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Abstract. We focus on the estimation of a probability distribution over a set of

trees. We consider here the class of distributions computed by weighted automata

- a strict generalization of probabilistic tree automata. This class of distributions

(called rational distributions, or rational stochastic tree languages - RSTL) has

an algebraic characterization: All the residuals (conditional) of such distributions

lie in a finite-dimensional vector subspace. We propose a methodology based on

Principal Components Analysis to identify this vector subspace. We provide an

algorithm that computes an estimate of the target residuals vector subspace and

builds a model which computes an estimate of the target distribution.

1 Introduction

In this article, we focus on the problem of learning probability distributions over trees.

This problem is motivated by the high need in XML applications or natural language

processing to represent large tree sets by probabilistic models. From a machine learning

standpoint, this problem can be formulated as follows. Given a sample of trees indepen-

dently drawn according to an unknown distribution p, a classical problem is to infer an

estimate of p in some class of probabilistic models [1]. This is a classical problem in

grammatical inference and the objective here is to find a good estimate of the model’s

parameters. A usual class of models is the class of probabilistic tree automata (PTA)

where the parameters lie in [0, 1].

Recent approaches propose using a larger class of representation: the class of ra-

tional distributions (also called rational stochastic tree languages, or RSTL) that can

be computed by weighted tree automata - with parameters in R, hence with weights

that can be negative and without any per state normalisation condition. This class has

two interesting properties: It has a high level of expressiveness since it strictly includes

the class of PTA and it admits a canonical form with a minimal number of parameters

(see [2] for an illustration in the string case). It has notably the characterization that the

residuals of a rational distribution (a special kind of conditional distributions) lie in a

⋆ This work was partially supported by the ANR LAMPADA ANR-09-EMER-007 project and

by the IST Programme of the European Community, under the PASCAL2 Network of Excel-

lence, IST-2007-216886. This publication only reflects the authors’ views.
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finite-dimensional subspace. This set of residuals spans a vector subspace W of the vec-

tor space of real values functions over trees. W is finite dimensional and its dimension

corresponds to the minimal number of states needed by a weighted tree automaton to

compute p. Thus, a goal of an inference algorithm might be to identify this subspace W .

This was illustrated by the algorithm DEES [3, 4] which builds iteratively a weighted

automaton computing an estimate of p. However, the iterative approach presented be-

fore suffers from the drawback to rely on statistical tests that are done on fewer and

fewer examples when the structure grows.

In order to overcome this drawback, in this paper we investigate the possibility

of using Principal Component Analysis (PCA) to identify the target vector subspace

spanned by the residuals of a rational distribution, and then to build a representation

from this subspace. PCA has already been used in grammatical inference for learning

rational string distributions in [5], and in another framework in [6]. Another spectral

approach was proposed in [7, 8] for learning a class of Hidden Markov Models (HMM)

over sequences. In this paper, we show that considering the class of rational distri-

butions offers a natural framework for applying PCA to identify the target residuals

subspace. Moreover, we obtain a high gain of expressiveness since we are able to infer

classes of distributions that can not be computed by PTA. This gain in expressiveness

has unfortunately two main drawbacks: the class of rational distributions is not recur-

sively enumerable and it is not decidable if a rational series defines a distribution [9].

In spite of these strong constraints, we give some asymptotic error bounds and provide

pointwise convergence result.

The paper is organized as follows. Section 2 gives the preliminaries on trees and

rational tree series. Section 3 is devoted to our algorithm, while the convergence prop-

erties are presented in Section 4. Some experiments are provided in the last section.

2 Preliminaries

In this section, we introduce the objects that will be used all along in the paper. We

mainly follow notations and definitions from [10] about trees. Formal power tree se-

ries have been introduced in [11] where the main results appear. Some notations about

norms and matrices terminate this section.

2.1 Trees and Contexts

Unranked Trees Let F be an unranked alphabet. The set of unranked trees over F
is the smallest set TF satisfying F ⊆ TF , and for any f ∈ F , and t1, . . . , tm ∈ TF ,

f(t1, . . . , tm) ∈ TF .

Ranked Trees Let F = F0 ∪ · · · ∪ Fn be a ranked alphabet where the elements in F0

are also called constant symbols. The set of trees over F is the smallest set TF satisfy-

ing F0 ⊆ TF , and for any f ∈ Fk, and any t1, . . . , tk ∈ TF , f(t1, . . . , tk) ∈ TF .



A spectral approach for learning RSTL 3

Any tree defined over an unranked alphabet F can be represented over a ranked

alphabet F@ = F@
2 ∪ F@

0 with only one binary symbol @, i.e. F@
2 = {@(·, ·)} where

@ 6∈ F and constants that comprise all symbols in F : F@
0 = F . Figure 1(d) shows such

a representation (called curryfication) of the tree of Figure 1(c). Curryfication can be

formally defined by induction:

– curry(f(t1, . . . , tn)) = @(curry(f(t1, . . . , tn−1)), curry(tn))
– curry(f(t)) = @(f, curry(t))
– curry(a) = a for a ∈ F

This particular class of ranked alphabet is in bijection with the set of unranked

trees [10], i.e. labeled trees in which any node may have an unbounded number of

children. Weighted automata on unranked trees are defined in [12], where it is proved

that weighted unranked tree automata on F are equivalent to weighted tree automata

on F@. As ranked trees are a particular case of unranked trees and weighted ranked

tree automata can be seen as a particular case of weighted unranked tree automata, the

results still hold for any ranked alphabet.

Hence, without loss of generality, and in all the rest of the paper, we will only

consider a ranked alphabet equipped with constant symbols and with only one binary

symbol in the following of the paper. For convenience, we will use f for denoting the

binary symbol instead of @.

Contexts Contexts are element c of CF ⊂ TF∪{$} where $ is a variable that appears

exactly once as a leaf in c ($ is a constant and $ 6∈ F ). Given a context c ∈ CF and a

tree t ∈ TF , one can build a tree c[t] ∈ TF by replacing the (unique) occurrence of $ in

c by the tree t.

Example 1. Let F0 = {a, b}, F1 = {g(·)} and F2 = {f(·, ·)}. Then t = f(a, g(b)) ∈
TF (Figure 1(a)), c = f(a, $) ∈ CF (Figure 1(b)) and c[t] = f(f(a, g(b)), a) (Fig-

ure 1(c)).

Definition 1. The length of a tree or a context is the number of functional symbols used

to define it, including the special symbol $.

T k
F (resp. T≥k

F ) will denote the set of trees of length k (resp. length greater or equal

than k).

2.2 Tree Series

A (formal power) tree series on TF is a mapping r : TF → R. The vector space of

all tree series on TF is denoted by R[TF ]. We denote by ℓ2(TF ) the vector subspace of

R[TF ] of tree series r such that
∑

t∈TF
r(t)2 < ∞. This vector subspace is equipped

with a dot product (r, s) =
∑

t∈TF
r(t)s(t).

Given r ∈ R[TF ], a residual of r is a series s ∈ R[TF ] such that s(t) = r(c[t]) for

some c ∈ CF . This series is denoted ċr : t 7→ r(c[t]). One defines the set of residuals of
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Fig. 1. An example of tree t = f(a, g(b)), context c = f($, a) and their composition c[t] =
f(f(a, g(b)), a), as defined in Example 1. On the right a representation of t over an alphabet

with only one binary symbol @ and with the elements of F seen as constant symbols.

r by {ċr|c ∈ CF }. Let ci be an enumeration of CF , and tj an enumeration of TF . Given

r ∈ R[TF ], one defines the (infinite) observation matrix X of r by: (X)i,j = r(ci[tj ]).













r(c1[t1]) . . . r(c1[tj ]) . . .
...

...

r(ci[t1]) . . . r(ci[tj ]) . . .
...

...













Rational series (series computed by weighted automata) are the series with a finite

rank observation matrix. The rank of the observation matrix is the rank of the rational

series (i.e. the state number of a minimal automaton computing the series). From this

observation, one can define a canonical linear representation of a rational tree series as

introduced in [3]. We give here a simpler definition:

Definition 2. The linear representation of a rational tree series over TF is given by:

– the rank d of the series, and {q1, . . . qd} a basis of R
d.

– τ ∈ R
d.

– for each a ∈ F0, a vector a ∈ R
d.

– for f ∈ F2, a bilinear mapping f ∈ L(Rd, Rd; Rd).

The linear representation is denoted by (F, d, , τ).

The mapping can be inductively extended to a mapping : TF → R
d that

satisfies f(t1, t2) = f(t1, t2) for any t1, t2 ∈ TF .

Finally, the value of r(t) is given by: r(t) = t⊤τ where ⊤ denotes the transpose

operator.
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Example 2. Let F = {a, f(·, ·)} a ranked alphabet, consider the linear representation

(F, 2, , τ) of the series r such that {e1, e2} is a basis of R
2, τ = (1, 0) and defined by

the following expressions:

a = 2e1

3 + e2

3 , f(e1, e2) = e1

3 + 2e2

3 , f(ei, ej) = 0 for (i, j) 6= (1, 2).

One has:

r(f(a, a)) = f(a, a)⊤τ = f(a, a)⊤τ = f(
2e1

3
+

e2

3
,
2e1

3
+

e2

3
)⊤τ

= (
2

3

2

3
f(e1, e1) +

2

3

1

3
f(e1, e2) +

1

3

2

3
f(e2, e1) +

1

3

1

3
f(e2, e2))

⊤
τ

= (
2

3

2

3
(0, 0) +

2

3

1

3
(
1

3
,
2

3
) +

1

3

2

3
(0, 0) +

1

3

1

3
(0, 0)) · τ =

2

33
.

Rational tree series can be equivalently represented by weighted tree automata

where the number of states of the automata corresponds to the dimension of the lin-

ear representations. Indeed, a tree automaton is a tuple (Q, F, τ, δ) where Q, τ and

δ are respectively the set of states, the terminal vector and the transition function.

Let (F, 2, , τ) be a linear representation and let (e1, . . . , ed) be a basis of R
d. Let

Q = {e1, . . . , ed}. Any linear relation of the form f(ei, ej) =
∑

k αk
i,jek yields to d

transition rules of the form f(ei, ej)
αk

i,j−−→ ek and τ(ei) is set to τ⊤ei. See [4, 13] for

more details.

Example 3. A weighted automaton computing the series in example 2 would be Q =

{q1, q2}, F = {a, f}, δ defined by: a
2/3−−→ q1, a

1/3−−→ q2, f(q1, q2)
1/3−−→ q1, f(q1, q2)

2/3−−→
q2 and τ(q1) = 1, τ(q2) = 0.

Let R[CF ] be the set of mappings s : CF → R. For r ∈ R[TF ] and t ∈ TF , one can

define t̄r ∈ R[CF ] by:

t̄r(c) = ċr(t) = r(c[t]).

The ċr correspond to the rows of the observation matrix X and the t̄r to its columns,

and one has the following equivalent properties:

1. r ∈ R[TF ] has an observation matrix X with finite rank d.

2. The vector subspace of R[TF ] spanned by {ċr|c ∈ CF } has dimension d.

3. The vector subspace of R[CF ] spanned by {t̄r|t ∈ TF } has dimension d.

Let us denote by Cn the set of contexts of length lower than n, and let ∼Cn
be the

equivalence relation over R[CF ] defined by f ∼Cn
g iff ∀c ∈ Cn, f(c) = g(c). One

defines R[Cn] as the quotient vector space R[CF ]/ ∼Cn
, equipped with the regular dot

product (f, g) =
∑

c∈Cn
f(c)g(c).

2.3 Rational Distribution and Strong Consistency

Definition 3. A rational distribution (or rational stochastic tree language, RSTL) over

TF is a rational series computing a probability distribution.
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In other words, a RSTL is a probability distribution that can be computed by a

weighted automaton (or that admits a linear representation). It can be shown that there

exists some rational distributions that cannot be computed by any probabilistic tree

automaton. It is undecidable to know whether a rational series given by a linear repre-

sentation defines a probability distribution (see [2] for an illustration in the string case).

Definition 4. A strongly consistent stochastic tree languages (or strongly consistent

distribution) over TF is a probability distribution over TF having a bounded average

tree size i.e.
∑

t∈TF
p(t)|t| < ∞.

It can be shown (see [4]) that, if p is a rational distribution having a bounded average

tree size, there exists some constants 0 < C and 0 < ρ < 1 such that:

∑

t∈T
≥k

F

p(t) ≤ Cρk.

3 Principle of the Algorithm

Let p be rational distribution on TF (strongly consistent or not). We give first a general

algorithm that takes a sample i.i.d. according to p as input. For this purpose, let Cn be

the set of contexts of length lower that n and let us make the assumption that {ċp|c ∈
Cn} and {ċp|c ∈ CF } span the same vector subspace of R[TF ]. In other words, we

suppose that considering the set Cn is sufficient to get the whole space of residuals.

Let V be the finite dimensional subspace of ℓ2(TF ) spanned by the set {ċp|c ∈
Cn}. V ∗ will denote the set {t̄p|Cn

, t ∈ TF } ⊂ R[Cn] - for convenience we still

denote by t̄p the mapping t̄p|Cn
. ΠV denotes the orthogonal projection over V relatively

to the dot product inherited from ℓ2(TF ), and ΠV ∗ denotes the orthogonal projection

over V ∗ relatively to the dot product inherited from R[Cn]. Let S be a sample of N
trees independently and identically drawn according to p and let pS be the empirical

distribution on TF defined from S. VS denotes the vector subspace of ℓ2(TF ) spanned

by {ċpS |c ∈ Cn}, and V ∗
S the subspace of R[Cn] spanned by {t̄pS |t ∈ TF }.

We first build from S an estimate V ∗
S,d of V ∗ and then we show that V ∗

S,d can be

used to build a linear representation such that its associated rational series approximate

the target p. In this section, we implicitly suppose that the dimension d of V ∗ is known.

We will show in the next section how it can be estimated from the data.

3.1 Estimating the Target Space

Let d > 0 be an integer. The first step consists in finding the d-dimensional vector

subspace V ∗
S,d of V ∗

S that minimizes the distance to {t̄pS |t ∈ TF }:

V ∗
S,d = arg min

dim(W∗)=d,W∗⊆V ∗
S

∑

t∈TF

‖t̄pS − ΠW∗(t̄pS)‖2.

V ∗
S,d can be computed using principal component analysis.
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Let {tj} be an enumeration of TF , and {ci} be an enumeration of Cn. Let XS the

empirical mean matrix defined by: (XS)i,j = pS(ci[tj ]), and let X be the expectation

matrix defined by: (X)i,j = p(ci[tj ]).
V ∗

S,d corresponds to the vector subspace spanned by the d first (normalized) eigen-

vectors (corresponding to d largest eigenvalues) of the matrix MS = XSX⊤
S . NS will

denote the matrix X⊤
S XS which corresponds to the dual problem of the PCA. We will

denote by W ∗ = {w∗
1 , . . . , w∗

d} the set of eigenvectors (ordered by decreasing eigen-

values) of MS , and by W = {w1, . . . , wd} the corresponding eigenvectors of NS . W ∗

is the matrix with the vectors {w∗
1 , . . . , w∗

d} as columns - this matrix corresponds to the

projection operator ΠV ∗ , while W is the matrix with vectors {w1, . . . , wd} as columns,

because both W and W ∗ are orthonormal.

Let λ1, . . . , λd be the associated singular values; they also are the square roots of

the eigenvalues of MS .

We recall here the relationships between the wi and w∗
i eigenvectors: XSwi = λiw

∗
i

and X⊤
S w∗

i = λiwi. In particular,

MSw∗
i = XSX⊤

S w∗
i = λiXSwi = λ2

i w
∗
i .

3.2 Building the Linear Representation From the Dual Space

The eigenvectors found in the previous section form the basis of the residual space.

In order to complete the linear representation, we now need to define, in the basis

{w∗
1 , . . . , w∗

d}, the terminal vector τ , the mapping for the constant symbols a and

the bi-linear operator f .

The idea is to identify, for any tree t, the mapping t̄pS to its projection on the space

spanned by W ∗, that is W ∗W ∗⊤t̄pS . We shall see in next section that this identification

leads to a bounded error, decreasing as the size of the sample grows.

– The vector space is the space spanned by W ∗.

– For each a ∈ F0, a = W ∗⊤āpS .

In order to define f , we use a known relation between eigenvectors of the standard

and dual PCA: w∗
i =

∑

k
(wi)k

λi
t̄kpS . We use the bilinearity of f to obtain:

– f(w∗
i , w∗

j ) =
∑

1≤k,l≤d
(wi)k(wj)l

λiλj
W ∗⊤f(tk, tl)pS .

– τi = w∗
i ($), corresponding to the terminal weight of a tree in a bottom-up process.

– Finally, r(t) = t⊤.τ .

The different steps of the algorithm are described in Algorithm 1.

4 Consistency

Let us consider the observation matrix X defined by: Xij = p(ci[tj ]), where ci and

tj are respectively contexts and trees. Let S be a sample of size N i.i.d. from p. XS is

defined as the empirical observation matrix built from the empirical distribution pS . In
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Data: A sample S of trees in TF i.i.d. according to a distribution p, a dimension d and a

set of contexts Cn.

Result: A linear representation A of a tree series (F, d, , τ).

Let X the matrix defined by X[i, j] = pS(ci[tj ]);

M = XX⊤ /* variance-covariance matrix */;

(λi, w
∗
i , wi)← square roots of eigenvalues of M in decreasing order and corresponding

eigenvectors, and eigenvectors in the dual;

Let w∗
1 , . . . , w∗

d be the eigenvectors corresponding to the d largest eigenvalues and let

W ∗ = [w∗
1 , . . . , w∗

d] be the matrix having the vectors w∗
i as columns

Let be the operator defined by:

foreach f ∈ F do

if a ∈ F0 then a = W ∗⊤āpS ;

if f ∈ F2 then f(w∗
i , w∗

j ) =
P

1≤k,l≤d

(wi)k(wj)l

λiλj
W ∗⊤f(tk, tl)pS ;

end

(τ)i = w∗
i ($) ;

return A = (F, d, , τ);

Algorithm 1: Building a linear representation corresponding to a sample S and a

dimension d.

this section, we will bound the difference between those two matrices, and show how it

induces a bound for the convergence of the singular values and on the distance between

the estimate and the target distribution for a tree t.
First, here is a simple result straightforward from the properties of empirical mean:

Lemma 1. Let p a probability distribution over TF , and pS its empirical estimate from

a sample of size N drawn i.i.d. from p, one has

E(‖pS − p‖2
2) =

∑

t∈TF

E((pS(t) − p(t))2) =
∑

t∈TF

p(t)(p(t) − 1)

N
≤ 1

N
.

Let Cn be the set of contexts of length lower or equal than n, it can easily be shown

that:

Lemma 2. Let t be a tree. There is at most n contexts in Cn such that t = c[t′] for

some tree t′.

The previous lemma helps us to bound the occurrence number of a tree in the matrix

X , which will allow us to use some concentration inequality to bound the error over X .

One denotes ‖‖F as the Frobenius norm on matrices, and ∆X = ‖X − XS‖F .

Lemma 3. Let X be a probability observation matrix restricted to the contexts belong-

ing to Cn. Let XS the empirical estimator of X from a sample S of size N . Then, one

has with probability at least 1 − δ (δ > 0):

∆X = ‖X − XS‖F ≤
√

n

N

(

1 +

√

log(
1

δ
)

)

.
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Proof. This proof uses a construction similar to the proof of Proposition 19 in [8]. Let z
be a discrete random variable that takes values in TF . Let X be a probability observation

matrix built from a set Cn of contexts as lines and trees from TF as columns. One

estimates X from N i.i.d. copies of zi of z (i = 1, . . . , N ).

One associates to each variable zi a matrix Xi indexed by contexts of Cn and trees

of TF such that

Xi[j, k] = 1 if zi = cj [tk] and 0 otherwise.

From Lemma 2, Xi has at most n non null entries.

The empirical estimate of X is XS = 1
N

∑N
i=1 Xi. Our objective is to bound

‖XS − X‖F .

Let S′ be a sample that differs from S on at most one example z′k.

Then,

|‖XS − X‖F − ‖XS′ − X‖F | ≤ ‖XS − XS′‖F ≤
√

2n

N
.

From McDiarmid inequality [14], one obtains:

Pr(‖XS − X‖F ≥ E(‖XS − X‖F ) + ǫ) ≤ e−
N
n

ǫ2 .

By Lemma 1 and Lemma 2 and by using Jensen’s inequality, it can be proved that

E(‖XS − X‖F ) ≤
√

n
N . By fixing δ = e−

N
n

ǫ2 , one gets the result. ⊓⊔

4.1 Singular Values Convergence

We use the previous result to show how one can assess the correct dimension of the

target space. We will first recall some known result. Given an observation matrix X of

rank d in the target space, and given its empirical estimate XS , we can rewrite XS as

a sum X + E where E models the sampling error. We have the following result from

[15].

Lemma 4. (Theorem 4.11 in [15]). Let X ∈ R
m×n with m ≥ n, and let XS = X +E.

If the singular values of X and XS are (λ1 > . . . > λn) and (λS,1 > . . . > λS,n)

respectively, then

|λS,i − λi| ≤ ‖E‖2, i = 1, . . . , n.

Applied to our situation, this provides a valid way to assess the target dimension: let

d be the rank of the target rational series, XS be the observation matrix deduced from a

sample S, |S| = N .

Theorem 1. Let Λ be the set of singular values of XS . Let Λs be the subset of singular

values of XS greater than s. For a given confidence parameter δ, let d′ = |Λs| for

s =
√

n
N (1 +

√

log( 1
δ )). With probability greater than 1 − δ, one has d ≥ d′.

Proof. Straightforward from Lemma 3 and Lemma 4: with probability greater than 1−
δ, the singular values in Λs match non-zeros singular values from the target observation

matrix X . ⊓⊔
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Theorem 2. Let λd the smallest non-zero eigenvalue of X . Let Λ be the set of singular

values of XS . Let Λs be the subset of singular values of XS greater than s. For a given

confidence parameter δ, let d′ = |Λs| for s =
√

n
N (1 +

√

log( 1
δ )). Suppose that

N >
4n

λ2
d

(

1 +

√

log(
1

δ
)

)2

Then, with probability greater than 1 − δ, one has d = d′.

Proof. The condition N > 4n
λ2

d

(1 +
√

log( 1
δ ))2 implies that s < λd

2 , thus the corre-

sponding singular value λS,d from XS satisfies λS,d > 2s−‖X −XS‖2. This quantity

is greater than s with probability at least 1 − δ. ⊓⊔

4.2 Bounds for the Estimation Error

We suppose here that the correct dimension has been found. We will not provide ex-

act bounds, but only asymptotic bounds, and we will often use the equivalence be-

tween norms of vectors and matrices - since the vector spaces considered are finite-

dimensional. Let us first introduce some notations corresponding to errors over the ob-

jects handled by our algorithm:

– ∆x = max ‖x−xS‖2 with x (resp. xS) a row or a column of the observation matrix

X (resp. XS).

– ∆v = max ‖w − wS‖2 with w (resp. wS) a left singular vector of the observation

matrix X (resp. XS).

– ∆λ = max ‖λ − λS‖2 with λ (resp. λS) a singular value of the observation matrix

X (resp. XS).

– ∆Π = ‖WWT − WSWT
S ‖F with W (resp. WS) the d first singular vectors of the

observation matrix X (resp. XS).

Lemma 5. ∆λ < ∆X and ∆x < ∆X .

Proof. Straightforward from Lemma 4 and the norm relation ‖‖2 ≤ ‖‖F for the first

inequality, and the definition of ∆x and ∆X for the second. ⊓⊔

The following corollary gives an asymptotic bound on the error of the covariance

matrix used to compute the eigenvectors.

Corollary 1. ∆M = ‖M − MS‖F . One has ‖M − MS‖F ≤ O(∆X)

Proof. One has ‖M − MS‖F ≤ ‖XX⊤ − XX⊤
S + XX⊤

S − XSX⊤
S ‖F ≤ (‖X‖F +

‖X⊤
S ‖F )∆X . Thus:

∆M ≤ ∆X(2‖X‖F + ∆X).

⊓⊔
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In order to provide asymptotic bounds on the other errors, we need to introduce

some known results about eigenvectors and PCA from [16]. Let A be a symmetric

positive Hilbert-Schmidt operator with positive eigenvalues1 λ2
1 > · · · > λ2

d > 0.

δr = 1
2 (λ2

r − λ2
r+1), and let δ̃r = inf(δr, δr−1). Let B be a symmetric positive Hilbert-

Schmidt operator such that ‖B‖F < δ̃r/2 and that ‖B‖F < δd/2. The results from [16]

provide error bounds on projection operators and eigenvectors. In our framework, A
corresponds to the covariance matrix M and A + B to the empirical one MS . Let W
(resp. WS ) be the matrix of the d first eigenvectors of A (resp. A + B ), and wr (resp.

wS,r) the corresponding r-th eigenvector, we have the following results.

Lemma 6. (Theorem 2 - remark of [16]) ‖wr − wS,r‖2 ≤ 2‖B‖F

δ̃r
.

Theorem 3. (Theorem 3 of [16]) ‖WW⊤ − WSW⊤
S ‖F ≤ ‖B‖F

δd
.

We are now able to provide asymptotic bounds for the two remaining errors.

Lemma 7. One has ∆v = O(∆X) and ∆Π = O(∆X).

Proof. By using respectively Lemma 6 and Theorem 3, and from Corollary 1, one has

∆v ≤ 4∆X(2‖X‖F + ∆X)

δ̃d

= O(∆X)

and

∆Π ≤ ∆X(2‖X‖F + ∆X)

δ̃d

= O(∆X).

⊓⊔

Let us denote λ = inf1...d λi. We will now study some errors on the parameters of

the linear representation built by our algorithm. Let p = (F, d, , τ) be the target linear

representation equipped with the basis {w∗
1 , . . . , w∗

d} and let rS = (F, d, S , τS) the

linear representation equipped with the basis {w∗
S,1, . . . , w

∗
S,d} found by our algorithm

from a sample S. Let us define the following error bounds on the coefficients:

– ∆τ = supi(τ − τS)i,

– ∆a = supi(a − aS)i for a ∈ F0 ,

– ∆f = supi,j,k(f(w∗
j , w∗

k) − f
S
(w∗

S,j , w
∗
S,k))i.

One can check the following lemma.

Lemma 8.

∆τ ≤ dO(∆v) ≤ 2d‖X‖F O(∆X),

∆a ≤ 2O(∆X),

∆f ≤ O(∆X)

λ

[

‖wiw
⊤
j ‖F (2 + 2

‖X‖F

δ
+ 8

‖X‖F

δ
(‖wi‖1 + ‖wj‖1))

]

.

1 Recall that according to our notation the λi denote singular values.
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All the mappings considered through the algorithm are continuous, thus the map-

ping deduced from the algorithm converges pointwisely towards the target distribution

as ∆X tends to zero. We provide then the following result which gives a bound for the

estimation error.

Theorem 4. Let p be a rational distribution with rank d. Let n be the maximum length

of a context used in the algorithm. If S is a sample i.i.d. from p, let rS be the mapping

deduced from the algorithm. There exists C such that for any 0 < δ < 1, for any tree

t of length k, if S is an i.i.d. sample of size N then, with confidence at least 1 − δ, one

has:

|rs(t) − p(t)| < Ckd2k

√

n

N
log(

1

δ
).

Proof. Let us prove the statement by induction on k. Let us denote ∆k a bound for the

error made for the estimate the coefficient of t for a tree t of height k. One has:

∆1 = ∆a = O(∆X)

Using f(u, v) =
∑

1≤i≤d

∑

1≤i≤d(u)i(v)jf(w∗
i , w∗

j ), with |u|+ |v| = k − 1, one has:

∆k = O(d2(|u|d2|u|∆X+|v|d2|v|∆X+∆X)) ≤ O(kd2k∆X) = O(kd2k

√

n

N
log(

1

δ
)).

Then, since p(t) = tT .τ and rs(t) = tTS .τS , one has the conclusion. ⊓⊔

4.3 Strongly Convergent Case

In the case of strongly consistent distribution, one does not need to consider a finite

set of contexts to perform the algorithm: one has, with confidence greater than 1 − δ,

|t| < log(2C/δ)
log(1/ρ) . One can provide a bound result for this special case.

Theorem 5. Let p be a strongly consistent rational distribution with rank d. Let S be a

sample i.i.d. from p, let rS be the mapping deduced from the algorithm. There exists C
such that for any 0 < δ < 1, for any tree t of length k, if S is an i.i.d. sample of size N
then, with confidence at least 1 − δ, one has:

|rs(t) − p(t)| < Ckd2k

√

log(N)

N
log2(

1

δ
).

Proof. One bounds the length of a tree drawn by p: with a confidence greater than

1 − δ/2N ,

|t| <
log(2NC/δ)

log(1/ρ)
.

Thus, with confidence 1 − δ/2, S has only trees of length lower than
log(2NC/δ)

log(1/ρ) . By

replacing n in the previous result, one obtains the conclusion. ⊓⊔
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5 Illustration

In order to illustrate the algorithm, we consider the distribution p defined by tree series

of Example 2.

To study the behavior our algorithm, we consider an observation matrix 5 × 5,

built on the set of trees T = {t1, t2, t3, t4, t5}, where t1 = a, t2 = f(a, a), t3 =
f(a, f(a, a)), t4 = f(f(a, a), a), t5 = f(f(a, a), f(a, a)) and the set of contexts

C = {$, f(a, $), f($, a), f(f(a, a), $), f($, f(a, a))}.

We generate i.i.d. samples from p of different sizes containing respectively 103, 104 ,

105 and 106 trees. On Figure 2, we show the different eigenvalues (square of singular

values) in decreasing order obtained from the different samples.

We can observe that the convergence of the computed series towards the target

value, and the convergence of singular values, is closely O( 1√
|S|

) (in average values).

We also compared the average standard deviation of the probabilities of the trees

in T obtained with our model, with rank 2 learned from the different learning samples,

with the theoretical standard deviation of the classical probability (binomial) estimator.

We have that p(t1) ≃ 0.6666, p(t2) ≃ 0.0741, p(t3) ≃ 0.0329, p(t4) ≃ 0.0082 and

p(t5) ≃ 0.0037. The values obtained are shown on Figure 3. The estimated standard

deviation is, in majority (21/25), lower than the theoretical standard deviation of a the

binomial estimator: The algorithm seems to work better than the simple frequency esti-

mator for the task of density estimation.

Now, we consider the problem of the dimension estimate. The second singular value

λ2 ∼ 7.74 · 10−3. Using the bound ∆X to estimate the correct dimension (Theorem 2),

we can estimate that:

– For N = 106, the rank 2 is found with a parameter δ ∼ 0.59 (confidence 0.41).

– For N = 2 · 106, the rank 2 is found with a parameter δ ∼ 0.12 (confidence 0.88).

– For N = 3 · 106, the rank 2 is found with a parameter δ ∼ 0.02 (confidence 0.98).

6 Conclusion and Discussion

We have studied the problem of learning an unknown distribution p from finite indepen-

dently and identically drawn samples. We have proposed a new approach for identify-

ing rational distributions on trees, or rational stochastic tree languages. Most classical

inference algorithms in probabilistic grammatical inference build an automaton or a

grammar iteratively from a sample S. Starting from an automaton composed of only

one state, then they have to decide whether a new state must be added to the struc-

ture. This iterative decision relies on a statistical test with a known drawback: as the

structure grows, the test relies on fewer and fewer examples. Instead of this iterative

approach, we tackle the problem globally and our algorithm computes in one step the

space needed to build the output automaton. That is, we have reduced the problem set
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Fig. 2. Curves of eigenvalues -

square of singular values - (in loga-

rithmic scale) for sample size of 103,

104 , 105 and 106 trees (the lightest

to the darkest).

t σ
102

σ
103

σ
104

σ
105

σ
106

t1 3.76.10−2
1.23.10−2

3.50.10−3
1.16.10−3

4.12.10−4

4.71.10−2 1.49.10−2 4.71.10−3 1.49.10−3 4.71.10−4

t2 2.04.10−2
6.77.10−3

1.94.10−3
7.30.10−4

2.36.10−4

2.62.10−2 8.28.10−3 2.62.10−3 8.28.10−4 2.62.10−4

t3 1.63.10−2
6.70.10−3

2.13.10−3
6.95.10−4

1.95.10−4

1.78.10−2 5.64.10−3 1.78.10−3 5.64.10−4 1.78.10−4

t4 9.01.10−3
2.23.10−3

6.93.10−4
2.20.10−4

5.73.10−5

9.03.10−3 2.86.10−3 9.03.10−4 2.86.10−4 9.03.10−5

t5 4.90.10−3
1.51.10−3

4.52.10−4
1.46.10−4

3.90.10−5

6.04.10−3 1.91.10−3 6.04.10−4 1.91.10−4 6.04.10−5

Fig. 3. Average standard deviation of trees in T mea-

sured from the 2-dimensional model learned on sam-

ples of size 102, 103, 104, 105 and 106. The standard

deviation of the theoretical binomial estimator is in-

dicated in italics.

in the classical probabilistic grammatical inference framework to a classical optimiza-

tion problem. This point offers the interesting opportunity to apply classical results in

statistical machine learning theory to probabilistic grammatical inference.

We have provided three types of results. First, we have given a result for conver-

gence of eigenvalues which can be used for the estimation of the dimension of the

target vector space, which is a crucial point in probabilistic grammatical inference and

may allow to avoid costly cross-validation procedures. Second, we have provided error

bounds for the convergence of the parameters of a linear representation. We have finally

obtained pointwise convergence results for the probability estimate of a tree.

One perspective would then to obtain an ℓ1-convergence, probably restricted to the

case of strongly consistent stochastic tree languages, and to obtain tighter bounds. We

finally need to experimentally study and compare our approach to existing ones on

real data, this is a work in progress. Another perspective would consist in introducing

non linearity via the kernel PCA technique developed in [17] and by the Hilbert space

embedding of distributions proposed in [18, 19].
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