotic analysis and mechanical equilibrium constraints :

Tm

2

[
∂(ρs)

∂t
+

∂ ((ρ s u) + ρ Y1Y2ursr)

∂x

]
=

Tm

2

[
ρ

Ds

Dt
+

∂(ρ Y1Y2ursr)

∂x

]
=

Tm

2

[
(α1ρ1)

D1s1

Dt
+ (α2ρ2)

D2s2

Dt

]
= τ λ

′

u2
r ;

(8.23)

the phase entropy equation, initially derived from (8.12), becomes

(αkρk)
Dksk

Dt
=

1

Tk

Zk′

Z1 + Z2
λ

′

u2
r . (8.24)

8.4 Volume fraction and entropy equations

Determination of the volume fraction equation as done by Saurel et al. [33], consists in deriving
the (phase and mixture) entropy equations from a system madeof

– the mixture total internal energy equation expressed in terms of both phase entropy and volume
fraction evolution equations, which is directly deduced from the system of conservation laws
of the reduced model (8.21);

– the differentiation of the mechanical equilibrium constraint,π1 = π2, along a trajectory, which
is also expressed in terms of phase entropy and volume fraction equations.
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We then end up with a system of two phase entropy evolution equations that can be solved and
expressed in terms of the volume fraction equation. Once this is done, we are able to write down the
mixture entropy equation, the terms of which are analyzed tobe in accordance to the mixture entropy
production requirement. This physical constraint naturally leads us to an admissible definition of the
volume fraction evolution equation. This admissible definition is therefore deduced from a sufficient
condition. In the present report, determination of that evolution equation is done by adding the
mixture entropy equation which is directly derived from theprevious asymptotic analysis, that is
equation (8.23).

8.4.1 Energy conservation constraint

We get the following mixture total internal energy equationfrom either asymptotic development
as previously defined (droping allo(ǫ2) terms in theparentequation (8.11)), or directly from the
total energy equation and mass and momentum equations in thereduced model with permeation
(8.21):

ρ
DE

Dt
+ P

∂u

∂x
+

∂ (ρ Y1Y2urHr)

∂x
= 0 . (8.25)

Using configuration energy definition (2.18), and reduced equation forY1 which has the same
form as given by (8.10), to find the evolution equation forB = Y1B1 + Y2B2 , and definition of
e = Y1e1 + Y2e2 with relations (k = 1 , 2 ) :

dek =
Pk

ρ2
k

+ Tkdsk ,

and equations

αk

(
Dρk

Dt
+ ρk

∂u

∂x

)
= −δk

[
ρk

Dα1

Dt
+

∂ (ρ Y1Y2ur)

∂x

]
,

with definition P = α1P1 + α2P2 = π + β , to find the evolution equation fore , we have





ρ
DB

Dt
= βr

Dα1

Dt
− Br

∂ (ρ Y1Y2ur)

∂x
,

ρ
De

Dt
= −P

∂u

∂x
− Pr

Dα1

Dt
− hr

∂ (ρ Y1Y2ur)

∂x
+ (αρT )1

Ds1

Dt
+ (αρT )2

Ds2

Dt
;

(8.26)

where hr = h1 − h2 , hk = ek +
Pk

ρk
. So we get, forE , the following additional equation

ρ
DE

Dt
= −P

∂u

∂x
− πr

Dα1

Dt
−Hr

∂ (ρ Y1Y2ur)

∂x
+ (αρT )1

Ds1

Dt
+ (αρT )2

Ds2

Dt
; (8.27)

using now the mechanical equilibrium relationπr = 0 and equations (8.25) and (8.27) leads us to
the following relation, linking together the phase entropyevolution equations :

(αρT )1
Ds1

Dt
+ (αρT )2

Ds2

Dt
= −ρ Y1Y2ur

∂Hr

∂x
. (8.28)
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Noticing now that
∂Hr

∂x
=

∂hr

∂x
+

(
β1

(αρ)1
+

β2

(αρ)2

)
∂α1

∂x
,

and that
Dsk

Dt
=

Dksk

Dt
− δkYk′ ur

∂sk

∂x
,

allow us to write

(αρT )1
D1s1

Dt
+ (αρT )2

D2s2

Dt
= − (Y2β1 + Y1β2) ur

∂α1

∂x

+ ρ Y1Y2ur

[(
T1

∂s1

∂x
−

∂h1

∂x

)
−

(
T2

∂s2

∂x
−

∂h2

∂x

)]
.

(8.29)

Using now again the mechanical equilibriumπ1 = π2 = π and relation

Tk
∂sk

∂x
−

∂hk

∂x
= −

1

ρk

∂Pk

∂x
,

in (8.29), and noticingα1Y2 − α2Y1 = α1 − Y1, we finally get

(αρT )1
D1s1

Dt
+ (αρT )2

D2s2

Dt
= ur

[
(Y1 − α1)

∂π

∂x
− Y2

∂(α1β1)

∂x
+ Y1

∂(α2β2)

∂x

]
;

but sinceur is defined by (8.20), equation (8.29) is finally equivalent to the following relation

(αρT )1
D1s1

Dt
+ (αρT )2

D2s2

Dt
= λ

′

u2
r . (8.30)

8.4.2 Mechanical equilibrium constraint

The mechanical equilibrium constraint reads as

P1(ρ1,s1) − β1(α1,ρ1) = P2(ρ2,s2) − β2(α2,ρ2) .

Differentiating this relation along the trajectory linedx/dt = u , and since, for allk = 1 , 2 we
have

Dπk

Dt
=

DPk

Dt
−

Dβk

Dt
=
(
βk − ρkc2

k

) ∂u

∂x
+

δk

(αρ)k

(
ρkc2

k − βk

)
ρ

DY1

Dt
−δk

ρk

αk
C2

k

Dα1

Dt
+ρkΓkTk

Dsk

Dt
,

with

c2
k =

∂Pk

∂ρk

∣∣∣∣
sk

,
∂Pk

∂sk

∣∣∣∣
ρk

= ρkΓkTk , C2
k = c2

k + α2
k

d2Bk

dαk
2

,

we get

(ρ ΓT )1
Ds1

Dt
− (ρ ΓT )2

Ds2

Dt
= A

Dα1

Dt
− B , (8.31)
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with 




A =
ρ1C

2
1

α1
+

ρ2C
2
2

α2
,

B =

(
2∑

k=1

δk(βk − ρkc2
k)

)
∂u

∂x
+

(
2∑

k=1

ρkc2
k − βk

αkρk

)
ρ

DY1

Dt
.

(8.32)

Relation (8.31) may be equivalently expressed in terms ofDk(sk)/Dt , as done for relation (8.28)
to (8.29), which is :

(ρ ΓT )1
D1s1

Dt
− (ρ ΓT )2

D2s2

Dt
= A

Dα1

Dt
− B

′

, (8.33)

with

B
′

= B − ρ Y1Y2ur

(
Γ1

α1
T1

∂s1

∂x
+

Γ2

α2
T2

∂s2

∂x

)
. (8.34)

We have therefore got a second relation (8.33) with definitions of A and B given by (8.32), and
definition ofB

′

given by (8.34), linking again the two phase entropy evolution equations together.

8.4.3 Resolution of system (8.30)–(8.33), with definitions (8.32) and (8.34)

We are now given the following system





(αρT )1
D1s1

Dt
+ (αρT )2

D2s2

Dt
= λ

′

u2
r ,

(ρ ΓT )1
D1s1

Dt
− (ρ ΓT )2

D2s2

Dt
= A

Dα1

Dt
− B

′

,

(8.35)

with definitions of A , B and B
′

given by (8.32) and (8.34). Since α2Γ1 + α1Γ2 6= 0 , system
(8.35) possesses a unique solution which is






(αρ)1
D1s1

Dt
=

α1

Γ1

Γ

T1

(
λ

′

u2
r +

α2

Γ2

(
A

Dα1

Dt
− B

′

))
,

(αρ)2
D2s2

Dt
=

α2

Γ2

Γ

T2

(
λ

′

u2
r −

α1

Γ1

(
A

Dα1

Dt
− B

′

))
,

(8.36)

where

Γ =

(
α1

Γ1
+

α2

Γ2

)
−1

. (8.37)

8.4.4 Volume fraction evolution equation

In the previous subsection, we have expressed thesk ’s evolution equations in terms ofDα1/Dt
that remains to be determined. The usual way to do so, is to write down the equation for the mixture
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entropy equation. Since no mass nor heat transfers are assumed in this framework, we know, using
property (8.8) for s = Y1s1 + Y2s2 , that

∂(ρ s)

∂t
+

∂ (ρ s u + ρ Y1Y2ursr)

∂x
= α1ρ1

D1s1

Dt
+ α2ρ2

D2s2

Dt
,

therefore, using the expressions given by (8.36), we obtain the following equation fors

∂(ρ s)

∂t
+

∂ (ρ s u + ρ Y1Y2ursr)

∂x
= Γ

[(
α1

(ΓT )1
+

α2

(ΓT )2

)
λ

′

u2
r −

α1

(ΓT )1

α2

(ΓT )2
Tr

(
A

Dα1

Dt
− B

′

)]
.

(8.38)
We give in what follows two ways of definingDα1/Dt.

1. A SUFFICIENT CONDITION TO DEFINE
Dα1

Dt

The usual way to determineDα1/Dt is to ensure positivity of the right hand side (RHS) of
the above equation (8.38). Since the first term of this RHS is obviously non negative, positivity
is preserved under the sufficient condition defined by assuming the second term of this RHS
to be zero. In that case, we ensure a physically acceptable sub-model, (non negative entropy
production), while defining at the same timeDα1/Dt , therefore ending and closing the sub-
model with permeation derived from asymptotic analysis of the full non equilibrium model
(8.1), (8.5). As a matter of fact, annihilating the second term of the RHSof (8.38), gives us
the following definition for the volume fraction evolution equation :

Dα1

Dt
=

B
′

A
,

=

2∑

k=1

[
δk

(
βk − ρkc2

k

) ∂u

∂x
−

ρkc2
k − βk

αkρk

∂ (ρ Y1Y2ur)

∂x
− ρ Y1Y2ur

(ΓT )k

αk

∂sk

∂x

]

ρ1C
2
1

α1
+

ρ2C
2
2

α2

.

(8.39)
Defining the generalized Wood speed of soundCW by

1

ρ C2
W

=
α1

ρ1C2
1

+
α1

ρ1C2
1

=
α1α2

ρ1C2
1 ρ2C2

2

(
ρ1C

2
1

α1
+

ρ2C
2
2

α2

)
, (8.40)

equation (8.39), has the following alternative writing

Dα1

Dt
= ρ C2

W

α1α2

ρ1C2
1 ρ2C2

2

{[
2∑

k=1

δk

(
βk − ρkc2

k

)
]

∂u

∂x
−

(
2∑

k=1

ρkc2
k − βk

αkρk

)
∂ (ρ Y1Y2ur)

∂x

−ρ Y1Y2ur

(
2∑

k=1

ΓkTk

αk

∂sk

∂x

)}
.

(8.41)
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2. A CONSISTENT WAY TO DEFINE
Dα1

Dt

We present here another way to define the volume fraction evolution equation by using another
equation which is in fact already available. As a matter of fact, equation (8.23) is the expression
of the mixture entropy equation directly derived from asymptotic analysis. So, to preserve
consistency, it should coincide to equation (8.38), that is, the RHS of (8.23) has to be equal to
the one of (8.38) :

2
τ̄

Tm
λ

′

u2
r = Γ

[(
α1

Γ1T1
+

α2

Γ2T2

)
λ

′

u2
r −

α1

Γ1T1

α2

Γ2T2
Tr

(
A

Dα1

Dt
− B

′

)]
. (8.42)

Noticing that

2
τ̄

Tm
=

Z2

Z1 + Z2

1

T1
+

Z1

Z1 + Z2

1

T2
,

and sinceTr 6= 0 , we finally get a relation that can be written by

A
Dα1

Dt
− B

′

=

(
Z2

Z1 + Z2

Γ1

α1
−

Z1

Z1 + Z2

Γ2

α2

)
λ

′

u2
r , (8.43)

and we therefore get
Dα1

Dt
=

B
′′

A
(8.44)

with

B
′′

= B
′

+

(
Z2

Z1 + Z2

Γ1

α1
−

Z1

Z1 + Z2

Γ2

α2

)
λ

′

u2
r , (8.45)

whereB
′

andA are defined by (8.34) and (8.32). If we fully replace these expressions by their
value, we get

Dα1

Dt
= ρ C2

W

α1α2

ρ1C2
1 ρ2C2

2

(
2∑

k=1

δk(βk − ρkc2
k)

)
∂u

∂x

+ ρ C2
W

α1α2

ρ1C2
1 ρ2C2

2

(
2∑

k=1

ρkc2
k − βk

αkρk

)
ρ

DY1

Dt

+ ρ C2
W

α1α2

ρ1C2
1 ρ2C2

2

2∑

k=1

Γk

αk

(
−ρ Y1Y2urTk

∂sk

∂x
+ δk

Zk′

Z1 + Z2
λ

′

u2
r

)
.

(8.46)

8.5 Some remarks

Remark 8.3 If we compare definition (8.44) to definition (8.39), we see that the source term has
been augmented by a term which is proportional toλ

′

u2
r, this term may be interpreted by being

a dissipative entropy term difference due to friction, and is therefore not negligible when friction
occurs.
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Remark 8.4 Note that with this approach of defining the volume fraction evolution equation, which
is unique w.r.t. to consistency with theparentmodel (8.1), (8.5), we end up with a reduced model
which automatically preserves non negativity of (phase andmixture) entropy productions. As a mat-
ter of fact, it is easy to check that the phase-entropy equation of the sub-model as defined by (8.36),
coincides with the reduced by asymptotic analysis equationobtained from theparentmodel equation
(8.12), which reads

αkρk
Dksk

Dt
=

1

Tk

Zk′

Z1 + Z2
λ

′

u2
r ≥ 0 , ∀ k = 1 , 2 .

Remark 8.5 It is interesting to compare the RHS of either equation (8.41) or equation (8.46), to the
RHS of the volume fraction equation presented by Saurel et al. in [33]. In that equation, granular
effects are not considered but we have (for two phases)

– mass transfer, denoted byṁ1 (ṁ2 = −ṁ1);
– heat transfers, between the interface (at temperatureTI) and the phases. Those terms are

denoted byHk (TI − Tk), for k = 1 , 2 , where theHk’s stand for the global heat transfer
coefficients.

We recall hereafter that volume fraction equation :

Dα1

Dt
= α1α2ρ c2

W

(
2∑

k=1

δk

ρkc2
k

)
∂u

∂x
+ ρ c2

W

α1α2

ρ1c2
1 ρ2c2

2

(
2∑

k=1

δkΓk

αk
Hk(TI − Tk)

)

+
ρ c2

W

ρ1ρ2

(
2∑

k=1

αk

c2
k

)
ṁ1 .

(8.47)

Obviously, the first term of the RHS of each of the equations (8.41), (8.46) or (8.47), is similar. Two
remaining terms in (8.41) and in (8.46) need additional interpretation, those are

– the equivalent mass transfer term, which corresponds to the second term in the RHS of either
(8.41) or (8.46),

– the equivalent heat transfer term, which corresponds to the third term in the RHS of either
(8.41) or (8.46).

Concerning the second term of the RHS of (8.41) or (8.46), it is similar to the third term in the RHS
of (8.47), which represents the rate of volume fraction change in thepresence of mass transfer and

ṁ1 ≡ ρ
DY1

Dt
= −

∂(ρ Y1Y2ur)

∂x
.

Now if we compare the multiplying factor, we get that in each of these equations, that factor repre-
sents the inverse of an interfacial density. As a matter of fact, that factor which is identical in both
the equations (8.41) and (8.46), can be rewritten under the following form :

ρ C2
W

ρ1ρ2

((
ρ2c

2
2 − β2

ρ2C2
2

)
α1

C2
1

+

(
ρ1c

2
1 − β1

ρ1C2
1

)
α2

C2
2

)
,
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and has to be compared to
1

ρI
=

ρ c2
W

ρ1ρ2

(
α1

c2
1

+
α2

c2
2

)
.

As detailed in reference [33], in the context of phase transition modelling, the mechanical relaxation
process that occurs during mass transfer is isentropic. Actually, mass transfer produces pressure
fluctuations in each phase, provoking acoustic wave propagation responsible for pressure equili-
bration. Since those acoustic waves are isentropic, the corresponding volume fraction change is an
isentropic process as well.
The third term of the RHS of either (8.41) :

ρ C2
W

α1α2

ρ1C2
1 ρ2C2

2

((
Γ1

α1
(−ρ Y1Y2ur)T1

∂s1

∂x
−

Γ2

α2
(ρ Y1Y2ur)T2

∂s2

∂x

))
, (8.48)

or (8.46) :

ρ C2
W

α1α2

ρ1C2
1 ρ2C2

2

[
Γ1

α1

(
−ρ Y1Y2ur T1

∂s1

∂x
+

Z2

Z1 + Z2
λ

′

u2
r

)

−
Γ2

α2

(
ρ Y1Y2ur T2

∂s2

∂x
+

Z1

Z1 + Z2
λ

′

u2
r

)]
,

(8.49)

has to be compared to the second term of the RHS of (8.47) :

ρ c2
W

α1α2

ρ1c2
1 ρ2c2

2

(
Γ1

α1
H1(TI − T1) −

Γ2

α2
H2(TI − T2)

)
.

In the present context, the fluids are assumed to be inviscid and non heat conductive. Consequently,
conventional heat exchanges are absent, but replaced by generalized heat fluxes as given above in
(8.48) and (8.49). Terms in (8.48), that correspond to the heat transported by the relative motion and
producing phase dilatation, also appear in (8.49) and are augmented by a phase friction term asso-
ciated with each phase generalized heat flux. As for the mass transfer process, mechanical relaxation
is also achieved by acoustic wave propagation. Therefore, that process is isentropic too.

8.6 Summary : a pressure equilibrium models with drift effects

We summarize hereafter the thermodynamically consistent pressure equilibrium model with drift
effects






Dα1

Dt
= ρ C2

W

α1α2

ρ1C2
1 ρ2C2

2

F ,

∂(α ρ)k

∂t
+

∂ ((α ρ)ku)

∂x
+ δk

∂ (ρ Y1Y2ur)

∂x
= 0 , ∀ k = 1 , 2 ,

∂(ρ u)

∂t
+

∂
(
ρ u2 + P

)

∂x
= 0 ,

∂(ρE)

∂t
+

∂ ((ρ E + P )u)

∂x
+

∂ (ρ Y1Y2urHr)

∂x
= 0 ,

(8.50)
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where 




ur =
1

λ′

[
(α1 − Y1)

∂P

∂x
− α2

∂(α1β1)

∂x
+ α1

∂(α2β2)

∂x

]
,

E = E +
1

2
u2 , E = e + B ;

e =
∑

k

Ykek , B =
∑

k

YkBk , P =
∑

k

αkPk ,

(8.51)

and F is either defined by

F =

(
2∑

k=1

δk(βk − ρkc2
k)

)
∂u

∂x
+

(
2∑

k=1

ρkc2
k − βk

αkρk

)
ρ

DY1

Dt
−

2∑

k=1

Γk

αk
ρ Y1Y2urTk

∂sk

∂x
; (8.52)

(see (8.41) ), or by

F =

(
2∑

k=1

δk(βk − ρkc2
k)

)
∂u

∂x
+

(
2∑

k=1

ρkc2
k − βk

αkρk

)
ρ

DY1

Dt

+

2∑

k=1

Γk

αk

(
−ρ Y1Y2urTk

∂sk

∂x
+ δk

Zk′

Z1 + Z2
λ

′

u2
r

)
;

(8.53)

see (8.46). Pressure equilibrium is expressed by

P = π +
∑

k

αkβk .

When stiffened gas EOS is assumed to be hold for each phase, the expression of the mixture (ther-
modynamic) pressureP or (generalized) pressureπ can be easily obtained and is given by (2.31).
System (8.50)–(8.51), with either (8.52) or (8.53), thus corresponds to the extension of the mecha-
nical equilibrium model (2.26), in the limit of low velocity drift. It can also be considered as an
extension of the Kapila et al. model (2001) model, [15], or as a reduction of the Baer and Nunziato
(1986) model, [3], a modified version of which is (8.1). Compared to this last model (8.1), the present
model (8.50)–(8.51) is free of interfacial variable (uI or πI ), and free of pressure relaxationµ (or
µ

′

). However, that new model is restricted tolow velocity drift, around the mechanical equilibrium
state.
The numerical method to solve this system is described in appendixC and is used in the following
validation section.

9 Velocity drift effect validation

To validate the flow model (8.50)–(8.51), a basic experimental situation is considered, in which
gas permeation through a dense granular bed plays a major role, in the presence of pressure waves.
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FIG. 9.1: Experimental setup of shock induced particle fluidization facility (Rogue et al. (1998),
[29]).

Let us consider a vertical shock tube, filled with air (γg = 1.4 ). The initial configuaration is
sketched in figure9.1. In the high pressure chamber, the air pressure and density are initially set to

Pg = 3.43 bar , ρg = 3.75 kg/m3 .

The other chamber is filled with air at atmospheric pressure and with a density set to

ρg = 1.2 kg/m3 .

A membrane seperates the two chambers. In the low pressure chamber, a bed of small nylon solid
particles is settled. Nylon particle density and volume fraction are set to

ρs = 1 050 kg/m3 , αs = 0.65 .

Stiffened gas EOS parameters for nylon are

γs = 4 , Ps,∞ = 600 MPa .

The granular EOS parameters are set to

a = 156 kPa , n = 1.02 , αs,0 = 0.65 .

At the initial time, rupture of the membrane occurs and a supersonic shock wave propagates in the
low pressure chamber, at Mach number1.3 . Then, the shock interacts with the granular bed interface
and a driffaction process appears. A weak shock is transmitted through the bed, while another shock
is reflected. During the transmitted wave propagation, drageffects and pressure forces set the particle
bed to motion. Gas permeation through the bed and drag effects produce shock weakening.
In order to examine gas permeation effects, two pressure gauges are settled : the first one at a distance
of 11 cm before the particle bed, and the second one at a distance of4.3 cm after the bed. The bed
thickness is2 cm (see figure9.1). Corresponding experiments are reported in Rogue (1997) [28]
and Rogue et al. (1998) [29].
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The particles are modelled as compressible, with the EOS parameters given above. No irreversible
compaction effect is considered here. The drag force coefficient is modelled by a simple formulation

λ =
λ0

ǫ
, λ0 =

1

2

Z1Z2

Z1 + Z2
,

where λ0 is the acoustic drag coefficient (see Saurel et al. (2003), [32]), and ǫ is a small positive
parameter proportional to the inverse of the specific interfacial area (ǫ ≃ 1/AI ). As for spherical
particle beds the specific interfacial areaAI reads as

AI =
3 αs

rp
,

where rp is the radius of a particle, we use for the parameterǫ an expression of the form

ǫ =
ǫ0
αs

,

where, for the computations done in the present section

ǫ0 = 1.23 10−2 m .

In figure9.2, the pressure evolution on the two gauges, in the case of no drift, is compared to experi-
mental data records. Those experimental data records are depicted with thin lines and the numerical
solution is drawn with thick lines. Many differences are clearly visible. When no drift is assumed,
the transmitted shock is too weak while the reflected one is too strong.
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FIG. 9.2:Comparison of recorded pressure signals (thin lines) with numerical computation results
with the flow model (8.50)–(8.51), in the absence of velocity drift effects (thick lines). The reflected
shock is too strong and the transmitted one is too weak.
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FIG. 9.3: Comparison of recorded pressure signals (thin lines) with numerical computations with
the flow model (8.50)–(8.51), when drift effects are accounted for. Both the reflected and transmitted
shocks are of correct amplitude.

In figure 9.3, the same comparison is made but now including drift effects. Computed results are
reported with thick lines and compared with experimental data given with thin lines.

As shown in figure9.3, both the reflected and transmitted waves have now the correct amplitude. It
is only really at time t = 9 ms , that some differences appear. The level of the computed pressure
on the second gauge is found to be higher than that got by experimentation. Those differences justly
appear after the particle has passed by the second pressure gauge location. In figure9.4, we give the
time evolution of the volume fraction when drift effects areconsidered. When the particle bed has
passed by the second gauge, (t > 10 ms ), we should have got the same pressure level for both the
gauges whereas they appear to be not equal on the experimental data records. Possible explanation
might be due to some deviations of those two pressure gauges during the experiment.

10 Conclusion

A multiphase flow model for the irreversible compaction of powders has been built and valida-
ted. This resulting model is free of any adjustable parameter and is able to reproduce with fidelity
loading–unloading cycles, as well as interface dynamics separating fluids and granular mixtures. Its
numerical resolution has been achieved on the basis of simple extension of the method given in Sau-
rel et al. (2009) [34]. Moreover, the model perfectly fits the frame of diffuse interface theory, used for
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FIG. 9.4:Time evolution of the volume fraction at the second gauge location. The solution in pre-
sence of drift is represented with thick lines and the solution without drift with thin lines. Drift effects
make the particle bed slow down with more diffuse interfaces.

different types of problems, ranging from material interfaces, cavitating flows [33], capillary fluids
[25], to solid–fluid interfaces [8]. A lot of different types of physics may be introduced and inserted
within this frame.

In this report, we have given another extension regarding gas permeation effects, resulting in a
velocity non–equilibrium model. In this model, the only adjustable parameters are those related to
the conventional drag force correlations. That corresponding model can also be considered as being
a diffuse interface model with inter–penetration effects.
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A Asymptotic limit of the pressure non-equilibrium model with
stiff mechanical relaxation

Let us assume the pressure relaxation coefficient to be of thefollowing form

µ =
µ0

ǫ
, with ǫ → 0+ .

Each flow variablef is assumed to obey an asymptotic expansion

f = f (0) + ǫ f (1) ,

where f (0) and f (1) respectively represent the equilibrium state value and a small perturbated
value around the equilibrium state of the flow variablef . We use the following notation
With these notations, the zero-order expansion of the volume fraction equation of the non equilibrium
sytem (3.1)

Dα1

Dt
= µ πr ,

becomes
Dα

(0)
1

Dt
=

µ0

ǫ
π(0)

r + µ0 π(1)
r .

This equation implies two new relations. The first one expresses evolution of the volume fraction at
zero-order :

Dα
(0)
1

Dt
= µ0 π(1)

r ; (A1)

the second one expresses the evolution atǫ−1 order :

µ0

ǫ
π(0)

r = 0 ,

which necessarily impliesπ(0)
r = 0 , i.e., the mechanical equilibrium condition is recovered :

π
(0)
1 = π

(0)
2 = π(0) . (A2)

To define the RHS of the zero-order evolution equation ofα1 , it therefore remains to determine
the pressure fluctuation differenceπ1

r . To do so, we need to express the evolution equations of the
phase pressuresπk . This is done using the phase internal energy equations deduced from (3.1),
since Ek = ek + Bk , which gives, after some calculations, the following evolution equation for the
thermodynamic pressurePk :

DPk

Dt
+ ρkc2

k

∂u

∂x
= δk

(
−

ρkc2
k

αk
+ δk

Γk

αk

(
Yk′ +

Zk′

Z1 + Z2

)
πr

)
µ πr , (A3)

Now using (2.17) for defining βk :

βk = αk ρk
dBk

dαk
,
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and differentiating along the trajectory
dx

dt
= u gives us

Dβk

Dt
= −βk

∂u

∂x
+ δkαkρk

d2Bk

dαk
2

µ πr . (A4)

From (A3) and (A4), we easily derive the evolution equation forπk = Pk − βk :

Dπk

Dt
+ (ρkc2

k − βk)
∂u

∂x
= δk

(
−

ρk

αk

(
c2
k + α2

k

d2Bk

dαk
2

)
+ δk

Γk

αk

(
Yk′ +

Zk′

Z1 + Z2

)
πr

)
µ πr .

Denote

C2
k = c2

k + α2
k

d2Bk

dαk
2

,

then the evolution equation forπk writes as :

Dπk

Dt
+ (ρkc2

k − βk)
∂u

∂x
= δk

(
−

ρk

αk
C2

k + δk
Γk

αk

(
Yk′ +

Zk′

Z1 + Z2

)
πr

)
µ πr . (A5)

Now looking at its zero-order expansion, using (A2), we get :

Dπ
(0)
k

Dt
+ (ρ

(0)
k (c

(0)
k )2 − β

(0)
k )

∂u(0)

∂x
= δk

(
−

ρ
(0)
k

α
(0)
k

(C
(0)
k )2

)
µ0 π(1)

r .

Differentiation of (A2) finally leads us to the following relation :

µ0 π(1)
r = −

2∑

k=1

δk

(
ρ
(0)
k (c

(0)
k )2 − β

(0)
k

)

2∑

k=1

ρ
(0)
k (C

(0)
k )2

α
(0)
k

∂u(0)

∂x
.

The zero-order volume fraction equation is therefore expressed as

Dα
(0)
1

Dt
= −

2∑

k=1

δk

(
ρ
(0)
k (c

(0)
k )2 − β

(0)
k

)

2∑

k=1

ρ
(0)
k (C

(0)
k )2

α
(0)
k

∂u(0)

∂x
.

which is in perfect agreement with the first equation of the full equilibrium system (2.26). Note that
(2.26) is also the zero-order expansion of the full non-equilibrium model (8.1), (8.5) in the limit of
the one velocity, one pressure equilibrium condition :

π
(0)
1 = π

(0)
2 = π(0) , u

(0)
1 = u

(0)
2 = u(0) , u

(1)
1 = u

(1)
2 = u(1) = 0 .
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B Frozen and equilibrium mixture sound speed relations

Let us consider the full equilibrium (velocity and pressure) state of a granular mixture (index
k = 1 ), with a gas (indexk = 2 ). The mechanical equilibrium condition and the mixture pressure
are respectively defined by the following relations :






π1 = P1 − ρ Y1
dB1

dα1
= π2 = P2 ,

P = ρ2 ∂e

∂ρ
=

2∑

k=1

αkPk .

We aim to get the equilibrium mixture sound speed expression. Since full equilibrium is assumed,
we have

Dsk

Dt
= 0 ,

DYk

Dt
= 0 ,

and therefore we have
DPk

Dt
= c2

k

Dρk

Dt
. (B1)

Noticing that
Dρk

Dt
= −

ρ Yk

α2
k

Dαk

Dt
+

Yk

αk

Dρ

Dt
,

differentiation of the equilibrium condition leads us to the following expression

c2
1

(
−

ρ Y1

α2
1

Dα1

Dt
+

Y1

α1

Dρ

Dt

)
−

(
ρ Y1

d2B1

dα1
2

Dα1

Dt
+

β1

ρ

Dρ

Dt

)
= c2

2

(
−

ρ Y2

α2
2

Dα2

Dt
+

Y2

α2

Dρ

Dt

)
,

so that (usingα1 + α2 = 1 )

Dρ

Dt
=

1

ρ





Y1c
2
1

α1
−

Y2c
2
2

α2
−

β1

ρ

Y1c
2
1

α2
1

+
Y2c

2
2

α2
2

+ Y1
d2B1

dα1
2




Dα1

Dt
. (B2)

Now if we differentiate the mixture pressure relation

DP

Dt
= Pr

Dα1

Dt
+ α1

DP1

Dt
+ α2

DP2

Dt
,

and use (B2) and (B1), we get for P

DP

Dt
=



Y1c
2
1 + Y2c

2
2 −

(
Pr

ρ
−

Y1c
2
1

α1
+

Y2c
2
2

α2

) (
Y1c

2
1

α1
−

Y2c
2
2

α2
−

β1

ρ

)

Y1c
2
1

α2
1

+
Y2c

2
2

α2
2

+ Y1
d2B1

dα1
2




Dρ

Dt
.
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But because of the mechanical equilibrium relation, we have

β1 = Pr .

So finally, the above relation may be equivalently expressedby

DP

Dt
= c2

W

Dρ

Dt
,

where the equilibrium mixture sound speed is defined by

c2
W = c2

f −

(
Y1c

2
1

α1
−

Y2c
2
2

α2
−

β1

ρ

)2

Y1c
2
1

α2
1

+
Y2c

2
2

α2
2

+ Y1
d2B1

dα1
2

,

with
c2
f = Y1c

2
1 + Y2c

2
2 ,

representing the frozen mixture speed of sound. Obviously :

c2
f > c2

W .

When only fluids are present, so in the absence of compaction effect, we recall that the conventional
equilibrium mixture speed of sound, denoted bycW,fluids , is

c2
W,fluids =

Y1c
2
1 Y2c

2
2

α2
1 α2

2

Y1c
2
1

α2
1

+
Y2c

2
2

α2
2

,

or, equivalently written by
1

c2
W,fluids

=
α2

1

Y1c2
1

+
α2

2

Y2c2
2

.

The difference between the (square of the) equilibrium mixture sound speed of Woodc2
W with

granular effects, and the conventional one for fluid mixtures is

c2
W − c2

W,fluids =
1

ρ




(ρ1c

2
1 − ρ2c

2
2)

2

ρ1c
2
1

α1
+

ρ2c
2
2

α2

−

(
ρ1c

2
1 − ρ2c

2
2 − β1

)2

ρ1c
2
1

α1
+

ρ2c
2
2

α2
+ α1ρ1

d2B1

dα1
2



 .

Suppose now that
ρ1c

2
1 − ρ2c

2
2 > 0 , ρ1c

2
1 − ρ2c

2
2 − β1 > 0 ; (B3)
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and thatB1 is monotone increasing and strictly convex w.r.t.α1 :

dB1

dα1
> 0 ,

d2B1

dα1
2

> 0 . (B4)

Note the inequalities (B3) are usually valid since the sound speed for the solid phase is dominant
compared to the one related to the gas phase and theconfigurationsound speed. Inequalities (B4)
are also verified with our definition ofB1(α1) . Consequently, we have

c2
W − c2

W,fluids =

α1ρ1
d2B1

dα1
2

(
ρ1c

2
1 − ρ2c

2
2 − α1ρ1

dB1

dα1

)2

ρ

(
ρ1c

2
1

α1
+

ρ2c
2
2

α2

) (
ρ1c

2
1

α1
+

ρ2c
2
2

α2
+ α1ρ1

d2B1

dα1
2

)

+

α1ρ1
dB1

dα1

(
ρ1c

2
1 − ρ2c

2
2 − α1ρ1

dB1

dα1

)

ρ

(
ρ1c

2
1

α1
+

ρ2c
2
2

α2

) > 0 .

Therefore, thegranular sound speed is always larger than theconventionalone if (B3) holds and if
B1(α1) is a monotone increasing and convex function of the variableα1 .

C Numerical method to solve the equilibrium model with velo-
city drift terms

The system that has to be solved is the one defined by (8.50), with (8.51), and the RHS of the
volume fraction equation defined byF as given either by (8.52), or by (8.53). F is rewritten under
the following form

F = FH + FD , (C1)

with

FH =

(
2∑

k=1

δk(βk − ρkc2
k)

)
∂u

∂x
, (C2)

that term FH will be used in thehyperbolicstep. That step will be explained afterwards. The
definition of the termFD is

FD = FD1
+ FD2

; (C3)

that term will be used in thedrift step. It is formed by two termsFD1
and FD2

, where FD2
is

defined by

FD2
=

(
2∑

k=1

δk
Γk

αk
wk

)
λ

′

u2
r . (C4)
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The definition of the factor termwk depends on the definition of the evolution equation forα1

(see subsection8.4.4). When F is defined by (8.52), wk is set as

wk =
αk

Γk
Γ , (C5)

with Γ is defined by (8.37). When F is defined by (8.53), wk has the following formulation

wk =
Zk′

Z1 + Z2
. (C6)

Note that whenwk is defined by (C5), FD2
= 0 . At last, the termFD1

is split into two terms

FD1
= FD1,1 + FD1,2 , (C7)

with

FD1,1 =

(
2∑

k=1

ρkc2
k − βk

αkρk

)
ρ

DY1

Dt
,

FD1,2 = −

2∑

k=1

Γk

αk
ρ Y1Y2urTk

∂sk

∂x
.

(C8)

We recall that here,

ρ
DY1

Dt
= −

∂

∂x
(ρ Y1Y2ur) .

So the original system (8.50), with (8.51) is split into two subsystems :
– ahyperbolicsubsystem,
– adiffusivesubsystem.

The numerical method used to solve the original (unsplit) system therefore proceeds in three steps :
– ahyperpolicstep, where thehyperbolicsubsystem is solved;
– adrift step, where thediffusivesubsystem is solved;
– areset–correctionstep, where the predicted solution is corrected in such a waythat the mixture

total energy is preserved.
Each of these subsystems and steps is described in what follows.

C.1 Hyperbolic step

We aim to solve the followinghyperbolicsubsystem






Dα1

Dt
= ρ C2

W

α1α2

ρ1C2
1 ρ2C2

2

FH ,

∂(α ρ)k

∂t
+

∂ ((α ρ)ku)

∂x
= 0 , k = 1 , 2 ,

∂(ρ u)

∂t
+

∂
(
ρ u2 + P

)

∂x
= 0 ,

∂(ρ E)

∂t
+

∂ [(ρ E + P ) u]

∂x
= 0 ,

(C9)
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where

E = E +
1

2
u2 , E =

2∑

k=1

YkEk , Ek = ek + Bk , P =

2∑

k=1

αkPk , (C10)

andFH is defined by (C2). This subsystem is the one which has already been considered in section5.

C.2 Velocity drift step

In this step, the aim is to solve the following (sub)system :





∂α1

∂t
= ρ C2

W

α1α2

ρ1C2
1 ρ2C2

2

FD ,

∂(α ρ)k

∂t
+ δk

∂ (ρ Y1Y2ur)

∂x
= 0 , k = 1 , 2 ,

∂(ρ u)

∂t
= 0 ,

∂(ρ E)

∂t
+

∂ (ρ Y1Y2urHr)

∂x
= 0 ;

(C11)

where

E = E +
1

2
u2 , P =

2∑

k=1

αkPk , ur =
1

λ′

(
(α1 − Y1)

∂P

∂x
− α2

∂(αβ)1
∂x

+ α1
∂(αβ)2

∂x

)
;

(C12)
andFD is defined by relations (C3)–(C8). The two phase internal energy equations, directly derived
from (8.36) can be considered too. They are (k = 1 , 2 ) :

∂ ((α ρ)kek)

∂t
+ δk

(
∂

∂x
(ρ Y1Y2urek) + Pk

∂

∂x

(
ρ Y1Y2ur

ρk

))
= −Pk

∂αk

∂t
+ wk λ

′

u2
r , (C13)

where wk is defined by (C5) if F is defined by (8.52), and by (C6) if F is defined by (8.53).

The resolution method used to solve (C11) follows a three sub-step procedure which can be stated
as :

1. DIFFUSION SUB-STEP:
this sub-step is a solution prediction step where the various diffusion terms are considered, but
where only a part of the volume fraction equation is solved :

∂α1

∂t
= ρ C2

W

α1α2

ρ1C2
1 ρ2C2

2

(FD1,1 + FD2
) ,

with FD1,1 and FD2
respectively defined by (C8) and (C4).

2. PRESSURE RELAXATION SUB-STEP:
the remaining volume fraction equation terms in the RHS are addressed with a relaxation
method.
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3. RESET WITH CORRECTION SUB-STEP:
in this sub-step, the updating is done by correcting the predicted solution in order to preserve
the mixture total energy.

In the following, we describe sub-steps1 and2.

C.2.1 Diffusion sub-step

The sub-system considered during this step reads as





∂α1

∂t
= ρ C2

W

α1α2

ρ1C2
1 ρ2C2

2

(FD1,1 + FD2
) ,

∂

∂t
((αρ)kek) + δk

[
∂

∂x
(ρ Y1Y2urek) + Pk

∂

∂x

(
ρ Y1Y2ur

ρk

)]
= −δk Pk

∂α1

∂t
+ wk u2

r , k = 1 , 2 ,

∂(αρ)k

∂t
+ δk

∂

∂x
(ρ Y1Y2ur) = 0 , k = 1 , 2 ,

∂(ρ u)

∂t
= 0 ,

∂(ρ E)

∂t
+

∂

∂x
(ρ Y1Y2urHr) = 0 ,

with wk defined by (C5)-(C6).

Mass equations

The following explicit scheme is used to solve thek-phase mass equation :

∂(αρ)k

∂t
+ δk

∂

∂x
(ρ Y1Y2ur) .

Following the definition ofur (C12), the mass fluxq = ρY1Y2ur may be denoted by

q = q1 + q2 + q3 ,

where, for j = 1, 2, 3 :

qj = ωj
∂pj

∂x
,

with 




p1 = π , ω1 =
ρ Y1Y2

λ′
(α1 − Y1) ,

p2 = (αβ)1 , ω2 = −
ρ Y1Y2

λ′
Y2 ,

p3 = (αβ)2 , ω3 =
ρ Y1Y2

λ′
Y1 .
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With these notations and definitions, the mass equation for phasek can be rewritten by

∂(αρ)k

∂t
+ δk

3∑

k=1

∂qm

∂x
= 0 .

Space and time integration of the mass equation is expressedby

(αρ)n+1
k,i = (αρ)n

k,i − δk
∆t

∆x

3∑

j=1

(q∗j,i+1/2 − q∗j,i−1/2) , (C14)

where the mass fluxesq∗j ( j = 1, 2, 3 ) remain to be determined at each cell boundaryi± 1/2 . To
do so, we first use the continuity property of the mass fluxes ateach cell boundary, i.e. (l = i±1/2 )

q∗,−
l = q∗,+

l = q∗l .

Then, the diffusive character of thek-phase mass equation guarantees continuity of the generalized
pressuresp∗j at each cell boundaryl = i ± 1/2 :

p∗,−
j,l = p∗,+

j,l = p∗j,l .

Expressed at the cell boundaryl = i − 1/2 , and using the notationsωj,L = ωj,i−1 , ωj,R = ωj,i ,
we get, for j = 1, 2, 3 :

ωj,L (p∗j − pj,i−1) = ωj,R (pj,i − p∗j ) ,

and therefore we can define thep∗j,l for l = i − 1/2 and j = 1,2,3 :

p∗j,l =
ωj,L pj,i−1 + ωj,R pj,i

ωj,L + ωj,R
.

The corresponding fluxesq∗j,l are consequently defined by the following relation

q∗j,l =
1

2

[
ωj,L

p∗j,l − pj,i−1

∆x/2
+ ωj,R

pj,i − p∗j,l
∆x/2

]
,

which reduces to

q∗j,l =
2

∆x

ωj,L ωj,R

ωj,L + ωj,R
(pj,i − pj,i−1) .

Using (C14) with these definitions, the mass equations are updated for each phasek = 1, 2 .

Energy equations

We recall that the energy equation to be considered for phasek reads as

∂

∂t
((αρ)kek) + δk

[
∂

∂x
(ρ Y1Y2urek) + Pk

∂

∂x

(
ρ Y1Y2ur

ρk

)]
= −Pk

∂αk

∂t
+ wk u2

r ,
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wherewk is defined by (C5)–(C6). We recall that the phase entropy equation is written by

∂sk

∂t
+ δk

ρ Y1Y2ur

(αρ)k

∂sk

∂x
=

1

Tk

wk

(αρ)k
λ

′

u2
r ,

which appears as a transport equation with a source term

∂sk

∂t
+ vk

∂sk

∂x
= Sk ,

where thevelocity vk is defined by (using definition of the mass fluxq given previously) :

vk = δk
q

(αρ)k
,

and the source termSk defined by

Sk =
1

Tk

wk

(αρ)k
λ

′

(
q

ρ Y1Y2

)2

.

Since q can be determined at each cell boundary, the sign ofvk is determined too.
The following explicit scheme is used to update the solutionof the transport equation ofsk

sn+1
k,i = sn

k,i −
∆t

∆x

(
v∗k,i+1/2 s∗k,i+1/2 − v∗k,i−1/2 s∗k,i−1/2

)
+ ∆tSn

k,i ,

where, for l = i ± 1/2 ,

v∗k,l = δk

q∗,l
(αρ)k,l

, (αρ)k,l =
(αρ)k,l+1/2 + (αρ)k,l−1/2

2
,

and

s∗k,l =






sk,l−1/2 , if v∗k,l ≥ 0 ,

sk,l+1/2 , otherwise.
(C15)

Therefore the phase entropies are known at each cell boundary l = i ± 1/2 .
At this stage, we know all cell boundary values of variablesπ∗ , (αβ)∗k , s∗k , for k = 1, 2 . It is
now possible to determine the remaining values of variablesρ∗k and P ∗

k . When Stiffened Gas EOS
is assumed to hold for each phase, we get the following relation

Pk + Pk,∞ = Ak exp

(
sk − sk,0

CV k

)
ργk

k ,

where Ak , sk,0 are non negative constants depending on phasek . We can therefore expressρk

as

ρk =

(
Pk + Pk,∞

Sk

)1/γk

, with Sk = Ak exp

(
sk − sk,0

CV k

)
.
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From (C15), we deduce that, at each cell boundaryl = i ± 1/2 , and for k = 1, 2

ρ∗k,l =






ρk,l−1/2

(
P ∗

k,l + Pk,∞

Pk,l−1/2 + Pk,∞

)1/γk

, if v∗k,l ≥ 0 ,

ρk,l+1/2

(
P ∗

k,l + Pk,∞

Pk,l+1/2 + Pk,∞

)1/γk

, otherwise.

(C16)

and, since

πk = π∗ = P ∗

k −
(αβ)∗k

α∗

k

,

we get, for all k = 1, 2

P ∗

k = π∗ +
(αβ)∗k

α∗

k

, (C17)

and also

(αβ)∗k = (α∗

k)2 ρ∗k
dBk

dαk
(α∗

k) . (C18)

Since π∗ and (αβ)∗k are function ofα∗

k only, so are theP ∗

k ’s : P ∗

k = P ∗

k (α∗

k) . Inserted in (C16),
the densities become also functions of the volume fraction :ρ∗k = ρ∗k(α∗

k) . The volume fraction
solution is the correct one if equation (C18) is satisfied. The Newton-Raphson method is used to
solve system (C16)–(C18).
Once all cell boundary values have been defined forPk and ρk , there is no difficulty to derive those
remaining values of the thermodynamic variablese∗k,l , and h∗

k,l , for k = 1, 2 and l = i ± 1/2 .
The mixture total energy evolution equation is thus approximated by

(ρ E)n+1
,i = (ρ E)n

,i −
∆t

∆x

(
q∗i+1/2 (h∗

r,i+1/2 + B∗

r,i+1/2) − q∗i−1/2 (h∗

r,i−1/2 + B∗

r,i−1/2)
)

,

where hr,l = h1,l − h2,l , Br,l = B1,l − B2,l , for l = i ± 1/2 .
Note that the phase enternal energy equations contain extraterms that cannot be expressed under
a conservative form, so their accurate integration is an issue. The same type of difficulty is also
present during the hyperbolic step since the internal energy equations considered there contain also
non-conservative terms. Since that step is a predicting step, the simplest approximation has been
retained for these terms. That is the same strategy that has been adopted here, with the following
simple approximation scheme, for allk = 1, 2 , and all index celli :

(αρ e)n+1
k,i = (αρ e)n

k,i − δk
∆t

∆x

(
q∗i+1/2 h∗

k,i+1/2 − q∗i−1/2 h∗

k,i−1/2

)

+ δk
∆t

∆x

(
q

ρk

)n

i

(P ∗

k,i+1/2 − P ∗

k,i−1/2)

− δk
∆t

∆x

[
ρ C2

W

ρ1C2
1 ρ2C2

2

Pk

(
2∑

m=1

βm − ρmc2
m

(αρ)m

)]n

i

(q∗i+1/2 − q∗i−1/2)

+ ∆t w̃n
k,i λ

′

(un
r,i)

2 ,
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where w̃k is defined by

w̃k = wk − δk
ρ C2

W

ρ1C2
1 ρ2C2

2

Pk FD2 ,

with wk defined by (C5) or (C6), and FD2 defined by (C4). For un
r,i we use the following

approximation

un
r,i =

1

λ0

[
(αn

1,i − Y n
1,i)

π∗

i+1/2 − π∗

i−1/2

∆x
+ Y n

2,i

α∗

1,i+1/2 β∗

1,i+1/2 − α∗

1,i−1/2 β∗

1,i−1/2

∆x

− Y n
1,i

α∗

2,i+1/2 β∗

2,i+1/2 − α∗

2,i−1/2 β∗

2,i−1/2

∆x

]

Stability criterion

The method is stable if the following stability criterion isfulfilled :

∆t ≤
∆x2

max
i

[
ρ C2

W q

2∑

m=1

δm

ρm

βm − ρmc2
m

ρmC2
m

]

i

.

This criterion is deduced from the pressure evolution equation which reads as

Dπ

Dt
= ρ C2

W

{ (
2∑

k=1

αk

ρkC2
k

(
βk − ρkc2

k

)
)

∂u

∂x

+

(
2∑

k=1

δk

ρk

βk − ρkc2
k

ρkC2
k

)
∂

∂x
(ρ Y1Y2ur)

− ρ Y1Y2ur

(
2∑

k=1

δk

ρkC2
k

ΓkTk
∂sk

∂x

)

+

(
2∑

k=1

Γk

ρkC2
k

wk

)
λ

′

u2
r

}

Note that whenwk is defined by (C5), the factor term ofλ
′

u2
r reduces toΓ . During the dif-

fusion step, only part of the volume fraction equation in (C11) has been considered. Consequently,
constraints become out of equilibrium at the end of the diffusion step.
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C.2.2 Pressure relaxation and reset/correction step

It now remains to solve the following system, under the constraint π1 = π2






∂α1

∂t
= −ρ C2

W

α1α2

ρ1C2
1 ρ2C2

2

ρ Y1Y2ur

(
2∑

m=1

Γk

αk
Tk

∂sk

∂x

)
,






(αρ)k
∂ek

∂t
= −δkPk

∂α1

∂t
,

∂(αρ)k

∂t
= 0 ,

for k = 1,2 ,

∂(ρ u)

∂t
= 0 ,

∂(ρ E)

∂t
= 0 .

(C19)

Resolution of that system is done in a way similar to what has been done during the hyperbolic
pressure relaxation step.
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