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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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ABSTRACT 

The input of energy by wind to water waves is compared with the observed growth of the 

waves using a suite of microphysical measurement techniques in the laboratory. These include 

measured tangential stresses in the water and air immediately adjacent to the interface with 

corresponding form drag measurements above wind-forced freely-propagating waves. The drag 

data sets are consistent but the comparison has highlighted important issues in relation to the 

measurement of fluctuating pressures above freely-propagating waves. Derived normalised wind 

input values show good collapse as a function of mean wave steepness and are significantly in 

excess of the assembly of net wave growth measurements by Peirson and Garcia (2008) at low 

steepness. Sheltering coefficients in the form of Jeffreys (1925) are derived that are consistent 

with values previously obtained by Donelan (1987; 1999; 2006). The sheltering coefficients 

exhibit substantial scatter. By carefully measuring the associated growth of the surface wave 

fields, systematic energy budgets for the interaction between wind and waves are obtained. For 

non-breaking waves, there is a significant and systematic misclose in the radiative transfer 

equation if wave-turbulence interactions are not included. Significantly higher levels of turbulent 

wave attenuation are found in comparison with the theoretical estimates by Teixeira and Belcher 
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(2002) and Ardhuin and Jenkins (2005). Suitable normalisations of attenuation for wind-forced 

wave fields exhibit consistent behaviour in the presence and absence of wave breaking. Closure 

of the surface energy flux budget is obtained by comparing the normalised energy loss rates due 

to breaking with the values previously determined by Banner and Peirson (2007) and Drazen et 

al. (2008) when expressed as a function of mean wave steepness. Their normalised energy loss 

rates obtained for non-wind forced breaking wave groups are remarkably consistent with the 

levels found during this present study when breaking waves are subject to wind forcing. 

1 INTRODUCTION 

Although energy budgets lie at the heart of many air-sea interaction phenomena, a 

fundamental quantitative understanding of the exchange of energy between wind, waves, 

dissipation and surface currents has remained elusive (Sullivan and M
c
Williams 2010, p.23). The 

development of wave fields is understood in terms of a differencing of wind input and losses due 

to breaking with the balance mediated by non-linear transfers between waves of different 

frequency or wavenumber (Phillips 1985). Distinguishing the precise relative significance of the 

input, loss and transfer components is complicated because of their (presumed) similarities in 

magnitude (Phillips 1985). 

This absence of a fundamental understanding has not prevented the development of 

sophisticated representations of numerical sea states (e.g. Janssen 2004; Tolman 2009), near 

surface current structure (Craig and Banner 1994; Mellor and Blumberg 2004) and elementary 

models of air-sea constituent exchanges (Wanninkhof et al. 2009). In spite of the essential 

coupling amongst wave field development, surface ocean currents and constituent exchanges, 

there has been little progress in reconciling different approaches because of ongoing fundamental 

knowledge gaps relating to the coupling of winds and waves. 

Peirson and Garcia (2008) recently assembled a suite of laboratory measurements of net 

wave growth under the action of wind and found a systematic collapse of the data as a function 

of wave steepness – behaviour not predicted by conventional linear theories. Further, they found 

that the longstanding differences between measured and theoretically (or numerically) predicted 

growth may potentially be reconciled in terms of wave coherent tangential stresses, most 

importantly at low wave steepnesses. They also observed that there were few direct 

measurements of wind energy input and any existing measurements have remained unreconciled 
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with observations of net wave growth since the pioneering studies by Bole and Hsu (1969) and 

Shemdin and Hsu (1967). 

The purpose of this present contribution is to report detailed studies to measure levels of 

wind energy input to freely-propagating wave fields, consequent growth in the laboratory with 

estimates of wave dissipation rates. Specifically, a series of experiments were conducted using a 

new mobile profiling instrument platform to measure tangential stress and form drag at the sea 

surface in a large wind-wave tank. The tangential stress was obtained from a novel kingfisher 

diving device (Grare 2009) using hot-wire anemometer technology. Complementary form drag 

measurements were obtained from the same platform operating as an interfacial wave follower 

fitted with a static pressure probe. The tangential stress measurements obtained using this new 

technique are reconciled against the measurements by Walker (2009), (see Peirson et al. 2012b). 

In the remainder of this section, we review present theoretical understanding and a 

summary of the results of previous measurement campaigns. This is followed by a description of 

the experimental facilities and methods used during the present investigation. The study results 

are then presented and discussed followed by a concise summary of the principal study 

conclusions and recommendations. A large appendix at the end of this article contains derivation 

of the momentum flux equations written in the frame of a wave follower.  

1.1 Spectral Decomposition 

Using similar notation to Komen et al. (1994) (Section I.2.5, p.25ff), the local total mean 

energy density 〈 〉 of a spectrum of surface gravity waves propagating past a point can be 

evaluated as: 

〈 〉     〈  〉     ∬ (   )     (1) 

where    is the density of water, g is gravitational acceleration, E is the spectral energy density 

as a function of wave direction   and wave angular frequency       and : 

 (   )  
 

 
 (   )  (2) 

where a is the linear wave amplitude. 

The development of the wave field is determined by microphysical energy fluxes mediated 

by corresponding momentum fluxes which must be carefully partitioned to determine the relative 

contributions of the waves and the currents (Peirson and Garcia 2008, p.246ff) 
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Wu et al. (1977, 1979) reported spectral decomposition within very small frequency bands 

but previous analysis (Peirson and Belcher 2005) could not reconcile their findings with other 

studies. This present investigation shows that microphysical measurement accuracies are only 

capable of quantifying input to a band of waves in the vicinity of the spectral peak. 

The development of the wave field is usually described by the wave energy balance 

equation (Komen et al. 1994, pages 33 and 47) which is modified to recognise the spatial 

gradients in wave properties to yield: 

  

  
|
  

  |   (3) 

where S are wave field energy fluxes and wave properties will be assumed to apply at a mean 

angular frequency    within a spectral band of width   . Wave properties in this study will be 

ascribed to this angular frequency. 

The wave field energy fluxes are conventionally recognised to be as follows: 

                (4) 

where     is energy input by the wind,     are transfer of energy due to non-linear wave-wave 

interactions, and       (a negative quantity) is the loss of energy from the wave field. 

A variety of non-linear interactions associated with the development of wind waves are 

recognised in the literature (Phillips 1977, Sections 2.8, 3.8, 3.9, 4.4, Rapp and Melville 1990, 

Figure 1). Many of these interactions are yet to be quantified by physical experiment in the 

laboratory or the field. For experiments undertaken with wave frequency imposed by an 

initiating mechanical wave generator, the primary non-linear interactions are the development of 

Benjamin-Feir (1967) instabilities which are readily observed and monitored within the 

measured wave spectra. For developing fields of pure wind waves, the situation is more 

complicated due to the spectral downshifts which can be observed with fetch. Our approach here 

is to capture the dominant non-linear interaction fluxes within a fixed bandwidth. This approach 

was vindicated by subsequent analysis of the gathered data. The spatial rate of change of the total 

energy density at frequencies above and below the selected bandwidth were found to be less than 

1% of those within the fixed bandwidth. Therefore the     flux from the selected bandwidth to 

lower frequencies was negligible in comparison to any other components within the bandwidth 
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selected for analysis. The remaining two terms on the Right Hand Side (RHS) of equation (4) are 

now discussed in detail. 

1.2 Wind Input 

1.2.1 Theory 

The action of wind induces both momentum and energy fluxes to open water surfaces. The 

total momentum flux or the wind stress   is the sum of the tangential stress (     ) and the form 

drag
 
(     ): 

              〈      √  (     ) 〉  〈  

  

  
〉 (5) 

where       is the local interfacial viscous surface tangential shear stress and    is the pressure at 

the interface,     ⁄
 is the local interface slope and the angle brackets denote temporal or spatial 

averaging. 

There is wind-induced energy flux to both the waves and the surface currents. Assuming 

linear spectral decomposition of the wave field, the source term in equation (5) becomes: 

    〈          〉  〈  

  

  
〉   (6) 

where       is the surface velocity coherent with frequency component ω,     ⁄  

      (     ) and     ⁄  is the wave speed. When normalised by wave speed, the first 

term of equation (6) is termed the wave-coherent tangential stress     (see Longuet-Higgins, 

1969) and equation (6) becomes: 

    (         )           (7) 

Consequently, the momentum flux leading to wave growth
 
      has two components, the 

entire form drag and the wave coherent tangential stress. 

There are two conventional characterisations of wind input that have been developed from 

theoretical considerations. The more widely appreciated is due to Miles (1957) and takes the 

form: 

   

  
  

  

  
(
  

 

 
)

 

 (8) 
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where     is the energy input from the wind, β is a normalised growth coefficient,    
is the 

density of air and   
  √   ⁄  is the friction velocity.  

The second was developed by Jeffreys (1925): 

    
 

 
    (  )   |

  

 
  | (

  

 
  ) (9) 

where    and    are the wind speed and sheltering coefficient referenced  at an elevation z above 

the mean surface, conventionally     ⁄    ⁄ , where k is the wavenumber and λ is the 

wavelength.  

1.2.2 Measurement 

Equation (7) encapsulates the key quantities required to evaluate the wind energy input to 

the waves. Measuring the wave-coherent tangential stress is an intricate process involving both 

surface shear and surface current. Given a prevailing belief that tangential stresses at the air-sea 

interface are small, fundamental research has primarily focussed on developing reliable methods 

of measuring the surface pressures and correlating these with the surface slope. 

Pioneering development was undertaken by Shemdin and Hsu (1967) who used a disk-

shaped pressure sensor and transducer mounted on a moving platform which remained 

approximately 6mm above the oscillating wave surface. They found good agreement with the 

theoretical predictions of wind input obtained by Miles (1959). Bole and Hsu (1969) found 

subsequently that the observed wave growth under the same conditions was an average of 3 

times larger than the Miles (1959) values. That the net wave growth could be larger than the 

wind input in the absence of non-linear transfers is implausible yet no direct comparisons 

incorporating direct appropriate measurements have been made to date.  

A detailed field study reported by Snyder et al. (1981) completed an investigation 

incorporating near-surface pressure sensors in both fixed and wave following modes. For wave 

ages (   
 ⁄    ), they found values of      (Plant, 1982) but highlighted the strong influence 

of the spectral tail (   
 ⁄     ) in determining the wave-supported stress which they were 

unable to resolve. To our knowledge, their recommendation of further field investigation of the 

spectral tail has never been pursued. 
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Wu et al. (1977, 1979) completed further investigations in the same facility as Shemdin 

and Hsu (1967) with spectral decomposition of the input rates. These were found to be 

comparable with the original measurements of Shemdin and Hsu (1967). 

Donelan (1999) used a surface-following pressure probe traversing waves generated with a 

JONSWAP spectral distribution by a paddle in a laboratory tank. Experiments were undertaken 

with the wind aligned and opposed to the direction of wave propagation. Donelan determined 

Jeffreys sheltering coefficients of    ⁄  of 0.28 and 0.11 for the aligned and opposed directions 

respectively. 

Donelan et al. (2006) completed a field experiment in a lake using a wave follower in both 

fixed and following modes and achieved proximity to the surface of 2.1cm. They concluded that 

air flow separation was an important feature of the wind input source function, reviewed a 

number of input parameterisations and concluded that a value of    ⁄  of 0.17 best characterised 

their data. 

In this present contribution, pressure-slope measurements are undertaken with the objective 

of reconciling them against corresponding measurements of the tangential stress. 

Microscopic particle image velocimetry (PIV) using 20μm particles and 7μm image 

resolution was developed by Peirson (1997) for capturing the tangential stress and surface 

velocity at a moving air-water interface. This approach was applied by Banner and Peirson 

(1998) to quantify tangential stresses under a range of wind wave conditions. They concluded 

that the tangential stress remains a significant proportion of the total stress at moderate wind 

speeds but the wave-coherent tangential stress remained small. Further work by Peirson and 

Banner (2003) quantified the intensities of vorticity associated with a range of surface features 

and explored the implications for low solubility gas exchange. Recently, Peirson et al. (2012b) at 

4μm image resolution re-applied the Peirson (1997) technique to developed waves, finding 

significant levels of tangential stress but very small wave-coherent stresses. 

PIV techniques were developed using 10μm water particles and 70μm image resolution 

were applied on the air side of the interface by Veron et al. (2007). They found similar surface 

tangential stress distributions (their Figure 2) to those captured by Banner and Peirson (1998, 

Figure 5) and a strong relationship between surface velocity and the tangential stress. Wave-

coherent tangential stresses were not presented. 
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1.3 Losses from the wave field 

Four potential terms are recognised as contributing to       as follows: 

                                               (10) 

     is the loss due to bottom friction. In deep water, negligible interactions with the bed 

occur, and      is 0. 

      are losses due to viscous effects near the free surface. These were carefully reviewed 

by Peirson et al. (2012a), who found reasonable agreement with the following expression for 

waves of low steepness, assuming linear decomposition of the wave field: 

                √           
       

  
(
    

  
)
  ⁄

 (11) 

where    and    are the density and the dynamic viscosity of the air,    and    are the density 

and the dynamic viscosity of the water, (        ) are the amplitude, the wavenumber, the 

pulsation and the group velocity of the dominant waves respectively, and    is the tank width. 

The terms on the RHS of equation (11) are wave attenuation due to viscosity in, respectively, the 

surface aqueous layer, the surface air-side layer and the tank walls. 

However, they observed a systematic increase of approximately 44% in viscous loss for 

non-breaking waves with an increase in wave steepness from 0.1 to 0.15. In the absence of 

reliable parameterisations that incorporate steepness effects, in this study equation (11) is 

assumed. This approach will be critically reviewed in the results and discussion section. 

As recently discussed by Peirson et al. (2012a), there has been a divergence in approaches 

to the surface non-viscous energy losses (Duncan 1983; Drazen et al. 2008; Tian et al. 2010) and 

so we preserve the quantity       in equation (10) to represent these. Two potential contributions 

are conventionally recognised:       , representing energy losses due to surface breaking; and, 

     , energy losses due to Reynolds stress interactions between waves and subsurface 

turbulence. (We note in passing, that Ardhuin et al. (2009) has recently identified and quantified 

wave-turbulent interactions in the air for open ocean swell but these are insignificant in the 

context of the present study). 

       characterises energy losses associated with breaking. The most widely used 

expression was developed by Phillips (1985) from the scaling argument of the energy dissipation 

introduced by Duncan (1981): 
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      ( )

 ( )
    

     

 
 

(12) 

where    is the breaking energy loss rate per unit length of the breaking fronts and  ( ) is the 

length per unit area of breaking fronts moving at speed  . The coefficient b is a measure of 

breaking strength. Although it has been assumed that        is equivalent to c of the underlying 

wave form, there is a growing body of evidence (Rapp and Melville 1990; Banner and Peirson 

2007) that        is less than c. Small differences can be significant in view of the large exponent 

in equation (12). 

The quantity       is the loss due to Reynolds stress interactions between waves and 

subsurface turbulence. This term is more controversial. Many investigators have assumed that 

       . Cheung and Street (1988) observed strong interactions between waves and near 

surface aqueous turbulence. Belcher et al. (1994) and Teixeira and Belcher (2002) have 

suggested that there is a significant reduction in wave growth rates arising from interactions 

between waves and turbulence - perhaps equivalent to 30% of the total wind energy input. 

Ardhuin and Jenkins (2005) critically reviewed the Teixeira and Belcher findings and concluded 

that the interaction was much weaker, recommending a value approximate 20% of the Teixeira 

and Belcher value. Peirson et al. (2012a) have recently investigated wave attenuation by rainfall 

and found very strong wave attenuation when normalised by the subsurface turbulence while 

acknowledging the strong disruption of the interface by the rain itself. 

2 EXPERIMENTAL FACILITIES AND METHODS 

2.1 Laboratory tanks 

2.1.1 Large air-sea interaction facility at IRPHE 

One set of the experiments were conducted in the large wind-wave tank at the Institut de 

Recherche sur les Phénomènes Hors Équilibre (IRPHE) at Marseille. The tank's overall working 

section is 40m long. It is 3.2m wide with an air cavity 1.6m high. Water depth was kept at 1m. 

The tank is equipped with a controlled recirculating wind tunnel which can generate wind speeds 

between 2 and 14m.s
-1

. A computer-controlled wave-maker can generate regular or random 
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waves in a frequency range from 0.9Hz to 2.2Hz. It is entirely submerged under the upstream 

beach to avoid any perturbation of the air flow which could be induced by its displacement. 

 The test section was placed at a fetch of 28m. The upwind end of the tank is specially 

profiled to ensure minimum disturbance to either the generation of mechanical waves or the 

turbulent boundary layer in the airflow above the waves. The tunnel roof is carefully profiled to 

create an airflow boundary layer of zero pressure gradient along the test section. At the 

downwind end of the tank a permeable absorbing beach was installed to minimize wave 

reflection. A complete description of the tank can be found in Coantic et al. (1981).   

In order to control the fetch in selected tests, a floating plastic sheet was positioned on the 

water surface, fastened at the upwind end of the tank. The floating plastic sheet remains flat 

when wind blows over it. Plastic sheet has often been used in the past to change the effective 

tank fetch while avoiding wind wave formation (Reul et al. 1999; Peirson et al. 2003; Plant et al. 

2004). 

The complete set of test conditions and the following key values are summarised in Table 

1: the fetch (column A), the wind speed at mid-depth of the air section    (column B), the 

frequency of applied monochromatic waves    (column C), the observed peak spectral wave 

frequency    (column D). Also contained in Table 1 are two measurements (runs 35 and BA) 

obtained by Mastenbroek et al. (1996) previously captured in the same IRPHE laboratory large 

tank, which have been retained in this study to provide historical comparison with the present 

measurements. For these two runs, values of the form drag were computed by extrapolation of 

the measured out of phase pressure component and the tangential stress was derived from the 

difference between the total stress and the form drag. Present measurements undertaken in the 

large IRPHE facility are labelled, in the Table 1 and in the captions of the figures, as Grare 

(2009). 

2.1.2  Small wind-wave tank at Water Research Laboratory (WRL) 

The wind-wave tank used for the smaller-scale experiments of this study is linear, with an 

overall length of 8.95m, width of 0.245m and a total cavity height of 0.610m. An electro-

mechanical flexible cantilever paddle was used to generate monochromatic waves when 

necessary. Wind was generated by a fan fitted to one end of the tank. Guide vanes downwind of 

the fan ensured a uniform air flow across the width of the tank and provided a smooth transition 
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from the inlet to the water surface. The tank is housed within a constant temperature room and 

was maintained at a temperature of 21.5±0.5°C throughout the presently reported experiments. 

During all tests the total water depth was maintained at 247mm±1mm.  The roof of the 

wind-wave tank is provided to achieve a zero pressure gradient along the length of the test 

section. A dissipative beach was installed at the downwind end of the fetch length to minimise 

wave reflections. All observations were taken at a fetch of 2.4m. Measurements undertaken in 

the small WRL facility are labelled, in the Table 1 and the captions of the figures, as Peirson et 

al. (2012b). 

 

2.2 Wave measurement 

In both test facilities, conventional capacitance wave probes were used to capture the wave 

characteristics at high temporal resolution (200Hz to capture a significant portion of the high 

frequency tail). In each case, the probes were equipped with fine insulated wire elements 

(<0.3mm diameter) and carefully calibrated, exhibiting linearity and gain stability better than 2%. 

2.2.1 Measurement of wave speed 

The presence of any wind drift current can cause a Doppler distortion in any fixed 

measurements of wave characteristics. Assuming linear dispersion yields a relationship between 

intrinsic frequency and wavelength (Phillips 1977 p.38): 

  √       (13) 

where T is the water surface tension. The presence of a drift current,        in the same direction 

as the waves causes the Doppler shift: 

    
        

 
 (14) 

where    is the observed angular frequency. The magnitude and influence of the drift current 

will depend of the scale of the wave. 

There are three methods typically used in an attempt to remove Doppler distortion and 

estimate the magnitude of the wind current: 

1. Record the wavelength of the waves photographically and compare the observed and intrinsic 

linear wave frequencies. 
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2. If the waves are monochromatic, the intrinsic and observed wave frequencies can be 

compared. 

3. Measure the actual speed of travel between two fixed points and use the intrinsic relationship 

between wave number, frequency and speed to close equations (13) and (14). 

  
 

 
 (15) 

These approaches were pioneered at the IRPHE laboratory in the large scale facility 

(Ramamonjiarisoa and Coantic 1976; Coantic et al. 1981). During these present studies, the 

second method was used in the small WRL facility and the third method was used in the large 

IRPHE facility, the actual speed of travel being determined from the phase lag obtained by cross-

correlating wave records between two probes with a spacing of 22mm. 

The following wave field key values are summarised in Table 1: the frequency of applied 

monochromatic waves    (column C), the observed peak spectral wave frequency    (column 

D), the intrinsic linear wave speed            (Column F), the computed wind drift velocity 

transporting the waves        (Column G) and the mean wave steepness    (column H), The 

value of        is listed as zero when it is computed to be less than 0.01m.s
-1

. 

2.2.2 Measurement of wave field development 

Under conditions of steady wind (   ⁄   ), the development of the wave field is 

determined by the local spatial gradient of wind-wave energy: 

  

  
|
  

 (         )
  

  
|
  

 (16) 

where is the bandwidth centred around the spectral peak. Conventionally (Wilson et al. 1973; 

Mitsuyasu and Honda 1982; Peirson and Garcia 2008), this is undertaken by fitting the model: 

 ( )     
  (    ) (17) 

to measurements of local energy density   at fetches x close to the point of interest (located at 

  ) where Δ is a spatial dimensional growth rate. Then,  

  

  
     (18) 

For the small WRL tank experiments, the wind-wave conditions were purposefully 

established to minimise any changes in the surface wave field with fetch. By carefully balancing 
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the wind input to the mechanical waves with the total energy losses of the waves, the conditions 

of approximately constant energy density can be established yielding     ⁄   .  

In the large IRPHE tank, wave spectra were measured at three points over a total fetch of 

5.3m encompassing the measurement point. For the mechanically-generated non-breaking waves 

at the lower wind speeds, the wave growth was weak and the local measurements were 

reconciled with measurements along the entire fetch of the facility. 

 For all wave cases    was set to span the frequency range from   √ ⁄  to √    with 

       . These frequency ranges were found to encapsulate over 92% of the total spectral 

energy of the dominant waves. Two representative examples of the spectral distribution of the 

wave energy are reported in the Figure 1. In the pure wind wave case U7F0 (Um=7m.s
-1

), about 

93% of the total spectral energy is supported in this frequency range. In the mechanically 

generated waves case U7F14 (  =1.4Hz, Um=7m.s
-1

), more than 94% of the total energy is 

encapsulated in this bandwidth. For the pure wind wave case, it is important to reiterate that the 

spatial rate of change of wave energy outside of the selected frequency band for any 

experimental case was less than 1% of that measured within the selected band. This demonstrates 

that no significant non-linear energy flux occurred from the selected band to waves of lower 

frequency, thereby validating our approach to determining      . 

Wave breaking is known to enhance significantly both momentum and energy fluxes from 

the air to the water (Banner and Melville 1976; Banner 1990; Melville et al., 2002; Makin et al. 

2007). Therefore local measurements of the probability of wave breaking were made for this 

present study. For each measurement case, these probabilities were determined by averaging 

ensembles of counts of the relative numbers of breaking and non-breaking dominant waves 

within a given sample time period visually observed to cross the designated measurement point. 

The probability of observed wave breaking    is reported in the Table 1, column E. The presence 

of breaking was determined according to whether the crest was observed to be spilling evidenced 

by a sharp discontinuity in the forward face slope and ripples radiating rearward from the spilling 

toe. 
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2.3 Measurement of the total stress 

The bulk wind forcing applied in each case is shown in Table 1, column B. However, the 

actual momentum flux that is applied to the surface depends also strongly on the characteristic 

wave condition (Donelan 1990; Jones and Toba 2001; Makin et al. 2007). 

There are two conventional methods of determining total stress, and therefore 

corresponding wind friction velocity and the air roughness length (Kawamura et al. 1981). In the 

large IRPHE facility, turbulent stress profiles (measured at a series of fixed elevations above the 

surface) were determined using cross correlations of the horizontal and vertical velocity 

fluctuations obtained from a hot X-wire probe. Between two sets of needle-shaped prongs, wires 

of 5μm diameter and 1.2mm length were suspended orthogonally at a 45° angle in a vertical 

plane aligned with the mean wind direction. The wires were connected to two DISA model 55 

constant-temperature anemometers. The same calibration method described in Mastenbroek et al. 

(1996) was used except that the calibrations were performed inside the large tank to match the 

characteristic humidity and temperature values encountered during the present experiments. 

The measured turbulent stress profiles demonstrated the existence of a constant flux layer 

above the water surface within an approximate thickness of 10 to 20cm. The values of the total 

stress were derived from the mean values of the turbulent stress in this layer. The hot X-wire 

probe was also used to measure the mean wind speed profile in the constant flux layer yielding a 

logarithmic distribution of the wind speed U(z) (Coantic et al 1981), The air-sided roughness 

length   
  was derived from the logarithmic law  ( )  

  
 

 
  (

 

  
 ) using the friction velocity 

  
  √   ⁄  calculated from the total stress previously determined by cross correlations.  The 

Von Karman constant κ was set to 0.41. 

In the smaller WRL facility, the logarithmic layer was thin making X probe measurements 

vulnerable to impact of waves on the probe elements. Consequently, the wind stress and air-sided 

roughness length   
  were derived from the logarithmic portions of mean air velocity profiles 

measured using a 2mm diameter pitot tube that could be referenced to the mean water level 

within ±0.2mm. 

The total stress   and the air side roughness length   
  values obtained by these methods are 

shown in columns I and J of Table 1. From these values, the wind speed    ⁄  at     ⁄  and the 

wind speed     at       were derived and are reported in columns K and L of Table 1.  
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2.4 Measurement of the viscous stress 

Measurement of the interfacial viscous stress is undertaken by measuring the velocity shear 

within the linear viscous sublayer on the water side or on the air side of the interface. The 

aqueous sublayer is of physically larger dimension with smaller shear and therefore the surface 

velocity and, consequently, the wave-coherent tangential stress can also be measured (Banner 

and Peirson 1998; Peirson and Banner 2003). For the measurements in the small WRL facility, 

the PIV techniques developed and described in detail by Peirson (1997) were used. 

For the measurements in the large IRPHE facility, a new technique using a hot wire 

technology coupled with a high speed linear actuator (Copley Corp., Model XTB 3810 - 

maximum velocity and acceleration are 2.8m.s
-1

 and 300m.s
-2

 respectively) was developed. A 

detailed description is available in Grare (2009) and a brief summary is contained here. 

The complete device, termed a kingfisher (shown in Figure 2) due to its characteristic 

motion, undertakes a rapid vertical profile downwards from an initial position approximately 

120mm above the mean water surface. Moving with a velocity of 1m.s
-1

, the kingfisher carries a 

single 5μm diameter horizontal hot wire. This hot wire is held transversely relative to the 

approach flow by a probe mounted at 45 degrees below the horizontal. The probe traverses 

downwards and through the water surface to a depth of 80mm. Then the probe is returned to its 

initial position in the air. The probe is rapidly agitated by the actuator to shake any entrained 

water from its surfaces and then holds its position in the air for a duration of 10 seconds to 

evaporate any remaining moisture before repeating the cycle. The 10 second delay also ensures 

that any flow disturbance generated in the air and the water by the kingfisher as it passes through 

the surface is dissipated prior to any subsequent measurements. The kingfisher was operated in 

conjunction with the wave probes during the measurements. The width profile of the kingfisher 

device is small and therefore the air flow implications for the wave probes were inconsequential. 

Ring waves are only generated once the kingfisher pierces the surface and it was ensured that the 

wave probe slope measurements were not contaminated by the ring waves. 

A primary challenge associated with this method was to maintain accurate measurements 

of the velocity in the air without damaging the wire when it impacted the water surface. To avoid 

physical damage to the wire, the hot wire overheat ratio was set to 1.2. Nonetheless, the 

characteristics of the wire slowly changed each time the probe was immersed, leading to a 

systematic drift in the King coefficients: 
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      √  
(19) 

where E is the potential difference across the wire, U is the measured velocity and A, B are the 

King coefficients. About one hundred of dives were performed for each wind-wave condition 

studied, thus it was not possible to calibrate the wires after each individual dive. Successive 

calibrations were undertaken, before and after each n measurement ensemble to obtain initial (A1, 

B1) and final (An, Bn) King coefficients. Between each calibration, for an individual i
th

 

measurement (1<i<n), the Bi coefficient was linearly interpolated via: 

      
(   )

(   )
(     ) (20) 

The value of the Ai coefficient was then adjusted using the mean value of the voltage before each 

dive   
  (after sufficient time had elapsed for the wire to dry) in order to match with the mean 

value   
  before the first dive, where the superscript h denotes the altitude of the upper position 

of the kingfisher (about 120mm above the mean surface): 

     
  

 
  

  
(  

  
   ) (21) 

With these adjustments, the absolute error of the measured velocity remained less than 0.2m.s
-1

. 

During a dive, the minimum velocity measured by the sensor is the vertical speed of diving 

(=1m.s
-1

). Thus the maximum relative error of the measured velocity was 20%. This is different 

of the relative error of the computed velocity of the air. Neither the recorded velocities in the 

viscous sublayer nor the computed tangential stresses showed systematic mean shifts in time.  

The exact instant (Ti) when the hot wire impacted the water surface was indicated by an 

abrupt increase of the voltage across the wire. Therefore: 

 (  )      (  )    (  )    
    (22) 

where z is the absolute altitude and    is the  normal (perpendicular to the water slope)  distance 

of the probe from the surface. Immediately prior to contact with the surface, a distinctly linear 

velocity distribution was clearly visible in each velocity profile, indicative of the linear sublayer 

in the air. Figure 3 shows a single realization of the normalized vertical wind speed profile 

measured with the kingfisher device,   ( )   ( )   
 ⁄  as a function of        

   ⁄ , where 

  
  is the friction velocity of the air, and    is the kinematic viscosity of the air. The profile is 
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linear in the very close vicinity of the water surface.      is equivalent to a distance of about 

0.5mm for this example.  

The constant speed of diving   =1m.s
-1

 permitted relating the time to the height of the 

probe relative to the interface. The surface viscous stress was determined from: 

        

   

   
|
    

 (23) 

where    is the dynamic viscosity of the air and    is the tangential velocity in a wave following 

frame of reference. The tangential velocity    is computed from the vectorial equation: 

 ⃗⃗          ⃗       (24) 

where (    ⃗ ) are the local tangential and normal vectors of the surface when the probe impacts the 

surface. The tangential velocity    is the positive root of the quadratic equation: 

  
              

    
                 

(25) 

where          (
  

  
) and    was assumed to be equal to 

  

  
    .The kingfisher instrument 

sampling frequency was 20kHz, which provided a time step of 50µs, yielding to a vertical 

resolution of 50µm. With the wave probe pair mounted adjacent to the kingfisher with a cross 

tank separation of 5mm, the contact of the probe with the water surface was related to the phase 

of the propagating wave forms. For each test case, about one hundred individual kingfisher dives 

were completed. The nature of the operation of the kingfisher was that these dives were 

randomised in terms of wave phase and therefore continuous distributions along representative 

waves could be determined (see Figure 8.1 in Grare 2009). 

The mean tangential stress measurements for each test case are shown in Table 1, column 

M. 

2.5 Direct measurement of form drag 

2.5.1 Measurement of static pressure 

Static pressure measurements were undertaken, in the large IRPHE facility, using the 

pressure probe disk developed by Elliot (1970,1972a,b) and a piezo-resistive pressure transducer 

sensor. The primary improvement in the present probe is that the pressure sensor was placed as 

close as possible to the sensing ports (within 25mm – Figure 4).  

Page 17 of 65



18 

The disk probe was fabricated with a mix of epoxy resin and micro hollow glass balls 

under vacuum using a shaped mould. The disk is 4cm diameter, its thickness is between 1.85mm 

and 2.1mm, and the diameter of its sensing ports is 0.5mm. The pressure port routing tube has a 

0.5mm internal diameter. The piezo-resistive sensor is the model 8507C-1 from the Endevco 

Corporation, 2.3mm in diameter and 12mm long. Its sensitivity is 30mV/kPa for an operating 

range of 7kPa. Its small size allows the sensor to be placed inside the tube supporting the disk. 

The air volume contained between the sensing probe holes and the pressure sensor is then 

reduced to less than 50mm
3
. The natural resonant frequency of this sensor is 55kHz, yielding a 

variation of sensitivity in the transducer less than 4% up to 10kHz. In the present case, this 

alleviates the need for frequency calibration (Donelan et al. 2005), required by larger-scale 

pressure transducers. 

Apparent static pressure perturbations can be created by oblique velocities that induce 

dynamic pressures or by the vertical motion of the wave-follower. Using the Elliot disk ensured 

that static pressure error relative to the dynamic pressure remained less than 5% for a yaw angle 

less than 10° (Elliot 1970,1972a,b). For wind waves generated for a centreline wind speed of 

8m.s
-1

, measurements located 5cm above the mean water level using an X-hot wire probe showed 

that the angle of attack of the flow remains within 10° for greater than 95% of the time. 

Perturbations induced by the movement of the probe could potentially contaminate the 

static pressure measurements. The precautions taken to minimise their impact are as follows: 

a) Inertial effect of the air contained in the connecting tubes; 

The pressure sensor was placed less than 25mm away from the pressure probe ports. The 

inertial effect of the accelerated air contained in the tube was negligible in comparison 

with the static pressure variations recorded (about 1Pa). Furthermore, the reference 

pressure port of the transducer was sealed to reduce the volume of air on the reference 

side of the transducer to less than 10mm
3
. Although the corresponding correction of the 

accelerated air-volume was negligible, the sealing of the reference pressure port implies 

the low frequency atmospheric fluctuations were recorded. These fluctuations were 

removed by high-pass filtering (0.3Hz) of the raw pressure signal. 

b) Acceleration of the transducer diaphragm; 

The diaphragm of the transducer was mounted in a vertical plane making it not sensitive 

to the vertical acceleration of the probe. 
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c) Displacement within the vertical atmospheric pressure gradient. 

Vertical displacements of the probe within the vertical atmospheric pressure gradient 

induced static pressure fluctuations simply due to hydrostatic pressure.  In principle, this 

pressure term is in out of phase with the surface elevation and therefore does not 

contribute to the pressure-slope correlation. Detailed analysis showed that for the real 

data, the values of the pressure-slope correlations increase by less than 2% if the 

hydrostatic pressure displacement correction is applied. 

 

The frequency response of the assembled “Elliot disk/transducer unit” was compared with 

a pressure transducer without the Elliot disk. A sound generator was activated at one end of a 

closed cylinder with the two probes inside. The speaker was stimulated by a signal generator 

with a sinusoidal waveform for frequencies varying from 0.1Hz to 10Hz. The phase lag of the 

assembled instrument remained less than 0.5° with an attenuation less than 4%. 

As observed by others (Latif 1974; Papadimitrakis, Hsu and Street 1986; Banner 1990), the 

driving mechanism and the displacement of the wavemaker induce large acoustic pressure 

fluctuations inside the wave tank. For this investigation, this issue was avoided by recording the 

wavemaker displacements and analysing the acquired data only when the wavemaker was turned 

off (See Mastenbroek et al. 1996). 

2.5.2 Positioning of the pressure sensor 

The complete static pressure probe was mounted on the linear actuator used for the 

kingfisher. The pressure probe was put adjacent to the X-wire with a cross channel spacing of 

5mm (Figure 4). The actuator was operated in two different modes: static and wave following. In 

static mode, a constant voltage ensured that the probe remained within 18µm of a specified 

constant position above the mean water level. 

In the wave following mode, the wave gauge output signal was connected to the actuator 

command via a signal conditioning which controlled the gain, sensitivity, speed and acceleration 

of the following device. The sensitivity of the system was adjusted to match optimally the wave 

gauge sensitivity resulting in an accurate response of the actuator to the elevation of the surface.  

However, the part of the wave gauge signal generated by the high frequency waves 

introduced an error response of the actuator leading to potential vibrations of the structure 
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supporting the wave follower. These vibrations generated errors in the vertical position of the 

probe and noise perturbations that were recorded by the pressure probe. To avoid this problem, 

the parameters of the actuator feedback loop were adjusted to filter out these high frequency 

components. A linear displacement sensor monitored the actual actuator displacements with a 

precision better than ±50m. The final tracking error was less than 10% in amplitude and less 

than 7° lag in phase for frequencies up to 3Hz. The performances of the wave follower system, 

with all the technical details are described in Grare (2009).  

2.6 Indirect measurement of static pressure 

Deardorff (1967) developed equations of the momentum flux from the air to water between 

a moving surface and a constant height above the mean water level. However, his formulation 

cannot be applied to wave-follower measurements. These equations have been developed further 

to express the momentum fluxes in the wave-follower frame (see Appendix A for the detailed 

derivation).  

The components of the velocity and pressure are decomposed into mean, wave-induced 

and turbulent parts. The mean part of a time dependant function q(t) is defined by (Mastenbroek 

et al., 1996): 

 ̅  
 

 
∫  ( )  

 

 

  (26) 

Assuming that a part of q is induced by N waves of period τ, the wave induced part of q is 

defined by: 

 ̃( )  
 

 
∑  (    )

 

   

  ̅  (27) 

The remaining fluctuating part of q is the turbulent part defined by: 

   ( )   ( )   ̅   ̃( )  (28) 

Assuming that the transverse velocity of the air flow is negligible and the wave field is two-

dimensional, the total stress   is defined by the sum of three components (pressure-slope 

correlation, a term due to wave follower motion and a viscous term) expressed at the constant 

wave following height ξ=h: (see appendix A) 

Page 20 of 65



21 

    
    

    
  (29) 

where 

  
   ̃

  

  

̅̅ ̅̅ ̅̅
|
 

 (30) 

  
      ̃ ̃̅̅ ̅̅ |

 
       ̅̅ ̅̅ ̅̅ ̅|

 
    ̃

  

  

̅̅ ̅̅ ̅̅
|
 

    ̃ 
  

  

̅̅ ̅̅ ̅̅ ̅
|
 

      
  

  

̅̅ ̅̅ ̅̅ ̅̅
|
 

     ̅ ̃
  

  

̅̅ ̅̅ ̅̅
|
 

 (31) 

  
    

  ̅

  
|
 

   (
  

  
)
   ̃

  

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
|

 

   (
  

  
)
 ̅̅ ̅̅ ̅̅ ̅̅   ̅

  
|
 

    

  

  

  ̃

  

̅̅ ̅̅ ̅̅ ̅̅
|
 

   

   

   
 ̃

̅̅ ̅̅ ̅̅ ̅
|
 

   

   

   
  

̅̅ ̅̅ ̅̅ ̅̅ ̅
|
 

   

   

   

̅̅ ̅̅ ̅
 ̅|  

(32) 

Equation (29) also can be transformed to: 

  
      

    
  (33) 

Assuming that viscous effects are insignificant at elevation h above the surface, the RHS of 

the equation (33) only depends on the total stress, the local velocities and the surface elevation.  

By extrapolation of   
  to the surface, this provides an alternative indirect method of 

determining form drag without relying on direct static pressure measurements which are 

vulnerable to signal contamination as described previously. In general, velocity measurements 

are more straightforward and reliable than static pressure measurements. 

3 RESULTS AND DISCUSSION 

3.1 Stress partition 

Figure 5 shows the form drag normalized by the total wind stress for all measurements 

presented in Table 1. The values obtained from measurements of the viscous stress are computed 

using equation (5). Several observations can be made. The two sets of tangential stress 

measurements show reasonable consistency and systematic behaviour as a function of wave 

steepness. This consistency, their ability to capture linear behaviour adjacent to the surface and 

the simplicity of the measurement provide clear evidence of their reliability in determining the 

surface tangential stress. The form drag measurements are in reasonable agreement with the 

tangential stress measurements although some cases exhibit implausibly large form drag values. 
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This issue can be explained by the fact that the form drag is estimated by extrapolation at the 

surface of the pressure-slope correlations.  

The upper panels of Figures 6 and 7 provide two examples of the three potential methods 

of measuring the form drag. Far from the surface, both the fixed and the following measurements 

are in reasonable agreement, although fixed measurements do produce absolute wave-coherent 

pressure fluctuations that are systematically smaller than those determined when the wave 

follower data is used. Further, the indirect calculation of the static pressure does appear to yield 

higher wave-coherent pressure variations than obtained by the static pressure probe itself. The 

near surface vertical pressure gradients are substantial and show that the use of a single static 

pressure measurement is not appropriate. As indicated by the fits in Figures 6 and 7 (upper 

panels), for the fixed probe measurements, the pressure/wave slope correlation varies linearly 

rather than exponentially away from the surface. 

However, the key feature causing this systematic overestimate of the surface pressure is 

shown in the wave following measurements in the lower panels of Figures 6 and 7. In the 

vicinity of a distance        (       ⁄ ) there is a distinct change in the near surface pressure 

field such that the wave-coherent pressure fluctuations decrease rather than increase in 

proximity to the surface. We do not believe that this behaviour has been observed previously 

although the numerical model results of Mastenbroek et al. (1996, Figure 11) with higher order 

closure anticipate such behaviour with distance above the mean surface. Banner and Peirson 

(1998) and Reul et al. (2007) show strong separation in the wakes of these wind-forced waves on 

a vertical scale of twice the wave amplitude which is approximately        for these 

conditions. It may be that strong spatial gradients in the vertical velocity have a significant 

impact on the vertical pressure gradients. Further investigation is warranted to resolve these 

issues. 

In spite of the obvious differences between the local values of wave-coherent surface 

pressure between the direct and indirect methods, the simplicity of the indirect method and its 

promising performance warrants further investigation, particularly for potential application in 

open ocean conditions. 

 

We now explore the implications of the previous results in determining wind input, wave 

growth and losses from the wind-forced wave fields. We start by comparing the present results 
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with the measurements of Banner and Peirson (1998). This is shown in Figure 8 where the two 

grey lines indicate the total and tangential drag coefficients determined by Banner and Peirson 

(1998).  

    
 

     
                 

     

     
  (34) 

 Their laboratory total drag data lie slightly below the solid thin heavy grey line in Figure 

8, approaching it as the fetch increases (See upper panel of Figure 12 in Banner and Peirson 

1998).  

Banner and Peirson (1998) tangential drag results at their longer fetches lie in the vicinity 

of the dashed heavy grey line shown in Figure 8, differing from the present results by 

approximately a factor of 2. To our knowledge, Banner and Peirson (1998) and this present study 

are the only two systematic investigations of tangential drag coefficients. Consequently, there is 

no other direct independent evidence available to explain this difference but we offer the 

following potential explanation. 

The measurement techniques used in the small WRL facility for this present study and 

those of Banner and Peirson (1998) are identical. Yet the tangential drag coefficients yielded by 

the present are a factor of two smaller than Banner and Peirson (1998). The form drags as 

normalized proportions of the total wind stress obtained from this study are very similar to those 

measured by Banner (1990) for well-developed waves. Consequently, the relatively high level of 

wave development of the present study relative to those investigated by Banner and Peirson 

(1998) who observed a systematic decrease in tangential stress with very short fetch may be a 

plausible explanation. For much more developed waves (mechanically-generated or at fetches 7 

times greater than the maximum considered by Banner and Peirson 1998), the tangential stress 

may continue to fall to the levels observed during the present experiments. A new exciting 

possibility is the potential application of the kingfisher under field conditions. Nonetheless, a 

primary conclusion of Banner and Peirson (1998) remains robust: significant levels of tangential 

stress persist in the presence of well-developed waves under moderate wind forcing. 

3.2 Wind Input 

Surface velocities of wind forced waves can be composed as the sum of the wave orbital 

component and a surface drift of approximately       
 , with a surface rupture at the toes of 

spilling regions (Banner and Phillips 1974; Wu 1975; Peirson and Banner 2003; Peirson et al. 
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2012b). For friction velocities at moderate wind speeds, the surface velocities are typically less 

than 10% of the wind velocities just a few millimetres above the surface. When these factors are 

coupled with the microscopic thickness of the rapidly moving air side viscous sublayer, the 

present investigations found that robust determination of water surface velocities from air 

velocity at the surface as measured from the kingfisher technique was presently unattainable. 

Therefore, this present analysis has had to progress on the assumption that the corresponding 

wave-coherent tangential stresses in the large IPRHE tank make a negligible contribution to the 

wind input. For the data gathered in the small WRL tank, the computed wave-coherent tangential 

stress contribution was found to be negligible (Peirson et al. 2012b). 

The corresponding wave drag values (equation (7)) can be normalised as a wind input rate  

(equation (8)) to yield the distribution shown in Figure 9.  The collapse of the data with the 

steepness is remarkable, particularly in view of the scatter in conventional presentations of such 

data (e.g. Plant, 1982, Figure 2) and the raw viscous-derived form drags expressed as normalized 

proportions of the total wind stress (Figure 5).  

These results show a strong finite amplitude effect that has not been anticipated by 

previous investigators except Peirson and Garcia (2008). The mean curve of the wind input data 

lies above the mean curve obtained by Peirson and Garcia (2008) but bounded above by the 

theoretical limit    (  ) ⁄  that assumes that the form drag cannot exceed the total stress. The 

levels are stronger than anticipated by most other investigators and lie within the limits 

determined by Plant (1982) above a mean steepness of        . From the equations (1), (2) 

and (8),     can be expressed as followed: 

    
 

 
√    

 
 ⁄      (  

 )  (35) 

From Figure 9, the best fit is       (  )           where the uncertainty in the exponent of 

   was determined at 90% confidence. Substituting the fitted result into equation (35) yields: 

        √                          
   (36) 

with a correlation coefficient over 0.97 and where the ordering of the errors in the exponents 

must be correlated to maintain non-dimensionality. It is noted that this expression spans 

conditions                    and therefore representative of moderate wind conditions. 

Due to non-dimensionalising interactions between wave steepness and wave properties defined 
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by linear theory, a myriad of alternative non-dimensional forms of equation (36) can be 

developed that include equations (8) and (9). Equation (36) maintains non-dimensionality with 

reference to as few wave properties as possible. 

Figure 10 shows the present data  in the more conventional form as a function of wave 

age     
 . No systematic collapse of the data can be observed indicating the overriding 

importance of wave steepness in determining the wind input even though the wave speeds 

approach 40% of    ⁄  (wind speed at altitude     ⁄ ). The present data is not sufficiently 

extensive to determine the influences of wave age on normalised wind input.  

We investigated other possible non-dimensional presentations of the form drags as 

normalized proportions of the total wind stress and the normalized wind input term as functions 

of the wave Reynolds number 
    ⁄

  
, the roughness Reynolds number 

  
    ⁄

  
 or the non-

dimensional fetch 
  

   ⁄
 , but the data did not collapse systematically as a function of these non-

dimensional variables.  

In view of the comments of Phillips (1985) at the foot of page 510, some might find such 

strong normalised levels of wind input at low steepness objectionable with the Plant (1982) 

normalisation of β=32±16, independent of mean wave steepness. As will be shown subsequently, 

these results are consistent with several other studies. Specifically, Jeffreys sheltering 

coefficients as determined by Donelan and his collaborators (Donelan 1999; Donelan and 

Pierson 1987; Donelan et al. 2006) are shown in comparison with the present data in Figure 11. 

Remembering that in each case, the Donelan values reflect mean sheltering coefficients without 

consideration of the possible role of wave steepness, the strength of wind input determined 

during this present investigation is similar in magnitude to those determined independently on 

the basis of pressure measurements in the air. Given that the wave age and wind forcing 

conditions of the Donelan investigations are not very different from this present study, the 

consistency between these studies is reassuring. Nonetheless, the collapse of the data in Figure 9 

is much more systematic than that found in Figure 11. As done for figure 9, we investigated the 

presentation of the normalised wind energy input rate, expressed as Jeffreys sheltering 

coefficients as a function of the wave age     , but the data did not collapse systematically 

showing that no apparent functionality is found between these two variables. 
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3.3 Wave field development and wave attenuation 

Summaries of the total wind energy input     in comparison with the other terms in 

equations (3), (4) and (10) measured in the large IRPHE wind-wave facility are presented in 

Figures 12a, 12b and 12c where       
  

  
|
  

          . It can be observed that all 

quantities form a systematic pattern as a function of fetch, wind forcing and, to a lesser extent, to 

the wave characteristics. Figures 12a to 12c also show the probability of breaking for each 

experimental case. 

There are systematic and large differences between the wind input and consequent net 

wave growth (or attenuation) implying a significant energy loss from the wave field even for 

conditions in which none of the dominant waves were observed to break. Specifically, for the 

cases of non-breaking mechanically-generated waves, there is a substantial       term which is 

significantly larger than the (near) negligible viscous losses. As discussed earlier, there is some 

uncertainty regarding the precise magnitude of the viscous losses but they are inconsequential to 

the quantitative conclusions of this investigation. At short fetch, when the dominant wave 

components are in the range of 5 to 20cm, energy wave transfer to parasitic capillaries (which 

then dissipate rapidly) may be larger than the direct viscous dissipation by the dominant waves 

(Longuet-Higgins 1992; Zhang 2002). This may explain some wave dissipation for non-breaking 

cases. In our study, six cases present dominant wavelengths smaller than 20cm. Five of them 

exhibit a breaking probability greater than 42%. For these cases, the dissipation rate by 

generation of capillaries is expected to be small compared to the dissipation rate by breaking. 

Hence only one case presents non-breaking waves of wavelengths smaller than 20cm, and in this 

case, a significant part of the dissipation could be due to parasitic capillaries riding on lee face of 

short gravity waves. 

3.3.1 Wave-turbulence interactions 

Normalised wave attenuation rates       can be computed in a form of equation (8). 

     

  
       

  

  
(
  

 

 
)

 

 (37) 

       values are shown as a function of wave steepness in Figure 13. Breaking and non-breaking 

wave cases are distinguished in this figure by the respective symbols. The degree of collapse is 
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remarkable in this normalisation. However, there are three data points which do not fit the 

overall pattern and deserve special comment. 

The first is a non-breaking case exhibiting negative normalised attenuation (U4F10, 

        ,            ). As shown in Figure 12c, for this experimental case, the wind input 

is weak and comparable in magnitude with other constituent quantities. Reliable determination of 

      is compromised by the small magnitude of the measured quantities relative to the inherent 

measurement errors. This conclusion is supported by the behaviour of corresponding cases of 

higher wind forcing (U7F10 and U10F10). Although in these cases, breaking of the dominant 

waves was also not observed, the corresponding determinations of       sit naturally amongst 

the other data.  

There are two other cases which exhibit very high normalised attenuation rates (U4F14, 

        ,           and U7F14,         ,         ). In these specific tests, the 

overall breaking behaviour differed from all other experimental cases: there was no breaking of 

the monochromatic waves along the tank as they developed under the influence of wind. 

However, immediately upwind of the point of measurement, the monochromatic waves in these 

two cases began to break, releasing the accumulated wind input acquired during their passage 

along the tank. This wind-forced behaviour is similar to that observed in the highest steepness 

cases measured by Mitsuyasu and Honda (1982) and shown in their Figure 9. For non-wind 

forced conditions, this pattern is similar to group behaviour observed by Rapp and Melville 

(1990), Drazen et al. (2008) and Tian et al. (2010) and, in which there is a sustained, spatially-

localised convergence of energy within the wave field leading to subsequent breaking and energy 

dissipation (Banner and Peirson 2007). Note that the measurement itself, of course, does not 

contribute to the breaking. The wave probes are constructed with very fine elements. While small 

ring waves can occasionally been observed radiating from the frame supports, these are tiny and 

insufficient to trigger the large-scale breaking that was observed. 

These results point indicate potential characteristic gravity-scale breaking behaviours in the 

open ocean. Some wave scales can be maintained in a near-saturated state, in which the waves 

remain in a quasi-equilibrium between the wind input, subsurface dissipation and development. 

Other, lower frequency scales can steadily accumulate input energy without breaking to a critical 

point when rapid, local release of energy occurs. 
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An unanticipated outcome of these present results is the normalised intensity of the wave 

attenuation. Although Belcher et al. (1994, p.148) determined that turbulent attenuation of wind-

forced waves could be so strong that waves might not grow, we did not anticipate such strong 

attenuation in our data. Nonetheless as shown in Figure 13, the levels of normalised attenuation 

are found to be systematically high, particularly at low steepnesses. The levels anticipated by 

Teixeira and Belcher (2002) and Ardhuin and Jenkins (2005) are also shown. Obvious care needs 

to be taken when extrapolating these results to field conditions and the premises assumed by 

Ardhuin and Jenkins (2005) are different from this present study. Reconciliation of these 

findings at different scales is anticipated to yield new insights into air-sea interaction behaviour. 

The data also provide understanding of the production of turbulent kinetic energy in the 

upper ocean. Craig and Banner (1994) developed a boundary layer model for the upper ocean 

that incorporated both shear production of turbulence as well as injection of turbulent kinetic 

energy (TKE) from the wave field. These present data yield estimates of the TKE sourced from 

the wave field. From Figure 13 (excluding the two data points showing high attenuation rates as 

discussed previously), the best fit is           (  )           (uncertainty, again, determined 

at 90% confidence) which yields the expression: 

           √                         
  

 (38) 

with a correlation coefficient of 0.93 and where the ordering of the errors in the exponents must 

be correlated to maintain non-dimensionality. Craig and Banner (1994) report an expression 

equivalent to: 

              
  

             
     

  
 (39) 

Assuming equal air-sided and aqueous total stress and representative values for these present 

experiments of   
     m.s

-1
,          m and     m

-1
, yields coefficients for       of 

      and       in equations (38) and (39) respectively; thus reconciling the two expressions 

(equations (38) and (39)) almost within a factor of 2. 

Obtaining directly comparable values from the studies of Cheung and Street (1988) and 

Thais and Magnaudet (1996) was difficult. Using the data presented in Figure 12 of Cheung and 

Street (1988), it was attempted to obtain       via: 
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      ∫   ̃ ̃̅̅ ̅̅

 

    

  ̅ 

  
   (40) 

where the tilde overbars indicate wave-induced water side velocities and  ̅  indicates the mean 

horizontal water current. Cheung and Street (1988) show that this quantity declines 

monotonically with depth. Computing the integral of equation (40) at wind speeds of 4.1 and 

6.2m.s
-1

 using an appropriate extrapolation of their data up to the mean water level yielded very 

large values of wave attenuation that could not be reconciled with this or any other investigation. 

Re-examination of the findings of Cheung and Street (1988) and Thais and Magnaudet 

(1996) would be appropriate in the light of the present study. Peirson et al. (2003) observed very 

strong rates of wave attenuation in the presence of opposing wind. Based on these present 

results, turbulent attenuation rates acting in concert with form drag of an opposing wind action 

on the wave would be anticipated to yield wave attenuation rates comparable with those 

observed by Peirson et al. (2003). 

3.3.2 Eddy viscosity approaches 

Tian et al. (2010) recently found that an eddy viscosity          m
2
.s

-1 
provided 

remarkable collapse to systematic measurements of wave breaking energy loss over carefully 

measured swept distances of wave breaking. For these present experiments, the eddy viscosity is 

defined as: 

   
     

      
 (41) 

with    is the probability of observed breaking at a fixed point (Table 1, column E). The 

equivalent eddy viscosities have been computed for the present measurements and are 

summarised in Figure 14. As shown these do not yield a systematic collapse of the assembled 

measurements and the computed eddy viscosity values are approximately a factor of 5 smaller 

than values found by Tian et al. (2010). 

It is noted that Drazen et al. (2009) also computed eddy viscosities which collapse 

systematically as a function of breaking durations and span the range 10-4 to 8×10-3 m2.
s

-1
. We 

believe that while eddy viscosity concepts are attractive due to their simplicity, such approaches 

are unlikely to yield robust representations of highly non-stationary processes such as breaking. 
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3.3.3 Duncan (1981) breaker model 

The present measurements permit examination of a key quantity in models of wind-forced 

development of sea state: the dissipation of wave energy due to breaking encapsulated in 

equation (12). In terms of the observations available here, we are converting the mean flux       

to a process that is localised at a point of breaking. In general, measuring localised breaking is a 

difficult process (Jessup and Phadnis 2005, Melville and Matsuov 2002). During this present 

study, it was only possible to undertake point observations of breaking and define these as a 

probability of breaking of the dominant observable waves at a point. 

A probability of observed breaking at a fixed point    (Table 1, column E) implies a mean 

duration between breaking events   . Over the time duration   , the approximate mean length of 

wave surface that has propagated past the fixed point (ignoring surface dilation effects) is 

(Peirson and Banner 2001): 

(        )   
  (        )

   
 (42) 

Transforming the mean energy flux to energy dissipation per unit length of breaking front: 

    
       (        )

   
 (43) 

Equating equations (12) and (43), yields an expression for the breaking strength b: 

   
       

  (        )
 
  

 (44) 

where it has been assumed that the breaker speed is the same as the effective speed of waves at 

the spectral peak. 

The b values computed are shown in Figure 15 expressed as a function of wave steepness 

   following the approach of Drazen et al. (2008). In Figure 15, it can be observed that the 

present measurements sit appropriately between the determinations of Banner and Peirson (2007) 

and Drazen et al. (2008). This is a remarkable result which indicates overall robustness and 

closure to the present analysis. The curve fit recently developed by Romero et al. (2012) is also 

shown in this figure.  

As noted in the introduction, there is a growing body of evidence that the breaker speed 

       is less than the linear value of   by some 10 to 20%. For present analysis, we have used 

the intrinsic wave speed   to match the analysis of Drazen et al. (2008) as closely as possible. 
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Unfortunately, there was insufficient time to measure breaker speeds in detail. However, we note 

that any decrease in the breaker speeds below the intrinsic speed will cause the determined b 

values to sit correspondingly higher in Figure 15.    

The differences between the sets of measurements shown in Figure 15 should be 

emphasised. The experiments of Banner and Peirson (2007) and Drazen et al. (2008) were 

conducted in the absence of wind when the only turbulence present was the turbulence generated 

by breaking events themselves. In contrast, the present investigations incorporate breaking 

events associated with waves propagating through turbulent water in which wind-induced shear 

is a strong feature.  

Given the similarity in normalised attenuation rates between breaking and non-breaking 

waves shown in Figure 13, does this mean that the Phillips representation is inappropriate and 

that equation (12) is merely a re-statement of a dissipation form of equation (8)? To answer this 

question, we have added to Figure 15 the b values characteristic of the non-breaking waves if 

their subsurface dissipation rates were attributed to a line source coinciding with the wave crests. 

As shown, these values are approximately a factor of 10 smaller than the breaking data cluster. 

This shows that: 

1. if wave attenuation is expressed in terms of wave parameters alone, the attenuation rates are 

approximately an order of magnitude higher in the presence of breaking. 

2. these high attenuation rates are generated to match the higher wind-induced stresses induced 

by the breaking process itself (Banner 1990; Makin et al. 2007), and, 

3. if a partition between the wave attenuation contributions of localised surface breaking and 

spatially-distributed wave-turbulent interactions is to be developed, the present results show 

that the surface breaking is the dominant contributor to the total attenuation of the wind-

forced wave field. 

4 CONCLUSIONS AND RECOMMENDATIONS 

This present study has compared the input of energy by the wind to the waves with the 

observed growth response of the waves themselves. Achieving this goal has involved a suite of 

microphysical investigation techniques. The agreement of measured tangential stresses in the 

water and air immediately adjacent to the interface show consistency across a range of wave 

scales and in different experimental facilities. The measured levels of viscous stress are 
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approximately 50% of those measured by Banner and Peirson (1998). This difference may reflect 

the higher levels of wave development for the waves investigated during this present study in 

contrast with Banner and Peirson (1998) who investigated the tangential stress during the initial 

phases of wave development at short fetch. Nonetheless, both studies show that substantial levels 

of viscous stress persist at moderate wind speeds. 

The comparison between the tangential stresses measured in the air with corresponding 

form drag measurements show considerable consistency but it has highlighted some significant 

issues in relation to the measurement of fluctuating pressures above freely-propagating waves. 

The extrapolations of form drag to a freely moving surface can result in a substantial 

overestimation of the form drag values. This overestimation occurs because of a significant 

change in the vertical gradient of      ⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 
that occurs at a normalised distance        above 

the surface. Presumably this observed behaviour is related to air flow separation above the wave 

forms. The measurement of static pressure in an air flow above freely-propagating waves 

requires specialist instruments that are subject to ambient pressure effects, including noise. The 

Deardorff (1967) equations have been extended to a wave follower frame of reference. By 

measuring the total stress and fluctuating velocities in close proximity to the surface, the quantity 

     ⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ can be obtained indirectly but with comparable accuracy to that of direct measurement. 

Such an approach may provide a more robust basis for measurements of wind input to waves 

under field conditions. 

The normalised wind input values of the present study show good collapse as a function of 

wave steepness consistent with but at significantly higher levels than those obtained by Peirson 

and Garcia (2008) at moderate steepness.  

The sheltering coefficients in the form of Jeffreys (1925) which have been derived from 

the present data are consistent in level with values previously obtained by Donelan and Pierson 

(1987), Donelan (1999) and Donelan et al. (2006). However, this normalisation exhibits 

significant scatter within the assembled data. The normalised wind input does not show a good 

degree of collapse as a function of wave age. The instrumentation used to measure much of the 

data during this study should be sufficiently robust to capture the wave age dependency in the 

laboratory and, possibly, in the field. 

For non-breaking waves, there is a significant misclose in the radiative transfer equation if 

wave-turbulence interactions are not included. These results support the conclusions of Cheung 
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and Street (1988) of a momentum flux from the wave field to the aqueous layers below. 

Although not measured directly, energy budget estimates indicate a systematic wave-turbulence 

coupling as a function of wave steepness and at significantly higher levels than found 

theoretically by Teixeira and Belcher (2002) and Ardhuin and Jenkins (2006). Direct 

measurements of the turbulence in the water side are recommended to quantify these 

interactions. 

The comparison of the wave energy budgets of the non-breaking and breaking cases shows 

that the normalised wave attenuation losses collapsed as a function of steepness    except in a 

few specific and explicable cases. This finding indicates that in wind-forced wave fields 

containing regular breaking waves, the breaking events represent the augmentation necessary to 

maintain a balance between the wind input, turbulent attenuation and the development of the 

wave field. The energy loss rates due to breaking obtained during this present study are 

remarkably consistent with the values determined by Banner and Peirson (2007) and Drazen et 

al. (2008) for breaking waves when expressed as a function of mean wave steepness. Finally, a 

quantitative assessment is made of the finding by Tian et al. (2010) that the breaking process can 

be represented by a constant eddy viscosity. Eddy viscosities computed from the data do not 

collapse systematically nor compare favourably with the Tian et al. (2010) value. 
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Figure 1. Spectra of the water surface elevation signal. Upper panel: pure wind wave case 

(         ). Lower panel: mechanically generated case (                        ). 

The vertical dotted lines represent the bounders of the frequency range   √ ⁄     √    

where         is the spectral peak frequency of the dominant waves. This frequency range 

was found to encapsulate over 92% of the total spectral energy of the surface elevation for all the 

cases studied. 
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Figure 2. A sketch of the physical arrangement of the kingfisher device in the large IRPHE 

facility. Behind the kingfisher are the two wire probes used to determine wave phase and wave 

speed. Cross tank spacing between the kingfisher tip and the upwind wave probe is 5mm. 
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Figure 3. Representative wall-normalised velocity profile obtained in large IRPHE facility from 

the kingfisher and shows a near-instantaneous determination of the tangential stress. 
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Figure 4. A sketch of the physical arrangement of the hot-wire/pressure probe mounted on the 

wave-follower in the large IRPHE facility. The X hot wire is mounted between the Elliot 

pressure disk and the two wave gauges. The inset figure is a sketch of the pressure probe. The 

pressure sensor is located 25mm downwind from the centre of the Elliot disk. Cross tank spacing 

between each instrument is 5mm. 
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 Figure 5. Comparison of form drags as normalized proportions of the total wind stress obtained 

during this study as a function of wave steepness. Tangential stress measurements have been 

transformed to normalized form drags using equation (5). 

 

plus signs, obtained from viscous measurements using PIV techniques in the small WRL facility 

(Peirson et al. 2012b); 

solid circles, obtained from viscous measurements using the kingfisher in the large IRPHE 

facility (Grare 2009); 

hollow squares, Mastenbroek et al. (1996); 

solid grey squares, linear extrapolations to mean water level of fixed static pressure data (Grare 

2009); 

solid grey diamonds, linear extrapolations to moving water surface of wave follower measured 

static pressure data (Grare 2009); 

hollow diamonds, linear extrapolations to moving water surface of wave follower indirectly-

derived static pressure data (Grare 2009). 

Solid curve shows approximate mean curve obtained estimates obtained from net measurements 

of wave growth by Peirson and Garcia (2008) 
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Figure 6. Vertical profiles of normalized pressure/wave slope correlation, and extrapolations of 

the normalized form drag at the water surface for the case U9F0. 

Upper panel: comparison of fixed, direct follower and indirect methods of determining form 

drag. Lower panel shows the change in the pressure-slope correlation at height h that occurs at 

approximately        

solid line + upward triangle, fixed static pressure measurements; 

solid thin line,  linear extrapolation of the fixed static pressure measurements to the mean 

water level; 

dashed line + solid circle, wave following direct static pressure measurements; 

dashed thin line, linear extrapolation of the wave following direct static pressure 

measurements to the surface; 

dotted line + downward solid triangle, wave following indirect static pressure estimates. 

dotted thin line, linear extrapolation of the wave following indirect static pressure 

estimates to the surface. 
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Figure 7. Vertical profiles of normalized pressure/wave slope correlation, and extrapolations of 

the normalized form drag at the water surface for the case U7F14. 

Upper panel: comparison of fixed, direct follower and indirect methods of determining form 

drag. Lower panel shows the change in the pressure-slope correlation at height h that occurs at 

approximately        

solid line + upward triangle, fixed static pressure measurements; 

solid thin line,  linear extrapolation of the fixed static pressure measurements to the mean 

water level; 

dashed line + solid circle, wave following direct static pressure measurements; 

dashed thin line, linear extrapolation of the wave following direct static pressure 

measurements to the surface; 

dotted line + downward solid triangle, wave following indirect static pressure estimates. 

dotted thin line, linear extrapolation of the wave following indirect static pressure 

estimates to the surface.  
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Figure 8. Comparison of tangential stresses with Banner and Peirson (1998). 

 

Upward pointing triangles,     ;  

downward pointing triangles,          ; 

solid thin grey line indicates representative mature sea total drag coefficients; 

dashed heavy grey line indicates tangential drag coefficients determined by Banner and Peirson 

(1998). 
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Figure 9. Normalised wind energy input rate expressed as function of mean wave steepness. 

Hollow squares are data from Mastenbroek et al. (1996), solid circles are obtained from viscous 

measurements using the kingfisher in the large IRPHE facility (Grare 2009) and the crosses are 

values measured using PIV techniques in the small WRL facility (Peirson et al. 2012b). The 

dashed line indicated the theoretical limit     (  )  and the solid line indicates the mean 

values of net wave growth determined by Peirson and Garcia (2008). The dash-dotted line 

indicates the best power fit of the data:       (  )          . 
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Figure 10. Normalised wind energy input rate expressed as function of wave age. Hollow squares 

are data from Mastenbroek et al. (1996), solid circles are obtained from viscous measurements 

using the kingfisher in the large IRPHE facility (Grare 2009) and the crosses are values measured 

using PIV techniques in the small WRL facility (Peirson et al. 2012b). The solid line indicates 

the conventional mean value of Plant (1982). 
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Figure 11. Normalised wind energy input rate, expressed as Jeffreys sheltering coefficients 

(Equation (9)), as a function of mean wave steepness. Hollow squares are data from Mastenbroek 

et al. (1996), solid circles are obtained from viscous measurements using the kingfisher in the 

large IRPHE facility (Grare 2009) and the crosses are values measured using PIV techniques in 

the small WRL facility (Peirson et al. 2012b). The grey line indicates the approximate mean 

values determined by Peirson and Garcia (2008) based on measurements of net wave growth. 

Solid lines at ordinate axis indicate sheltering coefficients determined by Donelan and Peirson 

(1987), Donelan (1999) and Donelan et al. (2006). 
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Figure 12a. Energy budget for wind waves in the large IRPHE facility at 7ms
-1

 wind speed as a 

function of fetch.  

 

Squares,      ; 

upward pointing triangles,     (from viscous measurements using the kingfisher);  

circles,      ;  

downward pointing triangles,      . 

Shown also are the corresponding wave breaking probabilities    indicated by the right hand 

scale as diamonds. 
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Figure 12b. Energy budget for wind waves in the large IRPHE facility at 28m fetch as a function 

of wind speed:  

 

Squares,      ; 

upward pointing triangles,     (from viscous measurements using the kingfisher);  

circles,      ;  

downward pointing triangles,      . 

Shown also are the corresponding wave breaking probabilities    indicated by the right hand 

scale as diamonds. 
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Figure 12c. Energy budget for monochromatic waves in the large IRPHE facility as a function of 

wind speed and wave frequency:  

 

hollow symbols, Um=4m.s
-1

;  

grey symbols, Um=7m.s
-1

;  

solid symbols, Um=10m.s
-1

. 

 

Squares,      ; 

upward pointing triangles,     (from viscous measurements using the kingfisher);  

circles,      ;  

downward pointing triangles,      . 

Shown also are the corresponding wave breaking probabilities    indicated by the right hand 

scale as diamonds. 
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Figure 13. Normalised energy loss as a function of wave steepness. Hollow circles are non-

breaking waves and solid circles are breaking wave cases. Corresponding estimates by Teixeira 

and Belcher (2002) and Ardhuin and Jenkins (2006) are shown as solid lines on the ordinate axis. 

The dash-dotted line indicates the best power fit of the data           (  )          . 
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Figure 14. Eddy viscosity during active breaking as defined in equation (41). 
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Figure 15. Breaking strength b expressed as a function of steepness   . Data obtained from the 

present study is shown as solid circles, grey diamonds are data from Banner and Peirson (2007) 

and grey squares are data from Drazen et al. (2008). The equivalent non-breaking normalised 

dissipation rates are shown as hollow circles. The solid line is the fit       (       )  ⁄  

from Romero et al. (2012). 
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A B C D E F G H I J K L M

fetch U m f m f p p b c intrinsic u drift ak τ z 0 U λ/2 U 10 τ tang

(m ) (m.s -1 ) (Hz ) (Hz ) (m.s -1 ) (m.s -1 ) (Pa ) (m ) (m.s -1 ) (m.s -1 ) (Pa )

Mastenbroek et al. (1996)

35 28.00 6.3 1.4 1.40 0% 1.12 0.00 0.180 0.088 7.00E-05 5.7 7.8 0.018

BA 28.00 5.4 1.4 1.40 0% 1.12 0.00 0.150 0.057 3.69E-05 4.9 6.6 0.026

Grare (2009)

U7X315 3.15 7.0 0.0 7.70 100% 0.30 0.09 0.110 0.064 7.80E-05 3.4 6.8 0.031

U7X615 6.15 7.0 0.0 5.14 79% 0.40 0.12 0.173 0.065 8.25E-05 3.7 6.8 0.025

U7X915 9.15 7.0 0.0 3.94 53% 0.49 0.12 0.195 0.078 1.61E-04 3.9 7.0 0.029

U7X1215 12.15 7.0 0.0 3.36 42% 0.56 0.12 0.196 0.085 2.55E-04 4.0 7.0 0.026

U7X1515 15.15 7.0 0.0 2.93 38% 0.62 0.11 0.194 0.088 3.97E-04 3.9 6.8 0.025

U7X1815 18.15 7.0 0.0 2.66 32% 0.68 0.10 0.192 0.090 4.08E-04 4.0 6.9 0.027

U7X2265 22.65 7.0 0.0 2.33 26% 0.75 0.09 0.183 0.092 4.31E-04 4.2 7.0 0.026

U4F0 28.00 4.0 0.0 2.66 8% 0.63 0.05 0.118 0.020 1.84E-05 2.9 4.3 0.009

U5F0 28.00 5.0 0.0 2.29 10% 0.73 0.04 0.144 0.033 1.84E-05 3.8 5.5 0.014

U6F0 28.00 6.0 0.0 2.07 21% 0.80 0.05 0.143 0.052 3.52E-05 4.5 6.5 0.026

U7F0 28.00 7.0 0.0 1.95 25% 0.86 0.07 0.160 0.081 4.64E-05 5.6 8.0 0.026

U8F0 28.00 8.0 0.0 1.83 34% 0.91 0.06 0.168 0.117 7.60E-05 6.4 9.2 0.035

U9F0 28.00 9.0 0.0 1.71 40% 0.97 0.07 0.199 0.168 1.27E-04 7.3 10.5 0.036

U4F10 28.00 4.0 1.0 1.00 0% 1.56 0.00 0.125 0.020 5.89E-06 3.8 4.6 0.008

U4F12 28.00 4.0 1.2 1.20 0% 1.30 0.00 0.178 0.024 1.37E-05 3.8 4.8 0.009

U4F14 28.00 4.0 1.4 1.40 13% 1.12 0.00 0.204 0.028 3.01E-05 3.6 4.9 0.008

U7F10 28.00 7.0 1.0 1.00 0% 1.56 0.00 0.100 0.073 1.61E-05 6.7 8.2 0.021

U7F12 28.00 7.0 1.2 1.20 0% 1.30 0.00 0.212 0.106 4.97E-05 6.9 9.1 0.023

U7F14 28.00 7.0 1.4 1.40 43% 1.12 0.00 0.256 0.147 1.93E-04 6.8 9.5 0.024

U10F10 28.00 10.0 1.0 1.00 0% 1.56 0.00 0.191 0.271 8.44E-05 10.9 13.9 0.037

Peirson et al.  (2012b)

F34U21AK27 2.40 2.1 3.4 3.40 0% 0.46 0.00 0.270 0.059 1.40E-04 3.4 6.1 0.014

F34U57AK32 2.40 5.7 3.4 3.40 100% 0.46 0.00 0.320 0.331 3.30E-04 6.9 13.4 0.037

F24U39AK24 2.40 3.9 2.4 2.40 0% 0.65 0.00 0.240 0.125 1.64E-04 5.4 8.8 0.045

F31U39AK28 2.40 3.9 3.1 3.10 100% 0.50 0.00 0.280 0.216 1.03E-03 4.6 9.6 0.046

La
rg
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Table 1: Summary of experiment conditions. Present tangential stress measurements using the kingfisher and present form drag measurements using Elliot pressure disk

(Grare 2009) were performed in the large IRPHE facility. Present measurements of the tangential stress using PIV techniques (Peirson et al. 2012b) were performed in the

small WRL facility. For previous measurements undertaken in the large IRPHE facility by Mastenbroek et al. (1996), the tangential stress values were derived from form

drag measurements using equation (5).
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Appendix
A Momentum fluxes written in the frame of the wave-follower

Figure A.1 – Cartesian and curvilinear wave following frames

Transforming from the cartesian frame x∗i = (x, y, z, t) to the curvilinear wave following frame
xi = (x, y, ξ, t), with ξ = z − η (Figure A.1), requires the following identities :

(x, y, z, t)→ (x, y, ξ, t) : ∂

∂x∗i
= ∂

∂xi
− ∂η

∂xi

∂

∂ξ
(A.1)

∂

∂t
= ∂

∂x

∂x

∂t
+ ∂

∂y

∂y

∂t
+ ∂

∂ξ

∂ξ

∂t
+ ∂

∂t

∂t

∂t
= −∂

∂ξ

∂η

∂t
+ ∂

∂t

In the curvilinear frame, the Navier-Stokes equations become :
∂ui
∂t

+ ∂uiuj
∂xj

+ 1
ρ

∂p

∂xi
− ν ∂

2ui
∂x2

j

= ∂η

∂t

∂ui
∂ξ

+ ∂η

∂xj

∂uiuj
∂ξ

+ 1
ρ

∂η

∂xi

∂p

∂ξ
(A.2)

+ν
(
∂η

∂xj

)2
∂2ui
∂ξ2 − ν

∂2η

∂x2
j

∂ui
∂ξ
− 2ν ∂η

∂xj

∂2ui
∂ξ∂xj

+ ν
∂2η

∂x2
i

∂ui
∂ξ

.

A.1 x-component

Equations (A.2) projected along the unit normal in the x-direction ~x become :
∂u

∂t
+ ∂

∂x

(
u2 + p

ρ
− ν ∂u

∂x

)
+ ∂

∂y

(
uv − ν ∂u

∂y

)
+ ∂

∂ξ

(
uw − ν ∂u

∂ξ

)
= ∂η

∂t

∂u

∂ξ
+ ∂η

∂x

∂

∂ξ

(
u2 + p

ρ
+ ν

∂η

∂x

∂u

∂ξ
− 2ν ∂u

∂x

)
+ ∂η

∂y

∂

∂ξ

(
uv + ν

∂η

∂y

∂u

∂ξ
− 2ν ∂u

∂y

)
− ν

(
∂2η

∂x2 + ∂2η

∂y2

)
∂u

∂ξ
. (A.3)
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Integrating between ξ = 0 et ξ = h :

∫ h

0

∂u

∂t
dξ +

∫ h

0

∂

∂x

(
u2 + p

ρ
− ν ∂u

∂x

)
dξ +

∫ h

0

∂

∂y

(
uv − ν ∂u

∂y

)
dξ +

∫ h

0

∂

∂ξ

(
uw − ν ∂u

∂ξ

)
dξ

=
∫ h

0

∂η

∂t

∂u

∂ξ
dξ +

∫ h

0

∂η

∂x

∂

∂ξ

(
u2 + p

ρ
+ ν

∂η

∂x

∂u

∂ξ
− 2ν ∂u

∂x

)
dξ

+
∫ h

0

∂η

∂y

∂

∂ξ

(
uv + ν

∂η

∂y

∂u

∂ξ
− 2ν ∂u

∂y

)
dξ − ν

∫ h

0

(
∂2η

∂x2 + ∂2η

∂y2

)
∂u

∂ξ
dξ (A.4)

which can be simplified as :

∂

∂t

∫ h

0
udξ +

∫ h

0

∂

∂x

(
u2 + p

ρ
− ν ∂u

∂x

)
dξ +

∫ h

0

∂

∂y

(
uv − ν ∂u

∂y

)
dξ +

[
uw − ν ∂u

∂ξ

]h
0

= ∂η

∂t
[u]h0 + ∂η

∂x

[
u2 + p

ρ
+ ν

∂η

∂x

∂u

∂ξ
− 2ν ∂u

∂x

]h
0

+ ∂η

∂y

[
uv + ν

∂η

∂y

∂u

∂ξ
− 2ν ∂u

∂y

]h
0

−ν
(
∂2η

∂x2 + ∂2η

∂y2

)
[u]h0 . (A.5)

Using the kinematic condition at the surface w0 = ∂η

∂t
+ u0

∂η

∂x
+ v0

∂η

∂y
, Equation(A.5) simplifies

as :

∂

∂t

∫ h

0
udξ +

∫ h

0

∂

∂x

(
u2 + p

ρ
− ν ∂u

∂x

)
dξ +

∫ h

0

∂

∂y

(
uv − ν ∂u

∂y

)
dξ + [uw]h − ν

[
∂u

∂ξ

]h
0

= ∂η

∂t
[u]h + ∂η

∂x

[
u2
]h

+ ∂η

∂x

[
p

ρ
+ ν

∂η

∂x

∂u

∂ξ
− 2ν ∂u

∂x

]h
0

+ ∂η

∂y
[uv]h + ν

∂η

∂y

[
∂η

∂y

∂u

∂ξ
− 2ν ∂u

∂y

]h
0

−ν
(
∂2η

∂x2 + ∂2η

∂y2

)
[u]h0 . (A.6)

Applying the time-averaging operator to Equation(A.6) yields :

∂

∂t

∫ h

0
udξ +

∫ h

0

∂

∂x

(
u2 + p

ρ
− ν ∂u

∂x

)
dξ +

∫ h

0

∂

∂y

(
uv − ν ∂u

∂y

)
dξ + uw|h − ν

[
∂u

∂ξ

]h
0

= uh
∂η

∂t
+ u2

h

∂η

∂x
+ ∂η

∂x

[
p

ρ
+ ν

∂η

∂x

∂u

∂ξ
− 2ν ∂u

∂x

]h
0

+ (uv)h
∂η

∂y
+ ν

∂η

∂y

[
∂η

∂y

∂u

∂ξ
− 2∂u

∂y

]h
0

−ν
(
∂2η

∂x2 + ∂2η

∂y2

)
[u]h0 . (A.7)

Assuming steady flow and the mean integrated horizontal gradients are much smaller than their
vertical counter parts :

∫ h

0

∂

∂x
. . . dξ <<

∫ h

0

∂

∂ξ
. . . dξ ;

∫ h

0

∂

∂y
. . . dξ <<

∫ h

0

∂

∂ξ
. . . dξ ; and ∂

∂t

∫ h

0
udξ = 0
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One obtains :

− uw|h + uh
∂η

∂t
+ u2

h

∂η

∂x
+ (uv)h

∂η

∂y
+ 1
ρ
ph
∂η

∂x
(A.8)

+ν ∂u
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)2 ∂u
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= 1
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)2 ∂u

∂ξ

∣∣∣∣∣
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∣∣∣∣∣
0
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− ν

(
∂2η

∂x2 + ∂2η
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)
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∇2η

u0.

Yielding :

xτ
h = Total stress

= xτ
h
a + xτ

h
p + xτ

h
ν = xτ

0
p + xτ

0
ν

xτ
h
a = Terms due to wave follower motion

= −ρ uw|h + ρuh
∂η

∂t
+ ρu2

h

∂η
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+ ρ(uv)h

∂η

∂y

xτ
h
p = Pressure-slope correlations at height h
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∂x
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h
ν = Viscous stress at height h
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− µ∆ηu0 (A.9)

Decomposing the velocity and pressure components into mean (indicated by overbars) and fluc-
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tuating (indicated by primes) components, Equation(A.9) becomes :

xτ
h
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(A.10)

Further decomposing the fluctuations components into wave-induced (tilde overbars) and tur-
bulent (double primes) components, Equation(A.10) becomes :
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ν = µ

∂u

∂ξ

∣∣∣∣
h

+ µ

(
∂η

∂x

)2 ∂ũ

∂ξ

∣∣∣∣∣
h

+ µ

(
∂η

∂x

)2 ∂u′′

∂ξ

∣∣∣∣∣
h

+ µ

(
∂η

∂x

)2∂u

∂ξ

∣∣∣∣∣
h

−2µ
(
∂η

∂x

∂ũ

∂x

∣∣∣∣∣
h

+ ∂η

∂y

∂ũ

∂y

∣∣∣∣∣
h

)
− 2µ

(
∂η

∂x

∂u′′

∂x

∣∣∣∣∣
h

+ ∂η

∂y

∂u′′

∂y

∣∣∣∣∣
h

)
−µ∆ηũh − µ∆ηu′′h − µ∆ηuh

xτ
h
a = −ρ ũw̃

∣∣
h − ρ u′′w′′

∣∣∣
h

+ ρũh
∂η

∂t
+ ρũ2

h

∂η

∂x
+ ρu

′′2
h

∂η

∂x
+ 2ρuhũh

∂η

∂x

+ρ(ũṽ)h
∂η

∂y
+ ρ(u′′v′′)h

∂η

∂y
+ ρuṽ

∂η

∂y
+ ρvũ

∂η

∂y

xτ
h
p = p̃h

∂η

∂x

xτ
0
ν = µ

∂u

∂ξ

∣∣∣∣
0

+ µ

(
∂η

∂x

)2 ∂ũ

∂ξ

∣∣∣∣∣
0

+ µ

(
∂η

∂x

)2 ∂u′′

∂ξ

∣∣∣∣∣
0

+ µ

(
∂η

∂x

)2∂u

∂ξ

∣∣∣∣∣
0

−2µ
(
∂η

∂x

∂ũ

∂x

∣∣∣∣∣
0

+ ∂η

∂y

∂ũ

∂y

∣∣∣∣∣
0

)
− 2µ

(
∂η

∂x

∂u′′

∂x

∣∣∣∣∣
0

+ ∂η

∂y

∂u′′

∂y

∣∣∣∣∣
0

)
−µ∆ηũ0 − µ∆ηu′′0 − µ∆ηu0

xτ
0
p = p̃0

∂η

∂x
(A.11)
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A.2 y-component

We now write the momentum flux in the transverse direction (~y). The equations(A.2) projected
along ~y becomes :

∂v

∂t
+ ∂

∂x

(
uv − ν ∂v

∂x

)
+ ∂

∂y

(
v2 + p

ρ
− ν ∂v

∂y

)
+ ∂

∂ξ

(
vw − ν ∂v

∂ξ

)
= ∂η

∂t

∂v

∂ξ
+ ∂η

∂x

∂

∂ξ

(
uv + ν

∂η

∂x

∂v

∂ξ
− 2ν ∂v

∂x

)
+ ∂η

∂y

∂

∂ξ

(
v2 + p

ρ
+ ν

∂η

∂y

∂v

∂ξ
− 2ν ∂v

∂y

)
− ν

(
∂2η

∂x2 + ∂2η

∂y2

)
∂v

∂ξ
. (A.12)

Integrating between ξ = 0 et ξ = h :

∫ h

0

∂v

∂t
dξ +

∫ h

0

∂

∂x

(
uv − ν ∂v

∂x

)
dξ +

∫ h

0

∂

∂y

(
v2 + p

ρ
− ν ∂v

∂y

)
dξ +

∫ h

0

∂

∂ξ

(
vw − ν ∂v

∂ξ

)
dξ

=
∫ h

0

∂η

∂t

∂v

∂ξ
dξ +

∫ h

0

∂η

∂x

∂

∂ξ

(
uv + ν

∂η

∂x

∂v

∂ξ
− 2ν ∂v

∂x

)
dξ

+
∫ h

0

∂η

∂y

∂

∂ξ

(
v2 + p

ρ
+ ν

∂η

∂y

∂v

∂ξ
− 2ν ∂v

∂y

)
dξ − ν

∫ h

0

(
∂2η

∂x2 + ∂2η

∂y2

)
∂v

∂ξ
dξ (A.13)

Yielding :

yτ
h = yτ

h
ν + yτ

h
a + yτ

h
p = yτ

h
ν + yτ

h
p

and : yτhν = µ
∂v

∂ξ

∣∣∣∣∣
h

+ µ

(
∂η

∂x

)2 ∂v

∂ξ

∣∣∣∣∣
h

− 2µ
(
∂η

∂x

∂v

∂x

∣∣∣∣∣
h

+ ∂η

∂y

∂v

∂y

∣∣∣∣∣
h

)
− µ∆ηvh

yτ
h
a = −ρ vw|h + ρvh

∂η

∂t
+ ρ(uv)h

∂η

∂x
+ ρv2

h

∂η

∂y

yτ
h
p = ph

∂η

∂y

yτ
0
ν = µ

∂v

∂ξ

∣∣∣∣∣
0

+ µ

(
∂η

∂x

)2 ∂v

∂ξ

∣∣∣∣∣
0
− 2µ

(
∂η

∂x

∂v

∂x

∣∣∣∣∣
0

+ ∂η

∂y

∂v

∂y

∣∣∣∣∣
0

)
− µ∆ηv0

yτ
0
p = p0

∂η

∂y

(A.14)

Decomposing the velocity and pressure components into mean (indicated by overbars) and fluc-
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tuating (indicated by primes) components, Equation(A.14) becomes :

yτ
h
ν = µ

∂v

∂ξ

∣∣∣∣
h

+ µ

(
∂η

∂x

)2 ∂v′

∂ξ

∣∣∣∣∣
h

+ µ

(
∂η

∂x

)2∂v

∂ξ

∣∣∣∣∣
h

−2µ
(
∂η

∂x

∂v′

∂x

∣∣∣∣∣
h

+ ∂η

∂y

∂v′

∂y

∣∣∣∣∣
h

)
− µ∆ηv′h − µ∆ηvh

yτ
h
a = −ρ v′w′

∣∣∣
h

+ ρv′h
∂η

∂t
+ ρv

′2
h

∂η

∂y
+ 2ρvhv′h

∂η

∂y

+ρ(u′v′)h
∂η

∂x
+ ρuhv

′
h

∂η

∂x
+ ρvhu

′
h

∂η

∂x

yτ
h
p = p′h

∂η

∂y

yτ
0
ν = µ

∂v

∂ξ

∣∣∣∣
0

+ µ

(
∂η

∂x

)2 ∂v′

∂ξ

∣∣∣∣∣
0

+ µ

(
∂η

∂x

)2∂v

∂ξ

∣∣∣∣∣
0

−2µ
(
∂η

∂x

∂v′

∂x

∣∣∣∣∣
0

+ ∂η

∂y

∂v′

∂y

∣∣∣∣∣
0

)
− µ∆ηv′0 − µ∆ηv0

yτ
0
p = p′0

∂η

∂v
(A.15)

Further decomposing the fluctuations components into wave-induced (tilde overbars) and tur-
bulent (double primes) components, Equation(A.15) becomes :

yτ
h
ν = µ

∂v

∂ξ

∣∣∣∣
h

+ µ

(
∂η

∂x

)2 ∂ṽ

∂ξ

∣∣∣∣∣
h

+ µ

(
∂η

∂x

)2 ∂v′′

∂ξ

∣∣∣∣∣
h

+ µ

(
∂η

∂x

)2∂v

∂ξ

∣∣∣∣∣
h

−2µ
(
∂η

∂x

∂ṽ

∂x

∣∣∣∣∣
h

+ ∂η

∂y

∂ṽ

∂y

∣∣∣∣∣
h

)
− 2µ

(
∂η

∂x

∂v′′

∂x

∣∣∣∣∣
h

+ ∂η

∂y

∂v′′

∂y

∣∣∣∣∣
h

)
−µ∆ηṽh − µ∆ηv′′h − µ∆ηvh

yτ
h
a = −ρ ṽw̃

∣∣
h − ρ v′′w′′

∣∣∣
h

+ ρṽh
∂η

∂t
+ ρṽ2

h

∂η

∂y
+ ρv

′′2
h

∂η

∂y
+ 2ρvhṽh

∂η

∂y

+ρ(ũṽ)h
∂η

∂x
+ ρ(u′′v′′)h

∂η

∂x
+ ρuhṽh

∂η

∂x
+ ρvhũh

∂η

∂x

yτ
h
p = p̃h

∂η

∂y

yτ
0
ν = µ

∂v

∂ξ

∣∣∣∣
0

+ µ

(
∂η

∂x

)2 ∂ṽ

∂ξ

∣∣∣∣∣
0

+ µ

(
∂η

∂x

)2 ∂v′′

∂ξ

∣∣∣∣∣
0

+ µ

(
∂η

∂x

)2∂v

∂ξ

∣∣∣∣∣
0

−2µ
(
∂η

∂x

∂ṽ

∂x

∣∣∣∣∣
0

+ ∂η

∂y

∂ṽ

∂y

∣∣∣∣∣
0

)
− 2µ

(
∂η

∂x

∂v′′

∂x

∣∣∣∣∣
0

+ ∂η

∂y

∂v′′

∂y

∣∣∣∣∣
0

)
−µ∆ηṽ0 − µ∆ηv′′0 − µ∆ηv0

yτ
0
p = p̃0

∂η

∂v
(A.16)
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The total momentum flux is a vector and the total stress becomes :

~τ = xτ x̂+ yτ ŷ

with xτ = xτ
0
p + xτ

0
ν = xτ

h
a + xτ

h
p + xτ

h
ν

and yτ = yτ
0
p + yτ

0
ν = yτ

h
a + yτ

h
p + yτ

h
ν (A.17)

If we now suppose the flow and waves are 2D and the gradients of the turbulent quantities are
small relative to the gradients of the wave-induced quantities, the transversal stress yτ is null, and
the total stress is only supported by xτ :

τ = xτ = xτ
0
p + xτ

0
ν = xτ

h
a + xτ

h
p + xτ

h
ν . (A.18)

The different stresses are simplified as :

xτ
h
ν = µ

∂u

∂ξ

∣∣∣∣
h

+ µ

(
∂η

∂x

)2 ∂ũ

∂ξ

∣∣∣∣∣
h

+ µ

(
∂η

∂x

)2∂u

∂ξ

∣∣∣∣∣
h

−2µ ∂η

∂x

∂ũ

∂x

∣∣∣∣∣
h

− µ∂
2η

∂x2 ũh − µ
∂2η

∂x2u
′′
h − µ

∂2η

∂x2uh

xτ
h
a = −ρ ũw̃

∣∣
h − ρ u′′w′′

∣∣∣
h

+ ρũh
∂η

∂t
+ ρũ2

h

∂η

∂x
+ ρu

′′2
h

∂η

∂x
+ 2ρuhũh

∂η

∂x

xτ
h
p = p̃h

∂η

∂x

xτ
0
ν = µ

∂u

∂ξ

∣∣∣∣
0

+ µ

(
∂η

∂x

)2 ∂ũ

∂ξ

∣∣∣∣∣
0

+ µ

(
∂η

∂x

)2∂u

∂ξ

∣∣∣∣∣
0

−2µ ∂η

∂x

∂ũ

∂x

∣∣∣∣∣
0
− µ∂

2η

∂x2 ũ0 − µ
∂2η

∂x2u
′′
0 − µ

∂2η

∂x2u0

xτ
0
p = p̃0

∂η

∂x
(A.19)

Under these conditions, Equation(A.19) links stresses expressed at the surface and stresses ex-
pressed at the altitude ξ = h :

xτ
h = xτ

h
ν + xτ

h
a + xτ

h
p = xτ

0
ν + xτ

0
p = τ (A.20)

where τ is total stress from wind towards waves. Thus, the pressure-slope term xτ
h
p expressed at

ξ = h can be expressed as follows :

xτ
h
p = τ − xτ

h
ν − xτ

h
a (A.21)

where the RHS terms of Equation A.21 only depend of the velocity components.
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