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Interfaces endowed with non-constant surface energies
revisited with the d’Alembert-Lagrange principle

Henri Gouin

University of Aix-Marseille and M2P2, C.N.R.S. U.M.R. 7340,

Marseille, France

Abstract

The equation of motions and the conditions on surfaces and edges between fluids
and solids in presence of non-constant surface energies, as in the case of surfactants
attached to the fluid particles at the interfaces, are revisited under the principle of
virtual work. We point out that adequate behaviors of surface concentrations may
drastically modify the surface tension which naturally appears in the Laplace and
the Young-Dupré equations. Thus, the principle of virtual work points out a strong
difference between the two revisited concepts of surface energy and surface tension.

Key words: Variational methods; capillarity; surface energy; surface tension.
PACS: 45.20.dg, 68.03.Cd, 68.35.Gy, 02.30.Xx.

1 Introduction

This paper develops the principle of virtual work due to d’Alembert-Lagrange [1] ( 1 ) when
different phases of fluids are in contact through singular surfaces or interfaces. The study
is first presented without constitutive assumption for surface energies but the displacement
fields are considered for a simple material corresponding to the first-gradient theory. The
d’Alembert-Lagrange principle allows us to obtain equation of motion and boundary con-
ditions of mechanical nature and is able to be extended to more complex materials with
microstructures [4] or to multi-gradient theories [5]. Here, we aim to emphasize the formu-
lation of the principle of virtual work when the interfaces are endowed with non-constant
surface energies: the surfaces have their own material properties independent of the bulks and
are embedded in the physical space, which is a three dimensional metric space. The surface

Email address: henri.gouin@univ-amu.fr; henri.gouin@yahoo.fr (Henri Gouin).
1 The principle of virtual work is also referred to in the literature as the principle of virtual power

while virtual displacements are called virtual velocities [2,3].
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energy density is taken into account and naturally comes into in the boundary conditions as
the Laplace and the Young-Dupré equations by using variations associated with the virtual
displacement fields. To do so, it is necessary to propose a constitutive equation of the surface
energy; defining this is a main purpose of the paper. Such a presentation is similar to the
one of the deformational and configurational mechanics [6]; the method is analogous with
the one employed in [2–4] but with powerful differential geometry tools as in [7]. However,
the mathematical tools are adapted to the linear functional of virtual displacement fields
and not to the integral balance laws over nonmaterial interfaces separating fluid phases as
in [8].
Consequently, the main result of the paper is to propose a general form of the linear func-
tional with interfaces in first-gradient theory which points out the significance of constitutive
behaviors for the surface energies and highlights a strong difference between the notions of
surface energy and surface tension. Fischer et al emphasized a thermodynamical definition of
surface energy, surface tension and surface stress for which surface tension and surface stress
are identical for fluids [9]. Our presentation is not the same: without any thermodynamical
assumption, the difference between surface energy and surface tension is a natural conse-
quence of the virtual work functional and the d’Alembert-Lagrange principle. The surface
energy allows to obtain the total energy of the interfaces and the surface tension is directly
generated from the boundary conditions of the continuous medium.
In the simplest cases the two notions of surface energy and surface tension are mingled, but
it is not generally the case when the surface energy is non-constant along the interfaces. To
prove this property, we first focus on the simplest case of Laplace’s capillarity and we obtain
the well-known equations on interfaces and contact lines.
Surfaces endowed with surface matter as in the case of surfactants is a more complex case.
The last decades have seen the extension of surfactant applications in many fields including
biology and medicine [10]; surfactants can also be expected to play a major mechanical role
in fluid and solid domains. The versatility of surfactant mainly depends on its concentration
at interfaces. It experimentally appears that surfactant or surface-active agent is a substance
present in liquids at very low concentration rate and, when surface mass concentration is
below the critical micelle concentration, it is mainly absorbed onto interfaces and alters
only the interfacial free energies [11]. The interfacial free energy per unit area (generally
called surface energy) is the minimum amount of work required to create an interface at a
given temperature [12,13] and the fact that surfactants can affect the mechanical behaviors
of interfaces must be modelized in order to predict and control the properties of complete
systems.
In fact, our aim is not to study the general case of surfactants proposed in the literature but
to focus on the virtual work method to prove that simple behaviors of the surface energy
depending on the mass concentration can drastically change the capillary effects. So, the
concept of surface tension naturally appears in the equations on surfaces and on lines. In
this paper, we call surfactant the matter distributed only on the interfaces: we consider the
special case when surfactant molecules are insoluble in the liquid bulk (the surface mass con-
centration is below the critical micelle concentration [10]) and are attached to fluid particles
along the interfaces (without surface diffusion as in [14]).

The manuscript is organized as follows:
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Section 2 briefly reminds some results formally presenting the principle of virtual work in
its more general form by using the kinematics of a continuous medium and the notion of
virtual displacement. The simplest example of the Laplace model of capillarity concludes the
Section.
Section 3 deals with the case when the interfaces are endowed with non-constant surface
energy, whereby we essentially focus on liquid in contact with solid and gas. The special case
of surfactants as interface matter attached to the fluid particles is considered. The surface
energy depends on the surface matter concentration. Such a property drastically changes the
boundary conditions on the interface by using surface tension instead of surface energy.
Section 4 deals with an explicit comparison between surface energy and surface tension only
within deformational mechanics.
Section 5 is the conclusion in which some general extension can be forecasted.
The main mathematics tools are collected in a large appendix so that the presentation of
the text is not cluttered with tedious calculations. The main mathematical tool is Relation
(15) which can be extended to more complex media.

2 The virtual work for continuous medium

In continuum mechanics, motions can be equivalently studied with either the Newton model
of system of forces or the Lagrange model of the work of forces [2,3]. The Lagrange model does
not derive from a variational approach but, at equilibrium, the minimization of the energy
coincides with the zero value of a linear functional. Generally, the linear functional express-
ing the work of forces is related to the theory of distributions; a decomposition theorem
associated with displacements (as C∞-test functions whose supports are compact manifolds)
uniquely determines a canonical zero order form (separated form) with respect both to the
test functions and the transverse derivatives of the contact test functions [15]. In the same
way that the Newton principle is useless when we do not have any constitutive equation for
the system of forces, the d’Alembert-Lagrange principle is useless when we do not have any
constitutive assumption for the virtual work functional.
The equation of motion and boundary conditions of a continuous medium derives from the
d’Alembert-Lagrange principle of virtual work, which is an extension of the same principle in
mechanics of systems with a finite number of degrees of freedom: For any virtual displace-
ment, the motion is such that the virtual work of forces is equal to the virtual work of mass
accelerations [5].

2.1 The background of the principle of virtual work

The motion of a continuous medium is classically represented by a continuous transformation
ϕ of a three-dimensional space into the physical set. In order to describe the transformation
analytically, the variables X = (X1, X2, X3) which single out individual particles corre-
spond to material or Lagrange variables; the variables x = (x1, x2, x3) corresponds to Euler
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variables. The transformation representing the motion of a continuous medium is of the form

x = ϕ (X,t) or xi = ϕi(X1, X2, X3, t) , i ∈ {1, 2, 3} , (1)

where t denotes the time. At a fixed time the transformation possesses an inverse and contin-
uous derivatives up to the second order except on singular surfaces, curves or points. Then,
the diffeomorphism ϕ from the set D0 of the particle references into the physical set D is
an element of a functional space ℘ of the positions of the continuous medium considered as
a manifold with an infinite number of dimensions.
To formulate the d’Alembert-Lagrange principle of virtual work in continuum mechanics, we
remind the notion of virtual displacements. This notion is obtained by letting the displace-
ments arise from variations in the paths of particles. Let a one-parameter family of varied
paths or virtual motions denoted by {ϕη}, and possessing continuous partial derivatives up
to the second order, be analytically expressed by the transformation

x = Φ (X,t; η) (2)

with η ∈ O, where O is an open real set containing 0 and such that Φ (X,t; 0) = ϕ (X,t) (the
real motion of the continuous medium is obtained when η = 0). The derivative with respect
to η at η = 0 is denoted by δ. In the literature, derivative δ is named variation and the virtual
displacement is the variation of the position of the medium [1] . The virtual displacement
is a tangent vector to ℘, functional space of positions, at ϕ (δϕ ∈ Tϕ(℘)). In the physical
space, the virtual displacement δϕ is determined by the variation of each particle: the virtual
displacement ζ of the particle x is such that ζ = δx when at η = 0, {δX = 0, δt = 0, δη = 1}
and we associate the field of tangent vectors to D:

x ∈ D → ζ = ψ(x) ≡
∂Φ

∂η
|η=0 ∈ Tx(D),

where Tx(D) is the tangent vector bundle to D at x (Figure 1).
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Fig. 1. The boundary S of D is represented by a thick curve and its variation by a thin curve. The
variation δϕ of the family {ϕη} of varied paths belongs to Tϕ(℘), tangent space of ℘ at ϕ.

The virtual work concept, dual of Newton’s method, can be written in the following form:
The virtual work δτ is a linear functional value of the virtual displacement,

δτ =< ℑ, δϕ > (3)
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where < . , . > denotes the inner product of ℑ and δϕ, with ℑ belonging to the cotangent
space T ∗

ϕ
(℘) of ℘ at ϕ.

In Relation (3), the medium in position ϕ is submitted to covector ℑ denoting all the
”stresses” in mechanics. In the case of motion, we must add the inertial forces, corresponding
to the accelerations of masses, to the volume forces.

The d’Alembert-Lagrange principle of virtual work is expressed as follows

For all virtual displacements, the virtual work is null.

The principle leads to the analytic representation

∀ δϕ ∈ Tϕ(℘), δτ = 0

Theorem: If expression (3) is a distribution expressed in a separated form [15], the
d’Alembert-Lagrange principle yields the equation of motion and boundary conditions in the
form ℑ = 0 .

The virtual displacement is submitted to constraints coming from the constitutive equations
and geometrical assumptions such as the mass conservation. Consequently, the constraints
are not expressed by Lagrange multipliers but are directly taken into account by the varia-
tions of the constitutive equations. The equation of motion and boundary conditions result
from the explicit expression of δτ associated with the considered physical problem. As a first
example, the simplest case of theory of capillarity at equilibrium is considered.

2.2 The classical Laplace theory of capillarity

Liquid-vapor and two-phase interfaces are represented by material surfaces endowed with
an energy related to the Laplace free energy of capillarity. When working far from critical
conditions, the capillary layer has a thickness equivalent to a few molecular beams [16,17]
and the interface appears as a geometrical surface separating two media, with its own char-
acteristic behavior and energy properties [18]. The domain D of a compressible fluid (liquid)
is immersed in a three Euclidian space. The boundary of the domain D is a surface S shared
in N parts Sp of class C2, (p = 1, ..., N) (Fig. 2). We denote by (Rm)

−1 the mean curvature
of S; the union of the limit edges Γpq between surfaces Sp and Sq is assumed to be of class
C2 and tp is the tangent vector to Γp =

⋃

Γpq, q = 1, ..., N with q 6= p, oriented by the unit
external vector to D denoted np; n

′

p = tp × np is the unit external normal vector to Γp in
the tangent plane to Sp; the edge Γ of S is the union of the edges Γp of Sp.
To first verify the well-founded of the model, we consider the explicit expression of the func-
tional δτ for compressible fluids with capillarity in non-dissipative case. The variation of the
total energy E of such a fluid results from the variation of the sum of the local density of
energy integrated on the domain D and the variation of the local density of surface energy
integrated on its boundary S; to these variations, we must add the work of volume force ρ f
in D, surface force T on S and line force L on Γ. Such an amount represents, for the domain
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Fig. 2. The set D has a surface boundary S divided in several parts. The edge of S is denoted by
Γ which is also divided into several parts with end points Am.

D, the virtual work of forces of the compressible fluid with capillarity.
The Laplace theory of capillarity introduces the notion of surface energy (or superficial
energy) on surfaces such that, for a compressible liquid with capillary effects on the wall
boundaries, the total energy of the fluid writes in the form

E =
∫ ∫ ∫

D
ρ α(ρ) dv +

∫ ∫

S
σ ds, with

∫ ∫

S
σ ds ≡

N
∑

p=1

∫ ∫

Sp

σp ds,

where ρ is the matter density, α(ρ) is the fluid specific energy (ρα(ρ) is the volume energy)
and the coefficients σp are the surface energy densities on each surface Sp represented -for
the sake of simplicity- by σ on S ( 2 ). Surface integrations are associated with the metric
space. As proved in Appendix, the variation of the deformation gradient tensor F = ∂x/∂X
(with components {∂xi/∂Xj}) of the mapping ϕ combined with the mass conservation and
the variation of σ allow to obtain the variation −δE (see Eq. (27) in Appendix); then the
independent variables come from the position x of the continuous medium.
The virtual work of volume forces defined on D is generally in the form

∫ ∫ ∫

D
ρ fTζ dv, with f = − grad U

where U(x) is a potential per unit mass and superscript T denotes the transposition. The
virtual work of surface and line forces defined on S and Γ are respectively,

∫ ∫

S
TTζ ds and

∫

Γ

LTζ dl.

Consequently, the total virtual work of forces δτ is

δτ = −δE +
∫ ∫ ∫

D
ρ fTζ dv +

∫ ∫

S
TTζ ds+

∫

Γ

LTζ dl.

2 Our aim is not to consider the thermodynamics of interfaces. Consequently, α and σ are not
considered as functions of thermodynamical variables such as temperature or entropy.
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From Eqs. (27) and (30) in Appendix, we obtain

δτ ≡
∫ ∫ ∫

D

(

−gradTp+ ρ fT
)

ζ dv +
∫

Γ

(

LT − σ n′T
)

ζ dl (4)

+
∫ ∫

S

[

−δσ +
{(

p +
2 σ

Rm

)

nT + gradTσ
(

1− nnT
)

+TT
}

ζ

]

ds

where p ≡ ρ2α′(ρ) is the pressure of the liquid [19], δσ denotes the variation of the surface
energy σ and 1 denotes the identity tensor. When σ is constant we get δσ = 0; then,

δτ ≡
∫ ∫ ∫

D

(

−gradTp+ ρ fT
)

ζ dv +
∫ ∫

S

{(

p+
2 σ

Rm

)

nT +TT
}

ζ ds

+
∫

Γ

(

LT − σ n′T
)

ζ dl.

and the d’Alembert-Lagrange principle yields the equation of equilibrium on D,

−p,i + ρfi = 0 or − grad p + ρ f = 0. (5)

The condition on boundary surface S is,

(

p+
2 σ

Rm

)

ni + Ti = 0 or
(

p +
2 σ

Rm

)

n+T = 0 , (6)

where, for an external fluid bordering D, T = −P n, with P value of the pressure in the
external fluid. On the lines, it is necessary to consider the partition of S such that the edge
Γpq is common to Sp and Sq,

σp n
′

pi + σq n
′

qi − Li = 0 or σp n
′

p + σq n
′

q − L = 0. (7)

Surface condition (6) is the Laplace equation and line condition (7) is the Young-Dupré equa-
tion with a line tension L.
It is interesting to note that in [20], Steigmann and Li used the principle of virtual work
by utilizing a system of line coordinates on boundary surfaces and lines. By introducing the
free energy per unit area of interfaces and the free energy per unit of contact curve, they
obtained Laplace’s equation and a generalization of Young-Dupré’s equation of equilibrium;
moreover, by employing necessary conditions for energy-minimizing states of fluid systems
they got a demonstration that the line tension associated with a three-phase contact curve
must be nonnegative.

When σ is not constant but δσ = 0, we obtain the same equations for Eq. (5) and Eq. (7)
but Eq. (6) on S is replaced by

(

p +
2 σ

Rm

)

n+
(

1− nnT
)

gradσ +T = 0.
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The additive term
(

1− nnT
)

gradσ = gradtgσ is the tangential part of gradσ to the surface
S. This term corresponds to a shear stress necessarily balanced by the tangential component
of T. Such is the case when σ is defined on S0 image of S in the reference space D0 (then,
σ = σ0(X)). We understand the importance of the surface energy constitutive behavior; this
questioning is emphasized in the following section.

3 Capillarity of liquid in contact with solid and gas in presence of non-constant
surface energy

We have seen in the previous section that the problem associated with the behavior of the
surface energy is the key point to obtain the boundary conditions on interfaces and contact
lines bordering the fluid bulk. In this section we consider a very special case of surfactant:
the interfaces are endowed with a concentration of matter which affects the surface energy.
The surface matter is attached to the particles of the fluid such that they obey together to
the same Eq. (1) of motions and Eq. (2) of virtual motions. We consider a more general case
than in Section 2.2: we study the motion of the continuous medium with viscous forces. This
viscosity affects not only the equation of motion but also the boundary conditions.

3.1 Geometrical description of the continuous medium

A drop of liquid fills the set D and lies on the surface of a solid. The liquid drop is also
bordered by a gas. All the interfaces between liquid, solid and gas are assumed to be regular
surfaces. We call σ

S1
and σ

S2
the values of the surface energies of S1 and S2, respectively

(see Fig. 3). These energies may depend on each point of the boundary of D. Afterwards, on
the domain S ′

1
, the surface energy between gas and solid is neglected [21]. The liquid drop

is submitted to a volume force ρ f . The external surface force on D is modelized with two
constraint vector fields T1 on the solid surface, S1 and T2 on the free surface, S2. The line
tension L is assumed to be null.
By using the principle of virtual work, we aim to write the motion equation of the liquid
drop and the conditions on surfaces and line bordering the liquid drop.

3.2 Surfactant attached to interfacial fluid particles

To express the behavior of the surface energy, we need to represent first the equation of the
surface matter density.
By using the mapping ϕ, the set D0 of boundary S0 has the image D of boundary S. We
assume there exists an insoluble surfactant with a surface mass concentration c0 defined on
D0 of image c in D [18,21,22]. Let us consider the case when the surfactant is attached to
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Fig. 3. A liquid in drop form lies on a solid surface. The liquid is bordered with a gas and a solid;
S1 is the boundary between liquid and solid; S′

1
is the boundary between gas and solid; S2 is the

interface between liquid and gas ; n1 and n2 are the unit normal vectors to S1 and S2, external to
the domain of liquid; the edge Γ (or contact line) is common to S1 and S2 and t is the unit tangent
vector to Γ relative to n1; n

′
1 = n1 × t and n

′
2 = n2 × (−t) are the binormals to Γ relative to S1

and S2, respectively.

the fluid particles on the surface S, i.e.

c0 = c0(X), where X ∈ S0 . (8)

The mass conservation of the surfactant on the surface S requires that for any subset S∗

0
of

S0, of image S∗ subset of S,
∫ ∫

S∗

c ds =
∫ ∫

S∗

0

c0 ds0. (9)

Relation (9) implies

c detF nT
0
F−1n = c0 with nT

0
=

nTF
√

(nTFF Tn)
, (10)

where n0 denotes the unit normal vector to S0. The proof of Rel. (10) is given in Appendix.
From Rel. (8) and Rel. (10), we obtain:
Firstly, the conservation of the surface concentration of the surfactant,

dc

dt
+ c

(

divu− nTD n
)

= 0, (11)

where u is the fluid velocity vector and D = 1

2

(

∂u/∂x + (∂u/∂x)T
)

denotes the rate of the

deformation tensor of the fluid. The term divu−nTD n expresses the tangential divergence
relative to the surface S.
Secondly, the variation of the mass concentration of the surfactant,

δc+ c

[

div ζ − nT ∂ζ

∂x
n

]

= 0. (12)
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The proofs of Relations (11) and (12) are also given in Appendix. In the case when the
surface energy σ is a function of the surfactant concentration,

σ = σ(c),

we deduce δσ = σ′(c) δc. If we denote

γ = σ − c σ′(c) , (13)

which is the Legendre transformation of σ with respect to c, then by taking Rel. (27) into
account, we obtain in Appendix,

δE = −
∫ ∫

S

[

2γ

Rm
nT + gradTγ

(

1− nnT
)

]

ζ ds+
∫

Γ

γ n′Tζ dl. (14)

As we shall see in Section 4, γ is the surface tension of the interface S. The variation δc of the
concentration has an important consequence on the surfactant behavior and the surfactant
behavior is essential to determine the virtual work of the liquid drop.
Relation (13) can easily be extended to several surfactants: if σ = σ(c1, . . . , cn) where ci, i ∈
{1, . . . , n} are the concentrations of n surfactants, then

γ = σ −
n
∑

i=1

ci
∂σ

∂ci
,

corresponding to the Legendre transformation of σ with respect to ci, i ∈ {1, . . . , n} and
Eq. (14) is always valid.

3.3 Governing equation of motion and boundary conditions

As previously indicated, we do not consider the thermodynamical problem of interfaces, but
for example, when the medium is isothermal, α can be considered as the specific free energy
of the bulk and σ the free surface energy of the interface.
The use of virtual displacements yields a linear functional of virtual work, sum of several
partial works. To enumerate the works of forces, we have to consider how they are obtained
in the literature [2,3,5]. The virtual work expressions of volume force ρ f , surface force T and
liquid pressure p are the same as in Section 2.2.

a) For fluid motions, the virtual work of mass impulsions is

−
∫ ∫ ∫

D
ρ aTζ dv,

where a is the acceleration vector.
b) For dissipative motions, we must add the virtual work of viscous stresses

−
∫ ∫ ∫

D
tr

(

τ v
∂ζ

∂x

)

dv,

10



where τ v denotes the viscous stress tensor usually written in the form of Navier-Stokes [21].
Taking account of the relation

tr

(

τ v
∂ζ

∂x

)

= div(τ v ζ)− (divτ v) ζ,

an integration by parts using Stokes’ formula in Eq. (14) for the virtual work of interfacial
forces, and relations n′

1 = n1 × t, n′

2 = −n2 × t, allow to obtain the virtual work of forces
applied to the domain D

δτ =
∫ ∫ ∫

D

(

− gradTp+ div τ v + ρ fT − ρ aT
)

ζ dv

+
∫ ∫

S1

[

gradTγ
1

(

1− n1n
T
1

)

+

(

p+
2γ

1

Rm1

)

nT
1
− nT

1
τ v +TT

1

]

ζ ds

+
∫ ∫

S2

[

gradTγ2

(

1− n2n
T
2

)

+

(

p+
2γ

2

Rm2

)

nT
2
− nT

2
τ v +TT

2

]

ζ ds

+
∫

Γ

(

γ1n
′T
1

− γ2n
′T
2

)

ζ dl,

(15)

where Rmi
denotes the mean radius of curvature of Si, γi denotes the surface tension of

Si and Ti the surface force on Si, i ∈ {1, 2}; T2 = −Pn2, where P is the pressure in the
external gas to the domain D.
The field of virtual displacement x ∈ D −→ ζ(x) ∈ Tx(D) must be tangent to the solid
(rigid) surface S1. The fundamental lemma of variational calculus yields the equation of
motion associated to domain D, the conditions on surfaces S1, S2 and the condition on
contact line Γ.
Due to the fact that Eq. (15) is expressed in separate form in the sense of distributions [15],
the d’Alembert-Lagrange principle implies that ∀ ζ(x) ∈ Tx(D) tangent to S1, each of the
four integrals of Eq. (15) is null. Then, we obtain equations on D, S1, S2 and Γ, respectively.

• We get the equation of motion in D

ρ a+ grad p = (div τ v)
T + ρ f . (16)

Equation (16) is the Navier-Stokes equation for compressible fluids when τ v is written in the
classical linear form by using the rate of the fluid deformation tensor, τ v = λ(trD)1 + 2µD.
We may add a classical condition for the velocity on the boundary as the adherence condition.

• We get the condition on surface S1

The virtual displacement is tangent to S1; the constraint nT
1
ζ = 0 implies there exists a

scalar Lagrange multiplier x ∈ S1 −→ χ (x) ∈ ℜ, such that

(

p +
2γ1

Rm1

)

n1 − τ vn1 +
(

1− n1n
T
1

)

grad γ1 +T1 = χn1, (17)

The normal and tangential components of Eq. (17) relative to S1 are deduced from Eq. (17),
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p+
2γ

1

Rm1

− nT
1
τ v n1 + nT

1
T1 = χ, (18)

(

1− n1n
T
1

)

(−τ vn1 + grad γ1 +T1) = 0 . (19)

Following Eq. (18), we obtain the value of χ along the surface S1. The scalar field χ corre-
sponds to the unknown value of the normal stress vector on the surface S1; it corresponds
to the difference between the mechanical and viscous normal stresses and a stress due to the
curvature of S1 taking account of the surface tension. Equation (19) represents the balance
between the tangential components of the mechanical and viscous stresses and the tangential
component of the surface tension gradient.

• We get the condition on surface S2

(

p +
2γ

2

Rm2

)

n2 − τ vn2 +
(

1− n2n
T
2

)

grad γ
2
− P n2 = 0. (20)

The normal and tangential components of Eq. (20) relative to S2 are deduced

2γ2

Rm2

− nT
2
τ v n2 + p = P, (21)

(

1− n2n
T
2

)

(−τ vn2 + grad γ2) = 0. (22)

Equation (21) corresponds to the expression of the Laplace equation in case of viscous
motions; the normal component of viscous stresses is taken into account. Equation (22) is
similar to Eq. (19) for the surface S2 but without component of the stress vector.

• We get the condition on line Γ

To get the line condition we must consider a virtual displacement tangent to S1 and conse-
quently in the form

ζ = α t+ β t× n1,

where α and β are two scalar fields defined on Γ. From the last integral of Eq. (15), we get
immediately:
For any scalar field x ∈ Γ −→ β (x) ∈ ℜ,

∫

Γ

βγ1 n
′T
1
(t× n1) dl −

∫

Γ

βγ2 n
′T
2
(t× n1) dl = 0,

with n′

1 = −t × n1 and n′

2 = t× n2 and consequently,

−γ1 − γ2 n
T
2
n1 = 0.

Denoting by θ the angle < n1,n2 >, we obtain the well-known relation of Young-Dupré but
adapted to γ

1
and γ

2
in place of σ1 and σ2

γ
1
+ γ

2
cos θ = 0. (23)
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3.4 Remarks

For a motionless fluid, τ v = 0 and consequently:

Equation (19) yields,

gradtgγ1
= −T1tg,

where gradtgγ1
and T1tg denote the tangential parts of grad γ

1
and T1, respectively. The

tangential part of the vector stress is opposite to the surface tension gradient. Therefore, at
given value of T1n = nT

1
T1, Eq. (18) yields the value χ corresponding to the normal stress

vector to the surface S1,

Equation (21) yields P = p+
2 γ

2

Rm2

corresponding to the classical equation of Badshforth and

Adams [21] but with the surface tension γ2 instead of σ2,

Equation (22) implies
(

1− n2n
T
2

)

grad γ2 = 0. At equilibrium, along S2, the surface tension
γ
2
must be uniform.

In case of motion, Eq. (22) represents the Marangoni effect as proposed in [22,23] but with
the surface tension γ

2
instead of σ2.

4 Surface energy and surface tension

A surface tension must appear on the boundary conditions as a force per unit of line. The
Legendre transformation γ of σ with respect to c exactly corresponds to this property on
the contact line Γ; then, surface tension γ differs from the surface energy ; this important
property was pointed out by Gibbs [23] and Defay [22] by means of thermodynamical consid-
erations. The fundamental difference between surface tension and surface energy, in presence
of attached surfactants, is illustrated in the following cases corresponding to formal behav-
iors.
- If σ is independant of c, then γ = σ : the surface tension is equal to the surface energy.
This is the classical case of capillarity for fluids considered in Section 2.2 and Eq. (23) is the
classical Young-Dupré condition on the contact lines.
- In fact σ is a decreasing function of c [21]; when c is small enough we consider the behavior

σ = σ0 − σ1 c where σ0 > 0 and σ1 > 0 ,

then, Eq. (13) implies γ = σ0 and surface tension and surface energy are different.
- Now, we consider a formal case when the surface energy density model writes in the form

σ = σ0 − σ1 c− σ2 c sin
(

1

c

)

13



where σ0 > 0, σ1 > 0, σ2 > 0. Then, Eq. (13) implies

γ = σ0 − σ2 cos
(

1

c

)

. (24)

This case does not correspond to σ as a monotonic decreasing function of c. Nevertheless,
when c → 0, γ does not have any limit and we get

γ ∈ [σ0 − σ2, σ0 + σ2] .

The surface tension may have a large scale of values. When the concentration c is low,
a variation of the concentration c may generate strong fluctuations of the surface tension
without significant change of the surface energy. Alternatively, the concentration behavior
strongly affects the surface tension but not the surface energy. Relation (24) fits with the
well-known physical case of an hysteresis behavior for a drop lying on a horizontal plane (see
for example [24] and the literature therein). So, the surface roughness is not the only reason
of the hysteresis of the contact angle even if the surface energy is nearly constant.

5 Conclusion

The principle of virtual work allows us to deduce the equation of motion and conditions
on surfaces and line by means of a variational analysis. When capillary forces operate and
surfactant molecules are attached to the fluid molecules at the interfaces, the conditions on
surfaces and lines point out a fundamental difference between the concepts of surface energy
and surface tension. This fact was thermodynamically predicted in [22,23]. Hysteresis phe-
nomenon may appear even if surface energy is almost constant on a planar substrate when
the surface tension strongly varies.
In Eq. (23), γ1 and γ2 are not assumed to be constant, but are defined at each point of Γ.
This expression of Young-Dupré boundary condition on the contact line Γ is not true in more
complex cases. For example in the case when the surface tension is a non-local functional of
surfactant concentration, the surface tension is no longer the classical Legendre transforma-
tion of the surface energy relative to surfactant concentration and more complex behaviors
can be foreseen. These behaviors can change the variation of the integral of the free energy
as in the case of shells or in second gradient models for which boundary conditions become
more complex [3,25–28]. In a further article [29], we will see this is also the case when the
surface energy depends on the surface curvature as in membranes and vesicles [30–32].
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6 Appendix - Geometrical preliminaries [33–35]

6.1 Expression of the virtual work of forces in capillarity

The hypotheses and notations are presented in the previous Section 2.2.

6.1.1 Lemma 1: we have the following relations,

δ detF = detF div ζ , (25)

δ
(

F−1n
)

=−F−1
∂ζ

∂x
n + F−1 δn . (26)

The proof of Rel. (25) comes from the so-called Jacobi identity

δ(detF ) = detF tr

(

F−1δF
)

and from

δF = δ

(

∂x

∂X

)

=
∂ζ

∂X
.

Then,

tr

(

F−1δF
)

= tr

(

∂X

∂x

∂ζ

∂X

)

= tr

(

∂ζ

∂X

∂X

∂x

)

= tr

(

∂ζ

∂x

)

= div ζ.

The proof of Rel. (26) comes as follow

δ
(

F−1n
)

= δ
(

F−1
)

n+ F−1δn

But the implication,

F−1 F = 1 =⇒ δ
(

F−1
)

F + F−1 δF = 0 =⇒ δ
(

F−1
)

= −F−1
∂ζ

∂X
F−1 = −F−1

∂ζ

∂x
,

yields Rel. (26).

6.1.2 Lemma 2 : Let us consider the surface integral E =
∫ ∫

S
σ ds. Then the variation

of E is,

δE =
∫ ∫

S

[

δσ −
(

2σ

Rm

nT + gradTσ
(

1− nnT
)

)

ζ

]

ds+
∫

Γ

σ n′Tζ dl. (27)

Relation (27) points out the extreme importance to know the variation of δσ. The variation
δE of E drastically changes following the different possible behaviors of the surface energy.
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The proof can be found as follows: the external normal n(x) to S is locally extended in the
vicinity of S by the relation n(x) = grad d(x), where d is the distance of point x to S; for
any vector field w, we obtain [34,35]

rot(n×w) = n divw−w divn+
∂n

∂x
w −

∂w

∂x
n.

From nT ∂n

∂x
= 0 and divn = −

2

Rm
, we deduce on S,

nT rot(n×w) = divw +
2

Rm
nTw − nT ∂w

∂x
n. (28)

Due to E =
∫ ∫

S
σ det (n, d1x, d2x) where d1x and d2x are differentiable vectors

associated with two coordinate lines of S, we get

E =
∫ ∫

S0

σ det F det (F−1n, d1X, d2X),

where d1x = F d1X and d2x = F d2X. Then,

δE =
∫ ∫

S0

δσ det F det (F−1n, d1X, d2X) +
∫ ∫

S0

σ δ
(

det F det (F−1n, d1X, d2X)
)

.

Due to Lemma 1 and to nTn = 1 =⇒ nT δn = 0,

∫ ∫

S0

σ δ
(

det F det (F−1n, d1X, d2X)
)

=
∫ ∫

S

[

σ div ζ det(n, d1x, d2x) + σ det (δn, d1x, d2x)− σ det

(

∂ζ

∂x
n, d1x, d2x

)]

=

∫ ∫

S

(

div(σ ζ)− (gradTσ) ζ − σ nT ∂ζ

∂x
n

)

ds.

Relation (28) yields

div (σ ζ) +
2σ

Rm
nTζ − nT ∂σζ

∂x
n = nT rot (σ n× ζ).

Then,

∫ ∫

S0

σ δ
(

det F det (F−1n, d1X, d2X)
)

=
∫ ∫

S

(

−
2σ

Rm
nT + gradTσ (nnT − 1)

)

ζ ds+
∫ ∫

S
nT rot (σ n× ζ) ds,

where gradTσ (nnT − 1) belongs to the cotangent plane to S and we obtain Relation (27).
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6.1.3 Variation of the internal energy

Let us note that δ
∫ ∫ ∫

D
ρ α dv =

∫ ∫ ∫

D
ρ δα dv where δα =

∂α

∂ρ
δρ.

Due to the mass conservation,

ρ detF = ρ0(X), (29)

where ρ
0
is defined on D0, the differentiation of Eq. (29) yields,

δρ detF + ρ δ(detF ) = 0

and from Lemma 1, we get

δ ρ = −ρ div ζ.

Consequently, from p = ρ2
∂α

∂ρ
and div(p ζ) = p divζ + (grad p)T ζ , we get

δ
∫ ∫ ∫

D
ρ α dv= (30)

∫ ∫ ∫

D
ρ
∂α

∂ρ
δρ dv=

∫ ∫ ∫

D
−p div ζ dv =

∫ ∫ ∫

D
(grad p)T ζ dv −

∫ ∫

S
pnTζ ds.

By taking account of Rel. (27), we immediately get Rel. (4).

6.2 Study of a surfactant attached to fluid particles

6.2.1 Proof of relation (10)

Under the hypotheses and notations of Section 3.2,

∫ ∫

S∗

c ds=
∫ ∫

S∗

det(n c, d1x, d2x) =
∫ ∫

S∗

0

det(FF−1n c, Fd1X, Fd2X)

=
∫ ∫

S∗

0

c (detF ) det( F−1n, d1X, d2X) =
∫ ∫

S∗

0

c (detF ) nT
0
F−1n ds0,

where nT
0
n0 = 1. Moreover, nTdx = 0 ⇒ nTFdX = 0, then n′T

0
= nTF is normal to S∗

0
and

consequently,

nT
0
=

nTF
√

(nTFF Tn)
, nT =

nT
0
F−1

√

(nT
0 F

−1(F−1)Tn0)

and from Rel. (9),

c detF
√

nT
0 F

−1(F−1)Tn0 = c0. (31)
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6.2.2 Proof of relations (11) and (12)

With the notations of Section 3.2, Rel. (31) yields

dc

dt
= −

c0
d (detF )

dt

(detF )2
√

(

nT
0 F

−1(F−1)Tn0

)

−
c0

d

dt

(

nT
0
F−1(F−1)Tn0

)

2 detF
(

nT
0 F

−1(F−1)Tn0

)3/2
.

But,
d (detF )

dt
= (detF ) divu and

d

dt

(

F−1(F−1)T
)

= −2F−1D (F−1)T . Then,

dc

dt
+ c

(

divu− nTD n
)

= 0.

The same calculation with δ in place of
d

dt
yields immediately

δc+ c

[

div ζ − nT ∂ζ

∂x
n

]

= 0.

6.2.3 Proof of relation (14)

From Rel. (12) and σ = σ(c) we get,

δσ = κ

[

div ζ − nT ∂ζ

∂x
n

]

with κ(c) = −c σ′(c).

Consequently,
∫ ∫

S
δσ =

∫ ∫

S

(

div(κ ζ)− gradTκ ζ − κnT ∂ζ

∂x
n

)

ds.

But Rel. (28) implies,

nT rot(κn× ζ) = div(κ ζ) +
2κ

Rm
nTζ − nT ∂(κ ζ)

∂x
n

and,

nT ∂(κ ζ)

∂x
n = (nTζ).(gradTκ n) + κnT ∂ζ

∂x
n = gradTκnnTζ + κnT ∂ζ

∂x
n.

Then,

div(κ ζ)− gradTκ ζ − κnT ∂ζ

∂x
n = −

2κ

Rm

nTζ − gradTκ (1− nnT )ζ + nT rot(κn× ζ)

Due to
∫ ∫

S
nT rot(κn× ζ) ds =

∫

Γ

κn′Tζ dl,

we get
∫ ∫

S
−δσ ds =

∫ ∫

S

[

2κ

Rm
nT + gradTκ (1− nnT )

]

ζ ds−
∫

Γ

κn′Tζ dl,
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and Rel. (27) yields,

δE = −
∫ ∫

S

[

2γ

Rm
nT + gradTγ

(

1− nnT
)

]

ζ ds+
∫

Γ

γ n′Tζ dl.
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