
Experiments on wind-perturbed rogue wave

hydrodynamics using the Peregrine breather model

Amin Chabchoub, Norbert Hoffmann, Hubert Branger, Christian Kharif, Nail

Akhmediev

To cite this version:

Amin Chabchoub, Norbert Hoffmann, Hubert Branger, Christian Kharif, Nail Akhmediev.
Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model.
Physics of Fluids, American Institute of Physics, 2013, 25, pp.101704. <10.1063/1.4824706>.
<hal-00906953>

HAL Id: hal-00906953

https://hal.archives-ouvertes.fr/hal-00906953

Submitted on 20 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL AMU

https://core.ac.uk/display/52440651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00906953


Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine

breather model

A. Chabchoub1,2∗, N. Hoffmann1,2, H. Branger3, C. Kharif3, and N. Akhmediev4

1Department of Mechanical Engineering, Imperial College London,

London SW7 2AZ, United Kingdom

2Dynamics Group, Hamburg University of Technology, 21073 Hamburg,

Germany
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Being considered as a prototype for description of oceanic rogue waves (RWs), the

Peregrine breather solution of the nonlinear Schrödinger equation (NLS) has been

recently observed and intensely investigated experimentally in particular within the

context of water waves. Here, we report the experimental results showing the evolu-

tion of the Peregrine solution in the presence of wind forcing in the direction of wave

propagation. The results show the persistence of the breather evolution dynamics

even in the presence of strong wind and chaotic wave field generated by it. Further-

more, we have shown that characteristic spectrum of the Peregrine breather persists

even at the highest values of the generated wind velocities thus making it a viable

characteristic for prediction of rogue waves.

a)Electronic mail: a.chabchoub@imperial.ac.uk
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Ocean RWs1 are known to appear suddendly from nowhere and to disappear without a

trace. Within the framework of exact breather solutions of the NLS on finite background2–4

RWs have indeed this typical feature. Recent observations of doubly-localized solutions of

the NLS5–8 confirmed the fact that the long period limit of modulation instability (MI), also

referred to as the Benjamin-Feir instability9, may be the key object to discuss within the

framework of the NLS, a weakly nonlinear evolution equation describing the dynamics of

wave packets in nonlinear dispersive media. Breather solutions are therefore under intensive

study due to analogies that can be established for several nonlinear dispersive media4,10,11.

Being localized in time and in space, the Peregrine breather solution of NLS3 is considered

to be an appropriate model to describe the dynamics of RWs since in addition to its double

localization, it amplifies the carrier by a factor of three. Lately, wave flume experiments6

proved its physical validity in water waves and it is nowadays used as a model to analyse

the impact of RWs on ships12. Here, we present experimental results showing the evolution

of the Peregrine breather in the presence of weak as well as strong wind forcing. The results

show the robustness of the Peregrine solution with respect to either of these perturbations.

Furthermore, it is shown that the shape of the main frequency peak in the frequency spec-

trum is invariant to the level of forcing. This work may motivate further analytical and

numerical work in order to confirm these experimental findings.

The effect of wind blowing over packets of surface water waves is twofold: (i) it produces

a variation in the pressure exerted on the surface that results in a flux of energy from the

wind to the waves and (ii) it generates a rotational current in the water. Generally, the MI is

considered independently of the effects of wind. The question is: How the presence of wind

may modify this kind of instability? Note that in addition to these two effects, the wind

produces randomness at the sea surface, too. It was shown that the effect of randomness

characterized by the spectral bandwidth is to reduce the growth rate and extend of the

instability compared to the regular case, using a simplified nonlinear spectral transport

equation13. These results were confirmed later using the Zakharov equation14. Later on,

a series of experiments on mechanically generated waves with wind blowing over them15,16

confirmed that gentle wind tends to enhance sideband instability whereas stronger wind

tends to reduce or suppress MI. An experimental investigation on the initial instability of

nonlinear deep-water wave trains17 were not in agreement with the previous results since

it was shown that wind did not inhibit the growth of the sideband. Nevertheless, for a
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quite strong wind a disappearance of the sideband was observed and the fact that the wind

may reduce the naturally developed initial sideband energy, while the growth rate is not

necessarily suppressed, was reported. The latter authors emphasized that further study of

the natural selection process of the sideband in the tank is crucial for estimating what may

happen in the ocean. Numerical simulations on the interaction of wind and extreme gravity

waves due to MI were reported in18, using the modified Jeffreys sheltering mechanism as wind

modelling. Contrary to the case without wind, it was observed that the wind sustains the

maximum of modulation due to the MI. Another experimental and numerical investigation

on the influence of wind on extreme wave events due to dispersive focusing and MI as well,

by use of the modified Jeffreys sheltering theory as wind-model, demonstrated that wind

blowing over modulated wave trains may increase the time duration and the amplitude of

extreme wave events19. The theoretical analysis on the MI in deep-water under the action of

wind and dissipation by deriving a perturbed NLS20 showed that the MI of the wave group

depends on both: the frequency of the carrier wave and the strength of the friction velocity.

Using a fully nonlinear approach the theoretical work has been developed to the case of

strongly nonlinear waves21,22. A few papers have been devoted to describe the influence

of the mentioned vorticity in water on the MI, for instance23. Although the condition of

linear stability of the nonlinear plane wave solution is provided in a complicated way, the

latter author did not develop a detailed stability analysis as a function of the vorticity and

depth. Considering the instability properties of weakly nonlinear wave packets to three

dimensional disturbances in the presence of shear, the system of equations reduces to the

familiar NLS equation, when confining the evolution to be purely two dimensional, and

a stability analysis for the case of a linear shear was as well illustrated in24. Within the

framework of deep-water, the MI of a Stokes wave train in uniform velocity shear has been

studied16. The coefficient of the nonlinear term of the NLS equation the authors derived was

erroneous, as noted in25. The latter author investigated the effect of piecewise-linear velocity

profiles in water of infinite depth on sideband instability of a finite-amplitude gravity wave,

while The coefficients of the derived NLS equation were computed numerically for specific

values of the vorticity and depth of shear layer. In26, the author considered the MI of a

modulated wave train in both positive and negative shear currents within the framework

of the fully nonlinear water wave equations. For a given wave steepness, the results have

been compared with the irrotational case and it has been shown that the envelope of the
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modulated wave train grows faster in a positive shear current and slower in a negative shear

current. Using the fully nonlinear equations, a numerical investigation of some instability

characteristics of two-dimensional finite amplitude surface waves on a linear shearing flow

to three-dimensional infinitesimal rotational disturbances was reported in27. Very recently,

a NLS equation in the presence of a vertically sheared current of constant vorticity was

derived28. The results of the study prove that the presence of vorticity modifies significantly

the MI properties of weakly nonlinear plane waves, namely the growth rate and bandwidth.

As we can see from the above references, there is a solid body of research on the influence

of wind on MI. Some results contradict the others and further work is needed to clarify

the issue. However, here, we do not intend to do this. Instead, we concentrate just on the

limiting case of MI when its period goes to infinity. Our aim is to study, experimentally, the

influence of wind on the evolution of the Peregrine breather once it was initiated with the

small amplitude perturbation.

The MI can be described within the framework of deep-water waves which are described

by the NLS29 given by:
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of the NLS with arbitrary amplitude a0 is unstable relative to periodic

modulations within certain range of wavenumbers10. The MI can be also discussed in terms

of breather solutions on finite background2,3. First-order family of breather solutions, de-

scribing the exact Benjamin-Feir mechanism, are known as Akhmediev breathers2. These

solutions are periodic in space and have specific growth-decay evolution in time. For each

specific Akhmediev breather, i.e. for each specific modulation period, the maximal ampli-

tude amplification of the carrier is bounded by one and three2,11. The limiting case of the

Peregrine breather solution3 corresponds to the case when the modulation period becomes

infinite and is given in dimensional units by:
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This doubly-localized breather solution6 amplifies the carrier by an exact factor of three. As

such, it is considered to be an appropriate prototype to describe ocean rogue waves. As we

show in the present work, the Peregrine breather once initiated is a robust formation and

can survive even in a chaotic wave field generated by the wind.

Experiments have been conducted in a closed wind wave facility installed at IRPHE/Luminy

Marseille. A schematic illustration is shown in Fig.14. The tank is 40 m long and 3 m wide.

FIG. 1. Schematic illustration of the wind wave facility4

The water is 0.9 m deep, and the air channel is 1.5 m high. The tank is equipped with

a controlled recirculating wind tunnel which can generate wind speeds between 1 and 14

ms−1. A computer-controlled wave-maker can generate waves in a frequency range from 0.6

Hz to 2.5 Hz. It is entirely submerged under the upstream beach to avoid any perturbation

of the air flow which could be induced by its displacement. The upwind end of the tank

is specially profiled to ensure minimum disturbance to either the generation of mechanical

waves or the turbulent boundary layer in the airflow above the waves. The tunnel roof is

carefully profiled to create an airflow boundary layer of zero pressure gradient along the test

section. At the downwind end of the tank a permeable absorbing beach was installed to

minimize wave reflection. A complete description of the tank can be found in30. Wind speed

was measured with a Pitot tube. We used one capacitance wave gauge and six resistive

wave gauges to measure the water elevation at different locations inside the tank in order

to see in the advanced stages of wave evolution in more detail, see Table 1. The accuracy of

GN 1 2 3 4 5 6 7

P (m) 2.06 8.09 8.81 9.50 10.41 11.08 11.71

TABLE I. Positions (P) of the gauge number (GN) along the tank

the water elevation measurement is about 0.3 mm. The boundary condition, applied to the

flap, is determined as the surface elevation, given in the first-order in steepness at a specific
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position x∗:

η(x∗, t) = Re (ψP (x
∗, t) · exp [i (k0x∗ − ω0t)]) . (2)

All experiments have been conducted for a carrier amplitude of a0 = 0.75 cm, while the wave

frequency and wave number were chosen to be ω0 = 10.68 rad · s−1 and k0 = 11.63 rad ·m−1,

respectively.

The first set of experiments was conducted in order to reproduce the Peregrine breather

the same way as reported in6 but in the water tank described above. Namely, first, we excited

the Peregrine breather without wind forcing. With the initial condition corresponding to

the Peregrine breather at the wave generator position, the maximal amplitude amplification

of three is expected at a position of 10.4 m from the paddle. Fig. 2 shows this wave train

evolution along the flume. Indeed, we observed the Peregrine breather dynamics and the
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FIG. 2. Evolution of the Peregrine breather for the carrier parameters a0 = 0.75 cm and ε :=

a0k0 = 0.08 without wind action (blue lines) starting from small amplitude amplification as initial

conditions (red line). The group velocity measured experimentally is cg = 0.49 ms−1.

measurements at the gauge 5 confirmed that the maximal amplification of three is reached.

The group velocity is calculated from the Hilbert transform of the cross-correlation function

of the measured water levels at two different locations. In the absence of wind, we measured

the group velocity to be cg = 0.49 ms−1, which nearly coincides with the theoretical group
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velocity given by the dispersion relation to second-order in steepness. Here, we concentrate

our attention on the advanced stages of the evolution of the breather measured by the

gauges 2, 3, 4, 5, 6 and 7, installed at the positions between 8 and 12 meters from the

wave generator. In the following experiments, we increased, step by step, the constant wind

speed U blowing in the direction of wave propagation for the same intitial conditions. The

wind naturally distorts the background wave train as we can see from Fig.3. The higher the
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FIG. 3. Advanced stages of the evolution of the Peregrine breather for (a) a wind speed value of

U = 3 ms−1, (b) U = 5 ms−1, (c) U = 7 ms−1 and (d) U = 9 ms−1. These observations show that

despite the presence of a strong wind and related chaotization of the background, the theoretical

Peregrine breather dynamics still reasonably well defines the formation of the centrally located

RW.

wind speed, the higher are these distortions, which are generally chaotic. Nevertheless, the

initial small modulation grows and its highest amplitude prevails in the chaotic wave field

of the background. Furthermore, Fig. 3 shows that even in the presence of the strongest

wind with the speed of 9 ms−1, the Peregrine breather dynamics engenders the formation

of a large amplitude wave, which stands out against the chaotic background wave train. In

order to confirm this fact, which perhaps cannot be clearly appreciated from the relatively

low resolution traces in Fig. 3 (d), we show separately the trace measured by the gauge

3 from the above set in Fig. 4. We can see clearly, that the Peregrine breather appears

as a large amplitude wave, which is significantly higher than the rest of the surrounding
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FIG. 4. The measurements shown in Fig.3 (d) recored by the gauge 3 with higher resolution along

the vertical axis. The largest wave appears at this position at t = 55 s.

waves. The maximal breather amplitude changes, of course, when the wind is present. The

maximal amplitude of the waves as well as the standard deviation for the corresponding

wind speed are shown in Table 2. Remarkably, they are higher than in the absence of the

Wind speed in ms−1 0 3 5 7 9

Maximal wave amplitude in cm 2.3 2.7 3.3 3.4 3.9

Standard deviation 0.37 0.44 0.53 0.77 0.80

TABLE II. Maximal measured wave amplitudes and standard deviation of the wave train versus

corresponding wind speed

wind, which is providing an additional amplification of the breather. Here, it has to be

mentioned that these amplifications may be much more significant since recurrent breaking

is observed during the experiments31 and it cannot be confirmed that the wave gauges, fixed

at a specific position, measured the breather’s amplitude at its maximal local steepness,

i.e. just before breaking. These observations are in line with the analytical results reported

in18,20,32, which predicted that the wind accelerates the evolution of the MI. Furthermore,

the presented experimental results confirm the work of17 and validate the fact that the effect

of even strong winds on the MI is not dominant and indeed small. Another visible effect

caused by the wind is the increase of the group velocity. Measured group velocities are
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: cg = 0.49 ms−1 for U = 0 ms−1 ; cg = 0.53 ms−1 for U = 3 ms−1 ; cg = 0.54 ms−1

for U = 5 ms−1 ; cg = 0.56 ms−1 for U = 7 ms−1 ; cg = 0.59 ms−1 for U = 9 ms−1. As

explained by18, the increase of velocity is due to the wind-induced surface-drift current which

is proportional to the wind drug velocity. Another unique feature of the Peregrine breather

potentially important for its prediction is its characteristic triangular spectrum co-located

on top with the main frequency component of the background wave33. The latter is a delta-

function in frequency domain in case of an infinite monochromatic background. If we ignore

or eliminate the central peak caused by the background, the Peregrine breather dynamics

can be easily identified from the experimental triangular spectra34. Our present experiments

show these spectra which are also slightly distorted by the wind. Fig. 5 shows the power

spectra of several wave train records, measured with the first gauge. In the absence of the
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FIG. 5. Power spectra of the first gauge record for the different wind speed values

wind, i.e. for U = 0 ms−1, we can clearly notice the main triangular spectrum at 1.7 Hz. For

nonzero wind speeds up to 9 ms−1 the main triangular feature of spectrum at 1.7 Hz does not

disappear. When increasing the wind speed, the total energy of the wave train simply grows

but the triangular shapes are preserved. This demonstrates that the Peregrine breather is

present in the wave train no matter if the wind is blowing or not. These experiments justify

once again the promising idea of using the spectral measurements of the doubly-localised

breather solutions for a possible early prediction of rogue waves even in presence of winds
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and a chaotic background makes their measurements viable candidates for the rogue wave

predictions35.

To summarize, we report an experimental investigation of the Peregrine breather evolu-

tion in a wave tank in presence of wind. Our study shows that slow winds in propagation

direction do not have significant influence on the evolution of the breather. Furthermore,

under the action of strong winds, a formation of a Peregrine breather-like large wave ampli-

tude can be clearly observed. The spectral measurements at the beginning of the breather

evolution show a typical triangular spectra co-located with the main frequency component

of the background wave. This spectral feature does not disappear when the wind speed is

increased. Thus, the MI dynamics of the Peregrine breather dynamics remains valid.
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