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Abstract

A solution to a benchmark problem for a three-dimensional mixed convection

flow in a horizontal rectangular channel heated from below and cooled from above

(Poiseuille-Rayleigh-Bénard flow) is proposed. This flow is a steady thermoconvec-

tive longitudinal roll flow in a large aspect ratio channel at moderate Reynolds and

Rayleigh numbers (Re=50, Ra=5000) and Prandtl number Pr=0.7. The model is

based on the Navier-Stokes equations with Boussinesq approximation. We propose

reference solutions resulting from computations on large grids, Richardson extrapo-

lation (RE) and cubic spline interpolations. The solutions obtained with one finite

difference, one finite volume and two finite element codes are in good agreement

and reference values for the flow and thermal fields and the heat and momentum

fluxes are given with 4 to 5 significant digits.
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Nomenclature

A,Ae streamwise and adiabatic entrance aspect ratios of the channel, L/H, Le/H

B transversal aspect ratio of the channel, l/H

df relative distance between the finest grid and extrapolated solutions, (f fg−f ex)/|f fg|

Ec kinetic energy

FD,FE,FV finite differences, finite elements, finite volumes

g gravitational acceleration, m/s2

h, hi cell size or space step of a grid

H channel height, m

Ibuo integral of the buoyancy term on the half computational domain
~k upward vertical unit vector

l channel width, m

L,Le channel and adiabatic entrance lengths, m

Nx/y/z cell number in the x, y or z directions

Nu Nusselt number

p dimensionless deviation of pressure from hydrostatic pressure

Pr Prandtl number, ν/α

PRB Poiseuille-Rayleigh-Bénard

r regularity order of a problem

Ra Rayleigh number, gβ(Th − Tc)H
3/(να)

Re Reynolds number, UmeanH/ν

RE Richardson Extrapolation

S boundary surface of the channel

t dimensionless time

T temperature, K

Tc, Th temperatures of the top cold and bottom hot wall of the channel, K

Tm dimensionless mean temperature of the whole computational domain

u, v, w dimensionless streamwise, spanwise and vertical velocity components

uPois dimensionless Poiseuille profile in the rectangular channel (function of x and y)

Umean mean velocity of the flow in a rectangular channel, m/s

~v dimensionless velocity vector, (u, v, w)

x, y, z dimensionless streamwise, spanwise and vertical coordinates

Greek letters

α thermal diffusivity, m2/s

α observed convergence order from RE or "extrapolation coefficient" of RE

α° consistency order or formal convergence order of the numerical method

β thermal expansion coefficient, K−1

∆Pio mean pressure difference between inlet and outlet

∆t dimensionless time step

ν kinematic viscosity, m2/s

ρ mass per volume unit, kg/m3

θ reduced temperature, (T−Tc)/(Th−Tc)
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Subscripts

b bottom

exact exact solution of the problem

f front

h discrete solution of the problem on a grid of space step h

i inlet

marg uncertainty margin on a value

o outlet

prec precision of a reference value, fprec = fmarg/fref

ref reference value

s symmetry

t top

tot total

Superscripts

ex extrapolated value by RE

fg solution on the finest grid

∼ approximated value

1 Context and objectives

Mixed convection flows in channels of rectangular cross section are encountered in

many industrial applications: thermal and chemical reactors, chimneys, solar collectors,

thermal insulation of buildings, heat exchangers, etc. More specifically, the Poiseuille-

Rayleigh-Bénard (PRB) configuration (i.e. mixed convection flows in horizontal rect-

angular channels heated from below) is representative of rectangular Chemical Vapor

Deposition (CVD) reactors and of air flows in the cooling of printed electronic circuit

boards, among others [1, 2, 3]. PRB flows are also studied in association with mass

transfer in the case of double diffusive mixed convection flows, with or without Soret

effect [4, 5]. However, to the authors’ best knowledge, three-dimensional benchmark

numerical solutions of mixed convection flows do not exist in the literature. In numer-

ous numerical studies of PRB flows, for instance, numerical codes are only validated by

comparisons with experimental data, particularly those of Chiu and Rosenberger [6] and

Ouazzani et al. [7], in which laser Doppler anemometry measurements of local velocities

are given. However, it is well known that a precise agreement between the experimental

and numerical results is hard to obtain because the thermal and dynamical initial and

boundary conditions are not perfectly controlled experimentally and are very hard to

accurately reproduce numerically [8]. That is why we propose the present benchmark

solution.

This benchmark exercise was proposed in the framework of the French Heat Transfer
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Society (SFT) by several laboratories involved in the numerical analysis of thermoconvec-

tive flows in closed cavities and open channels. A call for contributions was first published

in 2006 [9]. Initially, two configurations of PRB flows, covering two different flow ranges,

were chosen. The first one concerned the present steady longitudinal roll flow in a large

aspect ratio channel at Reynolds number Re=50, Rayleigh number Ra=5000 and Prandtl

number Pr=0.7. The second one concerned a fully-established space and time periodic

transverse roll flow in a small aspect ratio channel at small Reynolds number Re=0.1,

Ra=2500 and Pr=7. In this paper, only the solution of the first test case is presented.

The computation of 3D unsteady mixed convection flows in channels often requires

computational domains of long and/or wide aspect ratios, fine space and time discretiza-

tions. Therefore, efficient numerical methods are needed to solve the conservation equa-

tions. The interest of this first test case is that its computational cost is quite reasonable

and it is accessible with limited computational facilities. It is indeed steady and, the

computational domain being extended up to the fully-established zone, a homogeneous

Neumann boundary condition at the outflow accommodates the problem solution. It is

therefore much easier to compute than the second test case in which a steady state is

never established since unsteady thermoconvective rolls are permanently transported by

the flow.

Thus the aim of the present paper is to provide a 3D numerical benchmark solution

for mixed convection flows, that can be used to validate 3D numerical codes for the com-

putation of thermoconvective instabilities in channels for instance. More precisely, local,

surface averaged and volume averaged quantities, concerning the temperature, velocity

and pressure fields and their derivatives are computed. For all these quantities, reference

values with their uncertainty margins are given in tables.

In the present work, we solve the first benchmark problem using four different CFD

research codes and three discretization methods: finite difference (FD), finite volume

(FV) and finite element (FE) methods. Two of the solvers (the FD and FV ones) are,

theoretically, of second order in space, while both others (the FE solvers) are of third

order. All contributors have mobilized a significant amount of computational resources

to achieve reliable spatial convergence. In particular, approximate solutions have been

obtained on successively refined grids so that Richardson extrapolation (RE) could be

used to extent the results. This technique enables one to improve the accuracy of the

discrete solutions when used in the asymptotic range of the numerical methods [10, 11,

12, 13]. In the present study, RE was mainly performed for increasing the accuracy of

the second order solvers since an improvement by one unit of the space convergence order

is theoretically achievable, which would allow to reach the same space order as the FE

methods.

However, in the present test case, difficulties in the use of RE have appeared due to

the mixed thermal boundary conditions on the channel bottom and top plates. Indeed, to
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try to reproduce the operating conditions of the PRB experiments by Pabiou et al. [14]

without introducing too many parameters (a regularizing function for instance), we chose

to impose adiabatic Neumann conditions near inlet and isothermal Dirichlet conditions

downstream. This generates a continuous temperature field but a discontinuous temper-

ature gradient at the boundary condition junction. The consequences of this singularity

are discussed thoroughly in the second part of this article [15]. In this more technical

and theoretical second part, it is shown that RE can still be used, but with precautions,

and that reference solutions for the present benchmark problem can be indeed given with

four to five significant digits.

The outline of the present paper is the following. The geometry, the governing equa-

tions, the boundary conditions and the flow parameters of the simulated test case are

described in section §2. The solvers of the different contributors are presented in section

§3 and references are given for more details. In section §4, the general principle of RE

is first recalled and the methodology used to define the reference solutions is described.

The reference solutions are presented and analyzed in section §5. In §5.1, reference solu-

tions are given for the volume averages of kinetic energy and temperature over the whole

domain and for the pressure difference between inlet and outlet of the channel. In §5.2,

streamwise and spanwise profiles of the velocity components, temperature and wall Nus-

selt number are presented and reference values for selected extrema on these profiles are

given. In §5.3, reference values of the heat and momentum fluxes through the channel

boundaries are presented. Finally a brief conclusion is given in section §6.

2 Test case description

The proposed benchmark is a PRB flow, made of ten steady longitudinal thermo-

convective rolls, in the horizontal rectangular channel drawn in Figure 1. A Poiseuille

flow is imposed at the channel entrance and the incoming fluid is cold, at temperature

Tc. After an entrance zone over which a zero heat flux is imposed on the four walls,

the top horizontal wall is maintained at the cold temperature Tc and the bottom wall is

maintained at a higher temperature Th. The vertical lateral walls are adiabatic. A and

B are the streamwise and spanwise aspect ratios of the computational domain and Ae is

the streamwise entrance aspect ratio (see Figure 1). The working fluid is Newtonian and

the flow is governed by the 3D incompressible Navier-Stokes equations under the Boussi-

nesq assumption. Using the channel height H , the mean flow velocity Umean, ρU
2
mean and

H/Umean as reference quantities for lengths, velocities, pressure and time respectively,

and using the reduced temperature θ = (T − Tc)/(Th − Tc), the governing equations take

the following dimensionless form:
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∇.−→v = 0
∂−→v

∂t
+ (−→v .∇)−→v = −∇p +

1

Re
∇2−→v +

Ra

PrRe2
θ
−→
k

∂θ

∂t
+−→v .∇θ =

1

PrRe
∇2θ

(1)

where x, y, z, t, −→v = (u, v, w) and p are the dimensionless streamwise, spanwise and

vertical coordinates, time, velocity vector and pressure,
−→
k is the upward unit vector, Pr

is Prandtl number (= ν/α), Re is Reynolds number (= UmeanH/ν) and Ra is Rayleigh

number (= gβ(Th − Tc)H
3/(να)). The boundary and initial conditions for u, v, w and θ

are:

• at z = 0, −→v =
−→
0 and there is a Neumann thermal boundary condition, ∂θ/∂z = 0,

for x ∈ [−Ae, 0[ next to a Dirichlet condition, θ = 1, for x ∈ [0, A−Ae];

• at z = 1, −→v =
−→
0 and there is also a Neumann thermal boundary condition,

∂θ/∂z = 0, for x ∈ [−Ae, 0[ next to a Dirichlet condition, θ = 0, for x ∈ [0, A−Ae];

• at y = 0 and B, −→v =
−→
0 and ∂θ/∂y = 0;

• at x = −Ae, u = uPois(y, z), v = w = 0 and θ = 0, where uPois(y, z) is given either

directly by an approximate solution of the Poisson equation
∂²u

Pois

∂y²
+

∂²u
Pois

∂z²
= Re ∂p

∂x
,

with no-slip boundary conditions at y = 0 and B and at z = 0 and 1, or by the

analytical solution of this equation computed in [16] and given in appendix A.

• at x = A−Ae, an outflow non-reflective boundary condition is imposed. The choice

of this boundary condition was left free in [9]. Note however that the standard

Neumann or Orlanski boundary conditions are appropriate for this test case since

the flow is dominated by convection.

• at t = 0, ∀x ∈ [−Ae, A− Ae], u = uPois(y, z), v = w = 0 and θ = 0.

The present test case is defined by: Re = 50, Ra = 5000, P r = 0.7, A = 50, B = 10 and

Ae = 2. The resulting flow pattern is the ten longitudinal roll steady flow presented in

Figure 2. It is obtained by starting from the initial conditions given above and develops

after a transient stage which will not be discussed here. It is symmetrical with respect to

the median longitudinal vertical plane and can therefore be computed for y ∈ [0, B/2].

3 Contributors and solver description

Below, we present the solvers of the four contributors and references are given for

more details. The numerical parameters for each of the four schemes are given in Table
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1. In the table, we also indicate if the symmetry with respect to the median longitudinal

vertical plane was used or not, the mesh sizes in each space direction, Nx ×Ny ×Nz, the

time step value, ∆t, an estimation of the computational time (restitution time) and the

consistency orders in space1, α°, of each space discretization method for each primitive

variable. Note that, when symmetry is used, Ny is the node number on the width B/2

of the computational domain. Furthermore, Ni (i = x, y, z) is the node number in the

direction i for the FV and FE methods and the number of computational points of scalar

quantities (temperature and pressure) for the FD method. Thus, whatever the mesh

used, the beginning of the bottom heated plate at x = 0 is located on a node for the FE

and FV methods and at mid distance between two temperature computational points for

the FD method.

3.1 Second order finite difference vectorized code: FD1

The test case solution “FD1” is computed using a FD method, optimized for vec-

torial computers. The time discretization scheme is a second-order scheme combining a

second order backward difference formula for the time derivative term, an explicit Adams-

Bashforth scheme for the convective term and an implicit treatment of the diffusive term.

The equations are discretized in space on uniform, Cartesian and staggered grids using

centered differences for the diffusive terms and a central scheme for the convective terms.

However, with the two finest meshes used in this study (see Table 1), to avoid numerical

scheme instabilities and save CPU time, the solution is computed first with a second

order upwind scheme and ∆t = 0.01. Then, starting from this converged steady solution

as initial condition, a new solution is computed with the central scheme and ∆t = 0.002.

The time integration and the velocity-pressure coupling are computed by the projection

method based on Goda’s algorithm [17]. The Helmholtz equations for the temperature

field and the components of the predicted velocity field are solved using an incremental

factorization method of ADI type which preserves a second order time accuracy. The

Poisson equation for the pressure increment is solved by a factorization method which

consists in the partial diagonalizing of the mono-dimensional Laplace operators in the

transverse directions y and z. The linear systems resulting from these two factorization

methods are all tridiagonal and are solved by the TDMA algorithm. An Orlanski type

boundary condition is used at the outflow boundary. Steady state solutions are obtained

by integrating long enough in time. The stopping criterion is reached when the maxi-

mum of the velocity divergence saturates at values below 5 × 10−12. Since this solver is

highly vectorizable, the code is very efficient on vectorial supercomputers: for instance,

it runs at 12.5 Giga Flops on average on the NEC-SX8 computer at IDRIS (the CNRS

1the consistency order in space is the formal convergence order that is the leading order of the space
discretization truncation error.
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supercomputing center at Orsay, France), when the peak power of this computer is 16

Giga Flops. A detailed description of this code and of its validations and performances

can be found in Benzaoui et al. [8].

3.2 Third order finite element parallelized code: FE2

The numerical model “FE2” is based on a segregated approach to build up separate

integral forms associated with the set of coupled governing equations (1). The fluid flow

problem is kept in primitive variable formulation and solved using an unconditionally

stable projection algorithm [18]. As in most projection type algorithms the incompress-

ibility constraint is enforced in the FE2 code through a pressure correction field computed

from a pressure Poisson equation. The latter is obtained by taking the divergence of the

momentum equation in equations (1) and Neumann boundary conditions. Non homo-

geneous Neumann boundary conditions have been implemented for the pressure Poisson

equation in a form derived from [19, 20]:

∂p

∂~n
= (−

∂~v

∂t
− ~v∇~v −

1

Re
∇× (∇× ~v) +

Ra

PrRe2
θ~k) · ~n (2)

The mechanical stress and heat flux outlet boundary conditions arising at x = A for the

momentum and energy equations have been treated with a formulation inspired from [21]

and adapted to the present framework combining a segregated approach for the mixed

convection problem together with a projection algorithm.

The spatial discretization of the three separate integral forms, associated with tem-

perature, velocity and pressure unknowns, follows the standard FE method, using tri-

quadratic hexahedral FE for the velocity and temperature fields and tri-linear approxima-

tion for the pressure field. The non-linear algebraic system resulting from the discretiza-

tion of the momentum equation is solved using a Newton-Raphson procedure, despite

only partial convergence is required for solving this nonlinear system during the transient

solution in the segregated procedure. The time integration is performed with a second

order Backward Difference Formula scheme (BDF2) [18]. At each time step the three al-

gebraic systems corresponding to the momentum, incompressible projection and energy

conservation are solved with an iterative solver (Bi-Conjugate Gradient Stabilized, pre-

conditioned with Additive Schwartz Method) provided in the PETSc toolkit [22]. This

implementation enables us to efficiently run high performance massively parallel comput-

ers (IBM SP4 and SP6 at IDRIS). Finally, the computational domain is discretized with

three meshes uniformly spaced in the x, y and z directions and whose node numbers are

given in Table 1, e.g., the finest mesh consists of 675× 135× 45 tri-quadratic hexahedra

FE, built on 1351× 271× 91 nodes. The stopping criterion is reached when the L2 norm

of the time derivative terms of velocity components and temperature, divided by the total
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number of degrees of freedom, is smaller than 10−12.

3.3 Second order finite volume parallelized code: FV3

The test case solution “FV3” is computed using the FV code Thétis developed at I2M

Institute. Time discretization of the Navier-Stokes and energy equations is implicit. A

first order Euler scheme is used, with an implicit treatment of all the terms of the equa-

tions (after linearization of the nonlinear convective term of the Navier-Stokes equations

and after uncoupling with the energy equation). The incompressibility constraint that

couples the velocity and the pressure is solved using a pressure correction scheme [23]. It

consists of splitting the Navier-Stokes system into two stages, a velocity prediction stage

and a pressure correction stage. The spatial discretization is based on the FV method

on a velocity-pressure staggered grid. Pressure and temperature unknowns are located

at the cell vertices whereas velocity components are face centered. A centered scheme of

order 2 is used for the nonlinear convective terms and stress terms of the Navier-Stokes

equations, as well as for the pressure correction step and the diffusive term of the energy

equation. The convective term of the latter equation is discretized with the Quick scheme

to avoid numerical instabilities [24]. A Neumann boundary condition is set on the outlet

boundary for velocity and temperature. The code is parallelized in a distributed way

[25] and runs efficiently on hundreds of processors using the parallel solver library Hypre

[26]. Among the different solvers and preconditioners available in this library, the most

efficient for this problem are a GMRES solver for the prediction step and the energy

equation with a point Jacobi preconditioner. For the correction step, a BiCGStab solver

with a multigrid preconditioner is used. Three meshes were used. The first one begins

with 601 cells in direction x to avoid small oscillations observed in the temperature field

with coarser meshes. Simulations are stopped when both the stationary criterion (L∞

norm of the absolute difference of temperature and velocity between two time iterations)

of 10−10 is reached and the L2 norm of the divergence is below 10−10. An SGI Altix 8200

cluster was used composed of 32 eight-cores dual Intel Xeon processor blades.

3.4 Third order finite element stationary parallelized code: FE4

The numerical model “FE4” spatially discretizes equations (1) in stationary form

(without the temporal derivative term) using an LBB-stable [27] FE method. No up-

winding of the convective term is used. To find the solution of the discrete nonlinear

stationary problem, we used a defect-correction solver [28]. A certain linearization of the

equations and additional regularization terms give an inexact tangent matrix. This tan-

gent matrix is then approximately factorized as in the algebraic projection method [29].

This leads to segregation of the linear systems to be solved for each scalar incremental

unknown (3 velocities, 1 pressure, 1 temperature).
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The mesh is regular and consists in hexahedral elements, triquadratic (Q2) for the

velocity and temperature unknowns and linear discontinuous (P nc
1 ) for the pressure. Thus,

the formal spatial discretization order of the method is 3 for the velocity and temperature

unknowns and 2 for the pressure unknown. The total number of degrees of freedom is 16

million for the coarsest mesh and 73.3 millions for the finest one. The standard natural

boundary condition on momentum for the discretization used [27] is µ∂un/∂n − P = 0.

A boundary term in −Plast (the last pressure estimation) is discretized and added to

the right hand side of the boundary condition so that we get the desired µ∂un/∂n = 0

when convergence is reached. The inexact tangent matrix is obtained from the following

contributions: exact tangent matrix for the diffusion, pressure gradient and velocity

divergence terms, fixed point linearization for the convective terms and a regularizing

pseudo-time like mass term on the velocity and temperature. The linear systems are

solved with BiCGSTAB preconditioned by an ILU(0) incomplete factorization [30] for the

velocity and temperature unknowns and FCG(1) preconditioned by algebraic multigrid for

the pressure unknown. We used the algebraic multigrid method of Notay [31] in sequential

mode. To speed-up convergence towards the final steady state, a four-point acceleration

method is used. For all computational results, it was checked that the L∞ norm of the

vector of the final incremental unknowns was less than 10−10 and that the L∞ norm of

the final residual vector was less than 10−11. The numerical model was implemented

in Cast3m [32]: a freely available FE code developed at CEA (French Atomic Energy

Commission). The model was run on standard PC servers running Linux with up to 8

cores and 64 GB RAM. The most CPU intensive part of the model is the solution of the

pressure linear systems.

4 Computation method of reference values

4.1 Principle of Richardson extrapolation

When the approximate solutions of a continuous initial and boundary value problem

are computed by discretization methods such as FD, FV or FE methods, RE can be

used to improve the accuracy of the discrete solutions. Indeed, provided that some

assumptions are satisfied (see below), it is possible to get an order of accuracy of at

least O(hp+1) when the convergence order of the numerical method is O(hp), where h

is the mesh size. This technique then allows one to compute extrapolated primitive

variables at any point of the computational domain as well as solution functionals such

as differentiated or integrated quantities (heat and momentum fluxes, volume or surface

averaged quantities, and so on). A concise and elegant presentation of RE to estimate a

posteriori discretization errors in computational simulations can be found in [10]. More

details and deeper discussions on the theory are given in [11, 12, 13]. Here we present the
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RE principle to compute extrapolated values. The aim is to briefly remind of its general

principle but for a completely rigorous presentation one should refer to the second part

of this paper [15].

RE first consists of computing the numerical solutions fhi
(1 ≤ i ≤ N) of the dis-

cretized boundary value problem on N different nested uniform grids of size hi, with h1

the coarsest grid and hN the finest one. If the exact solution of the continuous problem,

fexact, is sufficiently smooth to justify the use of Taylor expansion (at least up to the

discretization order), then it can be written in the form:

fhi
= fexact + Cαh

α
i +O(hα+1

i ) (3)

where Cα is a coefficient which is dependent on α but independent of hi. Then, the leading

order α of the truncation error due to discretization, the coefficient Cα and the exact

solution fexact can be approximated from the discrete solutions, if the mesh spacings hi

used in the extrapolation are small enough so that the discrete solutions fhi
are located in

the asymptotic convergence region: that is the leading order term Cαh
α
i of the truncation

error must dominate the total discretization error fexact − fhi
. Thus, using three grids

(N = 3), such as h1

h2
= h2

h3
, the approximations α̃, C̃α and f̃ ex of α, Cα and fexact in

equation (3) are given by [12, 13]:

α̃ =
ln
(

fh1−fh2
fh2−fh3

)

ln
(

h1

h2

)

C̃α =
fh2

− fh3

hα̃
2 − hα̃

3

(4)

f̃ ex = fh3
− C̃αh

α̃
3

and, using four grids (N = 4) such as h1

h2
= h3

h4
, they are given by:

α̃ =
ln
(

fh1−fh3
fh2−fh4

)

ln
(

h1

h2

)

C̃α =
fh3

− fh4

hα̃
3 − hα̃

4

(5)

f̃ ex = fh4
− C̃αh

α̃
4

with C̃α = Cα+O(hN−1) and f̃ ex = fexact+O(hα̃+1
N ). As a consequence, the approximation

f̃ ex of the asymptotic solution fexact will be better if hN is small and α̃ is large.

The RE technique can therefore be used to increase the accuracy of discrete solutions

if the problem is smooth enough. Since the present benchmark problem does not sat-

isfy this assumption, the aim of the second part of this paper [15] is precisely to show
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that RE can still be used when a temperature gradient discontinuity is present in the

boundary conditions of the problem. In this case however, numerous precautions and

several verifications must be done in order to guarantee the RE validity. For each ex-

trapolated quantity, it must be checked that the associated extrapolation coefficient, α̃,

varies between the order of the regularity of the problem (equal to one in the present

benchmark problem; see [15]) and the convergence order of the used numerical method

(equal to two or three according to the contributors of the present paper). Of course,

for all the quantities presented in the present paper, this requirement has been checked

when a value extrapolated by RE is used to compute a reference value.

4.2 Criteria used to define the reference values

All the reference solutions presented in the present paper have been computed from

the solutions obtained by the four contributors with their laboratory codes using the fine

grids presented in Table 1 and the stringent convergence criteria described in §3. Since

these codes have second and third order space accuracies, RE has mainly been used to

increase the accuracy of the lower order methods in order to homogenize the accuracy of

the four solutions. It has indeed been shown in [15] that, in our specific case (including the

problem at hand and the particular methods and meshes used), RE is relevant to increase

the accuracy of most of the quantities computed with the FD1 and FV3 second order

methods, even if a singularity in the temperature gradient is present in the boundary

conditions. Nevertheless, in this case, one must carefully check the validity of RE for

each extrapolated quantity. On the other hand, it has also been shown in [15] that in our

specific case RE couldn’t be used most of the time with the FE4 method and sometimes

with the FE2 method.

As a consequence, the reference solutions proposed in the present paper have been

constructed by averaging the extrapolated values obtained from RE of the FD1 and FV3

solutions and the extrapolated values or the values on the finest grid of the FE2 and FE4

methods, depending on whether RE succeeds or not. More precisely, for each quantity

proposed in this paper, the reference value, fref , is equal to the arithmetic average of the

extreme values of the FD1, FE2, FV3 and FE4 extrapolated values, except if the validity

of RE is not satisfied by the FE solutions. In this case, each value of the FE method

for which RE fails is replaced by its counterpart on the finest grid. The uncertainty

margin, fmarg, of the reference solution is simply defined as the half difference between

the two extreme values of the four contributors. These definitions have the advantage

to be very simple and to give a quick criterion to evaluate the dispersion of the best

solutions of the four contributors. We have also defined the precision of the reference

solution determination, fprec: it is equal to the ratio of the uncertainty margin to the

reference value. The values of fref , fmarg and fprec computed for various integral, local
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or derivative quantities characteristic of the velocity, pressure and thermal fields of the

present PRB flow are given in the result tables of §5.

5 Presentation and analysis of the reference values

5.1 Reference values for integral quantities

The reference values of integral quantities are given first. These integrals are twice

the mean kinetic energy, 2Ec, on the whole domain of volume D, the mean pressure

difference, ∆Pio, between inlet and outlet and the mean temperature, Tm, on the whole

domain that are defined by:

2Ec =
1

D

∫∫∫

D

(

u2 + v2 + w2
)

dx dy dz (6)

∆Pio =
1

Si

∫∫

Si

P dy dz −
1

So

∫∫

So

P dy dz (7)

Tm =
1

D

∫∫∫

D

θ dx dy dz (8)

They have been computed using either the middle point rule for the FD1 and FV3

solutions or 3 × 3 × 3 Gauss integration scheme for the FE2 and FE4 solutions. The

advantage of these integrals is that they only depend on the primitive variables: no

differentiation and no interpolation are needed to compute their values on each grid.

Thus, the accuracy of these quantities only depend on the convergence orders of the

numerical methods.

The values of f = (2Ec,∆Pio, Tm) on the finest grid (noted f fg) and extrapolated by

RE (noted f ex) are given in Table 2 with the associated convergence order α̃f . It can be

shown that RE fails only for the FE4 2Ec and ∆Pio values because α̃Ec
and α̃∆Pio

do not

vary between 1 (the order of the regularity of the problem) and 3 (the accuracy order

of the the FE4 method). Reference solutions can nevertheless be constructed using the

FE4 2Ec and ∆Pio values on the finest grid by following the method proposed in §4.2.

The reference values of the three integral quantities are given in Table 2 with a precision

of the order of 10−5, with five common figures among the four extrapolated solutions for

2Ec and ∆Pio and four common figures for Tm. The relevance of RE on the accuracy of

these results is completely discussed in [15].

13



5.2 Reference values for temperature, velocity and Nusselt num-

ber local extrema

5.2.1 Space profiles of the thermal and dynamical fields

In the following, we denote by Nut and Nub the local Nusselt numbers on the top

and bottom walls respectively. They are defined by:

Nut,b(x, y) = −
H

(

∂T
∂Z

)

Z=H,Z=0

Th − Tc

= −

(

∂θ

∂z

)

z=1,z=0

(9)

In Figure 3, the longitudinal profiles of the primitive variables θ, u, v and w are plotted

along the lines (y, z) = (2, 0.2) and (5, 0.5) and the profiles of Nut and Nub are plotted

along the lines y = 2 and y = 5. The transverse profiles of θ, u, v and w are drawn in

Figure 4 along the four lines at x = 10 and 30 and at z = 0.2 and 0.5. The transverse

profiles of Nut and Nub are drawn in Figure 5 along the lines at x = 10 and x = 30.

Only the first half of these transverse profiles is shown because the flow is symmetrical

with respect to the median vertical plane (y = 5). The transverse profiles at x = 10

are located in the entrance region, more precisely at mid-length of the forced convection

triangular zone, where only two longitudinal rolls are present along each vertical wall (see

Figure 2(a)). On the other hand, the transverse profiles at x = 30 are sinusoidal profiles

because they are located where ten well developed longitudinal rolls are present.

All these profiles are computed from the FD1 solution on the finest mesh. The same

profiles are obtained with the other numerical methods (FE2, FV3, FE4) if the com-

parisons are done at the same scales as those of Figures 3, 4 and 5. Note that the

extrapolated profiles cannot be drawn since the asymptotic convergence region does not

span the whole computational domain. In particular, RE diverges at points where the

profiles computed on two distinct meshes intersect. Indeed, when fhi
= fhj

for hi 6= hj ,

α diverges in equations (4) or (5). This is discussed in details in [15].

5.2.2 Temperature, velocity and Nusselt number local extrema

The reference values and the coordinates of thirty-four local extrema, identified by

small filled circles on the profiles of Figures 3-5 along the lines at (y, z) = (5, 0.5) and

(2, 0.2) and at (x, z) = (30, 0.5), are given in this section. Only the reference values are

given here. They are computed with the method described in §4.2. However, the method

used to compute the values of these extrema on each grid and their extrapolated values

requires cubic spline interpolations. This part of the method is described in [15]. The

extrapolated values and the values on the finest grid computed by the four contributors

for some of these extrema are also given in [15]. Among the thirty-four chosen extrema,

the reference values of the local extrema of the primitive variables, θ, u, v and w are given
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in Table 3 with four to five significant figures. The reference values of the Nusselt numbers

Nut and Nub are given in Table 4 with three to four significant figures. The coordinates

of these extrema are generally given with three significant figures in the x direction and

with four significant figures in the y direction. Note that other extrema and coordinate

values are also available in [33].

5.3 Heat and momentum fluxes through channel faces

Finally, we compare the dimensionless heat flux, Φθ, and momentum fluxes, Φu, Φv

and Φw, through the boundary surfaces of the half channel obtained when the symmetry

through the mid-plane at y = B/2 is taken into account. The flux definitions are given

in Table 5. In this table, Si, So, Sf , St and Sb are respectively the inlet, outlet, front,

top and bottom surfaces of the half channel, Ss is the symmetry plane at y = B/2 and

Stot = Si∪So∪Sf∪Ss∪St∪Sb is the total surface of the half channel Ω/2. Note that, from

the Navier-Stokes equation in (1), the total momentum flux, Φw, through Stot is equal

to the integral of the buoyancy term, Ibuo =
∫

Ω/2

(

−Ra
Re²Pr

θ
)

dV , on the half computational

domain.

The diagonal terms of the momentum flux tensor depend on pressure. Since pressure

is defined up to a constant, we decided to fix the value of this constant such that, for

each grid, the momentum flux Φu vanishes on the inlet surface Si. Furthermore, due

to the symmetry conditions and our choice of boundary conditions, several other flux

components are equal to zero. These are indicated in Table 5.

We computed the fluxes defined in Table 5 on each grid, then extrapolated these

values by RE. The criteria introduced in §4.2 to define the reference values and the

tolerance margins are also used here for the heat and momentum fluxes. The ranges of

the extrapolation coefficient α̃ kept to choose the extrapolated values used to define the

references are 1 ≤ α̃ ≤ 2.5 for the FD1 and FV3 solutions and 1 ≤ α̃ ≤ 3.4 for the FE2

and FE4 solutions. The reference values with their tolerance margin are given in Table 6.

The used methodology allows us to estimate the fluxes on the different surfaces with two

to five significant digits, depending on the magnitude of the fluxes. More details on the

methodology, the whole extrapolated values of each contributor, the values on the finest

grids and the α̃ values can be found in [33].

6 Conclusions

A reference solution of a first numerical benchmark for a steady three-dimensional

mixed convection flow in a horizontal rectangular channel, partially heated from below

and cooled from above, has been presented. The methodology used to establish this

solution is based on the use of four different numerical methods (second order FD and
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FV methods, and third order FE methods), Richardson extrapolations (RE) on very fine

grids and cubic spline interpolations. The reference values are proposed for the dynamical

and thermal fields, in the form of local, integral or differential quantities such as local

extrema of the primitive variables and Nusselt numbers, surface heat and momentum

fluxes, volume integrals of the temperature and kinetics energy and pressure loss. These

reference solutions are generally given up to four or five significant figures. The numerical

values of all the reference quantities are presented in tables with their accuracy margins.

Streamwise and spanwise profiles of the velocity components, temperature and Nusselt

numbers are also provided.

The difficulty in the establishment of the reference solution of the present benchmark

problem is that a discontinuity takes place in the thermal gradient over the horizontal

plates at x = 0, which not only significantly restricts the conditions of application of

RE to establish reference solutions, but also complicates its analysis. That is why the

consequences of this discontinuity on RE and on the establishment of a reference solution

of the benchmark problem are discussed apart in a more theoretical paper [15]. Further-

more, a comprehensive and detailed technical report of this benchmark problem, with

other reference values, is available online [33].
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Appendix A

The analytical solution of the dimensionless Poiseuille profile is equal to uPois(y, z) =
UPois(y,z)
Umean

, where the dimensional Poiseuille profile UPois(y, z) is given by [16]:

UPois(y, z)

U◦

= 6z(1 − z) +

48

π3

∞
∑

n=0

(−1)n+1 cosh[(2n+ 1)π(y − B
2
)] cos[(2n+ 1)π(z − 1

2
)]

(2n+ 1)3 cosh[(2n+ 1)πB
2
]

(10)

where U◦ = − H2

12µ
∂P
∂X

is the average velocity of the “two-dimensional” Poiseuille flow, i.e.

in a two-dimensional channel or between two infinite plates, and where the dimensional
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average velocity Umean of the Poiseuille flow is given by:

Umean

U◦

= 1 +
192

π5

∞
∑

n=0

(−1)n+1 sinh[(2n+ 1)πB
2
] sin[(2n+ 1)π/2]

(2n+ 1)5B cosh[(2n+ 1)πB
2
]

(11)

Thus the inlet dimensionless Poiseuille profile uPois(y, z) is given by the ratio of equa-

tions (10) and (11), where about 25 terms are kept in the series to obtain a sufficiently

accurate entrance velocity profile. Note that in (10) and (11), the hyperbolic cosine at the

denominator diverges when n is high. To avoid any problem, the two hyperbolic cosines

of the series can be transformed in real exponentials via the Euler relations. Thus, by

denoting N = 2n+ 1, the ratio of the two hyperbolic cosines writes:

cosh[Nπ(y − B
2
)]

cosh[NπB
2
]

= exp[Nπ(y −B)]
1 + exp(−2Nπ(y − B

2
))

1 + exp(−NπB)
(12)

To avoid the divergence of exp(−2Nπ(y− B
2
) when N is high, the Poiseuille profile must

only be computed for B
2
≤ y ≤ B. The symmetry with respect to the median vertical

plane is used to compute the Poiseuille profile for 0 ≤ y ≤ B
2
.
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Tables

Contributor Nx ×Ny ×Nz

[symmetry]
∆t User time

[computer type (organism/lab)]
Consistency
orders α°

MSME,
FD1

400× 134× 40
600× 200× 60
800× 268× 80
1200×400×120

[no]

0.01
0.01
0.002
0.002

36 min on 1 processor
2 h 20 on 1 processor
25 h on 1 processor
100 h on 1 processor
[NEC SX5 (IDRIS)]

2 for θ, u, v, w;
2 for p

IUSTI,
FE2

601× 121× 41
901× 181× 61
1351× 271× 91

[yes]

0.01
0.01
0.005

19 min on 60 cores
1 h 40 on 150 cores
43 h 15 on 225 cores
[IBM SP6 (IDRIS)]

3 for θ, u, v, w;
2 for p

I2M
Institute,

FV3

601× 161× 41
901× 241× 61
1351× 361× 91

[yes]

0.1
0.1
0.1

8 h on 152 cores
12 h on 152 cores
56 h on 152 cores

[ALTIX ICE 8200 (I2M Inst.)]

2 for θ, u, v, w;
2 for p

CEA, FE4 601× 121× 49
751× 151× 61
801× 161× 65
1001× 201× 81

[yes]

0.5
0.5
0.5
0.5

200 h on 8 cores
400 h on 8 cores
450 h on 8 cores
1600 h on 8 cores

[PC 8 cores (CEA)]

3 for θ, u, v, w;
2 for p

Table 1: Numerical parameters used by the different contributors
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FD1 FE2 FV3 FE4 References

fref ± fmarg

fprec =
fmarg

fref

2Efg
c

2Eex
c

α̃Ec

1.292479

1.292446

2.22

1.292452

1.292452

2.92

1.292355

1.292455

2.00

1.292461

1.292467 °

−1.92 °

1.292453

±0.000008

6.19 × 10−6

∆P fg
io

∆P ex
io

α̃∆Pio

14.41210

14.40647

2.03

14.40784

14.40649

1.99

14.40235

14.40678

2.00

14.40694

14.40658 °

0.83 °

14.40670

±0.00024

1.67 × 10−5

T fg
m

T ex
m

α̃Tm

0.448490

0.448594

1.19

0.448625

0.448604

1.18

0.448725

0.448606

1.02

0.448659

0.448613

1.18

0.448604

±0.000010

2.23 × 10−5

Table 2: Left columns: finest grid (f fg) and extrapolated (f ex) values of the integral
functions f = 2Ec, ∆Pio and Tm, and truncation error leading order, α̃f , from their RE.
FE4 column: the symbol ° indicates an erroneous value due to the extrapolation failure
(thus the FE4 finest grid value replaces the FE4 extrapolated value in the reference value
determination). Right column: reference solutions with their tolerance margin and the
precision of their determination.
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fref ± fmarg

xref ± xmarg

at (y, z) = (5, 0.5)

fref ± fmarg

xref ± xmarg

at (y, z) = (2, 0.2)

fref ± fmarg

yref ± ymarg

at (x, z) = (30, 0.5)

θ1
x1
θ1prec

(454845 ± 2)× 10−6

13.693 ± 0.003

4.4 × 10−6

(87525 ± 4)× 10−5

11.742 ± 0.004

4.6 × 10−5

θ1
y1
θ1prec

(24716 ± 3)× 10−5

1.0364 ± 0.0004

1.2× 10−4

θ2
x2
θ2prec

(210055 ± 7)× 10−6

27.322 ± 0.010

3.3 × 10−5

(869518 ± 16) × 10−6

21.169 ± 0.010

1.8 × 10−5

θ3
y3
θ3prec

(77385 ± 2)× 10−5

3.9041 ± 0.0002

2.6× 10−5

u1
x1
u1prec

(1572720 ± 7)× 10−6

0.945 ± 0.005

4.5 × 10−6

(1111322 ± 4)× 10−6

1.376 ± 0.004

3.6 × 10−6

u1
y1
u1prec

(106506 ± 7)× 10−5

1.0086 ± 0.0001

6.6× 10−5

u2
x2
u2prec

(1660806 ± 20)× 10−6

16.294 ± 0.005

1.2 × 10−5

(67549 ± 6)× 10−5

33.802 ± 0.018

8.9 × 10−5

u3
y3
u3prec

(174975 ± 13)× 10−5

4.4425 ± 0.0000

7.4× 10−5

v1
x1
v1prec

0.0 (−14772 ± 3)× 10−7

1.133 ± 0.006

2.0 × 10−4

v1
y1
v1prec

(35904 ± 12) × 10−6

0.7047 ± 0.0004

3.3× 10−4

v2
x2
v2prec

0.0 (−7040 ± 9)× 10−5

31.462 ± 0.008

1.3 × 10−3

v3
y3
v3prec

(32892 ± 25) × 10−6

4.7391 ± 0.0004

7.6× 10−4

w1

x1
w1prec

(32598 ± 7)× 10−7

4.259 ± 0.007

1.8 × 10−4

(19827 ± 6)× 10−5

15.328 ± 0.010

3.0 × 10−4

w1

y1
w1prec

(37243 ± 6)× 10−5

0.2285 ± 0.0001

1.6× 10−4

w2

x2
w2prec

(−473007 ± 19) × 10−6

24.902 ± 0.005

4.0 × 10−5

(19175 ± 5)× 10−5

48.0

2.6 × 10−4

w3

y3
w3prec

(49041 ± 7)× 10−5

3.9028 ± 0.0001

1.4× 10−4

Table 3: Reference values of the local extrema of f = (θ, u, v, w) and of their coordinates
along the two streamwise lines at (y, z) = (5, 0.5) and (2, 0.2) and the spanwise line at
(x, z) = (30, 0.5). The precision on the primitive variables fprec = fmarg/fref is also
indicated. Other extrema values at intermediate coordinates y2 along the line at (x, z) =
(30, 0.5) are given in [33]
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Nuref ±Numarg

xref ± xmarg

at y = 5

Nuref ±Numarg

xref ± xmarg

at y = 2

Nuref ±Numarg

yref ± ymarg

at x = 30

Nut1
x1
Nut1prec

0.44135 ± 0.00016

21.106 ± 0.005

3.6× 10−4

3.3218 ± 0.0018

16.293 ± 0.009

5.4× 10−4

Nut1
y1
Nut1prec

2.5628 ± 0.0014

0.2915 ± 0.0006

5.5 × 10−4

Nut2
x2
Nut2prec

0.60645 ± 0.00030

28.080 ± 0.006

4.9× 10−4

3.3041 ± 0.0018

18.963 ± 0.007

5.4× 10−4

Nut3
y3
Nut3prec

3.3780 ± 0.0016

3.9032 ± 0.0004

4.7 × 10−4

Nub1
x1
Nub1prec

3.48657 ± 0.00007

24.993 ± 0.005

2.0× 10−5

0.6830 ± 0.0003

11.418 ± 0.004

4.4× 10−4

Nub1
y1
Nub1prec

3.3077 ± 0.0018

1.0422 ± 0.0001

5.4 × 10−4

Nub2
x2
Nub2prec

3.38959 ± 0.00014

29.164 ± 0.002

4.1× 10−5

0.7535 ± 0.0003

30.14 ± 0.04

4.0× 10−4

Nub3
y3
Nub3prec

0.6609 ± 0.0003

3.9106 ± 0.0002

4.5 × 10−4

Table 4: Reference values of the local extrema of the Nusselt numbers Nut and Nub on
the top and bottom plates and of their coordinates along the two streamwise lines at y = 5
and 2 and the spanwise line at x = 30. The precision on the Nusselt numbers Nuprec =
Numarg/Nuref is also indicated. Other extrema values at intermediate coordinates y2
along the line at x = 30 are given in [33].
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Φθ Φu Φv Φw

Si

∫

Si

(

− ∂θ
∂x +RePr uθ

)

dS
∫

Si

(

p− 2
Re

∂u
∂x+u²

)

dS=0
∫

Si

(

−1
Re

(

∂v
∂x+

∂u
∂y

)

+uv
)

dS
∫

Si

(

−1
Re

(

∂w
∂x +

∂u
∂z

)

+uw
)

dS

So

∫

So

(

∂θ
∂x−RePr uθ

)

dS
∫

So

(

−p+ 2
Re

∂u
∂x − u²

)

dS
∫

So

(

1
Re

(

∂v
∂x+

∂u
∂y

)

−uv
)

dS
∫

So

(

1
Re

(

∂w
∂x +

∂u
∂z

)

−uw
)

dS

Sf

∫

Sf
− ∂θ

∂y dS = 0
∫

Sf

−1
Re

∂u
∂y dS

∫

Sf

(

p− 2
Re

∂v
∂y

)

dS
∫

Sf

−1
Re

∂w
∂y dS

Ss

∫

Ss

∂θ
∂y dS = 0

∫

Ss

1
Re

∂u
∂y dS = 0

∫

Ss

(

−p+ 2
Re

∂v
∂y

)

dS
∫

Ss

1
Re

∂w
∂y dS = 0

Sb

∫

Sb
−∂θ

∂z dS
∫

Sb

−1
Re

∂u
∂z dS

∫

Sb

−1
Re

∂v
∂z dS

∫

Sb

(

p− 2
Re

∂w
∂z

)

dS

St

∫

St

∂θ
∂z dS

∫

St

1
Re

∂u
∂z dS

∫

St

1
Re

∂v
∂z dS

∫

St

(

−p+ 2
Re

∂w
∂z

)

dS

Stot 0 0 0
∫

Ω/2
−Ra
Re²Prθ dV = Ibuo

Table 5: Definition of the heat and momentum fluxes through the channel faces
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Φθ Φu Φv Φw

Si −(1.021±0.010)×10−8 0.0 −(2.1354±0.0010)×10−2 (7.00 ± 0.07) × 10−5

So −87.630 ± 0.003 72.1704±0.0008 (3.07 ± 0.05) × 10−2 (1.670±0.013)×10−2

Sf 0.0 −3.984 ± 0.004 −409.35 ± 0.04 −1.7678 ± 0.0006

Ss 0.0 0.0 409.31 ± 0.01 0.0

Sb 479.97 ± 0.05 −35.416± 0.013 2.6366 ± 0.0008 −2249.64 ± 0.04

St −392.31 ± 0.08 −32.786± 0.008 −2.5868 ± 0.0004 1930.967 ± 0.015

Stot 0.0 0.0 0.0 −320.444 ± 0.014

Ibuo −320.431 ± 0.007

Table 6: Reference values of the heat and momentum fluxes through channel surfaces
and buoyancy term integral. The values 0.0 correspond to the theoretical values given in
Table 5.
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Figure captions

Figure 1: Geometry and thermal boundary conditions on the top and bottom walls

(the vertical lateral walls are adiabatic). The red dotted lines are the lines along which

θ, u, v and w profiles and their extrema are calculated.

Figure 2: Temperature fields, θ, in the horizontal mid-plane and temperature field

and velocity vector field in the transverse plane at x = 30 in the longitudinal roll flow

of the present test case. The yellow dashed lines are some of the lines along which

θ, u, v and w profiles and their extrema are calculated. The red dash-dotted lines border

the forced convection triangular zone at the entrance of the heated plate, in which no

thermoconvective rolls are present.

Figure 3: Longitudinal profiles of θ, u, v and w along the lines at (y, z) = (2, 0.2)

and (5, 0.5) and longitudinal profiles of Nut and Nub along the lines at y = 2 and y = 5.

These profiles are the same for the four contributors. The filled circles indicates the local

extrema whose values and coordinates are given in Tables 3 and 4.

Figure 4: Spanwise profiles of the primitive variables θ, u, v and w obtained by the

four contributors along the lines at (x, z) = (10, 0.2), (10, 0.5), (30, 0.2) and (30, 0.5). The

filled circles indicates the local extrema whose values and coordinates are given in Table

3.

Figure 5: Transverse profiles of the Nusselt numbers Nut and Nub obtained by the

four contributors along the lines at x = 10 and x = 30. The filled circles indicates the

local extrema whose values and coordinates are given in Table 4.
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Figure 1: Geometry and thermal boundary conditions on the top and bottom walls (the
vertical lateral walls are adiabatic). The red dotted lines are the lines along which θ, u, v
and w profiles and their extrema are calculated.
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Figure 2: Temperature fields, θ, in the horizontal mid-plane and temperature field and
velocity vector field in the transverse plane at x = 30 in the longitudinal roll flow of the
present test case. The yellow dashed lines are some of the lines along which θ, u, v and w
profiles and their extrema are calculated. The red dash-dotted lines border the forced con-
vection triangular zone at the entrance of the heated plate, in which no thermoconvective
rolls are present.
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Figure 3: Longitudinal profiles of θ, u, v and w along the lines at (y, z) = (2, 0.2) and
(5, 0.5) and longitudinal profiles of Nut and Nub along the lines at y = 2 and y = 5.
These profiles are the same for the four contributors. The filled circles indicates the local
extrema whose values and coordinates are given in Tables 3 and 4.
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Figure 4: Spanwise profiles of the primitive variables θ, u, v and w obtained by the four
contributors along the lines at (x, z) = (10, 0.2), (10, 0.5), (30, 0.2) and (30, 0.5). The filled
circles indicates the local extrema whose values and coordinates are given in Table 3.
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Figure 5: Transverse profiles of the Nusselt numbers Nut and Nub obtained by the four
contributors along the lines at x = 10 and x = 30. The filled circles indicates the local
extrema whose values and coordinates are given in Table 4.
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