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This paper presents experimental and theoretical results on the mixing inside a cylinder
with a rotating lid. The helical flow that is created by the rotation of the disk is well
known to exhibit a vortex breakdown bubble over a finite range of Reynolds numbers. The
mixing properties of the flow are analyzed quantitatively by measuring the exponential
decay of the variance as a function of time. This homogenization time is extremely
sensitive to the asymmetries of the flow, which are introduced by tilting the rotating or
the stationary disk and accurately measured by Particle Image Velocimetry (PIV).

In the absence of vortex breakdown, the homogenization time is strongly decreased (by
a factor 10) with only a moderate tilt angle of the rotating lid (of the order of 15 degrees).
This phenomenon can be explained by the presence of small radial jets at the periphery
which create a strong convective mixing. A simple model of exchange flow between the
periphery and the bulk correctly predicts the scaling laws for the homogenization time.

In the presence of vortex breakdown, the scalar is trapped inside the vortex breakdown
bubble, and thus increases substantially the time needed for homogenization. Curiously,
the tilt of the rotating lid has a weak effect on the mixing, but a small tilt of the stationary
disk (of the order of 2 degrees) strongly decreases (by a factor 10) the homogenization
time. Even more surprising is that the homogenization time diverges when the size of
the bubble vanishes. All these features are recovered by applying the Melnikov theory
to calculate the volume of the lobes that exit the bubble. It is the first time that this
technique has been applied to a 3D stationary flow with a non-axisymmetric perturbation
and compared with experimental results, although it has been applied often to 2D flows
with a periodic perturbation.

1. Introduction

It is well known that helical flows are unstable with respect to vortex breakdown,
leading to a complex geometry of the streamlines with a barrier to transport between
the inner part and the outer part of the bubble. The goal of this paper is to quantify
experimentally the mixing in this 3D flow and to compare it with available theories
derived for chaotic advection.
Vortex breakdown usually refers to a recirculating bubble that occurs past a stagnation

point due to the rapid expansion of a thin vortex into a much broader one (Leibovich
1978). It is a surprising and practically important phenomenon, which has been observed
in many different swirling flows from geophysical to industrial applications. Vortex break-
down was first observed over the delta wings of aircrafts (Wentz & Kohlman 1971; Hall
1972; Lowson & Riley 1995) where it creates a sudden drop of the lift and an increase
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in the drag, possibly leading to a loss of aircraft control (Escudier 1988). By contrast,
it is beneficial in the geophysical context since it decreases the maximal velocities of
tornadoes and limits their destructive power (Burggraf & Foster 1977; Rotunno 2012).
The structure and dynamics of these tornadoes is governed by the mixing of hot air
within the core of the vortex. Artificial tornadoes within a chimney have been proposed
as a way of converting green energy into electric power. But the poor understanding of
the stability and mixing properties of these flows have prevented the development of an
operational prototype. Vortex breakdown has also been used as a flame holder in com-
bustion devices (Gupta et al. 1984), where the mixing of fuel and oxygen is of primary
importance. Finally, vortex breakdown flows are of interest for bioengineering applica-
tions since they can provide a smooth and efficient mixing without moving a propeller
in the cavity (Dusting et al. 2006; Thouas et al. 2007). This is beneficial for bioreactors
where the growth of cells requires oxygen to be distributed as fast as possible, but where
strong shears or moving objects should be avoided since they can damage cells. For such
bioreactors, the goal is thus to maximize the mixing with a minimum velocity in the
cavity, which will be the guiding line of the paper.
The structure and stability of a vortex breakdown flow has been actively discussed

in the past century. Early experiments in a pipe (Harvey 1962; Sarpkaya 1971; Faler
& Leibovich 1978) have revealed the presence of an axisymmetric bubble, which may
also contain a single or a double helix (depending on the swirl and Reynolds number)
with a strong hysteresis between these three regimes. The presence of the axisymmetric
bubble has been explained theoretically by Benjamin (1962) and validated numerically
by Wang & Rusak (1997) as a transition from a supercritical flow (without waves prop-
agating upstream) to a subcritical flow (with waves propagating upstream) analogous to
a hydraulic jump. Ruith et al. (2003) further showed by Direct Numerical Simulations
that helical disturbances constitute a secondary instability that grow over a finite time
on the axisymmetric bubble. This secondary instability can be explained by a transition
from a convective to an absolute instability (Gallaire et al. 2006) and leads to a global
mode whose structure has been described by Meliga et al. (2012).

Vortex breakdown has also been observed in a simpler configuration consisting of a
closed cylinder with one lid rotating (Vogel 1968; Ronnenberg 1977). This is the topic
of this paper since the flow is very stable experimentally. Escudier (1984) showed ex-
perimentally that vortex breakdown appears in a finite band of Reynolds number if the
height to radius ratio H/R is larger than 1.5. There is a single axisymmetric bubble until
H/R = 1.95, where a second bubble can appear and even a third one aroundH/R = 3.35.
In our experiment, the aspect ratio is equal to 2 such that the flow first bifurcates toward
an axisymmetric time-dependent flow at a Reynolds number around 2700. Indeed, it was
found numerically by Lopez & Perry (1992) and theoretically by Gelfgat et al. (1996)
that periodic perturbations appear, leading to a vertical oscillation of the bubble. Note
however that non-axisymmetric perturbations such as a double, triple or quadruple helix
may appear before the periodic perturbations, but only for aspect ratios larger than 3.3
(Gelfgat et al. 2001; Lopez 2006; Sorensen et al. 2011; Lopez 2012).
The presence of a periodic perturbation superimposed on the axisymmetric vortex

breakdown is interesting because it breaks the barrier to transport. Indeed, the axisym-
metric streamlines surrounding the bubble are impermeable because they connect the
two hyperbolic (or heteroclinic) points located on the axis. The transport of particles
from inside to outside the bubble is thus completely governed by the additional periodic
perturbation. Lopez & Perry (1992) showed numerically that it advects the particles on
the unstable manifold of the hyperbolic point. This is very similar to the theoretical
result of Rom-Kedar et al. (1990) on a 2D periodic flow of two oscillating point vortices.
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They showed that the particles exiting the bubble are located in the lobes between the
stable and the unstable manifold of the heteroclinic points, and that the area of these
lobes can be calculated by the Melnikov function. The Melnikov theory is a classical tool
of dynamical systems (see e.g. Guckenheimer & Holmes 1983; Wiggins 2003) which gives
a simple formula for the “distance” between the stable and the unstable manifold.

However, the barrier to transport can also be broken by a symmetry breaking, as has
always been found experimentally in the steady case. Indeed, there has been a long debate
on the structure of vortex breakdown since it was different depending on whether it was
predicted by axisymmetric numerical simulations or observed in the experiments that re-
vealed asymmetric tongues of dye exiting from the bubble due to what was thought to be
an intrinsic asymmetry of the bubble (Spohn et al. 1998). It was finally proven (Thomp-
son & Hourigan 2003) that these tongues can be due to very small imperfections of the
experimental set-up, since a misalignment of 0.01◦ of the rotation axis (which is of course
inevitable) is sufficient to recover the large asymetries observed in the experimental im-
ages. This phenomenon highlights the high sensitivity of the flow to asymetries, which
will be introduced on purpose in this paper in order to quantify their effect on the mix-
ing. Sotiropoulos et al. (2001) showed numerically that it creates a rich dynamics such
as KAM tori and stable islands inside the bubble, which have even been observed in ex-
perimental Poincaré sections (Sotiropoulos et al. 2002; Fountain et al. 1998). They also
showed that the stretching and folding of the lobes creates a cantorus at the periphery
of the bubble, which is responsible for a chaotic release of the particles initially located
inside the bubble. This leads to a devil’s staircase (with fractal steps) for the number
of particles as a function of time. This has been confirmed by Brons et al. (2007) who
also noted that the asymmetry can be reduced by introducing a small offset of the axis
of the rotating lid to counter-balance its misalignment. However, there has never been a
quantitative prediction of the escape rate from the bubble, as was done in Rom-Kedar
et al. (1990). Moreover, all these studies only analyze the evolution of point tracers (po-
sition, spatial structure, fractal dimension...). They have always neglected the effect of
diffusion which is able to break the barrier to transport and introduce a weak escape rate
predicted theoretically by Brons et al. (2009).

By contrast, many studies have been devoted to the advection-diffusion of a scalar in a
homogeneous turbulent flow (see e.g. the review of Warhaft 2000). The goal is to derive
the spectra, the Probability Distribution Functions (PDF) and the variance of the scalar.
In the inertial range the spectra scale as k−5/3 but they scale as k−1 at smaller scales
(between the Kolmogorov and the Batchelor scale), as explained by Batchelor (1959)
and Kalda (2000) in a stationary regime. The PDF reveal a high intermittency (non
Gaussian), which can be explained by a simple model of stretched filaments (Duplat &
Villermaux 2008; Meunier & Villermaux 2010). However, the most important result is
probably the fact that the variance decays exponentially, as was shown numerically in
a 2D almost time-periodic flow (Pierrehumbert 1994; Antonsen et al. 1996; Thiffeault
et al. 2004; Meunier & Villermaux 2010) and in a 3D flow (Toussaint et al. 1995). This
can be explained in a bounded domain by the linearity of the advection-diffusion equa-
tion (Haynes & Vanneste 2005). However, Gouillart et al. (2007) showed experimentally
that the walls can have a non-trivial effect and lead to “anomalous” power law rather
than an exponential decay.
In this paper, we will study experimentally the mixing inside a highly heterogeneous

flow. Section 2 is devoted to the experimental set-up. The flow is described in detail
in section 3. The mixing properties of the flow are studied in the absence of vortex
breakdown in section 4, and in the presence of vortex breakdown in section 5. Conclusions
follow in section 6.
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Figure 1. Schematic of the experimental set up.

2. Materials and methods

2.1. Experimental setup

We wish to study the flow inside a circular cylinder with a rotating tilted disk. The set-up
has been described in detail in Ismadi et al. (2011) and will only be presented briefly here.
Figure 1 shows the experimental set-up, consisting of a cylindrical Plexiglas container
with internal radius R = 32.5mm, filled with water. This inner cylinder is placed inside
an octagonal housing full of water with flat exterior faces to prevent the deformation
of images. The flow under study is located inside the inner cylinder between two disks
separated by a height H, with an aspect ratio H/R = 2± 1%. The top disk is rotated at
an angular velocity Ω varying from 0.6 to 3.6 rad/s using a stepper motor and a worm
wheel allowing a very smooth rotation of the disk at all speeds.
The goal of the paper is to study the mixing properties of the flow inside the inner

cylinder. For this purpose, a dye mixture is injected at the centre of the bottom disk
through a 0.5mm hole connected to a 1ml syringe. A syringe pump creates a continuous
injection at a volumetric flow rate Q = 0.02 ml/min for 5 minutes. This duration of
injection was chosen because it is small compared to the typical time of the experiments
(of the order of a few hours) needed for the dye to spread within the whole cylinder. But
this duration is long enough for the velocity of the injection jet (0.17cm/s) to be small
compared to the velocity of the disk periphery varying from 2 to 12cm/s. The injected
volume (0.1ml) is, of course, very small compared to the total volume of the cylinder
(200ml). The mixture contains 0.033% of Fluorescein in weight diluted in water, together
with 0.088% of alcohol in order to obtain a neutrally buoyant mixture. Indeed, Ismadi
et al. (2011) showed that a weak density difference of the order of 0.01% is sufficient to
modify the threshold of the vortex breakdown.
The Fluorescein dye is illuminated by a blue laser so that it fluoresces very brightly

with a green color. As illustrated in Figure 1(a), the laser is expanded into a vertical sheet
that is carefully placed at the centre of the inner cylinder to visualise the distribution of
dye in a longitudinal section. A digital camera records images similar to the one shown
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in Fig. 1(b). Although the blue component of the images contains strong reflections of
the laser sheet, the green component only contains the image of the dye and its intensity
is proportional to the density of the dye at this high dilution rate.

As will be shown later, the mixing properties of this flow strongly depend on the
asymmetries of the experiment. We have thus tested two types of asymmetries: a tilt
of the rotating disk and a tilt of the stationary disk. As shown in Fig. 1(b), the tilt of
the rotating disk is obtained by cutting the disk at an angle α compared with the plane
normal to the axis of the disk. This creates an oscillating motion of the periphery (in
a given section) superimposed on the rotation of the disk. This does not correspond to
the motion of a disk whose axis is tilted with respect to the axis of the cylinder. Six
different disks with angles α equal to 0, 2, 5, 7.2, 9.8 and 14.6 degrees have been used,
with an accuracy of less than 0.1 degree. The tilt of the stationary disk is obtained by
placing a thin disk on a wedge at an angle β, which is varied from −2.6 to 2.6 degrees.
The uncertainty on the angle β is relatively large even in the absence of a wedge.

The flow is also studied using Particle Image Velocimetry (PIV), by injecting small
red fluorescent particles in the cylinder. A 4 mega-pixels PIV camera acquires images
through a red filter in order to remove reflections of the laser. The images are treated
using an inhouse cross-correlation algorithm (Meunier & Leweke 2003), which gives 60
by 60 vectors in the longitudinal section. The acquisition frequency is equal to 8 times
the rotation frequency of the top disk in order to apply some phase averaging of the
velocity fields.

2.2. Theoretical and numerical formulation

The flow under consideration depends on four main dimensionless parameters. The aspect
ratio h = H/R is kept to a constant value of 2. The Reynolds number Re = ΩR2/ν, ν
being the kinematic viscosity of the water, is varied between 700 and 3000. The angle α of
the tilted rotating disk is varied between 0 and 15 degrees. The angle β of the stationary
disk is varied between -2.6 and 2.6 degrees in the plane normal to the laser sheet. The
Schmidt number Sc = ν/κ (κ being the diffusivity of the dye) is an additional parameter
which is large in the experiment and equal to 2000.

The flow is governed by the Navier-Stokes equation together with the incompressibility
condition, which are non-dimensionalised using the radius R and Ω−1 as length and time
scales, leading to

∂u

∂t
+ u · ∇u = −∇p+

1

Re
△u. (2.1)

In cylindrical coordinates (r, θ, z), the boundary conditions are u = 0 at the periphery
(r = 1) and at the bottom disk (z = βr cos(θ)) and u = reθ (where eθ is the orthoradial
unit vector) on the top disk defined by z = h+ αr cos(θ − t).

These equations are easily solved numerically at these moderate Reynolds numbers
using Comsol Multiphysics which is a finite element method using standard Lagrange
elements P1-P1. The time-stepping is governed by an IDA solver (Implicit Differential-
Algebraic) based on a BDF scheme (Backward Differentiation Formula) described by
Hindmarsh et al. (2005). At each time step, the system is solved using the direct linear
solver for hollow matrices-Pardiso (www.pardiso-project.org). The flow is first calculated
as a time dependent flow from t = 0 to t = 100, with u = 0 at t = 0. The solution at
t = 100 is then used as an initial condition for a stationary solver. The mesh is refined
in the boundary layer, leading to 14,882 elements in 2D and 511,000 elements in 3D.

The concentration of the dye is a passive scalar c advected by the flow according to
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the linear diffusion-advection equation

∂c

∂t
+ u · ∇c =

1

ReSc
△c, (2.2)

This equation is not solved numerically because the Schmidt number is large such that
dye structures are very thin. The calculation would need an increased spatial resolution
at his large Peclet number (Pe = ReSc ≃ 106), which would be very difficult in 3D. This
is why the numerical simulations are only used to derive the characteristics of the flow
and not to study the mixing problem itself.

3. Phenomenology of the flow

We first describe the helical flow inside the cylinder with a rotating disk, which is well
known to exhibit vortex breakdown. The effect of the tilt of the rotating disk is analysed
in detail to explain the mixing properties of this flow in the next sections.

3.1. Vortex breakdown in the presence of a tilted disk

The rotation of the top disk creates a thin rotating layer below the disk, which induces a
radial motion due to the centrifugal force. This Von Karman pumping creates a secondary
longitudinal recirculation inside the cylinder, which is very well visualised at moderate
Reynolds number (see Fig.2a) by the dye going up along the axis of the cylinder. This
toroidal motion is very weakly affected by the tilt of the disk, which creates a weak
periodic perturbation leading to a small undulation of the dye streakline below the top
disk. The dye accumulates on the top disk and is then advected radially toward the
corners by the centrifugal motion. At the corners, the dye predominantly goes down
along the periphery of the cylinder due to the recirculation. But a small part is ejected
radially inward due to small peripheral jets, which will be analysed in detail in section 3.3.
When the Reynolds number increases, the undulation of the streakline on the axis

increases because the upward velocity decreases on the axis. At the critical Reynolds
number where the velocity vanishes on the axis, the topology of the flow suddenly changes.
This leads to the well-known vortex breakdown bubble, clearly visualised in Fig. 2(b).
Here, the aspect ratio h is equal to 2 such that the critical Reynolds number is equal
to Re = 1430 ± 30, in excellent agreement with the literature (see Escudier 1984). This
critical Reynolds number is very weakly affected by the tilt of the disk: it seems to
decrease by 20 due to the tilt of the disk, although this could be within the uncertainty.

Figure 2(c) shows that for a larger Reynolds number (Re = 1900), the vortex break-
down is larger and contains two bubbles. However, when the Reynolds number is in-
creased further, the size of the bubble decreases and the bubble eventually disappears
above Re = 3000± 50, as shown on Fig. 2(d). This is again in excellent agreement with
the results of the literature obtained in the absence of tilt. It can be noted that the tilt
of the disk creates a small undulation of the streakline just above the bottom disk, at
the location where the bubble disappeared (i.e., where the vertical velocity is minimum).

3.2. Potential flow induced by the tilted disk

PIV measurements have been performed in order to quantify the meridional flow. Fig-
ure 3(a) shows the mean flow in a vertical section in the absence of vortex breakdown.
The velocity field clearly shows the axisymmetric recirculation with a strong upward flow
on the axis and a downward flow at the periphery. It can be noted that the radial flow
is thinner and stronger at the top than at the bottom because it is contained within the
layer.
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(a) (b)

(c) (d)

Figure 2. Dye visualisation of the flow inside the cavity at the end of the injection phase. (a)
Re = 1000, (b) Re = 1470, (c) Re = 1900 and (d) Re = 3500. α = 5◦, h = 2.

The periodic perturbation due to the tilt of the disk can be measured by calculating the
difference between the phase averaged velocity and the mean velocity. This perturbation
is plotted in Fig. 3(b) in the absence of vortex breakdown. It is clear that there is a
strong flow from right to left, due to the tilted disk which pushes the fluid as it rotates.
This flow is mainly potential because it is created by the motion of the disk normal to
its surface. It can thus be calculated using the theory for potential flows, by assuming
that the velocity u = ∇ϕ derives from the potential function ϕ. The potential function
ϕ is searched as a sum of potential modes of amplitude an:

ϕ = α
∑

n

an
kn

cosh(knz) cos(θ − t)J1(knr), (3.1)

where J1 is the Bessel function of the first kind. Each mode is indeed a solution at any
time because it satisfies ∇u = △ϕ = 0. The slip boundary condition (ur = 0) at the
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Figure 3. (a) Mean flow and (b) periodic perturbation flow obtained by PIV in a longitudinal
section perpendicular to the plane of the tilt angle. Re = 1000, α = 5◦, h = 2

periphery (r = 1) imposes the choice of the axial wavenumber kn

J ′

1(kn) = 0, (3.2)

such that there is a discrete set of wavenumbers, whose first terms are equal to k1 =
1.8412, k2 = 5.3314, k3 = 11.7060 and k4 = 14.863. The slip boundary condition at the
tilted disk can be written:

uz = αr cos(θ − t) at z = h− αr sin(θ − t). (3.3)

This slip boundary condition is a priori valid only when the thickness δ of the boundary
layer (which scales as Re−1/2) is much smaller than the vertical displacement of the

tilted disk (which is equal to α at r = 1), i.e., when αRe1/2 ≫ 1. However, it is also

valid when αRe1/2 ≪ 1 because in the frame of reference precessing with the disk (i.e.,
with the z axis normal to the disk), the Poincaré force is of order α and is thus negligible

compared to the viscous terms governing the boundary layer which are of order Re1/2.
In this frame of reference, the boundary layer is thus axisymmetric, meaning that the
thickness δ is independent of θ, such that the slip boundary condition (3.3) is still valid
but at a distance δ below the disk, i.e., at z = h− αr sin(θ − t)− δ.
Since δ and α are small in both cases, the boundary condition can be replaced at

leading order by the same condition applied at z = h:

uz = αr cos(θ − t) at z = h, (3.4)

A solvability condition is then found by introducing the decomposition (3.1) into this
boundary condition, multiplying by rJ1(kmr), and integrating r from 0 to 1 because
∫ 1

0
J1(knr)J1(kmr)rdr = 0 if n and m are not equal. This leads to the value of the

amplitude an which can be simplified as

an =

∫ 1

0
J1(knr)r

2dr
∫ 1

0
J2
1 (knr)rdr sinh(knh)

=
2

knJ0(kn)(k2n − 1) sinh(knh)
. (3.5)
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Figure 4. (a) Periodic potential flow obtained theoretically using (3.6). (b) Amplitude of the
periodic flow on the axis at z = 1.8 obtained experimentally at Re = 1000 (•), Re = 1255 (◦),
Re = 1490 (×), Re = 1750 (�), Re = 2000 (⋆), Re = 2250 (+), Re = 2490 (♦) and Re = 3036
(▽). α = 5◦ and h = 2.

The velocity is obtained by differentiating (3.1):

u =
∑

n

an





J ′

1(knr) cosh(knz) cos(θ − t)
−J1(knr) cosh(knz) sin(θ − t)/(knr)

J1(knr) sinh(knz) cos(θ − t)



 . (3.6)

This velocity field is plotted in Fig. 4(a) and is similar to the perturbation field found
experimentally and plotted in Fig. 3(b). Moreover, there is a good quantitative agreement
of the amplitude of the flow, as shown in Fig. 4(b) where the radial velocity on the axis
is plotted as a function of time. The experimental result clearly shows that the potential
flow is independent of the Reynolds number. However, it seems that the experimental
velocity is slightly delayed compared to the theoretical prediction. This may be due to
nonlinear effects inside the boundary layer, which have not been taken into account here.

3.3. Peripheral jets induced by the tilted disk

As shown on Fig. 5(a), the perturbation flow (i.e. the difference between the phase-
averaged flow and the mean flow) contains almost no vorticity in the bulk of the cylin-
der, because the potential flow calculated in the previous section is irrotational. However,
there is some vorticity created at the top disk which is advected to the periphery of the
cylinder. It should be noted that this periodic vorticity perturbation is small compared
with the mean distribution of vorticity (not shown here). The mean vorticity is antisym-
metric whereas the periodic perturbation is symmetric. At the periphery, this symmetric
vorticity corresponds to two helical vortices of opposite sign which are advected down-
ward by the mean flow. These vortices are due to the oscillating motion of the disk at
the corner, which creates some oscillating vorticity.
These counter-rotating vortices create small radial jets which are responsible for the

tongues of dye which are visible in Fig. 2(a). The radial velocity of these jets is plotted
as a function of z close to the cylinder in Fig. 5(b). It seems that the wavelength of
the undulations (i.e. the pitch of the helical vortices) is independent of the Reynolds
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Figure 5. (a) Periodic perturbation vorticity obtained by PIV at Re = 2000. (b) Vertical profile
of radial velocity at r = 0.9 obtained experimentally at Re = 1000 (solid line), Re = 1490
(dashed line), Re = 2000 (dash-dotted line) and Re = 2490 (dotted line). α = 5◦, h = 2.

number and equal to 0.35. This is close to the value 2πumax
z = 0.38 of a perturbation

at a frequency 1/2π advected by the mean flow at the velocity umax
z (which is found

empirically to be constant around 0.06 for Re ∈ [500, 3500]).

The strength of these jets decreases when the vortices are advected downwards due
to viscous diffusion. Indeed, the attenuation is stronger at smaller Reynolds numbers:
the oscillations disappear after 2 wavelengths at Re = 1000 whereas they are still visible
after 4 wavelengths at Re = 2490. Despite the large uncertainty in the measurement, it
is possible to fit the envelope of these oscillations by a decaying function of the form:

uenvelope
r = umax

r eµ(z−h) (3.7)

The attenuation parameter µ is plotted in Fig. 6(a) as a function of the Reynolds number
for 3 different tilt angles. It is quite clear that this parameter is fairly independent of
the tilt angle α and decreases with the Reynolds number approximately as Re−1/2. This
is coherent with the fact that these jets extend on a larger height when the Reynolds
number increases. The amplitude of these jets is characterized by umax

r in (3.7) which is
plotted in Fig. 6(b). It is surprising to see that the amplitude decreases with the Reynolds
number. This is probably due to the fact that these jets come from an interaction of the
viscous boundary layer (of thickness Re−1/2) with the tilt angle α. This would explain

why the amplitude scales as αRe−1/2. Using these two empirical laws, it is possible to
give a general formula for the radial velocity of these jets at r = 0.9:

ur(θ, z, t) = 15αRe−1/2 exp[100Re−1/2(z − h)] sin[18(z − h) + θ − t] (3.8)

where α is given in radians. This empirical formula will be used in the following.

To summarize, the presence of a tilt of the rotating disk does not modify drastically
the mean flow, including the vortex breakdown bubble. However, it leads to a periodic
potential flow in the bulk of the cylinder and creates periodic radial jets at the top corners
which are advected downward by the mean flow.
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Figure 6. (a) Attenuation parameter µ and (b) amplitude umax used to fit the envelope of the
radial velocity at r = 0.9 using (3.7). Tilt angles are equal to α = 5◦ (▽), α = 10◦ (�) and
α = 15◦ (◦).

4. Mixing in the absence of vortex breakdown

4.1. Mixing for a flat disk

Figure 7 shows the temporal evolution of the dye after injection on a long term. The dye
is advected by the meridional recirculation on a torus and is thus homogeneous along
the streamlines. The dye is mainly located on the axis, with a thickness which increases
with time. This indicates that there is some diffusion across the streamlines, which allows
to spread the dye over the whole volume and thus to decrease the intensity of the dye.
However, this effect is weak because the dye is still inhomogeneous at t = 4000 (i.e. after
1 hour of experiment), as shown by Fig. 7(d) where the dye is located on the axis and at
the walls. This leaves a large region without any dye, indicating that this flow is fairly
inefficient for mixing.
In fact, there is a small asymmetry in the dye pattern (particularly visible on the

axis of Fig. 7a), which is due to small imperfections in the experimental setup. This
alternate chevron pattern is probably due to a non-zero angle β because this asymmetry
is stationary with time. It is probably this asymmetry which creates a diffusion across
the streamlines rather than the molecular diffusion whose characteristic time is equal to
the Péclet number (Pe = ReSc ∼ 106) in non-dimensional units. This already shows
that the mixing properties of this flow are highly dependent on the possible asymmetries
of the flow.

4.2. Mixing for a tilted disk

To study quantitatively the effect of the asymmetry, the rotating disk is tilted of an
angle α = 5◦ to surpass the effect of the imperfections of the set-up. Fig. 8 shows the
temporal evolution of the dye at the same instants in time. The dye is still advected by
the meridional recirculation, leading to a dense region of dye on the axis. However, the
diffusion across streamlines is much faster, as the dye has spread over the whole volume
at t = 1000 and is completely homogeneous at t = 4000.

This enhanced mixing is due to the tongues of dye which appear on the lateral walls
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(a) (b)
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Figure 7. Dye visualisation at t = 0, 300, 1000, 4000. Re = 1000, α = 0◦. (negative image of
the green component)

due to the radial jets created at the top corners and advected along these walls (see
section3.3). These tongues are advected by the flow to fill the bulk of the cylinder,
leading to a rapid homogenization of the dye within the whole cylinder. This is clearly
visible in 8(b).

4.3. Homogenization time

The mixing efficiency of the flow can be studied quantitatively by comparing the Prob-
ability Density Function (PDF) of dye concentration for two different tilt angles. These
PDF are homothetic to the PDF of intensity P (I) (i.e. the normalized number of pixels
with an intensity I) which are plotted in Fig. 9(a) because the dye concentration c is
proportional to the image intensity I. For α = 0, the PDF contains a high and narrow
peak at I = 10 corresponding to the regions without dye. But there is also a small and
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Figure 8. Dye visualisation at t = 0, 300, 1000, 4000. Re = 1000, α = 5◦. (negative image of
the green component)

broad peak at I = 200 corresponding to the region around the axis with a lot of dye.
These two peaks are separated by a large plateau indicating the inhomogeneity of the
dye within the volume. For α = 5◦, at the same time, there is a single peak at I ∼ 100
which indicates that all parts of the cylinder have almost the same concentration of dye,
which is the sign of a mixed state.

As time evolves, each PDF changes from two separated peaks (at 0 and at the initial
injection concentration) to a single peak at the mean final concentration. The mixing is
thus well characterized by the broadness of the PDF, i.e. the standard deviation σ of the
intensity defined by

σ2 = 〈(I − 〈I〉)2〉 =
∫

I2P (I)dI −
[∫

IP (I)dI)

]2

(4.1)
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Figure 9. (a) PDF of the intensity of the images at t = 3200 for α = 0◦ (solid line) and α = 5◦

(dashed line). (b) Temporal variation of the variance of the image intensity σ for α = 0◦ (△)
and α = 5◦ (◦). Lines correspond to the fit (4.2). Re = 1000.

where 〈·〉 denotes the spatial average for r < 0.6 and z ∈ [0.1; 1.9]. The evolution of
the standard deviation is plotted in Fig. 9(b) for two different tilt angles. It is clear
that it decays exponentially in both cases after a small transient stage (although there
is a saturation of the standard deviation at late stages for α = 5◦, due to the noise in
the measurements). It is also clear that the decaying of the standard deviation is much
faster for α = 5◦ than for α = 0, which proves quantitatively that the mixing is strongly
enhanced by the tilted disk.

The decay of the standard deviation is very well fitted by a law

σ2(t) = σ2
0e

−2t/T + σ2
noise (4.2)

which is plotted as lines on Fig. 9(b). This allows to measure accurately the homoge-
nization time T (i.e. the decaying time of the standard deviation) for any experiment.
It should be noted that this homogenization time does not depend on the amount of
dye injected (which only modifies the multiplying factor σ0). It was also checked that it
is independent of the region taken to make the spatial average at late stages. This can
be understood by the fact that the dye concentration c is solution of a linear equation
(2.2) which admits at any time an infinite set of eigen modes cn(r). For α = 0, the flow
is stationary such that it is the same eigen mode at any time and the solution can be
written:

c(r, t) =
∑

Ancn(r)e
−t/Tn (4.3)

where −1/Tn is the eigenvalue of the mode and An is the amplitude of the mode
at t = 0, which is given by the initial condition c(r, 0) =

∑

Ancn(r). It should be
noted that Tn is always positive because it is a diffusive process; it is actually equal to
2ReSc

∫

cn(r)
2dr/

∫

|∇cn(r)|2dr (see e.g. Toussaint et al. 2000). In an infinite medium,
there is an infinite number of eigenvalues such that Tn may not be bounded. This is
the case, for example, in the absence of velocity where a blob of scalar converges to a
Gaussian distribution whose variance decays as 1/t and not exponentially. However, in a
confined geometry, the small-scale cutoff imposed by diffusivity reduces the problem to
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Figure 10. Decaying time as a function of (a) the Reynolds number at α = 5◦ and (b) as a
function of the tilt angle α for all Reynolds number without vortex breakdown.

a finite-dimensional system, at least for 2D flows (Haynes & Vanneste 2005). This per-
mits one to define the maximum decaying time T1, which corresponds to the dominant
mode remaining at late stages since it is the least damped mode. This means that at late
stages, σ is equal to the standard deviation of c1(r) over the region considered for the
treatment of the images multiplied by A1e

−t/T1 (if A1 6= 0). This demonstrates that the
homogenization time T is independent of the region considered (unless c1(r) vanishes on
this region). It also explains why the standard deviation σ decreases exponentially. For
α 6= 0, the flow is not stationary but periodic. The same analysis can be done over each
period, such that the result is still valid for integer values of time. The standard deviation
is thus an exponential decay multiplied by a periodic function and −1/T1 corresponds
to the Floquet multiplier.

The homogenization time T is plotted in Fig. 10(a) as a function of the Reynolds
number in the absence of vortex breakdown. It seems fairly constant around 1200 for a
tilt angle α = 5◦. This can be understood by the fact that the radial jets are stronger
but are damped quicker at smaller Reynolds numbers. These two effects annihilate each
other which leads to the independence of T with respect to Re.
The homogenization time is plotted in Fig. 10(b) as a function of the tilt angle α for all

Reynolds numbers (without vortex breakdown). It is clearly decreasing as a function of α,
and seems to be well fitted to by a law scaling as α−1. This shows that the homogenization
time of this flow is strongly dependent on the tilt angle of the rotating disk. But it poses
a problem for the axisymmetric configuration with α = 0. In fact, the homogenization
time T saturates probably due to small imperfections in the symmetry of the set-up or
at least due to the molecular diffusion which gives an upper bound equal to the Péclet
number (Pe ∼ 106 at these Reynolds and Schmidt numbers).

4.4. A simple model

It is possible to give an estimate of the homogenization time by calculating the amount
of concentrated dye which is ejected from the periphery to the bulk of the cylinder due
to the radial jets. Using the empirical formula (3.8) of the radial velocity, the inward flux
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of fluid going from the periphery to the bulk can be calculated at r = 0.9 as

Φ =

∫ z=h

z=0

max(−ur, 0)rdθdz ≃ 0.27α(1− e−100Re−1/2
h) (4.4)

This is valid for large Reynolds numbers when the radial jets are attenuated on a
length larger than the wavelength of the oscillation. Furthermore, when h is larger than
Re1/2/100 ≃ 0.3, the flux becomes independent of the Reynolds number, equal to 0.27 α.
This explains why the homogenization time T is independent of the Reynolds number.
This flux creates an exchange between the volume Vp of the periphery at the concentra-
tion cp and the bulk with a volume Vb at the concentration cb. It leads to two coupled
equations for cp and cb, whose solutions are exponentially decaying toward the mean
concentration with a characteristic time:

T =
VbVp

Φ(Vb + Vp)
≃ 1.8h

α
(4.5)

Here, Vb = 0.81πh and Vp = 0.19πh correspond to the volumes inside and outside r = 0.9,
and α is given in radians. This gives a correct scaling law for the homogenization time
as α−1 but this prediction is 30 times below the experimental measurement plotted in
Fig. 10(b).
It should be noted that the theory depends on the choice of the radius r at which the

flux is evaluated. However, when r is close to the cylinder, the radial velocity vanishes
such that Φ should be proportional to 1−r. This seems to be the case experimentally for
r ∈ [0.85; 1] despite strong uncertainties in the PIV measurements near the boundary.
For r close to 1, the volume Vp ≈ 2π(1− r)h is proportional to 1− r and much smaller
than Vb such that T ≈ Vp/Φ is in fact independent of r. However, for r smaller than
0.85, the velocity is smaller than its linear variation in 1 − r. This would lead to an
overestimation of the flux Φ in the theory which could explain why the homogenization
time T is smaller than in the experiment.

5. Mixing in the presence of vortex breakdown

5.1. Homogenization time

Figure 11 shows the evolution of the dye in the presence of vortex breakdown. The
images are completely different from the case without breakdown because the dye is
trapped inside the bubble. This creates a sharp interface between the bubble with a strong
concentration and the rest of the flow with a weak and homogeneous dye concentration.
This clearly shows that the streamline which delimits the bubble is a barrier for transport
since it prevents any advection across the streamline in the axisymmetric case.

As a consequence, the dye takes a very long time to escape the bubble, as shown in
figure 11. Indeed, even at t = 4000 (Fig. 11d), the dye is still concentrated within the
bubble although it would be completely homogeneous without vortex breakdown at this
tilt angle (see Fig. 8d). It is curious to see that the dye is able to enter the bubble during
the injection stage probably because the dye is extremely concentrated at the hyperbolic
point. This allows for a sufficient flux of dye toward the bubble (due to the weak non-
axisymmetric perturbations) before the dye is spread in the bulk of the cylinder. The
images are totally different if the dye is injected outside of the bubble (with a black bubble
surrounded by a weak uniform dye) although it leads to the same homogenization time.

Figure 12 shows that the variance decays exponentially but with a characteristic time
much larger than in the absence of vortex breakdown. This is clearly shown in Fig. 13(a)
where the homogenization time T suddenly jumps by a factor 3 at the onset of vortex
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Figure 11. Dye visualisation at (a) t = 0, (b) t = 300, (c) t = 1000 and (d) t = 4000.
Re = 1900, α = 5◦.(negative image of the green component)

breakdown (Rec = 1450). It is curious to see that the homogenization time then decreases
with the Reynolds number although the size of the bubble increases. It seems that the
homogenization time diverges for small bubbles. At Re = 2500, the homogenization time
has reached its value without vortex breakdown. It then seems to increase from Re = 2500
up to Re = 3000, but the data are somewhat noisy and should be interpreted carefully.
Figure 13(b) shows the dependence of the homogenization time T with the tilt angle α

of the rotating lid. It is curious to see that it only decreases by 30% (from 3000 to 2000)
when the tilt angle α increases by a factor almost 10 (from 2 degrees to 15 degrees).
Moreover, the data are quite noisy, as if the mixing was governed by some imperfections
of the experiment rather than the tilt angle α. Finally, it can be noted by comparing
Figs. 11(a,b) that the asymmetry of the vortex breakdown bubble is stationary and that
it does not rotate with the rotating lid. It is thus possible that the asymmetries of the



18 P. MEUNIER & K. HOURIGAN

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
1

10
2

t

σ

Figure 12. Temporal variation of the variance of the image intensity σ in the presence of
vortex breakdown (Re = 1900). The solid line corresponds to the fit (4.2). α = 5◦.
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Figure 13. Decaying time (a) as a function of the Reynolds number at α = 5◦ and (b) as a
function of the tilt angle α for Re = 1900.

bubble are due to a weak angle β of the stationary lid, which is well known to create
large disturbances rather than the imposed tilt α of the rotating disk. In order to check
this assumption, the tilt angle β has been varied by ±2.6 degrees with a constant tilt
angle α of 5 degrees. Figure 14 shows the structure of the bubble for these two angles.
It is clear that the asymmetry of the flow is governed by the tilt angle β and not by the
tilt angle α because the two images are symmetric to each other rather than identical.
Furthermore, Fig. 15 shows a large variation of the homogenization time T by a factor
10 when the tilt angle β is varied by only 2◦. It seems to be correctly fitted to by

T =
1600

β − β0
, (5.1)

where β is given in degrees and β0 = −0.3◦ is a small angle due to the imperfections
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(a) (b)

Figure 14. Dye visualisation at t = 0 for (a) β = 2.6◦ and (b) β = −2.6◦. Re = 1900, α = 5◦.
(negative image of the green component)

of the experimental set-up. An accurate measurement of the shape of the cylinder (from
the images) indeed shows that there is probably a small angle of the order of 0.2 ± 0.1
degree. It is surprising to see that a small tilt angle β of the stationary lid (of the order
of 1 degree) has more influence on the homogenization time T than a larger tilt angle
α of the rotating lid (of the order of 10 degrees). This result is in agreement with the
numerical study of Brons et al. (2007) who showed that the residence time inside the
bubble is extremely sensitive to the tilt angle β. They explained this sensitivity by a
decorrelation between the unstable manifold of the lower hyperbolic point P and the
stable manifold of the higher hyperbolic point Q. This creates some undulations of these
manifolds, responsible for the tongues visible in the visualizations of Fig. 14, as described
by Lopez & Perry (1992). In the following, we will try to quantify these tongues and the
mixing they generate using the Melnikov theory in this 3D stationary flow, as was done
by Rom-Kedar et al. (1990) in a 2D flow with a periodic perturbation.

5.2. Melnikov theory on a model flow

We first need to model the flow as an axisymmetric bubble u0 together with a perturba-
tion flow βu1 proportional to the tilt angle. The axisymmetric flow, presented in Fig. 16,
exhibits a bubble located between two hyperbolic (and heteroclinic) points P and Q on
the axis, separated by 2ρ ≃ 0.36 at this Reynolds number (ρ being the radius of the
bubble). The angular velocity uθ/r varies between 0.1 and 0.2 between the lower part
and the upper part of the bubble. However, this variation is smaller when the size of the
bubble decreases because viscous effects tend to smooth the vorticity. As a consequence,
the axisymmetric flow is modeled by the simplest normal form which presents two hyper-
bolic points P and Q around z0 and has a constant angular velocity ω. It can be written
in cylindrical coordinates as:

u0 =
[

−λr(z − z0), ωr, λ((z − z0)
2 − ρ2) + ξr2

]

. (5.2)

In the following, z0 will be taken equal to 0 which corresponds to changing the origin of
the z-axis. Close to the critical Reynolds number, λ, ξ and ω are constant but ρ vanishes
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Figure 15. Decaying time as a function of the tilt angle β of the bottom stationary disk for
Re = 1900. α = 5◦.

(a) (b)

Figure 16. (a) Axisymmetric flow u
0 obtained numerically at β = 0. Solid lines correspond to

streamlines and greyscale to the angular velocity u0

θ/r. (b) Sketch of the stable manifold of P
and the unstable manifold of Q in the presence of a periodic perturbation superimposed on the
bubble flow u

0. Re = 1900

and it should be Taylor expanded to first order, leading to

ρ2 = ζ(Re − Rec).

The constants are measured using the numerical simulations at Re = 1900, which gives
λ = 0.25, ξ = 0.17, ω = 0.15 and ρ = 0.18 (i.e., ζ = 7.2× 10−5). It is well known (Brons
et al. 2007) that a small non-axisymmetric perturbation creates a difference between the
unstable manifold wu(Q) (i.e. all the points coming from Q at t = −∞) and the stable
manifold ws(P ) (i.e., all the points ending in P at t = +∞) In the frame of reference
rotating with the bubble at ω, the trajectories remain in a meridional plane, such that the
problem reduces to a 2D flow with a periodic perturbation (due to the non axisymmetric
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Figure 17. Numerical profile of the perturbation velocity u
1 = u−u

0 as a function of r along a
line oriented at θ = −45◦ (a) and θ = +45◦ (b) at z = −0.5 and β = 2◦. Dashed lines correspond
to ur, dash-dotted lines to uθ and solid lines to uz.Re = 1900

perturbation rotating at −ω). If these manifolds intersect in a point ri, they will intersect
an infinite number of times, because a period 2π/ω later, ri is advected in ri+1, which
thus belongs to both manifolds wu(Q) and ws(P ) (see Fig.16b). As shown in Fig. 16(b),
this leads to an infinite number of intersection points which delimits lobes between the
two manifolds. Moreover, the grey lobe located between ri and ri+1/2 and delimited
by the two manifolds is advected a period 2π/ω later into the next grey lobe between
ri+1 and ri+3/2. Finally, as noted by Rom-Kedar et al. (1990), the lobes come from the
inside of the bubble (i.e., above wu(Q) at Q) at t = −∞ and are advected outside of the
bubble (i.e. above ws(P ) at P ) at t = +∞. As a consequence, the volume of this lobe
corresponds exactly to the quantity of dye that exits the bubble during one period. The
goal of the calculation presented in the following is thus to calculate the volume of this
lobe as a function of the non-axisymmetric perturbation.

The perturbation βu1 due to the tilt angle has been evaluated numerically by sub-
tracting the velocity u0 obtained in a simulation at β = 0 from the velocity u obtained
in a simulation at β = 2◦. However, since these calculations are three-dimensional and
since the perturbation is small (because it is proportional to the small tilt angle β) there
is significant noise in the data. The radial profiles of velocity are plotted in Fig. 17 at
θ = ±45◦. The main effect of the tilt β is to create a non axisymmetric perturbation in
the axial velocity w (solid line), related to a positive (resp. negative) jet at θ = −45◦

(resp. θ = 135◦). This can be modeled locally as a shear oriented at θ1, which leads to
the velocity field for the perturbation:

u1 =
(

0, 0, γr cos(θ − θ1)
)

, (5.3)

with θ1 = 135◦ and γ = 0.02 if β is given in degrees.

The Melnikov theory is applied in the appendix in order to calculate the distance
between the stable and the unstable manifolds wu(Q) and ws(P ). For this purpose, the
problem is solved in the frame of reference rotating with the fluid at ω such that the
trajectories become two-dimensional. Moreover, we apply a change of variables from (r, z)
into (s = πr2, z) so that the 2D flow becomes Hamiltonian. The volume of the lobes is
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then easily evaluated such that the homogenization time can be written analytically:

T =

√
2ρ3(λξ)3/2 cosh(πω/2λρ)

βγω(λ2ρ2 + ω2)
. (5.4)

The first consequence is that this homogenization time is indeed inversely proportional
to the tilt angle β. This simply comes from the fact that the size of the lobes is propor-
tional to β since the Melnikov theory is obtained to first order. The second consequence
(less trivial) is that the homogenization time scales as T ∼ ρ3 cosh(πω/2ρλ), i.e., a func-
tion of ρ, and it thus diverges when the size of the bubble vanishes. This is exactly what
has been observed experimentally since T diverges when the Reynolds number gets close
to the critical Reynolds number Rec. Of course, there is a saturation of T due to the
molecular diffusion when the size of ρ is of the order of the diffusion length

√

T/ReS ,
which leads to a diffusive time

T = ρ2ReSc ≃ 200(Re − Rec).

This explains the rapid increase of the homogenization time at the onset of the vortex
breakdown. Finally, it explains why the perturbation due to the tilt angle α of the rotating
lid is less efficient than the angle β of the stationary lid. Indeed, the tilted rotating lid
creates a non-axisymmetric perturbation which rotates at an angular frequency equal to
1 compared to the laboratory, i.e., at an angular velocity 1− ω in the frame of reference
rotating with the bubble (at ω). In formula (5.4), ω should thus be replaced by 1−ω when
looking at the perturbation due to α. Since ω = 0.1, this creates a term cosh[π(1−ω)/2λρ]
which is extremely large (1012 times larger than for the tilt β). This explains why a large
tilt α = 15◦ of the rotating lid has almost no influence on the mixing across the bubble
although a small tilt β = 1◦ of the stationary lid has a large impact.
However, despite this qualitative agreement, the quantitative agreement is poor be-

cause the numerical values lead to T = 250/β at Re = 1900 (when β is in degrees),
which is 6 times smaller than the experimental result. This could be due to the fact that
the concentration within the exiting lobe is not exactly equal to the concentration within
the bubble. Indeed, it contains some fluid coming from an incoming lobe at earlier time.
This entanglement is known to create a fractal structure in the absence of molecular
diffusion (see Rom-Kedar et al. 1990; Sotiropoulos et al. 2001). This has not been ob-
served here because the Schmidt number is not large enough. However, this effect leads
to a weaker escape rate of the scalar which could explain the discrepancy between the
experiment and the theory.
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6. Conclusion

In this paper, we have presented an experimental and theoretical study on the mixing
properties of a helical flow in a motionless cylinder with a rotating end. It was found
that the axisymmetric flow is very inefficient for mixing such that any small asymmetry
completely governs the homogenization of the dye inside the cylinder. Indeed, the ho-
mogenization time is always 2 orders of magnitude smaller than the theoretical diffusive
time R2/κ, because small imperfections of the experimental set-up (here a small tilt of
the bottom) create a convective mixing much larger than the diffusive mixing. In order to
quantify the influence of the symmetry breaking on the mixing properties, the top ends
have been tilted with controlled angles and the homogenization time has been measured
accurately as the decaying time of the variance.

The mechanism for mixing strongly depends on the structure of the flow which is well
known to exhibit a vortex breakdown bubble for a finite range of Reynolds numbers.
In the absence of vortex breakdown, the tilt of the rotating disk induces some inward
radial jets at the periphery of the cylinder, which are advected by the mean recirculation
inside the bulk of the cylinder. As a consequence, the homogenization time is 3 orders of
magnitude smaller than the axisymmetric diffusive time for a small tilt of only 10 degrees.
The homogenization time is inversely proportional to the tilt angle and independent of
the Reynolds number. These scalings can be explained by a simple model taking into
account the flux of scalar between the periphery and the bulk of the cylinder.

In the presence of vortex breakdown, the scalar is trapped within the bubble such that
the homogenization time is completely governed by the escape rate from the bubble.
Curiously, the tilt of the rotating lid has a weak impact on the mixing. However, the
tilt of the stationary lid has a very large influence. The homogenization time is inversely
proportional to the tilt angle and seems to diverge when the size of the bubble vanishes.
This surprising result can be predicted by using the Melnikov theory to calculate the
volume of the lobes which exit from the bubble. As far as we know, this is the first
comparison between an experiment and a theoretical derivation of a mixing rate using
the Melnikov function.

It should be noted that this Melnikov theory has been usually applied for a 2D flow
with a periodic perturbation. It is generalised here for a 3D axisymmetric stationary
flow with a non axisymmetric perturbation. However, the angular velocity has to be
assumed constant on the whole stable/unstable manifold in order to restrict the problem
to a 2D flow in the rotating frame of reference. The result is thus only asymptotically
valid for small bubble sizes (i.e., at the onset of vortex breakdown). The full solution
could be calculated since the Melnikov theory has been extended to n dimensions by
Gruendler (1985) and applied to a vortex breakdown flow by Holmes (1984). However,
their calculation is more difficult because the homogeneous problem ξ̇ = Du0(t)ξ has to
be solved at any time.

Moreover, although this type of dynamics of a perturbation added to heteroclinic
points has been extensively studied in the absence of diffusion, there has never been
any result characterizing the effect of the diffusion. However, this effect might largely
influence the mixing properties. For example, it was shown here that the fractal properties
of the entangled lobes is not recovered because the diffusion is too large. It would be
interesting to quantify the cut-off at small scale due to diffusion as a function of the
Schmidt number. Diffusion might also smooth the devil’s staircase which is obtained in
the number of particles trapped in the bubble. It might even change the escape rate of the
scalar. Indeed, for small diffusion, the time for the scalar to exit the bubble is probably
governed by the diffusion outside of a KAM torus rather than outside of the bubble
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since the separatrix is indeed permeable due to the perturbation. In fact, it is clear that
there is a gap between the theories developed for homogeneous turbulence with molecular
diffusion but without flow structures and the theories developed for dynamical systems
with inhomogeneous flow structures but with no diffusion. This paper is an attempt to
reconcile the two domains. However, new models still need to be developed in order to
predict properly the mixing properties of flows with heterogeneous structures.
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Appendix

The purpose is to evaluate the volume Vl of the lobes between the unstable and the
stable manifolds of the hyperbolic points P and Q in the flow u0 + βu1 given by (5.2)
and (5.3). First, we need to study the problem in the frame of reference rotating at ω
such that the trajectories remain in a meridional plane, leading to a 2D problem with
a periodic perturbation u1

z = γr cos(ωt). Second, we make a change of variable because
the Melnikov theory can only be applied for a flow which is Hamiltonian to first order.
We thus use the surface s = πr2 instead of the radial coordinate. Using the relation
ds = 2πrdr, the trajectories (s(t), z(t)) are solution of the flow:
(

ds
dt
dz
dt

)

=

(

u0
s

u0
z

)

+ β

(

u1
s

u1
z

)

=

(

−2λsz
λ(z2 − ρ2) + ξ s

π

)

+ β

(

0
γ
√

s
π cos(ωt)

)

(6.1)

To first order, this flow is Hamiltonian because

∂u0
s

∂s
+

∂u0
z

∂z
=

∂(ru0
r)

r∂r
+

∂u0
z

∂z
= 0.

The Hamiltonian (which is called the streamfunction in fluid mechanics) defined by
us = −∂H/∂z and uz = ∂H/∂s is equal to

H(s, z) = λs(z2 − ρ2) +
ξs2

2π
.

The Hamiltonian is equal to zero on the streamline joining the two hyperbolic points P
and Q, such that s = −2πλ(z2−ρ2)/ξ. Introducing this relation in the flow to first order
leads to the differential equation ż = λ(ρ2 − z2), which is easily integrated, giving the
trajectories to first order:

s0(t) =
2λ

ξ

πρ2

cosh(λρt)
, (6.2)

z0(t) = ρ tanh(λρt). (6.3)

The Melnikov function M(tc) can now be calculated and corresponds to the distance
D(tc) between the stable manifold of P and the unstable manifold of Q, multiplied
by the norm of the velocity (u0

s, u
0
z). This function is evaluated at t = 0 and at the

point (s0(tc), z
0(tc)) where tc can be varied from −∞ to +∞. The Melnikov theory (see

Guckenheimer & Holmes 1983, for a demonstration) can be applied by following the



Mixing in a vortex breakdown flow 25

trajectory (s0(t − tc), z
0(t − tc)) to first order and leads to the simple result that it is

equal to:

M(tc) = β

∫ +∞

−∞

u0[s0(t− tc), z
0(t− tc)]× u1[s0(t− tc), z

0(t− tc), t]dt. (6.4)

where the cross product u0 × u1 is equal to u0
su

1
z − u0

zu
1
s. In our case, this formula is

simply written (using a change of variable τ = t− tc):

M(tc) = −β

∫ τ=+∞

τ=−∞

2λs0(τ)z0(τ)γ

√

s0(τ)

π
cos[ω(τ + tc)]dτ. (6.5)

This integral can be evaluated by splitting the cosine function and using the residue
theorem, which leads to

M(tc) =
2
√
2βγπ2ω(λρ2 + ω2) sin(ωtc)

3(λξ)3/2 cosh(πω/2ρλ)
. (6.6)

As noted by Rom-Kedar et al. (1990), this function completely governs the transport
across the streamline because the volume of the lobes is equal to

VL =

∫ ri+1/2

ri

D(tc)dl =

∫ ti+1/2

ti

M(tc)dtc (6.7)

since dl = ‖u0‖dt. Here ti, ti+1/2 are two consecutive times at which the manifolds
intersect (i.e., where M(t0) = 0); for example ti = 0 and ti+1/2 = π/ω. It should be
noted that this result was derived in 2D by Rom-Kedar et al. (1990); however, it can
be used in 3D here because the volume element 2πrdrdz is equal to the surface element
dsdz by definition of s. The volume of each lobe is thus equal to:

VL =
4
√
2βγπ2(λρ2 + ω2)

3(λξ)3/2 cosh(πω/2λρ)
. (6.8)

Finally, after each rotation period 2π/ω, each lobe has been translated from ri to ri+1,
such that the rate of scalar c which exits the bubble is equal to cVLω/2π. Since the
volume of the bubble is approximately equal to VB = 4πρ3/3, the conservation of the
scalar leads to VBdc/dt = VLω/2π such that the scalar c decreases exponentially with a
decaying time equal to:

T =
2πVB

ωVL
=

√
2ρ3(λξ)3/2 cosh(πω/2λρ)

βγω(λ2ρ2 + ω2)
. (6.9)
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