Fractional Order Numerical Differentiation with B-Spline Functions
Da-Yan Liu, Taous-Meriem Laleg-Kirati, Olivier Gibaru, Wilfrid Perruquetti

To cite this version:
Da-Yan Liu, Taous-Meriem Laleg-Kirati, Olivier Gibaru, Wilfrid Perruquetti. Fractional Order Numerical Differentiation with B-Spline Functions. The International Conference on Fractional Signals and Systems 2013, Oct 2013, Ghent, Belgium. 2013. <hal-00859455>

HAL Id: hal-00859455
https://hal.inria.fr/hal-00859455
Submitted on 8 Sep 2013
Abstract — Smoothing noisy data with spline functions is well known in approximation theory. Smoothing splines have been used to deal with the problem of numerical differentiation. In this paper, we extend this method to estimate the fractional derivatives of a smooth signal from its discrete noisy data. We begin with finding a smoothing spline by solving the Tikhonov regularization problem. Then, we propose a fractional order differentiator by calculating the fractional derivative of the obtained smoothing spline. Numerical results are given to show the efficiency of the proposed method in comparison with some existing methods.

Keywords: Fractional order numerical differentiation, B-Spline, Ill-posed problem, Tikhonov regularization, L-curve method, Generalized cross-validation method

I – Introduction

Fractional calculus were introduced in many fields of science and engineering long time ago [1, 2]. The recent work of A. Oustaloup showed that using fractional derivatives in control design can improve the performances and robustness properties [3, 4, 5, 6]. This motivated the interest in using fractional derivatives in signal processing applications, such as edge detection [7], electrocardiogram signal detection [8], biological signal processing [9], and image signal processing [10]. For these applications, we need to apply a fractional order differentiator which estimates the fractional derivatives of an unknown signal from its discrete noisy observed data, which is the scope of this paper.

The problem of integer order numerical differentiation is a well known ill-posed problem in the sense that a small error in noisy observed data can induce a large error in the approximated derivatives. Various numerical methods have been developed to obtain stable integer order differentiators more or less sensitive to additive noises. One immediate idea is to smooth noisy data by a filter and then to use the derivative of the filter as a differentiator. Bearing this idea in mind, different filters have been used in the integer order derivative case, such as the Savitzky-Golay filter [11, 12], Jacobi polynomial filter [13, 14], and splines filter [15, 16]. Recently, some of these differentiators have been generalized from the integer order to the fractional order by calculating the fractional derivative of the filters. The Digital Fractional Order Savitzky-Golay Differentiator (DFOSGD) was introduced in [17], where it has been shown that the DFOSGD is better than some existing fractional order differentiators. The integer order differentiation by integration method based on the Jacobi polynomial filter [18, 19, 20, 21, 22] has been generalized to the fractional case in [23, 24]. Let us recall that the integer order Jacobi differentiator obtained by the differentiation by integration method has also been given using a recent algebraic parametric method [25, 26] which exhibits good robustness properties with respect to corrupting noises without the need of knowing their statistical properties [27, 28]. Moreover, it has been shown in [23] that the fractional order Jacobi differentiator is better than the DFOSGD both in the noisy and noise-free cases.

Unlike the classical integer order derivative which can be estimated using a sliding window, the fractional derivative is an hereditary operator and needs a total memory of past states [1]. Hence, it was mentioned in [24] that when the length of the interval, where we estimate the fractional derivative, increases, the degree of the smoothing Jacobi polynomial in the fractional order Jacobi differentiator must be increased so as to decrease the truncated term error. While as the spline is a piecewise polynomial, we can avoid such a problem using a smoothing spline. Let us recall that smoothing noisy data with spline functions is well known in approximation theory. Many researchers proposed to use smoothing splines to deal with the problem of numerical differentiation (see e.g., [15, 16, 29]). Very recently, Cubic B-Splines have been used to solve fractional differential equations [30]. However, to the best of our knowledge, B-Splines of an arbitrary order have not been used to solve the fractional order numerical differentiation problem.

The aim of this paper is to extend to fractional orders the method of numerical differentiation via the use of B-Spline functions. In Section II, we recall the Riemann-Liouville fractional derivative and some B-Spline properties. After introducing an important result from the approximation theory with spline functions, we give a fractional order differentiator by solving the Tikhonov regularization problem in Section III. Then, we give a numerical algorithm that applies the proposed differentiator. In Section IV, we compare the proposed fractional order differentiator to the DFOSGD and the fractional order Jacobi differentiator in some numerical simulations, where the L-curve method and the Generalized cross-validation method are used to
find the regularization parameter respectively. Finally in Section V, we give some conclusions and perspectives for future works.

II – Preliminary

In this section, we recall the Riemann-Liouville fractional derivative and some properties of B-Splines.

A. Riemann-Liouville fractional derivative

This study only considers the Riemann-Liouville fractional derivative. Similar results can be obtained using the other fractional derivatives’ definitions.

Let \(l \in \mathbb{N}^+ \), \(a \in \mathbb{R} \), and \(f \in \mathscr{C}^l(\mathbb{R}) \) where \(\mathscr{C}^l(\mathbb{R}) \) refers to the set of functions being \(l \)-times continuously differentiable on \(\mathbb{R} \). Then, the Riemann-Liouville fractional derivative (see [1] p. 62) of \(f \) is defined as follows:

\[
D_{a,t}^\alpha f(\cdot) := \frac{1}{\Gamma(l-\alpha)} \frac{d^l}{dt^l} \int_a^t (t-\tau)^{l-\alpha-1} f(\tau) d\tau, \quad (1)
\]

where \(l-1 \leq \alpha < l \), and \(\Gamma(\cdot) \) is the Gamma function (see [311, p. 255]).

As an example, if we take \(f(\cdot) = (t-a)^n \) with \(\alpha \leq n \in \mathbb{N} \) and \(a \leq t \in \mathbb{R} \), then using (1) we obtain (see [1] p. 72):

\[
D_{a,t}^\alpha f(\cdot) = \frac{\Gamma(n+1)}{\Gamma(n+1-\alpha)} (t-a)^{n-\alpha}. \quad (2)
\]

Let us recall the linearity property of the fractional derivative (see [1] p. 91): \(\forall t > a \),

\[
D_{a,t}^\alpha \{ \lambda_1 f_1(\cdot) + \lambda_2 f_2(\cdot) \} = \lambda_1 D_{a,t}^\alpha f_1(\cdot) + \lambda_2 D_{a,t}^\alpha f_2(\cdot), \quad (3)
\]

where \(l-1 \leq \alpha < l \) with \(l \in \mathbb{N}^+ \), \(\lambda_1, \lambda_2 \in \mathbb{R} \), and \(f_1, f_2 \in \mathscr{C}^l(\mathbb{R}) \).

Consequently, based on (2) and (3) we can calculate the fractional derivatives of any polynomial. Moreover, we can also calculate the fractional derivatives of a truncated power function.

Lemma 1 Let \((\cdot - b)_{+}^{n}(b \in \mathbb{R}, n \in \mathbb{N})\) be a truncated power function defined as follows (see [32] p. 46): \(\forall t \in \mathbb{R}_+\)

\[
(t-b)_{+}^{n} := \begin{cases}
(t-b)^n, & \text{if } t \geq b, \\
0, & \text{else.}
\end{cases} \quad (4)
\]

Then, the \(\alpha \)-th \((n \geq \alpha \in \mathbb{R}_+)\) order derivative of the truncated power function defined in (4) is given as follows: \(\forall t \in \mathbb{R}_+\),

\[
D_{b,t}^\alpha (\cdot - b)_{+}^{n} = \frac{\Gamma(n+1)}{\Gamma(n+1-\alpha)} (t-b)_{+}^{n-\alpha}. \quad (5)
\]

Proof. According to (1), we have: \(\forall t \geq b \),

\[
D_{b,t}^\alpha (\cdot - b)_{+}^{n} = \frac{1}{\Gamma(l-\alpha)} \frac{d^l}{dt^l} \int_{0}^{t} (t-\tau)^{l-\alpha-1} (\tau-b)^n d\tau
\]

\[
= \frac{1}{\Gamma(l-\alpha)} \frac{d^l}{dt^l} \int_{b}^{t} (t-\tau)^{l-\alpha-1} (\tau-b)^n d\tau. \quad (6)
\]

Consequently, this proof can be completed using (2). \(\square \)

B. Uniform B-Splines

Let \(I = [0,b] \) be an interval of \(\mathbb{R}_+ \). Then, we take \(M \) real values \(T_i \), called knots, with \(T_i = \frac{m}{M-1}i \) and \(2 \leq m \in \mathbb{N} \), for \(i = 0, \cdots, M-1 \). Hence, using these equidistant knots and the truncated power functions, we can define the \(\mathcal{N}^{th} \) \((N \in \mathbb{N})\) degree uniform B-Splines as follows [33]: \(\forall t \in I \),

\[
b_{j,N}(t) = b_{N}(t-T_{j}), \quad j = 0, \cdots, M-N-2, \quad (7)
\]

where

\[
b_N(t) := (T_{N+1} - T_0) \sum_{i=0}^{N+1} w_i N(t-T_i)_+, \quad (8)
\]

with \(w_i := \prod_{k=0,k\neq i}^{N+1} \frac{1}{T_k - T_i} \).

Consequently, the uniform B-Splines for a given degree \(N \) are just shifted copies of each other. Moreover, using Lemma 1 and the linearity of the fractional derivative, we can obtain the following lemma.

Lemma 2 Let \(b_{j,N} \), for \(j = 0, \cdots, M-N-2 \), be the uniform B-Spline defined in (7). Then, the fractional derivative of \(b_{j,N} \) is given as follows: \(\forall t \in I \),

\[
D_{b,t}^\alpha b_{j,N}(\cdot) = (T_{N+1} - T_0) \sum_{i=0}^{N+1} w_i N(\Gamma(N+1)) (t-T_j - T_i)_{+}^{N-\alpha}, \quad (10)
\]

where \(\alpha \leq N \).

III – Fractional order differentiator with B-Spline functions

Let us consider the following discrete noisy signal observed on an interval \(I = [0,b] \subset \mathbb{R} \):

\[
y^\sigma(t_i) = y(t_i) + \delta \sigma(t_i), \quad (11)
\]

where \(t_i = \frac{b}{m-1}i \) for \(i = 0, \cdots, m-1 \) with \(2 \leq m \in \mathbb{N} \), the noise \(\{ \delta \sigma(t_i) \} \) is a sequence of random variables with a zero-mean and an unknown variance \(\delta^2 \), and \(y \in \mathcal{F}^{(n)}_{2}(I) := \{ f : f^{(i)} \text{ abs. cont.}, i = 0, \cdots, n-1, f^{(n)} \in \mathcal{L}_2(I) \} \).

We want to estimate the fractional derivative of \(y \) using its noisy observation \(y^\sigma \). For this purpose, we first find a smoothing spline to approximate the original
signal y.

A. Smoothing with spline functions

The problem of numerical differentiation is a well known ill-posed problem in Hadamard’s sense [34]. Indeed, a small error in noisy observed data can induce a large error in the approximated derivatives [35]. In order to tackle this problem, various regularization methods have been used to smooth a signal from its discrete noisy data [15, 11, 12, 13, 14]. One of the famous regularization criteria widely considered in numerical analysis and statistic, which can be used to find a smoothing function of y is the Tikhonov regularization defined as follows (see [15, 36]):

$$
\min_{f \in Y_2^2(I)} \left\{ \frac{1}{m} \sum_{i=0}^{m-1} \left(f(t_i) - y_{\beta}(t_i) \right)^2 + \lambda \left\| f^{(n)} \right\|^2_{L_2(I)} \right\},
$$

where $\lambda \in \mathbb{R}_+$. Let us recall that the solution is a smoothing spline of degree $2n-1$ ([15]), and the regularization parameter λ controls the tradeoff between the robustness against the corrupting noise and the accuracy of approximation of the original signal. In particular, if λ is equal to zero, then the minimization in (12) refers to the classical least-squares approximation by a spline of degree $2n-1$.

From now on, we are going to consider a spline function of degree $2n-1$ as the solution of (12). Based on this smoothing spline function, we can define a fractional order differentiator in the following proposition.

Proposition 1 Let y_{β} be the discrete noisy observed data of $y \in Y_2^2(I)$, which is defined in (11), and $b_{j,N}$, for $j = 0, \cdots, M-N-2$, be the N^{th} degree uniform B-Spline defined by (7) with $N = 2n - 1$. Then, the values of the αth ($\alpha \leq n - 1$) order derivative of y can be estimated as follows: for $i = 0, \cdots, m - 1$,

$$
D_{0,i}^{\alpha} y(\cdot) \approx \sum_{j=0}^{M-N-2} \beta_j D_{0,i}^{\alpha} b_{j,N}(\cdot),
$$

where $D_{0,i}^{\alpha} b_{j,N}(\cdot)$ is given by Lemma 2 with $t = t_i$, and $\beta = [\beta_0, \cdots, \beta_{M-N-2}]^T$ can be obtained by solving the Tikhonov regularization problem:

$$
\min_{\beta \in \mathbb{R}^{N-1}} \left\{ \frac{1}{m} \left\| y_{\beta} - B\beta \right\|^2_2 + \lambda \left\| H_n \beta \right\|^2_2 \right\}, \tag{14}
$$

with $y_{\beta} = [y_{\beta}(t_0), \cdots, y_{\beta}(t_{m-1})]^T$, $B(i,j) = b_{j-N}(t_{i-1})$, for $i = 1, \cdots, m$ and $j = 1, \cdots, M-N-1$, and H_n is the differentiation matrix given by:

$$
H_n(i,j) = \begin{cases}
(-1)^{i+j-i} \binom{n}{i-j} (\frac{m-1}{n})^n, & \text{if } i \leq k \leq i+n, \\
0, & \text{else},
\end{cases}
$$

for $i = 1, \cdots, m-n$, and $j = 1, \cdots, m$.

Proof. Let the spline $\hat{y}(\cdot) = \sum_{j=0}^{M-N-2} \beta_j b_{j,N}(\cdot)$ be the solution of the Tikhonov regularization problem (14), where we approximate the norm $\left\| f^{(n)} \right\|^2_{L_2(I)}$ in (12) by $\left\| f^{(n)} \right\|^2_2$ using the finite difference scheme for the n^{th} order derivative [16]. Then, we use the fractional derivative value of \hat{y} at $t = t_i$ to estimate $D_{0,i}^{\alpha} y(\cdot)$. Hence, this proof can be completed by using Lemma 2 and the linearity of the fractional derivative. \qed

One classical method to choose the regularization parameter λ is the Generalized cross-validation method introduced in [15]. In this paper, we propose both the L-curve method and the Generalized cross-validation method to choose λ. Once λ is given, we can solve the Tikhonov regularization problem (14) to find the smoothing spline \hat{y}. Then, the coefficients vector β can be obtained by solving the following least-square problem:

$$
\beta = (B^T B)^{-1} B^T \hat{y}, \tag{17}
$$

where $\hat{y} = [\hat{y}(t_0), \cdots, \hat{y}(t_{m-1})]^T$.

In the next subsection, we are going to give the numerical algorithm for our fractional order differentiator.

B. Numerical algorithm

In this subsection, we summarize the estimation procedure in the following steps:

Step 1 Define M uniform knots for a given interval $I = [0, h]$.

Step 2 Construct the N^{th} order uniform B-Splines using (7) and the knots defined in Step 1.

Step 3 Construct the matrices B and H_n ($n = \frac{N+1}{2}$) given in (15) and (16) respectively.

Step 4 Choose the regularization parameter λ using the algorithms given in [37], such as the L-curve method or the Generalized cross-validation method.

Step 5 Solve the Tikhonov regularization problem (14) to find the smoothing spline \hat{y} using the parameter λ obtained in Step 4 and the algorithm of the Tikhonov regularization given in [37].

Step 6 Find the coefficients vector β by solving the least-square problem (17) using the smoothing spline \hat{y} and B.

Step 7 Using (13), calculate the matrix product $B^{\alpha} \beta$ with

$$
B^{\alpha}(i,j) = D_{0,i-1}^{\alpha} b_{j-N}(\cdot), \tag{18}
$$

for $i = 1, \cdots, m$ and $j = 1, \cdots, M-N-1$.

IV – Simulation results

Some comparisons among some exiting fractional order differentiators have been given in [23, 17]. In this
In this paper, we have proposed a fractional order differentiator which is deduced from a smoothing spline function and the the Riemann-Liouville fractional derivative definition. The smoothing spline was obtained by solving the Tikhonov regularization problem using the L-curve method or the Generalized cross-validation method. Numerical examples have shown that this differentiator can accurately estimate the fractional order derivatives of noisy signals even defined on a long interval. However, the proposed numerical algorithm can only be used in off-line applications. In a future work, we will improve the proposed differentiator for on-line applications.
Figure 3: Absolute estimation errors in the case where $h = 4$ and $\alpha = 1.5$.

Figure 4: Absolute estimation errors in the case where $h = 10$ and $\alpha = 0.5$.

Figure 5: Absolute estimation errors in the case where $h = 10$ and $\alpha = 1.5$.

References

