

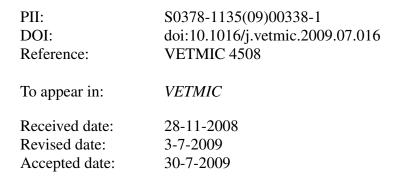
Q fever Emmanouil Angelakis, Didier Raoult

► To cite this version:

Emmanouil Angelakis, Didier Raoult. Q fever. Veterinary Microbiology, Elsevier, 2010, 140 (3-4), pp.297. <10.1016/j.vetmic.2009.07.016>. <hal-00556051>

HAL Id: hal-00556051 https://hal.archives-ouvertes.fr/hal-00556051

Submitted on 15 Jan 2011


HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Q fever

Authors: Emmanouil Angelakis, Didier Raoult

Please cite this article as: Angelakis, E., Raoult, D., Q fever, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.07.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Q fever
2	
3	Emmanouil Angelakis and Didier Raoult*
4	
5	¹ Unité des Rickettsies, CNRS UMR 6020, IFR 48, Faculté de Médecine, Université
6	de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
7	
8	Corresponding author.
9	Mailing address: Unité des Rickettsies, CNRS UMR 6020, IFR 48, Faculté de
10	Médecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille Cedex
11	05, France
12	
13	Phone: (33) 491 38 55 17
14	Fax: (33) 491 83 03 90
15	Email: <u>didier.raoult@gmail.com</u>
16	Abstract =222
17	Text word count = 7312
18	Tables: 1
19	Figures: 2
20	
21	
22	

23 Abstract

24 Q fever is a zoonotic disease caused by the ubiquitous pathogen Coxiella burnetii 25 responsible for acute and chronic clinical manifestations. Farm animals and pets are 26 the main reservoirs of infection, and transmission to human beings is mainly 27 accomplished through inhalation of contaminated aerosols. This illness is associated 28 with a wide clinical spectrum, from asymptomatic or mildly symptomatic 29 seroconversion to fatal disease. In humans Q fever can manifest as an acute disease 30 (mainly as a self-limited febrile illness, pneumonia, or hepatitis) or as a chronic 31 disease (mainly endocarditis), especially in patients with previous valvulopathy and to 32 a lesser extent in immunocompromised hosts and in pregnant women. In contrast in 33 animals, Q fever is in most cases, strikingly asymptomatic. The definite diagnosis of 34 Q fever is made based on a significant increase in serum antibody titers, the 35 determination of which often requires considerable time, and therefore patients must 36 be monitored for a certain period. The treatment is effective and well tolerated, but must be adapted to the acute or chronic pattern with the tetracyclines to be considered 37 38 the mainstay of antibiotic therapy. Several actions have been proposed to prevent and 39 reduce the animal and environmental contamination. Vaccination of animals in 40 infected flocks, as well as in uninfected ones close to them, with an efficient vaccine 41 can prevent abortions and shedding of the bacteria.

- 42
- 43
- 44
- 45

47 Introduction

Q fever is a zoonosis caused by *Coxiella burnetii*, a small obligate intracellular gram-negative bacterium that is prevalent throughout the world (Maurin and Raoult, 1999). Farm animals and pets are the main reservoirs of infection, and transmission to human beings is mainly accomplished through inhalation of contaminated aerosols. This illness is associated with a wide clinical spectrum, from asymptomatic or mildly symptomatic seroconversion to fatal disease.

54 Q fever was described in 1935 as an outbreak of febrile illness in abattoir 55 workers in Brisbane, Australia (Derrick, 1937). Derrick examined all those who were 56 affected and could not arrive at a diagnosis from the patients' history, physical examination, and a few investigations. As a result, he termed the illness "O" for query 57 58 fever. Later, some workers suggested that the Q stood of Queensland, the state in 59 which the disease was first described (McDade, 1990). However, once the 60 epidemiology of the disease became known and its status as a zoonosis established, 61 this investigation lost favor. Subsequently, Burnet and Freeman (Burnet and Freeman, 62 1937) isolated a fastidious intracellular bacterium from guinea pigs that had been 63 injected with blood or urine from Derrick's patients and named it Rickettsia burnetii. 64 This bacterium was morphologically and biochemically similar to other gram-65 negative bacteria. On the basis of cultural and biochemical characteristics, Philip 66 (Philip, 1948) classified *R. burnetii* in a new genus, *Coxiella*, named after Herald R. 67 Cox, who first isolated this microorganism in the United States. This genus contained 68 only one species, C. burnetii. Since then, it has been isolated from several mammals 69 and from ticks, and it may persist in the environment. 70 During the last decade our knowledge on Q fever has greatly expanded,

71 mainly due to the identification of new clinical manifestations, the recognition of the

role of host factors in the expression of acute Q fever and evolution to chronic

73 infection, and the adoption of prolonged combination antibiotic regimens for Q fever

74 endocarditis

75 Bacteriology

76 C. burnetii is a small, obligate intracellular Gram-negative bacterium that 77 cannot be grown in axenic medium. It is a small pleomorphic rod (0.2–0.4 µm wide, 78 0.4–1.0 µm long) with a membrane similar to that of a Gam-negative bacterium 79 (Maurin and Raoult, 1999). It replicates to high numbers within a parasitophorous 80 vacuole of eukaryotic host cells, with an estimated doubling time of 20 to 45 hours 81 (Mertens K. and Samuel, 2007). The organism may occur as a small-cell variant or 82 large-cell variant. The small-cell variant is a compact, small rod with a very electron-83 dense center of condensed nucleoid filaments. The large-cell variant is larger and less 84 electron-dense and is the metabolically active intracellular form of C. burnetii. It undergoes sporogenic differentiation to produce resistant, spore-like forms, the small-85 86 cell variants. These are released when the cells lyse and can survive for long periods 87 in the environment.

C. burnetii was classified in the *Rickettsiales* order, the *Rickettsiaceae* family,
and the *Rickettsiae* tribe together with the genera *Rickettsia* and *Rochalimaea*. To date
based on 16S rRNA sequence analysis; the bacterium was reclassified from the order *Rickettsiales* to *Legionellales*, and falls in the gamma group of Proteobacteria. Within
this proteobacteria group, the bacterium's phylogenic neighbours include *Legionellae*spp, *Francisella tularensis*, and *Rickettsiella* spp. (Raoult *et al.*, 2005).

C. burnetii possesses a small circular chromosome of approximately 5Mbp. Most
isolates harbor additionally one of four previously described plasmids of 32 to 51kb in
size, which carry about 2% of the genome information. Strains without a resident

97 plasmid carry instead a 16kb plasmid-like sequence integrated in the chromosome 98 (Mallavia, 1991). The genome has a G+C content of 43 mol% and 2134 coding 99 sequences are predicted, of which 719 (33.7%) are hypothetical, with no significant 100 similarity to other genes in the database (Seshadri et al., 2003;Hoover et al., 1992). 101 Moreover, many of the 83 pseudogenes that have been identified in *C. burnetii* 102 contain single frameshifts, point mutations, or truncations which imply a recent origin 103 and indicate that genome reduction is a relatively early outgoing process (Seshadri et 104 al., 2003). Three degenerate transponsors and 20 IS elements are also identified, with 21 copies of a unique IS110-related isotype IS1111, five IS30 and three ISAs1 family 105 106 elements (Seshadri et al., 2003).

107 Epidemiology

121

108 Q fever has been described worldwide except in New Zealand. From 1999 to 109 2004, there were 18 reported outbreaks of Q fever from 12 different countries 110 involving two to 289 people. Six outbreaks involved sheep; three involved goats; one 111 resulted from exposure to goat manure; one from exposure to ovine manure; one 112 involved exposure to wild animals; one involved exposure to cats and dogs; and in 113 two outbreaks the source was unknown (Arricau-Bouvery and Rodolakis, 2005). 114 The reservoirs are extensive but only partially known and include mammals, 115 birds, and arthropods, mainly ticks. Although over 40 tick species can be naturally 116 infected with C. burnetii, they appear to not be important in the maintenance of 117 infections in livestock or humans (Maurin and Raoult, 1999). The organism does, 118 however, multiply in the gut cells of ticks and large numbers of C. burnetii are shed in 119 tick feces. Contaminated hides and wool may be a source of infection for people 120 either by direct contact or after the feces have dried and been inhaled as airborne dust

particles. The most commonly identified sources of human infection are farm animals

such as cattle, goats, and sheep. C. burnetii localizes to the uterus and mammary

122

glands of infected animals (Babudieri, 1959). Pets, including cats, rabbits, and dogs, 123 124 have also been demonstrated to be potential sources of urban outbreaks. In North 125 America, outbreaks of Q fever have resulted from direct and indirect contact with parturient cats (Marrie and Raoult, 2002). Outbreaks have also been reported 126 following exposure to infected pigeon feces (Stein and Raoult, 1999). 127 **Routes of transmission to humans** 128 129 Aerosols. From experimental and epidemiological evidence, there is no doubt that 130 contaminated aerosols are the major mechanism whereby C. burnetii is transmitted to humans (Tiggert and Benenson, 1956;Gonder et al., 1979;Marrie et al., 1989). 131 132 Persons in contact with farm animals can be infected by inhalation of contaminated 133 aerosols from amniotic fluid or placenta or contaminated wool but also at risk are 134 laboratory personnel who work with infected animals (Johnson, III and Kadull, 1966). 135 Oral route. Mammals also shed C. burnetii in milk, and thus, consumption of raw 136 milk could be a source of infection (Maurin and Raoult, 1999). Although 137 contaminated milk can be a risk factor for Q fever infection (Marmion et al., 1956; Fishbein and Raoult, 1992), the evidence from experiments in which contaminated 138 139 milk was fed to volunteers were contradictory (Benson et al., 1963;Editorial, 140 1950;Krumbiegel and Wisniewski, 1970). Ingestion of pasteurized cheese and tobacco 141 smoking can be also risk factors for acquisition Q fever (Hatchette et al., 2000). Percutaneous route. Ticks transmit C. burnetii to domestic mammals but not to 142 humans (Kazar, 1996). 143 144 Person to person transmission. Person-to-person transmission of C. burnetii is rare. Transmission of O fever to attendants during autopsies (Harman, 1949; Gerth et al., 145

146 1982) or infection from a patient to the hospital staff (Deutch and Peterson, 1950) can147 occur.

Sexual transmission. A recent report describes sexual transmission (Milazzo et al., 148 149 2001). Sexual transmission of Q fever has been demonstrated in mice (Kruszewska and Tylewska-Wierzbanowska, 1993) and viable C. burnetii has been found in bull 150 151 semen (Kruszewska and Tylewska-Wierzbanowska, 1997). 152 Age and gender. There are several studies in which young age seems to be protective 153 against C. burnetii. In a large outbreak of Q fever in Switzerland, symptomatic infection was five times more likely to occur in those over 15 years of age compared 154 155 with those younger than 15 (Dupuis *et al.*, 1985). In children the sex ratio of clinical cases as well as that of infections is 1:1. The change in sex ratio at puberty can be 156 explained by the protective role of 17- β -estradiol in clinical expression, which has 157 been demonstrated in mice (Leone et al., 2004) 158

159 Transmission in animals

160 Infected ticks are probably most important in maintaining the whole cycle of C. burnetii (Stoker and Marmion, 1995). Ticks may play a significant role in the 161 162 transmission of C. burnetii among the wild vertebrates, especially in rodents, 163 lagomorphs, and wild birds (Babudieri, 1959;Lang, 1990;Marrie et al., 1989). Dogs 164 can also be infected by tick bite (Mantovani and Benazzi, 1953). Although 165 experimental transmission of C. burnetii from infected to uninfected guinea pigs via 166 tick bite has been performed with Ixodes holocyclus, Haemaphysalis bispinosa, and Rhipicephalus sanguineus (Maurin and Raoult, 1999), ticks are not considered 167 168 essential in the natural cycle of C. burnetii infection in livestock (Babudieri, 1959). 169 Ticks expel heavy loads of C. burnetii with their feces onto the skin of the animal host 170 at the time of feeding.

171 Animals which live in close contact can become infected with C. burnetii. 172 Sanford *et al.* described abortions that occurred in goat herds that were exposed to three goats from another herd that kidded prematurely during a fair (Sanford et al., 173 174 1994). Twenty one days after exposure abortions began and affected 20 to 46% of the 175 pregnant animals in each herd. Moreover, when cows were imported into an area of endemic infection, 40% of uninfected cows became C. burnetii infected within 6 176 months (Huebner and Bell, 1951). 177 178 Dogs may be infected by consumption of placentas or milk from infected

ruminants, and by the aerosol route. Anti-phase II antibody seroprevalence was found ranging from 7 to 53% among wild brown rat populations in the United Kingdom and the authors hypothesized that wild rats may represent a major reservoir of *C. burnetii* from which domestic animals, especially cats, which are natural predators of these animals, may become contaminated (Webster *et al.*, 1995).

184 **Pathogenicity**

A major characteristic of *C. burnetii* is its antigenic variation, called phase 185 186 variation. Organisms isolated from acutely infected animals, arthropods, or humans express a wild virulent form, with smooth full length LPS named Phase I. After 187 188 several passages in embryonated hen eggs or cell culture, the bacterium shifts from 189 Phase I to an avirulent phase (Phase II), similar to the smooth to rough variation 190 described for many Enterobacteriaceae (Hotta et al., 2002). Phase variation is 191 probably not a single step process, as intermediate-phase or semi-rough LPS types have been described (Vodkin and Williams, 1986; Amano et al., 1987). Virulent Phase 192 193 II bacteria express a truncated, rough LPS molecule and many differ in surface protein 194 composition, surface charge and cell density (Mertens K. and Samuel, 2007).

195 The target cells of C. burnetii are monocytes/macrophages. Capo et al. showed 196 that virulent C. burnetii organisms survived inside human monocytes, whereas avirulent bacteria were eliminated (Capo et al., 1999). In addition, they were 197 198 phagocytozed by host cells at markedly lower efficiency than avirulent variants. C. 199 *burnetii* enters monocytes/macrophages, the only known target cells, by phagocytosis 200 that differs in phase I and phase II cells. Attachment of phase I bacteria is mediated by 201 $\alpha\nu\beta3$ integrin only, whereas phase II attachment is mediated by both $\alpha\nu\beta3$ and 202 complement receptor CR3 (Capo et al., 1999). As the efficiency of CR3-mediated 203 phagocytosis depends on CR3 activation via $\alpha\nu\beta3$ integrin, the low phagocytic 204 efficiency observed with virulent C. burnetii results from the interference with 205 integrin cross-talk and a pre-treatment of monocytes with virulent bacteria prevents 206 CR3-mediated phagocytosis and CR3 activation. Virulent bacteria stimulate the 207 formation of pseudopodal extensions and transient reorganization of filamentous 208 actin, whereas avirulent agents have no effect (Meconi et al., 1998). Finally, specific 209 inhibitors of src-related kinases prevent C. burnetii stimulated reorganization of the 210 cytoskeleton (Meconi et al., 2001).

211 The adaptation of C. burnetii to intracellular life is linked with acidic pH of its 212 phagosome and both virulent and avirulent bacteria are found in phagosomes. Acidic 213 pH allows the entry of nutrients necessary for C. burnetii metabolism and also 214 protects bacteria from antibiotics by altering their activity (Hackstadt and Williams, 1981). The survival of C. burnetii in human macrophages is based on the control of 215 216 phagocytosis and the prevention of ultimate phagosome lysosome fusion. This is 217 based on the fact that virulent organisms are presented in phagosomes that express 218 endosomal markers such as the mannose 6-phosphate receptor, LAMP1 and proton 219 ATPase, but they do not acquire a marker such as cathepsin D. On the other hand,

220	avirulent agents are presented in phagosomes that colocalize with cathepsin D.
221	Finally, defective phagosome maturation is induced by exogenous IL-10 in monocytes
222	from patients with microbicidal competence and corrected IL-10 neutralization in
223	patients with chronic Q fever which means that phagosome maturation and C. burnetii
224	killing are linked in Q fever and are controlled by cytokines (Ghigo et al., 2004).
225	Toll-like receptor 4 (TLR4) has also a role in the uptake of virulent <i>C</i> .
226	burnetti, since it is involved in the recognition of lipopolysaccharide, and in
227	membrane ruffling induced by phase I lipopolysaccharide (Honstettre et al., 2004).
228	TLR2 is also involved in C. burnetii infection and Zamboni et al. showed that TLR2
229	is involved in TNF and interferon- γ (IFN- γ) production (Zamboni <i>et al.</i> , 2004).
230	Myeloid dendritic cells (DCs) can be infected by C. burnetii and DCs constitute a
231	protective niche for the bacteria as organisms replicate within DCs (Shannon et al.,
232	2005). In contrast, avirulent bacteria which are eliminated by the host immune
233	response stimulate DC maturation and IL-12 production. Phase I bacteria escape
234	intracellular killing by inhibiting the final phagosome maturation step-cathepsin
235	fusion (Ghigo <i>et al.</i> , 2002). IFN- γ restores this fusion step and allows intracellular
236	killing of C. burnetii by recruting the GTPase Rab7, which is involved in traffic
237	regulation (Raoult <i>et al.</i> , 2005). Moreover IFN-γ induces the killing of <i>C. burnetii</i>
238	through the apoptosis of C. burnetii-infected macrophages by inducing the expression
239	of membrane tumour necrosis factor (Raoult et al., 2005).
240	The control of the primary Q fever infection involves systemic cell mediated
241	immune response and granuloma formation. The granulomatous lesions have a central
242	open space and a fibrin ring, and are referred to as doughnut granulomas. Immune
243	control of C. burnetii is T-cell dependent but does not lead to C. burnetii eradication
244	(Hanstattra et al. 2004) C hurrestti DNA con algo ha found in airculating managutag

244 (Honstettre et al., 2004). C. burnetti DNA can also be found in circulating monocytes

245	or bone marrow of people infected months or years earlier (Capo et al., 2003).
246	Specific immunoglobulins are secreted following infection. IgG is mainly directed
247	against phase II antigen, whereas IgM is directed against both phase I and II cells
248	(Maurin and Raoult, 1999).
249	C. burnetii infection may become chronic. Once established, chronic Q fever
250	is characterised by defective cell-mediated immunity, thus emphasizing the major role
251	of cell-mediated immunity in the protection against C. burnetii. Lymphocytes from
252	patients with Q fever endocarditis do not proliferate in response to C. burnetii antigen,
253	in contrast to lymphocytes from patients with acute Q fever (Koster et al., 1985). The
254	mechanisms of this specific unresponsiveness may include alterations in T-cell
255	subsets, but CD4 T-cell lymphopenia was observed in patients with Q fever
256	endocarditis (Sabatier et al., 1997). Finally, a severe inflammation is found in almost
257	every patient with Q fever endocarditis as they exhibit up-regulated levels of TNF and
258	IL-6, two inflammatory cytokines, type II TNF receptors and IL-1 receptor antagonist
259	(Mege, 2007).

260 Clinical manifestations

261 The main characteristic of Q fever is its clinical polymorphism, so that 262 diagnosis can only be made by systematic tests. It is likely that factors such as the 263 route of infection and the inoculum size, affect the expression of C. burnetii infection. 264 Indeed the respiratory route is associated with pneumonia and the intraperitoneal route 265 with hepatitis (Marrie et al., 1996). High inocula are associated with myocarditis 266 (Maurin and Raoult, 1999). Gender and age also affect the expression of C. burnetii infection. Men are symptomatic more often than women despite comparable exposure 267 268 and seroprevalence (Tissot-Dupont et al., 1992; Maltezou and Raoult, 2002). 269 Moreover, the prevalence of clinical cases in children significantly increases with age

and symptomatic Q fever occurs more frequently in people over 15 years old

271 (Maltezou and Raoult, 2002).

272 Acute Q fever

273 In an epidemiological survey that took place in Marseille between 1985 and 1998, Q fever diagnosis was 1,070 patient with a male/female sex ratio of 2.45 274 (Raoult *et al.*, 2000). The mean age of acute O fever patients was 45.32 ± 16.56 years 275 276 (range, 6-87 years). There was no statistically significant age difference according to 277 sex. Occupation was studied for 477 patients and 8% of them were farmers or veterinarians, a rural existence was noted for 162 (37.9%), ingestion of farm goat 278 279 cheese was noted for 85/366 (23.2%), and contact with newborn or pregnant animals 280 for 142/401 (35.4%). Immunosuppression was noted for 20 patients (4.7%) (Raoult et al., 2000). 281

282 The incubation period has been estimated to be approximately 20 days (range, 14 to 39 days). There is no typical form of acute Q fever and the clinical signs vary 283 greatly from patient to patient. The most frequent clinical manifestation of acute O 284 285 fever is probably a self-limited febrile illness (91%) which is associated with severe 286 headaches (51%), myalgias (37%), arthralgias (27%) and cough (34%) (Tissot-287 Dupont and Raoult, 2007). The main symptoms fever, pulmonary signs, and elevated 288 liver enzyme levels can coexist. Of 323 hospitalized patients with acute Q fever in 289 France, 25% presented with the three symptoms, 40% presented with fever and 290 elevated liver enzyme levels, 17% presented with fever and pulmonary signs, and 4% 291 presented with only fever, pulmonary signs, or elevated liver enzyme levels (Tissot-292 Dupont et al., 1992). Atypical pneumonia is also a major clinical presentation and 293 abnormal chest X rays can be found in 27% of the patients (Tissot-Dupont and Raoult, 294 2007). After primary infection, 60% of the patients will exhibit a symptomatic

seroconversion, and only 4% of the symptomatic patients will be admitted to

296 hospitals. A chronic disease will develop in at-risk patients.

297 Prolonged fever. Prolonged fever is usually accompanied by severe headaches. The
298 fever may reach from 39 to 40°C, usually remaining elevated all day. Fever typically

increases to a plateau within 2 to 4 days, and then after 5 to 14 days the temperature

300 returns rapidly to normal. However, in untreated patients, fever may last from 5 to 57

301 days (Derrick, 1973). The duration of fever is longer in elderly patients (Derrick,

302 1973).

303 **Pneumonia**. Atypical pneumonia is one of the most commonly recognized forms of

acute Q fever. Most cases are clinically asymptomatic or mild, characterized by a

305 nonproductive cough, fever, and minimal auscultatory abnormalities, but some

306 patients present with acute respiratory distress (Raoult et al., 1990b). Pleural effusion

307 can also be present. Findings on the chest radiograph are nonspecific. The duration of

308 symptoms varies from 10 to 90 days. The mortality rate ranges from 0.5 to 1.5%,

depending upon the series (Tissot-Dupont *et al.*, 1992). Pneumonia is the major

310 manifestation of acute Q fever in Nova Scotia, Canada, in the Basque country in

311 Spain, and in Switzerland, while in France, Ontario, California, and Australia,

312 hepatitis is the predominant form of acute Q fever (Fournier *et al.*, 1998).

313 Hepatitis. Three major forms of hepatitis may be encountered: an infectious hepatitis-

314 like form of hepatitis with hepatomegaly but seldom with jaundice, clinically

315 asymptomatic hepatitis, and prolonged fever of unknown origin with characteristic

316 granulomas on liver biopsy. Hepatitis is the most common presentation worldwide,

317 particularly in France and Australia. Alkaline phosphatase, AST, and ALT levels are

318 usually mildly elevated to two to three times the normal level (Marrie, 1988). Q fever

319 hepatitis is usually accompanied clinically by fever and less frequently by abdominal

320 pain (especially in the right hypochondrium), anorexia, nausea, vomiting, and

321 diarrhea. Progressive jaundice and palpation of a mass in the right hypochondrium

322 have also been reported. Frequently, patients with hepatitis exhibit autoantibodies,

323 including antibodies directed to smooth muscle, anticardiolipin antibodies,

324 antiphospholipid antibodies, circulating anticoagulant, and antinuclear antibodies

325 (Tissot-Dupont and Raoult, 2007).

326 Cardiac involvement. Cardiac involvement is found in 2% of the acute Q fever cases

and myocarditis is the leading cause of death (Fournier *et al.*, 2001). The

328 pathophysiology of the heart damage is still not clear, although a relationship has been

329 demonstrated between the onset of a myocarditis and the inoculum size in an

330 experimental model (La Scola et al., 1997). Myocarditis may be associated with

331 pericarditis, and a pericardial effusion may be observed on chest radiographs. Clinical

manifestations of Q fever pericarditis are not specific and most often correspond to a

fever with thoracic pain. However, C. burnetii is the main cause of pericarditis in

334 southern France and a frequent one in Spain and in the United Kingdom (Tissot-

335 Dupont and Raoult, 2007).

336 Skin rash. Skin lesions have been found in 5 to 21% of Q fever patients in different
337 series. The Q fever rash is nonspecific and may correspond to pink macular lesions or
338 purpuric red papules of the trunk (Maurin and Raoult, 1999).

339 Neurologic signs. There are 3 major neurological entities associated with Q fever: (1)

340 meningoencephalitis or encephalitis; (2) lymphocytic meningitis and (3) peripheral

neuropathy (Bernit *et al.*, 2002). Patients with central nervous system involvement do

342 not demonstrate differences in predisposing conditions, but more frequently have

343 occupational exposure to goats than patients with acute Q fever but no neurological

involvement (Bernit *et al.*, 2002).

345 Chronic Q fever

346 Chronic Q fever may develop many months to years after initial infection, 347 manifesting as bacterial culture-negative endocarditis in up to 75% of cases (Gami et 348 al., 2004). Chronic Q fever occurs almost exclusively in patients with predisposing conditions, including those with heart valve lesions, vascular abnormalities, and 349 350 immunosuppression (Fenollar et al., 2001). Figure 1 shows the natural history of Q 351 fever in the absence of treatment. **Endocarditis.** The most frequent and studied preservation of chronic O fever is 352 353 endocarditis (Figure 1). More than 800 cases were reported in various studies between 354 1949 and 2005 (Tissot-Dupont and Raoult, 2007). The main series were studied in the 355 United Kingdom and in Ireland (227 cases), in France (264 cases), in Spain (62 356 cases), in Israel (35 cases), in Switzerland (21 cases), in Australia (18 cases) and in 357 Canada (10 cases). Q fever endocarditis is often a severe disease associated with a long diagnostic delay. Q fever represents 5% of endocarditis cases in France (Brouqui 358 359 and Raoult, 2006). It occurs almost exclusively in patients with a previous cardiac 360 defect or in immunocompromised patients. The aortic and mitral valves are mostly 361 involved. Q fever prosthetic valve endocarditis has been increasingly reported over 362 recent years (Maurin and Raoult, 1999). The male/female ratio is 75%, and most 363 patients are older than 40 years. The clinical presentation has changed over the last 30 364 years. With faster diagnoses, the prevalence of heart failure, hepatomegaly, 365 inflammatory syndrome, anaemia and leucopenia and abnormal liver function tests 366 have decreased significantly (Houpikian et al., 2002). 367 The prognosis of chronic Q fever was dramatically improved over the course 368 of just a few years. The mortality rate was 37% in a series of 79 patients reported in 1987 (Raoult et al., 1987), whereas it was only 15% in more recent series of 116 369

370	patients, between 1997 and 2000 (Tissot-Dupont and Raoult, 2007). Among the most
371	recently diagnosed patients the death rate was under 5% (Raoult et al., 1999) an
372	improvement that is probably related to the earlier diagnosis, the efficient treatment
373	and the better follow up (Siegman-Igra et al., 1997).
374	Other clinical manifestations of Chronic Q fever
375	Vascular infection is the second most frequent presentation of Q fever. An
376	aortic aneurism can be infected by C. burnetii, leading to an intestinal fistula or a
377	spondylitis, as well as a vascular graft. The prognosis is poor in the absence of
378	treatment (Botelho-Nevers et al., 2007).
379	Other manifestations of chronic Q fever are osteoarticular infections, including
380	osteomyelitis, osteoarthritis, and aortic graft infection with contiguous spinal
381	osteomyelitis (Maurin and Raoult, 1999), chronic hepatitis in alcohol addicts (Raoult
382	et al., 2000), pseudotumors of the spleen, of the lung (Lipton et al., 1987), infection of
383	a ventriculo-peritoneal drain (Lohuis et al., 1994). Chronic fatigue syndrome has also
384	been reported infrequently as a possible clinical manifestation following acute Q
385	fever. The latter may be associated with cytokine dysregulation and presents as
386	fatigue, myalgia, arthralgia, night sweats, mood changes and sleep disturbance.
387	Pregnant Women
388	When a woman is infected by C. burnetii during pregnancy, the bacteria settle
389	in the uterus and in the mammary glands. The consequences are of great importance:
390	a) there is an immediate risk for the mother; b) there is an immediate risk for the fetus
391	as 100% of the fetuses abort when the infection occurs during the first trimester and
392	there is a risk of preterm delivery, or low birth-weight if infection occurs during the

393 second or third trimester; c) there is a long-term risk of chronic Q fever in the mother.

CCEPTED M

394 Few data are available on the consequences of Q fever during pregnancy. To date, 395 only 38 cases have been published, demonstrating that O fever in pregnant women is 396 associated with high morbidity and mortality (Carcopino et al., 2007). Thus, Q fever 397 during pregnancy can result in spontaneous abortion (26%), intrauterine fetal death (5.3%), premature delivery (44.7%), or intrauterine growth retardation (5.3%) 398 (Carcopino et al., 2007). Normal obstetric outcome is possible (15.8%). 399 400 Transplacental infection of the fetus in utero is possible, but its consequences are still 401 unknown, and its association with obstetric complications remains hypothetical 402 (Carcopino *et al.*, 2007). In a work of our laboratory it was shown that Q fever, when 403 contracted during pregnancy, can result in abortions or neonatal deaths (9 cases, 404 38%), premature births, low birth weight (8 cases, 33%), or no abnormalities (7 cases, 29%) (Raoult et al., 2002). Q fever during pregnancy also has important consequences 405 406 for the mother, with higher risk of chronic form and spontaneous abortions of future 407 pregnancies. Although most infected pregnant women present with fever, flu-like illness, severe thrombocytopenia, and atypical pneumonia have also been reported 408 409 (Maurin and Raoult, 1999). However, Q fever in pregnant women may also be 410 asymptomatic (Marrie, 1993). Serological profiles at the time of diagnosis were 411 suggestive of acute Q fever in 14 (58.3%) of 24 pregnant women for whom serology 412 was performed and of chronic Q fever in 10 (41.7%) (Maurin and Raoult, 1999). 413

Clinical manifestations in animals

414 In contrast to acute human Q fever animal infection with C. burnetii is, in 415 most cases, so strikingly asymptomatic that the term coxiellosis is considered a more 416 appropriate designation than animal Q fever (Lang, 1988). In animals, during the 417 acute phase, C. burnetii can be found in the blood, lungs, spleen, and liver whereas 418 during the chronic phase it is presented as a persistent shedding of C. burnetii in feces

419 and urine. Most animals remain totally asymptomatic, including a lack of fever.

420 However, low birth weight animals can occur (Marrie et al., 1996). Aborted fetuses

421 usually appear normal and the abortion rates can range from 3 to 80% (Marrie, 2007).

422 Infected placentas exhibit exudates and intracotyledonary fibrous thickening. A severe

423 inflammatory reponse is noted in the myometrium of goats and metris is frequently a

424 unique manifestation of the disease in cattle (Arricau-Bouvery and Rodolakis, 2005).

425 *C. burnetii* can also be recovered from milk for up to 32 months. Goat shed *C*.

426 *burnetii* in feces before and after kidding and the mean duration of excretion is 20

427 days.

428 Diagnosis

429 Collection and storage of specimens. *C. burnetii* virulence is particularly high and 430 only biosafety level 3 laboratories and experienced personnel should be allowed to 431 manipulate contaminated specimens and cultivate this microorganism from clinical 432 samples. Several human specimens are suitable for the detection of *C. burnetii*, but 433 their availability depends on the clinical presentation. All specimens, excluding whole 434 blood which should be kept at 4°C, should be stored at -80°C and should be

435 forwarded on dry ice to the diagnostic laboratory (Fournier *et al.*, 1998).

436 **Culture**. *C. burnetii* isolation from biological samples is carried out on HEL cells

437 using the Shell Vial centrifugation technique (Marrero and Raoult, 1989). Cell

438 monolayers in shell vials are inoculated with 1 ml of clinical specimen and

439 centrifuged (700 x g at 20°C) for 1 h to enhance attachment and penetration of C.

440 *burnetii* into cells. Inoculated monolayers are incubated at 37°C in 5% CO2 for 5 to 7

441 days. C. burnetii is usually observed by microscopic examination of cell monolayers

442 after Gimenez or immunofluorescence staining

443 Immunodetection. The detection of C. burnetii in tissues is especially informative in patients who are undergoing treatment for chronic O fever. Samples can be tested 444 445 fresh or after formalin fixation and paraffin embedding. Immunodetection is carried 446 out using immunoperoxidase techniques or immunofluorescence with polyclonal or 447 monoclonal antibodies (Maurin and Raoult, 1999). Only this last technique can be used on paraffin-embedded samples (Raoult et al., 1994). Recently, Lepidi et al. 448 449 proposed a new method named autoimmunohistochemistry for the detection of the C. 450 burnetii endocarditis (Lepidi et al., 2006). Molecular biology. During the last years, several PCR based diagnostic assays were 451 452 developed to detect C. burnetii DNA in cell cultures and in clinical samples. These 453 assays used conventional PCR, nested PCR or real-time PCR conditions with

LightCycler, SYBR Green or TaqMan chemistry (Klee et al., 2006). The Light-

455 Cycler Nested PCR (LCN-PCR), a rapid nested-PCR assay that uses serum as a

456 specimen and the LightCycler as a thermal cycler, targeting a multicopy 20-copy

457 htpAB-associated element sequence has been adapted for the diagnosis of both acute

and chronic Q fever (Fenollar and Raoult, 2007). The LCN-PCR assay may be helpful

459 in establishing an early diagnosis of chronic Q fever (Fenollar *et al.*, 2004). Due to its

460 high sensitivity and specificity, the repetitive element, IS 11-11, is the best target gene

461 for the detection of *C. burnetii* in patients with active Q fever (Fenollar and Raoult,

462 2004). Recently, the complete sequences of the genome of *C. burnetii* became

463 available, allowing a large choice of DNA targets.

464 Serology. Since the clinical diagnosis is difficult, in most instances, the diagnosis of

465 Q fever relies upon serology. A variety of serological techniques are available, but the

- 466 indirect microimmunofluorescent antibody test has become the reference technique.
- 467 Immunoglobulin M antibodies reactive with phase II C. burnetii appear rapidly, reach

468 high titers within 14 days and persist for 10 to 12 weeks (Maurin and Raoult, 1999). 469 Immunoglobulin M antibodies reactive with phase I antigens are usually at a much 470 lower titer during acute infection. Immunoglobulin G antibodies reactive with phase II 471 antigens reach peak titers about 8 weeks after the onset of symptoms, while those 472 reactive with phase I antigens develop only very slowly and remain at lower titers than antibodies to phase II antigens, even after a year. In chronic Q fever, where there 473 474 is persistence of organisms, the IgG titers to phase I and phase II antigens may both be 475 high, and the presence of IgA antibody to phase I antigen is usually, although not exclusively, associated with chronic infection. Seroconversion or a fourfold increase 476 477 in titer indicates acute infection. Elevated levels of IgG ($\geq 1/200$) and IgM ($\geq 1/25$) to 478 phase II antigens also indicate a recent infection. High titers of IgG (1/800) and/or IgA (>1/50) to phase I antigen are found in chronic infections. Serology should be 479 480 used to follow-up patients with acute Q fever to determine if treatment was successful 481 and to enable the early diagnosis of chronic infections (Landais et al., 2007). 482 **Diagnosis in animals**. Isolation of *C. burnetii* is not performed for routine diagnosis 483 in veterinary medicine. Routine diagnosis of Q fever in animals is usually established 484 by examination of fixed impressions or smears prepared from the placenta stained by 485 the Stamp, Gimenez or Machiavello methods, associated with serological tests. The 486 CF test, which is the OIE prescribed serological test, is weakly sensitive and the 487 antigen used in this test frequently fails to detect antibodies in sheep or goats (Kovacova et al., 1998). The ELISA test is more sensitive than the CF test but it does 488 489 not allow individual identification of animals that shed C. burnetii in faeces or milk. 490 PCR kits are becoming available and provide a specific, sensitive and rapid tool for 491 the detection of *C. burnetii* in various clinical samples (Berri *et al.*, 2003).

492 Antimicrobial Susceptibility Testing

Antibiotic susceptibility testing of C. burnetii is difficult because this 493 494 organism is an obligate intracellular bacterium. Three models of infection have been 495 developed: animals, chick embryos and cell culture. The current method used to test 496 the antibiotic susceptibility of C. burnetii is based on cell culture models (Rolain, 497 2007). 498 A number of cell lines have been used to test antibiotic activity against intracellular C. burnetii, including murine macrophage-like cell lines (P388D1 and 499 500 J774) and a murine fibroblast cell line (L929) (Akporiave et al., 1983; Baca et al., 501 1981;Baca et al., 1985;Burton et al., 1978;Roman et al., 1986). Yeaman et al.

described an acute *C. burnetii* infection model in acutely infected L929 cells (Yeaman *et al.*, 1989). Bacteriostatic activity was demonstrated against *C. burnetii* Nine Mile and Priscilla isolates with doxycycline (10 mg/ml), rifampin (1 mg/ml), and ofloxacin (5 mg/ml). Moreover, they used chronically infected L929 cells to test the bactericidal activity of antibiotics against *C. burnetii* (Yeaman et al., 1987). They found that the percentage of infected cells was not reduced by tetracycline, erythromycin, or sulfamethoxazole at concentrations up to 10 mg/ml and was only slightly reduced by

509 chloramphenicol, doxycycline, and trimethoprim, suggesting that these drugs were not

510 bactericidal. In contrast, the quinolone compounds and rifampin reduced the

511 percentage of infected cells from 100% to 2, 2, 7, and 4%, respectively, after 10 days

512 of continuous culture treatment. Torres and Raoult have developed a Shell-Vial assay

513 with human embryonic lung cells (HEL) for assessment of the bacteriostatic effect of

antibiotics (Torres and Raoult, 1993). By this technique, amikacin and amoxicillin

515 were not effective against *C. burnetii*, ceftriaxone and fucidic acid were inconsistently

516 active (Torres and Raoult, 1993), whereas cotrimoxazole, rifampin, doxycycline,

517 clarithromycin and quinolones were bacteriostatic (Rolain *et al.*, 2005b;Maurin and

518	Raoult, 1993). Raoult et al., using P288D1 and L929 cells, showed that pefloxacin,
519	rifampin and doxycycline (Raoult et al., 1990a) as well as clarithromycin were
520	bacteriostatic against C. burnetii (Maurin and Raoult, 1993). Moreover, Maurin et al.
521	demonstrated that the addition of a lysosomotropic alkalinizing agent, chloroquine, to
522	antibiotics improved the activities of doxycycline and pefloxacin which then became
523	bactericidal (Maurin et al., 1992). That result has been corroborated by the
524	demonstration of <i>in vivo</i> efficacy for the combination of doxycycline and
525	hydroxychloroquine (Raoult et al., 1999).
526	High level resistance to fluoroquinolones due to an amino acid substitution of
527	Gly instead of Glu at position 87 of the GyrA has been reported (Musso et al., 1996).
528	Porins have been demonstrated in C. burnetii cells, but their potential role in antibiotic
529	resistance associated with impermeability remains undefined (Banerjee-Bhatnagar et
530	al., 1996). Moreover, C. burnetii strains have been found to present differences in
531	susceptibility to erythromycin (Raoult et al., 1991) and in susceptibility to
532	doxycycline, ciprofloxacin, and rifampin (Yeaman and Baca, 1990). In vitro selection
533	of C. burnetii strains resistant to tetracyclines has been also performed (Brezina et al.,
534	1975).
535	The real-time quantitative PCR (RT-PCR) assay has also been used for the
536	determination of the antibiotic susceptibility of C. burnetii (Boulos et al.,
537	2004;Brennan and Samuel, 2003). RT-PCR confirmed that MICs against doxycycline,
538	fluoroquinolone compounds and rifampicin were in the range 1 to 4 mg/L and that
539	telithromycin was the most effective macrolide compound (Boulos et al., 2004). By
540	the use of this assay, for the first time a human isolate of C. burnetii resistant to
541	doxycycline was found in a patient with Q fever endocarditis (Rolain et al., 2005a).

542 Treatment

543 The guideline recommendations for the treatment of Q fever are summarised in Table544 2.

545	Treatment of Acute Q fever. The recommended regimen for acute Q fever associates
546	doxycycline (200 mg daily for 14 days) to hydroxychloroquine, which alkalinizes the
547	phagolysosomes (Maurin and Raoult, 1999). Fluoroquinolones are considered to be a
548	reliable alternative and have been advocated for patients with Q fever
549	meningoencephalitis, because they penetrate the cerebrospinal fluid (Maurin and
550	Raoult, 1999). Cotrimoxazole and rifampin can be used in case of allergy to
551	tetracyclines or contraindication (Tissot-Dupont and Raoult, 2007). Erythromycin and
552	other new macrolides such as clarithromycin and roxithromycin, could be considered
553	a reasonable treatment for acute C. burnetii infection (Gikas et al., 2001).
554	Acute Q fever in children. In children younger than 8 years, co-trimoxazole has been
555	recommended, because of the adverse effects of tetracyclines and quinolones in this
556	age group. However, it has now been admitted that age is not a contraindication to
557	doxycycline, when the antibiotic is specific of the disease (Tissot-Dupont and Raoult,
558	2007). Moreover, in patients with prolonged fever, the addition of corticosteroids to
559	treatment might prove beneficial and interferon γ was successfully administered to a
560	3-year-old child with a prolonged fever unresponsive to appropriate treatment against
561	C. burnetti (Maltezou and Raoult, 2002).
562	Acute Q fever during pregnancy. Specific treatment using cotrimoxazole (800/160)
563	BID, until delivery, associated to folinic acid (25 mg OD) is recommended (Raoult et
564	al., 2002). Recently, Carcopino et al. compared the incidence of obstetric and
565	maternal Q fever complications for women who received long-term cotrimoxazole

566 treatment with that for women who did not receive long-term cotrimoxazole treatment

567 (Carcopino *et al.*, 2007). They found that long-term cotrimoxazole treatment protected

against maternal chronic Q fever, placental infection, obstetric complications and
especially of intrauterine fetal death. However, obstetric complications were observed
in 81.1% of pregnant women who did not receive long-term cotrimoxazole therapy.
After delivery, if the woman shows a chronic serology profile, she should be treated
as a chronic case, in order to prevent endocarditis and relapsing abortions. Breast
feeding is contraindicated (Raoult *et al.*, 2002)

574 Chronic Q fever. Although the optimal duration of therapy is unknown, the current recommendations for the treatment of chronic Q fever are 100 mg of doxycycline 575 576 orally twice daily with 600 mg of hydroxychloroquine by mouth once daily for at 577 least 18 months. Serologic testing is recommended on a regular basis during therapy, 578 and the main predictive criterion of clinical cure is a decrease of phase I IgG antibody 579 titers to <200 (Karakousis et al., 2006). In general, the antibody titers decrease slowly 580 with treatment (Raoult et al., 1999). However, the kinetics of antibody titer decrease 581 in patients treated with doxycycline may vary, suggesting that some patients should be treated for >18 months to be cured (Rolain et al., 2003). Successful evolution is 582 583 evaluated by the decrease of antibody titers (IgG and IgA) to phase I that should reach 584 two dilutions in one year at the minimum. When available, the C. burnetii strain 585 should be cultured from blood or valves in order to evaluate the doxycycline MIC: the 586 doxycycline plasmatic level should be adjusted between 1.5 and 2 MICs (Rolain et 587 al., 2005a). Hydroxychloroquine dosing should be adapted according to plasmatic 588 levels (1±0.2 mg/L). Recently, Rolain et al. found isolates of C. burnetii resistant to 589 doxycycline (MIC:8µg/mL) from patients with Q fever endocarditis (Rolain et al., 590 2005a;Rolain et al., 2005b)

591 **Q fever in patients at risk of chronic evolution.** Acute Q fever in any patient
592 presents a risk factor for chronic evolution (vascular damage, vascular or valvular

593 graft, aneurism) and should be treated according to the same protocol as chronic cases

594 (Fenollar et al., 2001). Patients with acute Q fever should be systematically tested -

595 including those patients who do not have known underlying factors- 3 and 6 months

after the onset of disease (Landais et al., 2007). Those with phase I IgG antibody titers

 $\geq 1:800$ should be investigated for possible infective endocarditis using

transesophageal echocardiography and PCR to allow for early detection of the disease

599 Treatment in ruminants

In ruminants, antibiotic treatment generally consist in administering two injections of oxytetracycline (20 mg per kg bodyweight) during the last month of gestation, although this treatment does not totally suppress the abortions and the shedding of *C. burnetii* at lambing (Berri *et al.*, 2007). In known infected herds, segregating pregnant animals indoors, burning or burying reproductive offal, or administering tetracycline (8 mg/kg/day) prophylactically in the water supply prior to parturition may reduce spread of the organism.

607 **Prevention**

608 Epidemiological studies indicate Q fever as a public health problem in many 609 countries, including France, the United Kingdom, Italy, Spain, Germany, Israel, 610 Greece, and Canada (Nova Scotia). In Germany, 7.8% of 21,191 tested cattle, 1.3% of 611 1,346 tested sheep, and 2.5% of 278 tested goats had evidence of C. burnetii infection 612 (Hellenbrand et al., 2001). In Cyprus, the prevalence of IgG antibodies against C. 613 burnetii phase II antigen was estimated at 48.2% for goats, 18.9% for sheep, and 24% 614 for bovines (Psaroulaki et al., 2006). In Iran goats had a significantly higher average 615 seroprevalence (65.78%) than cattle (10.75%) (Khalili and Sakhaee, 2009). In 616 Zimbabwe, serological evidence of Q fever infection was found in 39% of cattle, and in 10% of goats (Kelly et al., 1993). In the USA goats had a significantly higher 617

average seroprevalence (41.6%) than sheep (16.5%) or cattle (3.4%) (McQuiston and
Childs, 2002). Q fever remains primarily an occupational hazard in persons in contact
with domestic animals such as cattle, sheep and, less frequently, goats. Persons at risk
from Q fever include farmers, veterinarians, abattoir workers, those in contact with
dairy products, and laboratory personnel performing *C. burnetii* culture and more
importantly working with *C. burnetii*-infected animals.

It is important to mention that during the last years the prevalence of chronic Q fever in the USA has increased because of the Iraq war. Q fever is apparently hyper-endemic in Iraq and many US soldiers serving in this area have been exposed to *C. burnetii* and diagnosed as suffering by Q fever. As Q fever may reveal more then 10 years after primo infection (symptomatic or not and diagnosed or not), it is possible that the Iraq war veterans will be an important reservoir of potential chronic Q fever cases that will increase the real prevalence of the disease.

In common with all zoonotic diseases, control of the disease in animals will 631 632 influence the level of disease seen in man. Appropriate tick control strategies and 633 good hygiene practice can decrease environmental contamination. Infected fetal fluids 634 and membranes, aborted fetuses and contaminated bedding should be incinerated or 635 buried. In addition, manure must be treated with lime or calcium cyanide 0.4% before 636 spreading on fields; this must be done in the absence of wind to avoid spreading of the 637 microorganism faraway. Antibiotic treatment may be performed to reduce the number 638 of abortions and the quantity of *C. burnetii* shed at parturition. Although it is very 639 expensive, infected animals should be removed from herds or provided with separate 640 containment facilities in which to give birth. Workers in the animal industry should be 641 fully informed about the risk factors of acquiring Q fever and laboratories should be 642 provided with appropriate safety facilities and equipment.

643	Three types of vaccine have been proposed for providing human protection
644	against Q fever: the attenuated live vaccine (produced and tested in Russia but
645	subsequently abandoned because of concern about its safety); chloroform- methanol
646	residue extracted vaccine or other extracted vaccines (tested in animals but not
647	humans); and the whole-cell formalin-inactivated vaccine (Q-Vax), which is
648	considered acceptably safe for humans (Chiu and Durrheim, 2007). The only
649	economic study undertaken in Australia on Q fever vaccine was performed before the
650	completion of the national vaccination program and assumed a Q-Vax efficacy of
651	98% (Chiu and Durrheim, 2007). Since Q fever in humans is often an occupational
652	hazard, vaccination should be considered primarily in exposed populations (Maurin
653	and Raoult, 1999). Moreover, vaccination should probably also be considered in
654	persons not professionally exposed but at risk for chronic Q fever, including patients
655	with cardiac valve defects, vascular aneurysms, or prostheses and
656	immunocompromised patients.
657	Vaccines can prevent abortion in animals, and it is evident that a phase I vaccine must
658	be used to control the disease and to reduce environmental contamination and thus,
659	the risk of transmission to humans. The widespread application of such a vaccine in
660	cattle in Slovakia in the 1970s and 1980s significantly reduced the occurrence of Q
661	fever in that country (Kovacova and Kazar, 2002). Reducing exposure to raw milk for
662	at risk people (pregnant women, patients with cardiac pathology or immunosupressed)
663	and promoting the use of pasteurized milk and its products will also contribute to
664	lowering the prevalence of Q fever.
665	

668	Conflict of Interest Statement
669	None.
670 671 672	Reference List
673	Akporiaye ET, Rowatt JD, Aragon AA, Baca OG: Lysosomal response of a murine
674	macrophage-like cell line persistently infected with Coxiella burnetii.
675	Infect immun 40:1155-1162 (1983).
676	Amano K, Williams JC, Missler SR, Reinhold VN: Structure and biological
677	relationships of Coxiella burnetii lipopolysaccharides. J Biol Chem 262:4740-
678	4747 (1987).
679	Arricau-Bouvery N, Rodolakis A: Is Q fever an emerging or re-emerging zoonosis?
680	Vet Res 36:327-349 (2005).
681	Babudieri B: Q fever: A zoonosis. Adv Vet Sci 5:82-182 (1959).
(0)	
682	Baca OG, Akporiaye ET, Aragon AS, Martinez IL, Robles MV, Warner NL: Fate of
683	phase I and phase II Coxiella burneti in several macrophage-like tumor cell
684	lines. Infect immun 33:258-266 (1981).
695	Page OC Spott TO Almoriane ET DePlaggie P. Criggman HA: Call anale
685	Baca OG, Scott TO, Akporiaye ET, DeBlassie R, Crissman HA: Cell cycle
686	distribution patterns and generation times of L929 fibroblast cells persistently
687	infected with <i>Coxiella burnetii</i> . Infect immun 47:366-369 (1985).

688	Banerjee-Bhatnagar N, Bolt CR, Williams JC: Pore-forming activity of Coxiella
689	burnetii outer membrane protein oligomer comprised of 29.5- and 31-kDa
690	polypeptides. Inhibition of porin activity by monoclonal antibodies 4E8 and
691	4D6. Ann N Y Acad Sci 791:378-401 (1996).
692	Benson WW, Brock DW, Mather J: Serologic analysis of a penitentiary group using
693	raw milk from a Q fever infected herd. Public Health Rep 78:707-710 (1963).
694	Bernit E, Pouget J, Janbon F, Dutronc H, Martinez P, Brouqui P, Raoult D:
695	Neurological involvement in acute Q fever: a report of 29 cases and review of
696	the literature. Arch Intern Med 162:693-700 (2002).
697	Berri M, Rousset E, Champion JL, Russo P, Rodolakis A: Goats may experience
698	reproductive failures and shed Coxiella burnetii at two successive parturitions
699	after a Q fever infection. Res Vet Sci 83:47-52 (2007).
700	Berri M, rricau-Bouvery N, Rodolakis A: PCR-based detection of Coxiella burnetii
701	from clinical samples. Methods Mol Biol 216:153-161 (2003).
702	Botelho-Nevers E, Fournier PE, Richet H, Fenollar F, Lepidi H, Foucault C,
703	Branchereau A, Piquet P, Maurin M, Raoult D: Coxiella burnetii infection of
704	aortic aneurysms or vascular grafts: report of 30 new cases and evaluation of
705	outcome. Eur J Clin Microbiol Infect Dis 26:635-640 (2007).

706	Boulos A, Rolain JM, Maurin M, Raoult D: Evaluation of Antibiotic Susceptibilities
707	against Coxiella burnetii by real time PCR. Int J Antimicrob Agents 23:169-174
708	(2004).
709	Brennan RE, Samuel JE: Evaluation of Coxiella burnetii Antibiotic Susceptibilities by
710	Real- Time PCR Assay. J Clin Microbiol 41:1869-1874 (2003).
711	Brezina R, Schramek S, Kazar J: Selection of chlortetracycline-resistant strain of
712	Coxiella burnetii. Acta Virol 19:496 (1975).
713	Brouqui P, Raoult D: New insight into the diagnosis of fastidious bacterial
714	endocarditis. FEMS Immunol Med Microbiol 47:1-13 (2006).
715	Burnet FM, Freeman M: Experimental studies on the virus of "Q" fever. Med J
716	Australia 2:299-305 (1937).
717	Burton PR, Stueckemann J, Welsh RM, Paretsky D: Some ultrastructural effects of
718	persistent infections by the rickettsia Coxiella burnetii in mouse L cells and
719	green monkey kidney (Vero) cells. Infect immun 21:556-566 (1978).
720	Capo C, Lindberg FP, Meconi S, Zaffran Y, Tardei G, Brown EJ, Raoult D, Mege JL:
721	Subversion of monocyte functions by Coxiella burnetii: impairment of the cross-

talk between $a_v b_3$ integrin and CR3. J Immunol 163:6078-6085 (1999).

723	Capo C, Moynault A, Collette Y, Olive D, Brown EJ, Raoult D, Mege JL: Coxiella
724	burnetii avoids macrophage phagocytosis by interfering with spatial distribution
725	of complement receptor 3. J Immunol 170:4217-4225 (2003).
726	Carcopino X, Raoult D, Bretelle F, Boubli L, Stein A: Managing Q fever during
727	pregnancy: the benefits of long-term cotrimoxazole therapy. Clin Infect Dis
728	45:548-555 (2007).
729	Chiu CK, Durrheim DN: A review of the efficacy of human Q fever vaccine
730	registered in Australia. N S W Public Health Bull 18:133-136 (2007).
731	Derrick EH: "Q" fever, a new fever entity: clinical features, diagnosis and laboratory
732	investigation. Med J Australia 2:281-299 (1937).
733	Derrick EH: The course of infection with Coxiella burnetii. Med J Australia 1:1051-
734	1057 (1973).
735	Deutch DL, Peterson ET: Q fever : transmission from one human being to others. J
736	Amer Med Assoc 143:348-354 (1950).
737	Dupuis G, Vouilloz M, Peter O, Mottiez MC: [Incidence of Q fever in Valais]. Rev
738	Med Suisse Romande 105:949-954 (1985).

739 Editorial: Experimental Q fever in man. Br Med J 1:1000 (1950).

740	Fenollar F, Fournier PE, Carrieri MP, Habib G, Messana T, Raoult D: Risks factors
741	and prevention of Q fever endocarditis. Clin Infect Dis 33:312-316 (2001).
742	Fenollar F, Fournier PE, Raoult D: Molecular detection of Coxiella burnetii in the
743	sera of patients with Q fever endocarditis or vascular infection. J Clin Microbiol
744	42:4919-4924 (2004).
745	Fenollar F, Raoult D: Molecular genetic methods for the diagnosis of fastidious
746	microorganisms. APMIS 112:785-807 (2004).
747	Fenollar F, Raoult D: Molecular diagnosis of bloodstream infections caused by non-
748	cultivable bacteria. Int J Antimicrob Agents 30 Suppl 1:S7-15 (2007).
749	Fishbein DB, Raoult D: A cluster of Coxiella burnetti infections associated with
750	exposure to vaccinated goats and their unpasteurized dairy products. Am J Trop
751	Med Hyg 47:35-40 (1992).
752	Fournier PE, Etienne J, Harle JR, Habib G, Raoult D: Myocarditis, a rare but severe
753	manifestation of Q fever: report of 8 cases and review of the literature. Clin
754	Infect Dis 32:1440-1447 (2001).
755	Fournier PE, Marrie TJ, Raoult D: Diagnosis of Q fever. J Clin Microbiol 36:1823-
756	1834 (1998).
757	Gami AS, Antonios VS, Thompson RL, Chaliki HP, Ammash NM: Q fever
758	endocarditis in the United States. Mayo Clin Proc 79:253-257 (2004).

759	Gerth HJ, Leidig U, Riemenschneider T: Q-fieber Epidemie in einem Institut fór
760	Humanpathologie. Deut Med Wochenschr 107:1391-1395 (1982).
761	Chies F. Cana C. Tung C.U. Desult D. Comusi ID. Maga II. Consider humatic suminal
761	Ghigo E, Capo C, Tung CH, Raoult D, Gorvel JP, Mege JL: Coxiella burnetii survival
762	in THP-1 monocytes involves the impairment of phagosome maturation: IFN-
763	gamma mediates its restoration and bacterial killing. J Immunol 169:4488-4495
764	(2002).
765	Ghigo E, Honstettre A, Capo C, Gorvel JP, Raoult D, Mege JL: Link between
766	impaired maturation of phagosomes and defective Coxiella burnetii killing in
767	patients with chronic Q fever. J Infect Dis 190:1767-1772 (2004).
768	Gikas A, Kofteridis DP, Manios A, Pediaditis J, Tselentis Y: Newer macrolides as
769	empiric treatment for acute Q fever infection. Antimicrob Agents Chemother
770	45:3644-3646 (2001).
771	Gonder JC, Kishimoto RA, Kastello MD, Pedersen CE, Jr., Larson EW: Cynomolgus
772	monkey model for experimental Q fever infection. J Infect Dis 139:191-196
773	(1979).
774	Hackstadt T, Williams JC: Biochemical stratagem for obligate parasitism of
775	eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci USA 78:3240-3244
776	(1981).
777	Harman JB: Q fever in Great Britain; clinical account of eight cases. Lancet 2:1028-
778	1030 (1949).

779	Hatchette T, Hudson R, Schlech W, Campbell N, Hatchette J, Ratnam S, Donovan C,
780	Marrie T: Caprine-associated Q fever in Newfoundland. Can Comm Dis Rep
781	26:17-19 (2000).
782	Hellenbrand W, Breuer T, Petersen L: Changing epidemiology of Q fever in
783	Germany, 1947-1999. Emerg Infect Dis 7:789-796 (2001).
784	Honstettre A, Ghigo E, Moynault A, Capo C, Toman R, Akira S, Takeuchi O, Lepidi
785	H, Raoult D, Mege JL: Lipopolysaccharide from Coxiella burnetii is involved in
786	bacterial phagocytosis, filamentous actin reorganization, and inflammatory
787	responses through Toll-like receptor 4. J Immunol 172:3695-3703 (2004).
788	Hoover TA, Vodkin MH, Williams JC: A Coxiella burnetii repeated DNA element
789	resembling a bacterial insertion sequence. J Bacteriol 174:5540-5548 (1992).
790	Hotta A, Kawamura M, To H, Andoh M, Yamaguchi T, Fukushi H, Hirai K: Phase
791	variation analysis of Coxiella burnetii during serial passage in cell culture by use
792	of monoclonal antibodies. Infect immun 70:4747-4749 (2002).
793	Houpikian P, Habib G, Mesana T, Raoult D: Changing clinical presentation of Q
794	fever endocarditis. Clin Infect Dis 34:E28-E31 (2002).
795	Huebner RJ, Bell JA: Q fever studies in Southern California. Summary of current
796	results and a discussion of possible contol measures. J Amer Med Assoc
797	145:301-305 (1951).

798	Johnson JE, III, Kadull PJ: Laboratory acquired Q fever. A report of fifty cases. Amer
799	J Med 41:391-403 (1966).

Karakousis PC, Trucksis M, Dumler JS: Chronic Q fever in the United States. J Clin
Microbiol 44:2283-2287 (2006).

Kazar J: Q fever, Kazar J, Toman R (eds): Rickettsiae and Rickettsial Diseases, pp
353-362 (Slovak Academy of Sciences, Bratislava 1996).

Kelly PJ, Matthewman LA, Mason PR, Raoult D: Q fever in Zimbabawe. S Afr Med J
805 83:21-25 (1993).

Khalili M, Sakhaee E: An update on a serologic survey of Q Fever in domestic
animals in iran. Am J Trop Med Hyg 80:1031-1032 (2009).

808 Klee SR, Tyczka J, Ellerbrok H, Franz T, Linke S, Baljer G, Appel B: Highly

sensitive real-time PCR for specific detection and quantification of *Coxiella*

810 *burnetii*. BMC Microbiol 6:2 (2006).

Koster FT, Williams JC, Goodwin JS: Cellular immunity in Q fever: specific
lymphocyte unresponsiveness in Q fever endocarditis. J Infect Dis 152:12831289 (1985).

814 Kovacova E, Kazar J: Q fever--still a query and underestimated infectious disease.

815 Acta Virol 46:193-210 (2002).

816	Kovacova E, Kazar J, Spanelova D: Suitability of various Coxiella burnetii antigen
817	preparations for detection of serum antibodies by various tests. Acta Virol
818	42:365-368 (1998).
819	Krumbiegel ER, Wisniewski HJ: Q fever in Milwaukee. II. Consumption of infected
820	raw milk by human volunteers. Arch Environ Health 21:63-65 (1970).
821	Kruszewska D, Tylewska-Wierzbanowska S: Isolation of Coxiella burnetii from bull
822	semen. Res Vet Sci 62:299-300 (1997).
823	Kruszewska D, Tylewska-Wierzbanowska ST: Coxiella burnetii penetration into the
824	reproductive system of male mice, promoting sexual transmission of infection.
825	Infect immun 61:4188-4195 (1993).
826	La Scola B, Lepidi H, Raoult D: Pathologic changes during acute Q fever: influence
827	of the route of infection and inoculum size in infected guinea pigs. Infect
828	immun2443-2447 (1997).
829	Landais C, Fenollar F, Thuny F, Raoult D: From acute Q fever to endocarditis:
830	serological follow-up strategy. Clin Infect Dis 44:1337-1340 (2007).
831	Lang GH: Serosurvey of Coxiella burnetii infection in dairy goat herds in Ontario.
832	Can J Vet Res 52:37-41 (1988).
833	Lang GH: Coxiellosis (Q fever) in animals, Marrie TJ (ed): Q fever, the disease, pp
834	23-48 (CRC press, Boca Raton 1990).

835	Leone M, Honstettre A, Lepidi H, Capo C, Bayard F, Raoult D, Mege JL: Effect of
836	sex on Coxiella burnetii infection: protective role of 17beta-estradiol. J Infect
837	Dis 189:339-345 (2004).
838	Lepidi H, Coulibaly B, Casalta JP, Raoult D: Autoimmunohistochemistry: a new
839	method for the histologic diagnosis of infective endocarditis. J Infect Dis
840	193:1711-1717 (2006).
841	Lipton JH, Fong TC, Gill MJ, Burgess K, Elliott PD: Q fever inflammatory
842	pseudotumor of the lung. Chest 92:756-757 (1987).
843	Lohuis PJFM, Ligtenberg PC, Dieperslost RJA, de Graaf M: Q fever in a patient with
844	a ventriculo-peritoneal drain.case report and short review of the literature.
845	Netherlands J Med 44:60-64 (1994).
846	Mallavia LP: Genetics of Rickettsiae. Eur J Epidemiol 7:213-221 (1991).
847	Maltezou HC, Raoult D: Q fever in children. Lancet Infect Dis 2:686-691 (2002).
848	Mantovani A, Benazzi P: The isolation of Coxiella burnetii from Rhipicephalus
849	sanguineus on naturally infected dogs. J Am Vet Med Assoc 122:117-118
850	(1953).
851	Marmion BP, Stoker MGP, Walker CBV, Carpenter RG: Q fever in Great Britain -
852	epidemiological information from a serological survey of healthy adults in Kent
853	ans East Anglia. J Hyg 54:118-140 (1956).

854	Marrero M, Raoult D: Centrifugation-shell vial technique for rapid detection of
855	Mediterranean spotted fever rickettsia in blood culture. Am J Trop Med Hyg
856	40:197-199 (1989).
857	Marrie TJ: Q fever in pregnancy: report of two cases. Infect Dis Clinical Practice
858	2:207-209 (1993).
859	Marrie TJ: Epidemiology of Q fever: Rickettsial Diseases, pp 281-289 2007).
860	Marrie TJ, Langille D, Papukna V, Yates L: Truckin' pneumonia - an outbreak of Q
861	fever in a truck repair plant probably due to aerosols from clothing contaminated
862	by contact with newborn kittens
863	Epidemiol Infect 102:119-127 (1989).
864	Marrie TJ, Raoult D: Update on Q fever, including Q fever endocarditis. Curr Clin
865	Top Infect Dis 22:97-124.:97-124 (2002).
866	Marrie TJ, Stein A, Janigan D, Raoult D: Route of infection determines the clinical
867	manifestations of acute Q fever. J Infect Dis 173:484-487 (1996).
868	Marrie T: Liver involvement in acute Q fever. Chest 94:896-898 (1988).
869	Maurin M, Benoliel AM, Bongrand P, Raoult D: Phagolysosomal alkalinization an
870	the bactericidal effect of antibiotics : the Coxiella burnetii paradigm. J Infect Dis
871	166:1097-1102 (1992).

872	Maurin M, Raoult D: In vitro susceptibilities of spotted fever group rickettsiae and
873	Coxiella burnetii to clarithromycin. Antimicrob Agents Chemother 37:2633-
874	2637 (1993).

875 Maurin M, Raoult D: Q fever. Clin Microbiol Rev 12:518-553 (1999).

McDade JE: Historical aspects of Q fever, Marrie TJ (ed): Q fever. Volume I: The
Disease, pp 5-21 (CRC Press, Boston 1990).

McQuiston JH, Childs JE: Q fever in humans and animals in the United States. Vector
Borne Zoonotic Dis 2:179-191 (2002).

- Meconi S, Capo C, Remacle-Bonnet M, Pommier G, Raoult D, Mege JL: Activation
 of protein tyrosine kinases by *Coxiella burnetii:* role in actin cytoskeleton
- reorganization and bacterial phagocytosis. Infect Immun 69:2520-2526 (2001).
- 883 Meconi S, Jacomo V, Boquet P, Raoult D, Mege JL, Capo C: Coxiella burnetii
- induces reorganization of the actin cytoskeleton in human monocytes. Infect
 immun 66:5527-5533 (1998).
- 886 Mege JL: Immune Response to Q fever: Rickettsial Diseases, pp 271-281 2007).
- 887 Mertens K., Samuel JE: Bacteriology of *Coxiella*: Rickettsial Diseases, pp 257-270
 888 2007).

Milazzo A, Hall R, Storm PA, Harris RJ, Winslow W, Marmion BP: Sexually
transmitted Q fever. Clin Infect Dis 33:399-402 (2001).
Musso D, Drancourt M, Osscini S, Raoult D: Sequence of the quinolone resistance-
determining region of the GYRA gene for clinical isolates and for a stepwise-
selected quinolone resistant of Coxiella burnetii. Antimicrob Agents Chemother
40:870-873 (1996).
Nourse C, Allworth A, Jones A, Horvath R, McCormack J, Bartlett J, Hayes D,
Robson JM: Three cases of Q fever osteomyelitis in children and a review of the
literature. Clin Infect Dis 39:e61-e66 (2004).
Philip CB: Comments on the name of the Q fever organism. Public Health Rep 63:58-
59 (1948).
Psaroulaki A, Hadjichristodoulou C, Loukaides F, Soteriades E, Konstantinidis A,
Papastergiou P, Ioannidou MC, Tselentis Y: Epidemiological study of Q fever in
humans, ruminant animals, and ticks in Cyprus using a geographical information
system. Eur J Clin Microbiol Infect Dis 25:576-586 (2006).
Raoult D: Treatment of Q fever. Antimicrob Agents Chemother 37:1733-1736 (1993).
Raoult D, Drancourt M, Vestris G: Bactericidal effect of Doxycycline associated with
lysosomotropic agents on Coxiella burnetii in P388D1 cells. Antimicrob Agents
Chemother 34:1512-1514 (1990a).

908	Raoult D, Etienne J, Massip P, Iaocono S, Prince MA, Beaurain P, Benichou S,
909	Auvergnat JC, Mathieu P, Bachet P: Q fever endocarditis in the south of France.
910	J Infect Dis 155:570-573 (1987).
911	Raoult D, Fenollar F, Stein A: Q fever during pregnancy: diagnosis, treatment, and
912	follow-up. Arch Intern Med 162:701-704 (2002).
913	Raoult D, Houpikian P, Tissot Dupont H, RISS JM, Arditi-Djiane J, Brouqui P:
914	Treatment of Q fever endocarditis: comparison of two regimens containing
915	doxycycline and ofloxacin or hydroxychloroquine. Arch Int Med 159:167-173
916	(1999).
917	Raoult D, Laurent JC, Mutillod M: Monoclonal antibodies to Coxiella burnetii for
918	antigenic detection in cell cultures and in paraffin embedded tissues. Am J Clin
919	Pathol 101:318-320 (1994).
920	Raoult D, Levy PY, Harle JR, Etienne J, Massip P, Goldstein F, Micoud M, Beytout
921	J, Gallais H, Remy G, Capron JP: Chronic Q fever: Diagnosis and follow up.
922	Ann N Y Acad Sci 590:51-60 (1990b).
923	Raoult D, Marrie T, Mege J: Natural history and pathophysiology of Q fever. Lancet
924	Infect Dis 5:219-226 (2005).
925	Raoult D, Tissot-Dupont H, Foucault C, Gouvernet J, Fournier PE, Bernit E, Stein A,
926	Nesri M, Harle JR, Weiller PJ: Q fever 1985-1998 - Clinical and epidemiologic
927	features of 1,383 infections. Medicine 79:109-123 (2000).

928	Raoult D, Torres H, Drancourt M: Shell-vial assay: Evaluation of a new technique for
929	determining antibiotic susceptibility, tested in 13 isolates of Coxiella burnetii.
930	Antimicrob Agents Chemother 35:2070-2077 (1991).
931	Rolain JM: Antimicrobial Susceptibility of Rickettsial Agents: Rickettsial Diseases,
932	pp 361-369 2007).
933	Rolain JM, Boulos A, Mallet MN, Raoult D: Correlation between ratio of serum
934	doxycycline concentration to MIC and rapid decline of antibody levels during
935	treatment of Q fever endocarditis. Antimicrob Agents Chemother 49:2673-2676
936	(2005a).
937	Rolain JM, Lambert F, Raoult D: Activity of telithromycin against thirteen new
938	isolates of C. burnetii including three resistant to doxycycline. Ann N Y Acad
939	Sci 1063:252-256 (2005b).
940	Rolain JM, Mallet MN, Raoult D: Correlation between serum levels of doxycycline
941	and serology evolution in patients treated for Coxiella burnetii endocarditis. J
942	Infect Dis 9:1322-1325 (2003).

Roman MJ, Coriz PD, Baca OG: A proposed model to explain persistent infection of
host cells with *Coxiella burnetii*. J Gen Microbiol 132:1415-1422 (1986).

Sabatier F, Dignat-George F, Mege JL, Brunet C, Raoult D, Sampol J: CD4⁺ T-cell
lymphopenia in Q fever endocarditis. Clin Diag Lab Immunol 4:89-92 (1997).

947	Sanford ES, Josephson GKA, MacDonald A: Coxiella burnetii (Q fever) abortion
948	storms in goat herds after attendance at an annual fair. Can Vet J 35:376-378
949	(1994).

950	Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL,
951	Tettelin H, Davidsen TM, Beanan MJ, Deboy RT, Daugherty SC, Brinkac LM,
952	Madupu R, Dodson RJ, Khouri HM, Lee KH, Carty HA, Scanlan D, Heinzen
953	RA, Thompson HA, Samuel JE, Fraser CM, Heidelberg JF: Complete genome
954	sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A
955	100:5455-5460 (2003).
956	Shannon JG, Howe D, Heinzen RA: Virulent Coxiella burnetii does not activate
957	human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc
958	Natl Acad Sci U S A 102:8722-8727 (2005).
959	Siegman-Igra Y, Kaufman O, Keysary A, Rzotkiewicz S, Shalit I: Q fever
960	endocarditis in Israel and a worldwide review. Scand J Infect Dis 29:41-49
961	(1997).
962	Stein A, Raoult D: Pigeon pneumonia in Provence. A bird borne Q fever outbreak.
963	Clin Infect Dis 29:617-620 (1999).

Stoker MG, Marmion BP: The spread of Q fever from animals to man. The natural
history of a rickettsial disease. Bull WHO781-806 (1995).

966	Tiggert WD, Benenson AS: Studies on Q fever in man. Trans Assoc Am Phys 69:98-
967	104 (1956).
968	Tissot-Dupont H, Raoult D: Clinical Aspects, Diagnosis and Treatment of Q fever:
969	Rickettsial Diseases, pp 291-301 2007).
970	Tissot-Dupont H, Raoult D, Brouqui P, Janbon F, Peyramond D, Weiller PJ,
971	Chicheportiche C, Nezri M, Poirier R: Epidemiologic features and clinical
972	presentation of acute Q fever in hospitalized patients: 323 French cases. Am J
973	Med 93:427-434 (1992).
974	Torres H, Raoult D: In vitro activities of ceftriaxone and fusidic acid against 13
975	isolates of Coxiella burnetii, Determined Using the shell Vial Assay. Antimicrob
976	Agents Chemother 37:491-494 (1993).
977	Vodkin MH, Williams JC: Overlapping deletion in two spontaneous phase variants of
978	Coxiella burnetii. J Gen Microbiol 132:2587-2594 (1986).
979	Webster JP, LLoyd G, Macdonald DW: Q fever (coxiella burnetii) reservoir in wild
980	brown rat (rattus norvegicus) populations in the UK
981	Wildlife conservation Research Unit, Department of Zoology, University of
982	Oxford, South Parks Road, Oxford OX1 3PS - centre for Applied Microbiology
983	and research, Division of Pathology, Porton Down, Salisbury, Wiltshire SP4
984	OJG. Parasitology 110:31-35 (1995).

985	Yeaman MR, Baca OG: Unexpected antibiotic susceptibility of a chronic isolate of
986	Coxiella burnetii. Ann N Y Acad Sci 590:297-305 (1990).
987	Yeaman MR, Mitscher LA, Baca OG: In vitro susceptibility of Coxiella burnetii to
988	antibiotics, including several quinolones. Antimicrob Agents Chemother
989	31:1079-1084 (1987).
990	Yeaman MR, Roman MJ, Baca OG: Antibiotic susceptibilities of two Coxiella
991	burnetii isolates implicate in distinct clinical syndromes. Antimicrob Agents
992	Chemother 33:1052-1057 (1989).
993	Zamboni DS, Campos MA, Torrecilhas AC, Kiss K, Samuel JE, Golenbock DT,
994	Lauw FN, Roy CR, Almeida IC, Gazzinelli RT: Stimulation of toll-like receptor
995	2 by Coxiella burnetii is required for macrophage production of pro-
996	inflammatory cytokines and resistance to infection. J Biol Chem 279:54405-
997	54415 (2004).
998	
999	
1000	

- 1001 Table 1. Guidelines for the treatment of Q fever
- 1002
- 1003 Figure legends
- 1004 Figure 1. Q fever natural history in the absence of treatment
- 1005 Figure 2. Immunohistochemical detection of *C. burnetii* in a resected cardiac valve
- 1006 from a patient with a Q fever endocarditis, using a monoclonal antibody and
- 1007 hematoxylin counterstain. Note the intracellular location of the bacteria in the
- 1008 macrophage cytoplasm (original magnification x 400).

1009

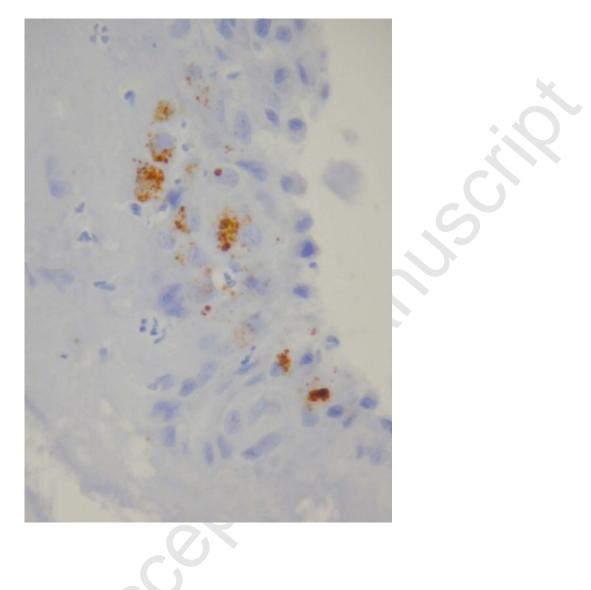
Table 1

ACCEPTED MANUSCRIP

Table1


Clinical feature	Patient cohort	Treatment	Duration	Reference
Acute Q fever	Adults	doxycycline (100 mg/day)	14 days	(Maurin and Raoult, 1999)
		fluoroquinolones (200 mg three times a day or pefloxacin (400 mg)	14 to 21 days	(Maurin and Raoult, 1999)
		rifampin (1,200 mg/day)	21 days	(Raoult, 1993)
	Pregnant	trimethoprim (320 mg) and sulfamethoxazole (1600 mg)	>5 weeks	(Carcopino <i>et al.</i> , 2007)
	Children	doxycycline (100 mg/day)	10-14 days	(Maurin and Raoult, 1999)
Chronic Q fever	Adults	doxycycline (100 mg/day) and hydroxychloroquine (600mg)	>18 months	(Carcopino <i>et al.</i> , 2007)

children	trimethoprim and sulfamethoxazole	>18 months	(Nourse et al., 2004)


٠

1 Figure1.

2

- 3 Figure2.
- 4

ceetee Manus