Sets of uniqueness for Dirichlet–type spaces
Karim Kellay

To cite this version:
Karim Kellay. Sets of uniqueness for Dirichlet–type spaces. 2011. <hal-00572610v2>

HAL Id: hal-00572610
https://hal.archives-ouvertes.fr/hal-00572610v2
Submitted on 15 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SETS OF UNIQUENESS FOR DIRICHLET-TYPE SPACES

KARIM KELAY

Abstract. We study the uniqueness sets on the unit circle for weighted Dirichlet spaces.

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane, and let $\mathbb{T} = \partial \mathbb{D}$ be the unit circle. Let H^2 denote the Hardy space of analytic functions on \mathbb{D}. If μ is a positive Borel measure on the unit circle \mathbb{T}, the Dirichlet-type space $D(\mu)$ is the set of analytic functions $f \in H^2$, such that

$$D_{\mu}(f) := \int_{\mathbb{D}} |f'(z)|^2 P\mu(z) dA(z) < \infty,$$

where $dA(z) = dx dy / \pi$ stands for the normalized area measure in \mathbb{D} and $P\mu$ is the Poisson integral of μ

$$P\mu(z) = \int_{\mathbb{T}} \frac{1 - |z|^2}{|\zeta - z|^2} d\mu(\zeta).$$

The space $D(\mu)$ is endowed with the norm

$$\|f\|_{\mu}^2 := \|f\|_{H^2}^2 + D_{\mu}(f).$$

Since $D(\mu) \subset H^2$, every function $f \in D(\mu)$ has non-tangential limits almost everywhere on \mathbb{T}. We denote by $f(\zeta)$ the non-tangential limit of f at $\zeta \in \mathbb{T}$ if it exists. It turns out that there is a useful formula for expressing the norm of the Dirichlet-type space in terms of the local Dirichlet integral

$$D_{\zeta}(f) := \int_{\mathbb{T}} |f(e^{it}) - f(\zeta)|^2 \frac{dt}{|e^{it} - \zeta|^2}.$$

For a proof of this see [13, Proposition 2.2]. Note that if $d\mu(e^{it}) = dt / 2\pi$, the normalized arc measure on \mathbb{T}, then the space $D(\mu)$ coincides with the classical space of functions with finite Dirichlet integral. These spaces were introduced by Richter [11] and generalized by Aleman [1] for nonnegative finite Borel measure on $\overbar{\mathbb{D}}$. The spaces $D(\mu)$ were studied in [1, 11, 12, 13, 14, 15, 17].

2000 Mathematics Subject Classification. primary 30H05; secondary 31A25, 31C15.

Key words and phrases. weighted Dirichlet spaces, capacity, uniqueness set.

This work was partially supported by ANR Dynop.
Let $\mathcal{D}^h(\mu)$ be the harmonic version of $\mathcal{D}(\mu)$ given by
\[\mathcal{D}^h(\mu) := \{ f \in L^2(\mathbb{T}) : D_\mu(f) < \infty \}. \]
We define the capacity C_μ of a set $E \subset \mathbb{T}$ by
\[C_\mu(E) := \inf \{ \|f\|_\mu^2 : f \in \mathcal{D}^h(\mu) \text{ and } |f| \geq 1 \text{ a.e. on a neighborhood of } E \}, \]
see [4, 5]. If $C_\mu(E) = 0$, then E has Lebesgue measure zero. Indeed, if $C_\mu(E) = 0$, then there exists a sequence $(f_i) \in \mathcal{D}^h(\mu)$ such that $\|f_i\|_\mu \leq 2^{-i}$ and $|f_i| \geq 1$ a.e. on a neighborhood of E. Then $f = \sum_i f_i \in \mathcal{D}^h(\mu)$ and $|f| = \infty$ on E. We have $\infty > \mathcal{D}_\mu(f) \geq \int_E D_\xi(f) d\mu(\xi)$ and this forces E to have measure zero. We say that a property holds C_μ-quasi-everywhere (C_μ-q.e.) if it holds everywhere outside a set of zero C_μ capacity. Note that C_μ-q.e implies a.e. We have
\[C_\mu(E) := \inf \{ \|f\|_\mu^2 : f \in \mathcal{D}^h(\mu) \text{ and } |f| \geq 1 \text{ } C_\mu \text{-q.e on } E \}. \]
see [6, Theorem 4.2]. Every function $f \in \mathcal{D}(\mu)$ has non-tangential limits C_μ-quasi-everywhere on \mathbb{T} [4, Theorem 2.1.9]. Let E be a subset of \mathbb{T}. The set E is said to be a uniqueness set for $\mathcal{D}(\mu)$ if, for each $f \in \mathcal{D}(\mu)$ such that it non-tangential limit $f = 0$ on E, we have $f = 0$.

In order to state our main result, we define some notions. Given $E \subset \mathbb{T}$, we write $|E|$ for the Lebesgue measure of E. For $w \in L^1(\mathbb{T})$, we denote by $I(w)$ the mean of w over I
\[I[w] = \frac{1}{|I|} \int_I w(\zeta) d\zeta. \]
A nonnegative function w is a Muckenhoupt A_2-weight if for all arc $I \subset \mathbb{T}$
\[\sup_{I \subset \mathbb{T}} I[w] I[w^{-1}] < +\infty. \]

Theorem 1.1. Let μ be an absolutely continuous measure with respect to the Lebesgue measure on \mathbb{T}, $d\mu(\zeta) = w(\zeta) |d\zeta|$ and w is a Muckenhoupt A_2-weight. Let E be a Borel subset of \mathbb{T} of Lebesgue measure zero. We assume that there exists a family of pairwise disjoint open arcs (I_n) of \mathbb{T} such that $E \subset \bigcup_n I_n$. Suppose
\[\sum_n |I_n| \log \frac{|I_n|}{C_\mu(E \cap I_n)} = -\infty; \]
then E is a uniqueness set for $\mathcal{D}(\mu)$.

The case of the Dirichlet space, $d\mu(\zeta) = |d\zeta|/2\pi$, was obtained by Khavin and Maz’ya [9]; see also [2, 3, 8]. In [10], we give the generalization of their result in the Dirichlet spaces \mathcal{D}_s, $0 < s \leq 1$, which consist of all analytic functions $f \in H^2$ such that
\[\mathcal{D}_s(f) := \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{|f(\zeta) - f(\xi)|^2 |d\zeta| |d\xi|}{|\zeta - \xi|^{1+s}} 2\pi = \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{1-s} dA(z). \]
The remaining of the note is devoted to proof of the theorem.
2. Proof

To prove our theorem, we use the following lemmas,

Lemma 2.1. Let w be a Muckenhoupt A_2-weight and let $d\mu(\zeta) = w(\zeta)|d\zeta|$, then

(a) If I is an arc of \mathbb{T} and ξ_I its center, then

$$|I| \int_{T \setminus I} \frac{d\mu(\zeta)}{|\zeta - \xi_I|^2} \leq c|I|w,$$

for some positive constant C independent of I.

(b) for all nonnegative function g and all arcs I of \mathbb{T}

$$\left(\frac{1}{|I|} \int_I g(\zeta)|d\zeta|\right)^2 \leq \frac{1}{\mu(I)} \int_I g(\zeta)^2 d\mu(\zeta).$$

(c) for all open arcs I

$$\mu(I) \geq \frac{\mu(\mathbb{T})}{\pi c} |I|^2 \left(\log \frac{2\pi}{|I|}\right)^2.$$

Proof. For a proof of (a), see [7, Lemma 1] and [16] p.200 for (b). Let now to prove (c).

By (b), we have

$$|T \setminus I|^2/|T|^2 \leq \mu(T \setminus I)/\mu(T).$$

By (a) and (b) we get

$$\mu(I) \geq \frac{\mu(T)}{\pi c} |I|^2 \left(\log \frac{2\pi}{|I|}\right)^2.$$

Let I be an open arc of \mathbb{T} and f be a function. We set

$$D_{I,\mu}(f) := \int_I \int_I \frac{|f(z) - f(w)|^2 |dz|}{|z - w|^2} 2\pi d\mu(w) \quad \text{and} \quad m_I(f) := \frac{1}{|I|} \int_I |f(\zeta)||d\zeta|.$$

Lemma 2.2. Let $d\mu = wdm$ be a measure such that $w \in (A_2)$. Suppose that $0 < \gamma < 1$. Let $E \subset \mathbb{T}$ and $f \in D(\mu)$ be such that $|f|E = 0$. Then, for any open arc $I \subset \mathbb{T}$ with $|I| \leq \gamma \pi$

$$m_I(f)^2 \leq \frac{\kappa D_{I,\mu}(f)}{C_\mu(E \cap I)},$$

where κ depending only on γ.

Proof. Without loss generality, we assume that $I = (e^{-i\theta}, e^{i\theta})$ with $\theta < \gamma \pi/2$. Let $J = (e^{-2i\theta/(1+\gamma)}, e^{2i\theta/(1+\gamma)})$ and \tilde{f} be such that

$$\tilde{f}(e^{it}) = \begin{cases} f(e^{it}), & e^{it} \in I, \\ f(e^{i\frac{\theta - \theta}{1+\gamma}}), & e^{it} \in J \setminus I. \end{cases}$$

Then by a change of variable, we get

$$D_{I,\mu}(f) \asymp D_{J,\mu}(\tilde{f}) \quad \text{and} \quad m_I(f) \asymp m_J(\tilde{f}),$$

where the implied constants depend only on γ, see [10].
Let $I_\gamma = (e^{-\theta_\gamma}, e^{\theta_\gamma})$ with $\theta_\gamma = \frac{3+\gamma}{2(1+\gamma)} \theta$. Note that $I \subset I_\gamma \subset J$. Let ϕ be a positive function on \mathbb{T}, $0 \leq \phi \leq 1$, such that supp $\phi = I_\gamma$, $\phi = 1$ on I and

$$|\phi(z) - \phi(w)| \leq \frac{c_1}{|J|}|z - w|, \quad z, w \in \mathbb{T}.$$

where c_1 depending only on γ.

Now, we consider the function

$$F(z) = \phi(z) \left| 1 - \frac{|\tilde{f}(z)|}{m_J(f)} \right|, \quad z \in \mathbb{T}.$$

Hence $F \geq 0$ and $F = 1$ C_μ-q.e on $E \cap I$. Therefore,

$$C_\mu(E \cap I) \leq \|F\|_\mu^2. \quad (2)$$

We claim that

$$\|F\|_\mu^2 \leq \kappa \frac{D_{I,\mu}(f)}{m_I(f)^2} \quad (3)$$

where κ depending only on γ. The Lemma 2.2 follows from (2) and (3).

Now, we prove the claim (3). We have

$$\|F\|_\mu^2 = \int_{\mathbb{T}} |F(\zeta)|^2 \frac{|d\zeta|}{2\pi} + \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{|F(\zeta) - F(\xi)|^2 |d\zeta| d\mu(\xi)}{2\pi}$$

$$\leq \frac{1}{m_J(f)^2} \int_{J} |m_J(\tilde{f}) - |\tilde{f}(\xi)||^2 \frac{|d\zeta|}{2\pi} + \int_{J} \int_{J} \frac{|F(\zeta) - F(\xi)|^2 |d\zeta| d\mu(\xi)}{2\pi}$$

$$+ \frac{1}{m_J(f)^2} \int_{\mathbb{T} \setminus J} \int_{\mathbb{T} \setminus J} \frac{|m_J(\tilde{f}) - |\tilde{f}(\xi)||^2 |d\zeta| d\mu(\xi)}{2\pi}$$

$$+ \frac{1}{m_J(f)^2} \int_{\mathbb{T} \setminus J} \int_{\mathbb{T} \setminus J} \frac{|m_J(\tilde{f}) - |\tilde{f}(\xi)||^2 |d\zeta| d\mu(\xi)}{2\pi}$$

$$= \frac{A}{2\pi m_J(f)^2} + \frac{B}{4\pi^2} + \frac{C}{4\pi^2 m_J(f)^2} + \frac{D}{4\pi^2 m_J(f)^2}. \quad (4)$$

Note that, by Lemma 2.1 (b)

$$|m_J(\tilde{f}) - |\tilde{f}(\xi)||^2 \leq \left(\frac{1}{|J|} \int_{J} |\tilde{f}(\xi) - \tilde{f}(\zeta)||d\xi| \right)^2 \leq \frac{1}{\mu(J)} \int_{J} |\tilde{f}(\xi) - \tilde{f}(\zeta)|^2 d\mu(\xi).$$
Hence by (1) and Lemma 2.1 (c)

\[
A := \int_J |m_J(\tilde{f}) - |\tilde{f}(\zeta)||^2 d\zeta |
\leq \frac{1}{\mu(J)} \int_J \int_J |\tilde{f}(\xi) - \tilde{f}(\zeta)|^2 d\mu(\xi) d\zeta |
\leq \frac{|J|^2}{\mu(J)} \int_J \int_J \frac{|\tilde{f}(\xi) - \tilde{f}(\zeta)|^2}{|\xi - \zeta|^2} d\mu(\xi) d\zeta |
\leq c_2 D_{I,\mu}(f),
\]

(5)

where \(c_2\) depending only on \(\gamma\).

Let us now estimate \(B\). If \((\zeta, \xi) \in J \times J\), then we write

\[
|F(\zeta) - F(\xi)| = |\phi(\zeta)\left(1 - \frac{|\tilde{f}(\zeta)|}{m_J(f)}\right) - (\phi(\zeta) - \phi(\xi))1 - \frac{|\tilde{f}(\xi)|}{m_J(f)}| + \frac{c_1}{m_J(f)} |\zeta - \xi| |m_J(f) - |\tilde{f}(\xi)||.
\]

(6)

Note that, by Cauchy-Schwarz,

\[
|m_J(\tilde{f}) - \tilde{f}(\xi)|^2 \leq \frac{1}{|J|} \int_J |\tilde{f}(\eta) - \tilde{f}(\xi)|^2 d\eta |.
\]

(7)

So, by (6), (7) and (1)

\[
B := \int_J \int_J \frac{|F(\zeta) - F(\xi)|^2}{|\zeta - \xi|^2} |d\zeta||d\mu(\xi)
\leq \frac{2}{m_J(f)^2} \int_J \int_J \frac{|\tilde{f}(\zeta) - \tilde{f}(\xi)|^2}{|\zeta - \xi|^2} |d\zeta||d\mu(\xi)
+ \frac{2c_1^2}{m_J(f)^2 |J|^3} \int_J \int_J \int_J |\tilde{f}(\eta) - \tilde{f}(\xi)|^2 |d\eta||d\zeta||d\mu(\xi)
\leq \frac{2 + 2c_1^2}{m_J(f)^2} \int_J \int_J \frac{|\tilde{f}(\eta) - \tilde{f}(\xi)|^2}{|\eta - \xi|^2} |d\eta||d\mu(\xi)
\leq c_3 \frac{D_{I,\mu}(f)}{m_I(f)^2}.
\]

(8)

where \(c_3\) depending only on \(\gamma\).

Next, using again (7) and (1)
\[C := \int_{\zeta \in T \setminus J} \int_{\xi \in I_\gamma} \frac{|m_J(\tilde{f}) - |\tilde{f}(\xi)||^2}{|\zeta - \xi|^2}|d\zeta|d\mu(\xi) \]
\[\leq \int_{\zeta \in T \setminus J} \frac{|d\zeta|}{d(\zeta, I_\gamma)^2} \int_{\xi \in I_\gamma} |m_J(\tilde{f}) - |\tilde{f}(\xi)||^2|d\mu(\xi) \]
\[\leq \frac{c_4}{|J|^2} \int_J \int_J |f(\eta) - \tilde{f}(\xi)|^2|\eta|d\mu(\xi) \]
\[\leq c_4 \int_J \int_J \frac{|f(\eta) - \tilde{f}(\xi)|^2}{|\eta - \xi|^2}|d\eta|d\mu(\xi) \]
\[\leq c_5 D_{I,\mu}(f), \tag{9} \]

where \(c_4, c_5 \) depend only on \(\gamma \).

Finally, by Lemma (2.1) (a) and (b) and (1)

\[D := \int_{\zeta \in T \setminus J} \int_{\xi \in I_\gamma} \frac{|m_J(\tilde{f}) - |\tilde{f}(\xi)||^2}{|\zeta - \xi|^2}|d\zeta|d\mu(\xi) \]
\[\leq \int_{\zeta \in T \setminus J} \frac{d\mu(\xi)}{d(\zeta, I_\gamma)^2} \int_{\xi \in I_\gamma} |m_J(\tilde{f}) - |\tilde{f}(\xi)||^2|d\zeta| \]
\[\leq c_6 \frac{\mu(J)}{|J|^2} \int_{\zeta \in I_\gamma} \frac{1}{\mu(J)} \int_J |\tilde{f}(\eta) - \tilde{f}(\zeta)|^2|d\mu(\eta)|d\zeta| \]
\[\leq c_6 \frac{\mu(J)}{|J|^2} \int_J \int_J |\tilde{f}(\eta) - \tilde{f}(\zeta)|^2|\eta|d\mu(\eta) \]
\[\leq c_6 \int_J \int_J \frac{|\tilde{f}(\eta) - \tilde{f}(\zeta)|^2}{|\eta - \zeta|^2}|d\eta|d\mu(\zeta) \]
\[\leq c_7 D_{I,\mu}(f), \tag{10} \]

where \(c_6, c_7 \) depend only on \(\gamma \).

By (5), (8), (9) and (10) we get (3) and the proof is complete. \(\Box \)

Proof of Theorem 1.1. Since \(|E| = 0\), we can assume that \(\sup_n |I_n| \leq \gamma \pi \) with \(\gamma \in (0, 1) \).

Let \(f \in D(\mu) \) be such that \(f|E = 0 \). We set \(\ell = \sum_n |I_n| \). By Lemma 2.2 and Jensen's
inequality
\[
\int \bigcup I_n \log |f(\xi)| d\xi = \sum_n |I_n| \frac{1}{|I_n|} \int_{I_n} \log |f(\xi)| d\xi \\
\leq \sum_n |I_n| \log \frac{1}{|I_n|} \int_{I_n} |f(\xi)| d\xi \\
\leq \sum_n |I_n| \log \left(\frac{\kappa D_{I_n,\mu}(f)}{C_{\mu}(E \cap I_n)} \right) \\
= \sum_n |I_n| \log \frac{|I_n|}{C_{\mu}(E \cap I_n)} + \frac{\ell}{\ell} \sum_n |I_n| \log \left(\frac{\kappa D_{I_n,\mu}(f)}{|I_n|} \right) \\
\leq \sum_n |I_n| \log \frac{|I_n|}{C_{\mu}(E \cap I_n)} + \ell \log \left(\frac{\kappa}{\ell} \sum_n D_{I_n,\mu}(f) \right) \\
\leq \sum_n |I_n| \log \frac{|I_n|}{C_{\mu}(E \cap I_n)} + \ell \log \left(\frac{\kappa}{\ell} D_{\mu}(f) \right) = -\infty.
\]

By Fatou’s Theorem we obtain \(f = 0 \) and the proof is complete.

REFERENCES

CMI, LATP, Université de Provence, 39, Rue F. Joliot-Curie, 13453 Marseille Cedex 13, France

Current Address: IMB Université Bordeaux I, 351 cours de la Libération, F-33405 Talence Cedex, France

E-mail address: karim.kellay@math.u-bordeaux1.fr