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CLOSED MEANS CONTINUOUS IFF POLYHEDRAL: A

CONVERSE OF THE GKR THEOREM

EMIL ERNST

Abstract. Given x0, a point of a convex subset C of an Euclidean space, the

two following statements are proven to be equivalent: (i) any convex function
f : C → R is upper semi-continuous at x0, and (ii) C is polyhedral at x0. In
the particular setting of closed convex mappings and Fσ domains, we prove

that any closed convex function f : C → R is continuous at x0 if and only if
C is polyhedral at x0. This provides a converse to the celebrated Gale-Klee-
Rockafellar theorem.

1. Introduction

One basic fact about real-valued convex mappings on Euclidean spaces, is that
they are continuous at any point of their domain’s relative interior (see for instance
[13, Theorem 10.1]).

On the other hand, it is not difficult to define a convex function which is discon-
tinuous at each and every point of the relative boundary of its domain. As stated
by Carter in his treatise ”Foundations of mathematical economics” [3, page 334],
” this is not a mere curiosity. Economic life often takes place at the boundaries of
convex sets, where the possibility of discontinuities must be taken into account.”

The celebrated Gale-Klee-Rokafellar theorem ([5, Theorem 2]; see also [13, Theo-
rem 10.2]) is a major step toward an accurate understanding of continuity properties
for convex mappings at points belonging to the relative boundary of their domain.
This result is particularly meaningful when applied to the class of closed convex
functions, as defined in the seminal work of W. Fenchel ([4]).

GKR theorem: Any convex function is upper semi-continuous at any point at
which its domain is polyhedral. Accordingly, any closed convex mapping is contin-
uous at any such point.

Besides its intrinsic interest, this theorem has proved itself a fertile source of
applications. Taking one example out of many, let us remark that, since a poly-
hedra is polyhedral at any of its points, the GKR theorem proves the ubiquitous
mathematical economics and game theory lemma ([1, Theorem 4.2]) which says
that any concave function defined on Pn

+, the cone of the vectors from R
n with

positive coordinates, is lower semi-continuous.
The GKR theorem also provides powerful tools in establishing continuity of

special convex functions issued from particular optimization problems, as the M-
convex and L-convex functions of Murota and Shioura ([12]).
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The example of the closed convex function

f : C → R, f(x, y) =
x2

y

defined on the disk

C = {(x, y) ∈ R
2 : x2 + (1− y)2 ≤ 1},

yet discontinuous at the point (0, 0) ∈ C is well-known ([13, page 83]).
Let us remark that the point at which the previously-defined mapping is dis-

continuous may (inter alia) be characterized as being the limit of a non-constant
sequence made of extreme points of the disk. Lemma at page 870 in the article of
Gale, Klee and Rockafellar proves that this is a very general feature.

Converse GKR theorem: Let C be a closed and convex subset of X, and
x0 ∈ C be the limit of a non-constant sequence of extreme points of C (such a point
exists if and only if C is not polyhedral at each and every of its points). Then there
exists at least one closed convex function f : C → R which is not continuous at x0.

A standard observation proves that, if C is conical at some point x0 ∈ C, then
none of the non-constant sequences of extreme points of C can converge to x0. In
this respect, the following result by Howe ([7, Proposition 2]), provides an extension
of the reciprocal GKR theorem.

Howe’s theorem: Let C be a closed and convex subset of X and x0 ∈ C be
a point at which C is not conical. Then there exists at least one closed convex
function f : C → R which is not continuous at x0.

An obvious limitation of the previous theorem is that Howe’s result is bound to
the setting of closed domains, and no conclusion can be drawn for the larger class
of convex domains over which closed convex functions may be defined (that is Fσ

convex sets).
Moreover, this result leaves unanswered the decidedly non-trivial question of the

continuity of a closed convex function at points at which the domain is conical
without being polyhedral (typically the apex of a circular cone). Indeed, the hy-
pothesis that a closed convex function is automatically continuous at such type of
points seems very natural, and this claim have been made (in an implicit form) at
least once ([2, Proposition 5, p. 183]). However, this conjecture have been proved
false when Goossens ([6, p. 609]) provided a (very elaborate) example of a closed
convex function defined on a circular cone and discontinuous at its apex.

This note attempts to fill in the gap between the direct GKR theorem and Howe’s
result, by proving (Theorem 2.4, Section 2) the following statement.

Second converse GKR theorem: Given C, a convex subset of the Euclidean
space X , and x0, a point at which C is not polyhedral, then there is a convex
mapping f : C → R which is not upper semi-continuous at x0.

When, in addition, C is a Fσ set, then there is f : C → R, a closed convex
mapping which is discontinuous at x0.
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1.1. Definitions and notations. Let us consider X, an Euclidean space endowed
with the usual topology, and let us set x · y for the scalar product between the
vectors x and y of X, and ‖ · ‖ for the associated norm.

Given A a subset of X, let XA be its affine span (that is the intersection of all
the hyperplanes of X containing A). The relative boundary of A is defined by the
formula

r∂(A) = A ∩ XA \A,

where a superposed bar denotes the closure of a set, while relation

ri(A) = A \ r∂(A)

defines the relative interior of the set A. Let us recall ([13, Theorem 6.2, p. 45] )
that the relative interior of a non empty convex set is non empty.

As customary, a subset A of X is said to be a Fσ set, if it is the countable union
of a family of closed subsets of X:

A =
∞
⋃

i=1

Ai Ai = Ai ∀i ∈ N;

a function f : A → R is called closed if its epigraph

epi f = {(x, r) ∈ A× R : f(x) ≤ r}

is a closed subset of X × R. Let us notice that the domain of a closed function is
necessarily a Fσ set. The mapping f : A → R is upper semi-continuous at x0 if

f(x0) ≥ lim sup
x∈A, x→x0

f(x).

In this article, by polyhedron we mean any set obtained as the intersection of
a finite family of closed half-spaces of X; accordingly, polyhedra are closed convex
sets, not always bounded. Following Klee ([9, p. 86]), we call the set A polyhedral
at x0 ∈ A if there are U , a neighborhood of x0, and B, a polyhedron, such that

A ∩ U = A ∩B.

Similarly, we call a set A conical at x0 ∈ A if there are U , a neighborhood of x0,
and K, a closed convex cone, such that

A ∩ U = A ∩K;

in other words (Howe, [7, p. 1198]), ”near x0, the set A looks like a [. . . ] cone”.
Obviously, a convex set is polyhedral at any of the points of its relative interior.
Moreover, if a set is polyhedral at some point, it is also conical at the same point,
but the converse does not generally holds.

2. Continuity of convex mappings at points of the relative boundary

of their domain

A key step in proving our main result is provided by Theorem 2.2. This result
features a geometrical property of points belonging to the relative boundary of a
convex set, which, at our best knowledge, has never been addressed.

Following Klee ([8, p. 448]), we call a point x ∈ X linearly accessible from the
subset A of X if there is a point a such that the half-open segment [a;x[ is contained
in A. Of course, any linearly accessible point belongs to the closure of A, but the
converse does not generally holds.
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For convex sets, however, any point in the closure is linearly accessible (an ob-
vious application of the fact that their relative interior is always non-empty). The-
orem 2.2 addresses the question of the linear accessibility of the boundary points
for sets which can be expressed as the difference between two convex sets.

Let us first establish to what extent studying this topic helps to demonstrate the
converse GKR theorem.

Proposition 2.1. Let C be a subset of X, x0 one of its points, and assume that
there is a closed convex set D containing x0 such that x0 ∈ C \D, yet x0 is not
linearly accessible form C \D.

i) If C is convex, then there is a convex function f : C → R which is not upper
semi-continuous at x0.

ii) If C is a Fσ convex set, then it is possible to find a closed convex mapping
f : C → R which is not continuous at x0.

Proof of Proposition 2.1: Let us consider the cone of D at x0,

C(x0, D) = {x ∈ X : x0 + λ (x− x0) ∈ D for some λ > 0},

and µ(x0,D) : C(x0, D) → R, the Minkowski gauge of D at x0,

µ(x0,D)(x) = inf

{

γ > 0 : x0 +
1

γ
(x− x0) ∈ D

}

.

It is clear that C(x0, D) is a convex cone of apex x0, and µ(x0,D)(x0) = 0.
Moreover, it is well-known (see for instance [13, Corollary 9.7.1, p. 79]), that
µ(x0,D) is a closed convex function.

We claim that C ⊂ C(x0, D), and that the restriction

f : C → R f(x) = µ(x0,D)(x)

of µ(x0,D) to C fulfills point i) in Proposition 2.1.
Indeed, let x ∈ C; as x0 is not linearly accessible from C \ D, it follows in

particular that the segment [x;x0[ is not entirely contained in C \ D, and since
[x;x0[⊂ C, it results that

(2.1) λx0 + (1− λ)x ∈ D for some 0 < λ < 1.

But λx0 + (1− λ)x = x0 + (1− λ)(x− x0), so from relation (2.1) it yields that

x0 + (1− λ)(x− x0) ∈ D, (1− λ) > 0,

that is x ∈ C(x0, D).
We have thus proved that C ⊂ C(x0, D); to the end of analyzing the upper

semi-continuity of the function f at x0, let us recall that the point x0 belongs to
the closure of the set C \D. One can thus find a sequence, say (xn)n, of elements
from C \D converging to x0. Pick any of the vectors xn; as it does not belong to
D, the definition of the Minkowski gauge implies that f(xn) ≥ 1 for any n ∈ N.
The lack of upper semi-continuity of f at x0 is therefore established.

In order to address the point ii) of Proposition 2.1, let us state the standard
convex analysis result saying that, given C a convex Fσ set, there exists at least
one closed convex mapping g : C → R (the proof of Theorem 4.1 from the article
([9]) may easily be adapted to provide a demonstration of this fact).
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If the mapping g is discontinuous at x0, then it fulfills point ii). Assume now
that the mapping g is continuous at x0; the application

f : C → R f(x) = g(x) + µ(x0,D)(x)

is closed and convex as the sum of to closed and convex functions. Moreover, f is
the sum between a mapping which is continuous at x0, and a mapping which is dis-
continuous at the same point. Thus f is a closed convex application discontinuous
at x0, and Proposition 2.1 is completely proved. �

With the conclusions of Proposition 2.1 in mind, let us address Theorem 2.2, the
most technical part of our paper.

Theorem 2.2. Let C be a convex subset of X, and x0 be one of its points. The
two following statements are equivalent.

i) C is not polyhedral at x0

ii) there is a closed convex set D containing x0 such that x0 ∈ C \D, yet x0 is
not linearly accessible form C \D.

Proof of Theorem 2.2: i) ⇒ ii) Let x0 be a point of C at which C is not
polyhedral. By virtue of Corollary 3.3 ([9, p. 88]), it results that the convex cone
C(x0, C) is not polyhedral. Let us first prove a general result on non-polyhedral
cones.

Lemma 2.3. Let E be a non-polyhedral convex cone, and x0 its appex. Then there
is a sequence (yn)n∈N

⊂ X such that:
i) for any x ∈ E and n large enough, the sequence ((x− x0) · yn)n takes only

non-positive values,
ii) for each and every n ∈ N, there is xn ∈ E such that (xn − x0) · yn > 0.

Proof of Lemma 2.3: A far-reaching characterization of polyhedrality for cones
was achieved by Klee ( [9, Theorem 4.11, p. 92]; the particular case of closed
convex cones have had previously been provided by Mirkil [11, Theorem, p. 1]),
which says that a convex cone is polyhedral if and only if its projection on every
two-dimensional affine manifold (in other words, on any plane) of X is a closed set.

Accordingly, the convex cone Π(E) is not closed, where Π : X → X1 is the
operator of projection onto some plane X1 of X. Set v0 for the projection of x0,
and let v be a vector belonging to the closure of Π(E) but not to Π(E) itself (of
course, v 6= v0).

As the relative interiors of any convex set and of its closure coincide, the fact
that the vector v belongs to Π(E) \ Π(E) implies that v lies within the relative

boundary of Π(E). A standard support hyperplane argument reads now that there
exists an element w ∈ X1 such that the mapping x → x · w achieves its maximum
over Π(E) at v; in particular, it holds that

(2.2) Π(x) · w ≤ v · w ∀x ∈ E.

Since both the vectors v0 and v0 + 2(v − v0) belong to Π(E), we infer that

v0 · w ≤ v · w, (v0 + 2(v − v0)) · w ≤ v · w;

thus

(2.3) (v − v0) · w = 0.
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For every n ∈ N, let us set yn = w + v − v0
n . As yn ∈ X1, it results that

(2.4) (x− x0) · yn = (Π(x)− v0) ·

(

w +
v − v0

n

)

∀x ∈ E, n ∈ N.

We claim that the sequence (yn)n fulfills relation i). Let us pick x ∈ E; in view of
relation (2.2), there are two possible cases: a) Π(x)·w < v ·w, and b) Π(x)·w ≤ v ·w.

In case a), from relation (2.3) we infer that

(2.5) (Π(x)− v0) · w < 0.

As obviously

(2.6) lim
n→∞

(Π(x)− v0) ·
v − v0

n
= 0,

statement i) yields from relations (2.4), (2.5) and (2.6).
In case b), since X1 is a to-dimensional manifold, it results that Π(x) lies on the

line v0 +R (v− v0). But the half-line v0 +R
∗

+ (v− v0) is disjoint from Π(E) (recall
that v0 ∈ Π(E), v /∈ Π(E) and that Π(E) is a cone of appex v0), so we may affirm
that

(2.7) Π(x) = v0 − λ(v − v0) for some λ ≥ 0.

By combining relations (2.3), (2.4) and (2.7), we conclude that

(x− x0) · yn = −λ
‖v − v0‖

2

n
≤ 0 ∀ n ∈ N.

Statement i) is therefore fulfilled in both situations a) and b).

Let us now address relation ii). As v ∈ Π(E), there is a sequence (zn)n∈N
⊂ E

such that the sequence (Π(zn))n converges to v. Pick k ∈ N, and apply relation
(2.4) for x = zn and yk:

(zn − x0) · yk = (Π(zn)− v0) ·

(

w +
v − v0

k

)

∀n ∈ N.

Accordingly,

lim
n→∞

((zn − x0) · yk) = (v − v0) ·

(

w +
v − v0

k

)

;

by virtue of relation (2.3), we obtain that

lim
n→∞

((zn − x0) · yk) =
‖v − v0‖

2

k
> 0.

The set Lk = {n ∈ N : (zn − x0) · yk > 0} is therefore non-empty. Set
u(k) = minLk; the sequences (xn)n∈N ⊂ E, where xn = zu(n), and (yn)n, obviously
fulfills relation ii). �

Let us now get back to the proof of the implication i) ⇒ ii) from Theorem
2.2, and apply the conclusions of Lemma 2.3 to the non-polyhedral cone C(x0, C).
Accordingly, there are two sequences, (xn)n∈N ⊂ C(x0, C) and (yn)n∈N ⊂ X such
that

(2.8) (x− x0) · yn ≤ 0 for n large enough,

and

(2.9) (xn − x0) · yn > 0 ∀n ∈ N.
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By replacing, if necessary, the vectors xn with vectors of form λn x0+(1−λn)xn,
we may assume that xn ∈ C. Set

γn = x0 · yn +
(xn − x0) · yn
2n‖xn − x0‖

,

and define the set
D = {x ∈ X : x · yn ≤ γn ∀n ∈ N}.

Obviously, D is a closed convex set which contains the point x0. Let us prove
that x0 ∈ C \D. Indeed, each end every of the points

tn = x0 +
xn − x0

n‖xn − x0‖

belong to C (they are convex combinations of vectors x0 and xn, both lying within
C); from relation (2.9) it yields that

tn · yn − γn = −
(xn − x0) · yn
2n‖xn − x0‖

< 0,

so neither of the points tn belong to D. Finally, remark that the sequence (tn)n
converges to x0, to conclude that x0 ∈ C \D.

To the purpose of proving that x0 is not linearly accessible from C\D, let us pick
x ∈ C. Since the sequence ((x− x0) · yn)n takes only a finite number of positive
values, then for any positive sequence (un)n, there is a positive real number a such
that

(2.10) λ ((x− x0) · yn) ≤ un ∀0 ≤ λ ≤ a, ∀n ∈ N.

Inequality (2.9) allows us to apply relation (2.10) for un =
(xn − x0) · yn
2n‖xn − x0‖

, and

deduce that there exists a positive real value a such that

(2.11) λ ((x− x0) · yn) ≤
(xn − x0) · yn
2n‖xn − x0‖

∀0 ≤ λ ≤ a, ∀n ∈ N.

But

λ ((x− x0) · yn)−
(xn − x0) · yn
2n‖xn − x0‖

= ((1− λ)x0 + λx) · yn − γn,

so relation (2.11) proves in fact that

((1− λ)x0 + λx) ∈ D ∀0 ≤ λ ≤ a.

Accordingly, there is no point x ∈ C such that the segment [x, x0[ be entirely
contained within C \D; in other words, the point x0 is not linearly accessible from
C \D.

ii) ⇒ i) This implication easily follows by combining the classical GKR theorem
and Proposition 2.1. �

The main result of this note stems now by combining Proposition 2.1 and The-
orem 2.2.

Theorem 2.4. Given C, a convex subset of the Euclidean space X , and x0 ∈ C,
then any convex mapping f : C → R is upper semi-continuous at x0 if and only if
C is polyhedral at x0.

When, in addition, C is a Fσ set, then any closed convex mapping f : C → R is
continuous at x0 if and only if C is polyhedral at x0.
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