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Laurent Pelletier

To cite this version:
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into
parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest
of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not
fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma
tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues
was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012
overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed
genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to
both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues,
respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between
biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell
populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results
highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a
large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is
mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.

Citation: Bouchet A, Sakakini N, El Atifi M, Le Clec’h C, Brauer E, et al. (2013) Early Gene Expression Analysis in 9L Orthotopic Tumor-Bearing Rats Identifies
Immune Modulation in Molecular Response to Synchrotron Microbeam Radiation Therapy. PLoS ONE 8(12): e81874. doi:10.1371/journal.pone.0081874

Editor: Fabrizio Mattei, Istituto Superiore di Sanità, Italy
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Introduction

Glioblastoma is the most aggressive form of brain tumor.

Despite the improvements in therapy [1] the median survival of

patients is around 12–15 months after diagnosis with a poor

survival rate of 9.8% beyond 5 years.

Synchrotron microbeam radiation therapy (MRT), a new form

of radiosurgery, has been applied to rodent brain tumors and

composed a new hope of treatment [2,3]. The use of highly intense

synchrotron X-ray beams, with a high energy, high flux and a

negligible divergence allows spatial fractionation of an incident

beam into arrays of few tens microns wide parallel microbeams,

delivering high radiation doses (hGy) in their paths and separated

by few hundred microns wide [4].

MRT protocol performed on the brains of adult rats [5],

suckling rats [6], ducks embryos [7] and piglets [8] highlighted a

sparing effect on normal tissues and can reduce the growth or

ablate EMT6 carcinoma [9], SCCVII carcinoma [10] and 9 L

intracerebral glioma [6,11–13].

It has been shown that the sparing effect is supported by the

radioresistance of normal brain vessels to MRT for doses up to

1,000Gy [14,15], while there is a denudation of the tumor

endothelium and a decrease in tumor blood volume [16,17].

Beyond the involvement of the vascular component, it has been

suggested that other processes were also responsible for tumor

control [17,18] and remain to be described and understood.

Besides, the effects of MRT have been studied at in vivo,

histological or cellular levels, but few information deals with

molecular mechanisms. Due to the unique irradiation geometry

and the extraordinary dose delivered by MRT, it is not reasonable

to extrapolate data and biological molecular events from

conventional radiotherapy studies without prior studies.
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Describing the early molecular events after MRT could

complete the understanding of the normal and tumor tissue

response to this particular irradiation. Microarray gene expression

technology allows simultaneous analysis of the expression levels of

thousands of genes [19]. It has been extensively used to describe

the response of biological entity to treatment, to assess genes

involved in resistance to therapy and to identify therapeutic targets

[20].

The purpose of this work was to characterize the early

transcriptomic responses of 9 L tumor and normal brain tissues

(contralateral half hemisphere) after a lateral unidirectional MRT

exposure (using 50 microns wide microbeams of 400Gy at the

tumor location, separated by 200 microns center-to-center). We

first illustrated the effectiveness of this single irradiation on the

survival of animals. Then, we used oligonucleotide microarray

containing 31,100 probe sets (28,000 genes) to acquire the

transcriptomic response of both 9 L glioma and contralateral

hemisphere 6 h after irradiation. Ingenuity Pathway Analysis

software allowed to underline biological functions and canonical

pathways involved in MRT response.

Materials and Methods

Ethics, animal care and study design
All procedures related to animal care conformed to the

Guidelines of the French Government under licenses 380325

and B3818510002 and were approved by the ESRF internal ethics

committee named ‘‘Internal Evaluation Committee for Animal

Welfare and Rights’’ (IECAWR). The committee specifically

approved this study.

All animals were Fischer male rats (Charles River, France) of 8

week-old at arrival. The 9 L cells were implanted one week after

the rat arrival (D0), and rats were allocated in two equilibrated

groups according tumor size measured using MRI 9 days after

implantation (D9). Rats were irradiated 10 days after implantation

(D10). The control animals (i.e. non-irradiated) were implanted in

common for two experiments including this one, in order to

reduce the number of animals.

First, two groups of rats were MRT-treated (n= 20) or not

(n = 9) and their survival was measured. Rats were observed and

weighted twice a week. They were humanely euthanized (intra-

cardiac injection of pentobarbital after isoflurane inhalation) when

previously defined clinical criteria were met (prostration, akinesy,

epistaxis, rotational motion, 25% body weight loss). In the second

part of the study aimed to define the molecular response to MRT,

two independent but similar experiments were performed: rats

were MRT-treated (n= 5 and n= 5) or not (n = 4 and n= 5) and

euthanized after 6 h for brain excision.

Rats were anesthetized with a shot of isoflurane 5% in air prior

to an intraperitoneal injection of xylazine/ketamine 64.5/

5.4 mg.kg21 for the implantation procedure (and local anesthesia

was performed by administration of lidocaine at the top of the

scalp) while they were maintained only under isoflurane 2.5% for

MRI examination and MRT irradiation. Ocry-gel (Carbopol) was

applied to avoid eye deshydration during any anesthesia.

Tumor implantation
The 9 L cells [20] were grown with complete medium

(DMEM/Fetal bovin serum 10%/Penicillin and Streptavidin

1%) at 37uC in a humidified 5% CO2 incubator. As previously

described [21], anesthetized Fischer rats were placed on a

stereotactic head holder. Then 104 9 L cells in 1 mL DMEM

were injected using a Hamilton syringe into the right caudate

nucleus (9 mm anterior to the ear-bars i.e. at bregma site, 3.5 mm

lateral to the midline, 5.5 mm depth from the skull).

Tumor MRI examination and rat randomization
Nine days after 9 L implantation, all rats underwent anatomical

MRI examination in order to sort them two groups with similar

mean tumor size. MRI was performed at 4.7 Tesla or 7 Tesla

(Avance III console; Bruker) of the Grenoble IRMaGe MRI

facility, using a horizontal magnet and a volume/surface cross coil

configuration applying a T2 weighted Turbo RARE SE sequence

(TE=33 ms, TR=4000 ms, field of view= 363 cm, matrix:

2566256, slice thickness = 1 mm). The height and width of

tumors were measured on the image where the signal modification

due to edema and tumor had the largest section. The 3rd direction

was estimated by counting the slices displaying the tumor.

MRT irradiation
Irradiations were performed at the ID17 Biomedical Beamline

of the European Synchrotron Radiation Facility (ESRF, France)

using X-rays emitted tangentially from electron bunches circulat-

ing in a storage ring. The wiggler produces a wide spectrum of

photons which extends, after filtration, from 50 over 350 keV

(median energy: 90 keV) [22]. The mean dose rate was then

,62Gy.mA21.s21 allowing very fast irradiation. The quasi-

laminar beam was micro-fractionated into an array of 41

rectangular and quasi-parallel 50 microns width microbeams,

separated by 200 microns center to center each. This was

performed by using the ESRF Multislit Collimator positioned

33 m from the photon source and 80 cm upstream from the rat

holder [23]. Ten days after tumor inoculation, the animals were

positioned prone on a Kappa-type goniometer (Huber, Germany)

in front of the x-rays source, on a home-made plexiglas frame and

the alignment into the beam was performed using live cameras.

The contention of the rats was performed by a teeth bar while the

animals were under anesthesia. They were placed perpendicularly

to the beam and received a lateral irradiation, from their

anatomical right to left side. The beam was shaped into a field

of irradiation of 8 mm horizontal and the animals were scanned

vertically over 10 mm through the beam after opening of the

shutter. Although the total procedure lasted about 2 min for each

rat, the irradiation time is around to 2 s. Animal immobility

during exposure was checked on three control video screens

located in the control hutch.

Dosimetry and ballistic of irradiation
The microbeam dose at the tumor (i.e. 7 mm of depth from

lateral side) was 400Gy, the valley dose was 1860.6Gy as

computed by Monte Carlo simulations [24]. The spatial config-

uration of irradiation was checked by radiochromic films

(Gafchromic, HD-810) exposed in front of rats. The conservation

of spatial configuration in tumor depth was checked by pH2AX

staining (double strand break indirect staining) on tissue sections

6 h after irradiation.

Survival curves
Kaplan Meier survival data of 9 untreated rats and 20 treated

rats was plotted versus time after tumor implantation. Median

Survival Time (MST) and statistical analysis (log rank test) were

performed using GraphPad Software, USA.

Brain excision
Untreated and MRT-treated rats (respectively n= 10 and n= 9)

were sacrificed 6 h after irradiation, and the brain of each animal

Transcriptomic Response to Synchrotron MRT
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was immediately frozen in liquid isopentane at 250uC and stored

at 280uC.

Total RNA extraction and quality control
For each brain, 25 coronal sections slices of 60 mm thick were

cut at 220uC on a cryostat (Microm HM80, France). The tumors

and the contralateral tissues were isolated using a micropunch and

kept in lysis RNAse free buffer from the MirVana isolation kitTM

(Ambion, Applied Biosystems, Foster City, CA).

Total RNA of each tissue was extracted with the previous kit

according to specifications. RNA integrity and concentration were

checked by Agilent NanoRNA Chip (Bio-Analyser, Agilent

Technologies, Palo Alto, CA, USA). A minimum RNA Integrity

Number of 7.6 was required for all samples.

RNA microarray
Microarray analysis were performed on total RNA of brain of

untreated (n= 5) and MRT-treated groups (n = 6) from two

experimental sessions (Figure 1). For each sample, 200 ng of total

RNA was amplified with the GeneChip 39IVT Express Kit

(Affymetrix, Santa Clara, CA) and hybridized on GeneChipH Rat

Genome 230 2.0 Array according to Affymetrix specifications.

Briefly, mRNAs were reverse transcribed to double stranded

cDNA, amplified, fragmented and biotin-labelled. End-label

cDNA were hybridized to microarray chip for 16 h at 45uC and

60rpm. After washing and staining in Affymetrix GeneChipH

Fluidics Station 450, microarrays were scanned using Affymetrix

GeneChipH Scanner 3000. Light emission at 570 nm is propor-

tional to each oligonucleotide amount on the GeneChipH array.

Gene expression normalization
Background adjustment and normalization of all raw probe

intensity were performed using the Robust Multi-array Average

(RMA) algorithm [25] implemented in Affymetrix Expression

Console. The expression values were reported in arbitrary units.

Moreover, the MicroArray Suite 5 (MAS5) algorithm [26] was

used on raw data to identify probe sets which were out of the limit

of detection for the system and to flag the transcript as Present (P)

or Absent (A). P- and A-flagged information was used to filter data

in order to remove false positive after statistical analysis.

Statistical analysis of microarray data
Statistical analysis was performed using the TIGR Multi-

Experiment Viewer version 4.5.1 software (TMeV, http://www.

tm4.org/mev/). Significant differentially expressed genes between

the two tumor groups and between the two contralateral tissue

groups (MRT treated or not) obtained 6 h after irradiation were

assessed using an unpaired Significance Analysis of Microarrays

(SAM) [27]. A False-Discovery Rate (FDR) lower than 5% was

fixed to generate significant genes list. Hierarchical clustering was

directly generated thanks to TMeV from this list. For all other

analyses, probes were only considered when at least n-1 values

were P-flagged (MAS5) in any of both compared groups.

Functional analysis
The molecular & cellular functions and canonical pathways

associated with differentially expressed genes identified by SAM

test (FDR 5%) and P/A flag filtered were identified thanks to

Ingenuity Pathways Analysis (IPA) software (IngenuityH Systems,

www.ingenuity.com). The data set was restricted to mammal

species.

Molecules from the data set were associated with the most

relevant ‘‘molecular & cellular functions’’ and ‘‘canonical path-

ways’’ in the Ingenuity Knowledge Base. The significance of the

association between the data set and the bio-function or the

canonical pathways was measured in 2 ways: 1) a ratio between the

number of molecules for a given function or pathway issued from

the data set and the total number of molecules for the same

function or pathway is displayed. 2) Right-tailed Fisher’s exact test

was used to calculate a p-value determining the probability that

each function or pathway assigned to that data set was due to the

chance alone. For canonical pathways, a false discovery rate of 1%

was further applied to correct for multiple testing [28,29].

RT-qPCR transcriptional validation for genes regulated
6 h after MRT
Some selected significantly up- and down-regulated genes were

validated using reverse transcription and quantitative polymerase

chain reaction (RT-qPCR) on untreated and MRT-treated tumor

samples (7,n,10, depending on sample availability).

Two micrograms of total RNA were transcribed into cDNA

using Promega Reverse Transcription reagents with random dN6

primers. Specific gene primers (Table 1) were designed using

software (https://www.roche-applied-science.com/sis/rtpcr/upl/

ezhome.html). Real-time PCR were performed according to the

SYBR Green method on an Mx3000TM apparatus (Stratagene, La

Jolla, CA) using Quantitect SYBH reagents (Qiagen, France). Data

were normalized using two housekeeping genes, Atp5b and

Arpc1a, selected according to Affymetrix data because of both

their suitable range of quantification and very low variation in

expression levels across all samples (8% and 7%, respectively).

Thermal-cycling parameters were as follows: denaturation at 95uC

for 10 min, cycling regime of 40 cycles at 95uC for 15 s, 56uC for

30 s, and 72uC for 30 s.

Results

Survival
In order to obtain similar irradiation in tumor and normal

contralateral brain tissue, we have adapted a configuration of

MRT previously reported to have a high interest for 9 L brain

tumors therapy [17]. As shown in figure 2, this unilateral MRT

irradiation significantly increased the Mean Survival Time (MST)

of treated animals compared with the untreated group (33 versus

19 days respectively, p,0.0001).

Identification of early gene response in 9 L tumor and
contralateral brain tissue
Six hours after irradiation, we observed (i) a modification of

transcriptomic profiles in both tissues and (ii) a difference in

responses of tumor and contralateral tissues (Figure 3a and b).

Indeed, 1,509 genes (1,012 were induced and 497 were inhibited)

Figure 1. Experimental scheme. Contralateral normal and tumor
tissue samples were irradiated (MRT) or not (untreated) in 2
experimental sessions (S1 and S2). The transcriptomic data were
compared in order to determine contralateral normal and tumor tissue
responses to MRT (D normal tissue or D tumor tissue).
doi:10.1371/journal.pone.0081874.g001

Transcriptomic Response to Synchrotron MRT
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and 554 genes (344 were induced and 210 were inhibited)

significantly responded to MRT in tumor and contralateral tissues,

respectively (Figure 3c and Table S1). Figures 3a and 3b show the

clustering analysis based on the selected genes in contralateral and

tumor tissues respectively. Among them, 319 were common to

both tissues as represented on Venn diagram (227 were induced

and 92 were inhibited).

Validation of gene expression modulation by RT-qPCR
We validated the variation of gene expression by quantitative

RT-PCR on 6 representative genes with significant expression

modulation in tumor. RT-qPCR analysis was performed on tissues

that had been already analyzed on microarray and extended on

supplementary tumors (in all n$7). The RT-qPCR results

confirmed that expression of all selected genes was significantly

different between treated and untreated tumors (p,0.05, permu-

tation t-test) and were therefore consistent with those obtained by

microarrays (Figure 4).

Identification of biological functions modulated in 9 L
tumor and contralateral brain tissues 6 hours after MRT
Genes identified by SAM analysis with a 5% FDR were

classified into different bio-function categories based on IPA

database (Figure 5). The response to MRT irradiation involved 22

and 18 molecular and cellular functions in tumor and normal

brain tissues, respectively. All functions found in contralateral

tissue were also represented in tumor tissue. Some bio-function

categories such as cell death, growth, proliferation, cell cycle,

cellular function and maintenance can contribute to cell response

to radiation-induced damages. Inflammation and immunity

reaction appeared as a common point of cellular movement,

antigen presentation and cell-to-cell signaling/interaction catego-

ries. Despite a lower number of genes per group, tumor response

to MRT displayed four supplemental bio-functions compared to

normal tissue: amino acid metabolism (p = 7.02e206), carbohy-

drate metabolism (p = 2.44e205), drug metabolism (p= 7.02e206)

and nucleic acid metabolism (p= 4.55e206). These 4 bio-functions

showed the lowest p-value obtained for MRT response in tumor

(Figure 5).

Identification of pathways modulated in 9 L tumor and
contralateral brain tissues 6 hours after MRT
Genes modulated 6 hours after MRT in tumor and contralat-

eral tissues were grouped in canonical pathways (Table S2). Three

statistical stringency levels were applied to data with 5, 1 and 0.1%

of False Discovery Rate (FDR), corresponding to p-values lower to

1.62E-2, 2.57E-3 and 1.45E-4 respectively. The number of

pathways ranged from 83 (FDR0.1%) to 165 (FDR5%) in

contralateral brain, from 36 to 100 in tumor and from 86 to

170 when both tissues were considered together. Pathways were

more numerous for brain than for tumor (.1.6), as already

observed for modulated genes. For all FDRs, more than half of all

pathways were found in both tissues (55.3% for FDR5%, 50.4%

for FDR1% and 73.3% for FDR0.1%). So the response to MRT

appeared to mainly involve similar mechanisms in normal brain

and tumor. More, whatever the tissue or the FDR, pathways

related to immunity or inflammation represented more than 55%

of the total (from 55.8 for brain and tumor tissue with FDR5% to

74.4% for brain and tumor tissue with FDR0.1%). Thus the

response to MRT was mainly based on these two processes. The

pathways related to immunological or inflammatory responses

were enriched in the most stringent statistical conditions,

illustrating that these pathways are among the most significant

ones.

We focused analysis on pathways with FDR1%. Genes

modulated by MRT were grouped on 128 pathways in normal

brain, 73 in tumor and 67 were common to both tissues. Among

them, 82 and 49 pathways were related to immunity or

Table 1. Validation gene set.

Symbol Gene Name Forward (59-39) Reverse Primer (59-39)

Arpc1a actin related protein 2/3 complex, subunit 1A gtttgctgtggggagtgg ggatcggcttcttaatgtgc

Atp5b ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide gggtacaatgcagga tcagctggcacatag

Fam64a family with sequence similarity 64, member A gaagctgtctcaaaagctgga aagggagacggtcatgtcac

Inhbe inhibin beta E caggcagcactgaccaga gcggtaggttgaagtggatt

Mars mehionine-tRNA synthetase atacgttcggtcgcacaac gcaacctctggaagatgtcc

Traf4af1 TRAF4 associated factor 1 cggaggaacatcagaagcag gctcgtttttatccttcagatcc

Pttg1 pituitary tumor-transforming 1 ttcttccccttcgatcctct aggggagaagtgagatctggt

Trib3 tribbles homolog 3b tcaagttgcgtcgatttgtc ccagtcatcacacaggcatc

List of the genes with significant up- or down-regulation which were selected for microarray data validation using RT-qPCR. Primer sequences for quantitative RT-qPCR
are indicated in the two right-hand columns.
doi:10.1371/journal.pone.0081874.t001

Figure 2. Kaplan-Meier representation of tumor-bearing rat
survival. Intracerebral 9 L rats were MRT-irradiated (solid black line) or
not (dashed grey line). MRT significantly increased the Median Survival
Time of animals compared with untreated rats (33 days versus 19 days,
log rank test: p,0.0001).
doi:10.1371/journal.pone.0081874.g002
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Figure 3. Influence of MRT on gene expression in tumor and contralateral brain tissues. a, b- Heat map showing either significant
decrease or increase in mRNA expression after MRT in tumor and normal brain tissues. Colors indicate expression levels above (red) or below (green)
the median value for each gene. Vertical columns indicate individual arrays and horizontal rows indicate genes. c- Venn diagrams showing the
numbers of significantly increased (red) or decreased (green) genes after MRT in both tissues.
doi:10.1371/journal.pone.0081874.g003

Figure 4. Validation of microarray analysis by quantitative RT-PCR on tumor tissue samples. Data were first normalized to the expression
of Arpc1 and Atp5b housekeeping genes. The fold changes (6SEM) in each gene expression was calculated using the mean expression in treated
(n = 6 for microarray and n=8 to 9 for RT-qPCR) versus untreated (n = 5 for microarray and n= 7 to 10 for RT-qPCR) tumors 6 h after MRT. Fold
changes are indicated below the histograms (several fold changes were available for microarray because of the presence of several probesets). All
tested genes presented a significant difference between treated and untreated tissues (p,0.05; permutation t-test).
doi:10.1371/journal.pone.0081874.g004
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inflammation in normal brain and tumor respectively. Forty six

immune-relative pathways were common to both tissues; however

they could include different genes for tumor and contralateral

tissues (Figure 5).

All domains of innate and adaptive immunity were found in

common canonical functions: macrophages (‘‘Role of Macrophag-

es, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis’’,

‘‘Production of Nitric Oxide and Reactive Oxygen Species in

Macrophages’’, ‘‘IL-12 Signaling and Production in Macrophag-

es’’), natural killer cells (NK, ‘‘Crosstalk between Dendritic Cells

and Natural Killer Cells’’), dendritic cells (‘‘Dendritic Cell

Maturation’’, ‘‘Crosstalk between Dendritic Cells and Natural

Killer Cells’’), T lymphocytes (‘‘Altered T Cell and B Cell

Signaling in Rheumatoid Arthritis’’, ‘‘iCOS-iCOSL Signaling in T

Helper Cells’’, ‘‘4-1BB Signaling in T Lymphocytes’’) and B

lymphocytes (‘‘Altered T Cell and B Cell Signaling in Rheumatoid

Arthritis’’ and ‘‘B Cell Receptor Signaling’’, ‘‘PI3K Signaling in B

Lymphocytes’’, ‘‘B Cell Activating Factor Signaling’’). Many

canonical pathways and especially those centered on cytokines

signaling, evoked also the immune network: Interleukins 1, 6, 8, 9,

10, 12, 15, 17A and 17F were found in 13 pathways. Immune cell

communication was illustrated by other either mediators or

receptors: TNF (‘‘TWEAK Signaling’’, ‘‘April Mediated Signal-

ing’’, ‘‘4-1BB signaling in T Lymphocytes’’), Interferon (‘‘Role of

PKR in Interferon Induction and Antiviral Response’’, ‘‘Role of

JAK1, JAK2 and TYK2 in Interferon signaling’’) and others

(‘‘iCOS-iCOSL Signaling in T Helper Cells’’, ‘‘MIF Regulation of

Innate Immunity’’, ‘‘CD40 Signaling’’). As expected, inflamma-

tion was found (‘‘Acute Phase Response Signaling’’, ‘‘TREM1

Signaling’’, ‘‘Atherosclerosis Signaling’’, ‘‘Role of IL-17F in

Allergic Inflammatory Airway Diseases’’, ‘‘Pathogenesis of Mul-

tiple Sclerosis’’, ‘‘Role of IL-17A in Arthritis’’, ‘‘MIF-mediated

Glucocorticoid Regulation’’, ‘‘Glucocorticoid Receptor Signal-

ing’’).

Figure 5. Molecular and cellular functions constituting the MRT response. Genes with a significantly modified expression in brain or tumor
6 hours after MRT were clustered in molecular and cellular function using IPA software. Number of genes and p-values (2log(p-value)) are illustrated
for each function. The p-values associated with brain (dark blue) and tumor (light blue) are represented using histogram in the right-hand column.
The p-values were calculated using the right-tailed Fisher’s exact test in IPA.
doi:10.1371/journal.pone.0081874.g005
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The common response to MRT comprised also modifications in

the expression of genes involved in other mechanisms: Cell cycle,

cell growth, apoptosis (‘‘Induction of Apoptosis by HIV1’’,

‘‘Apoptosis Signaling’’, ‘‘Death Receptor Signaling’’, ‘‘p38 MAPK

Signaling’’, ‘‘p53 Signaling’’, ‘‘PI3K/AKT Signaling’’), DNA

damage sensing and repairing (‘‘ATM Signaling’’) and vascular

physiology or angiogenesis (‘‘Erythropoietin Signaling’’, ‘‘Renin-

Angiotensin Signaling’’, ‘‘Angiopoietin Signaling’’).

In normal brain, other pathways for cell cycle/growth or

apoptosis (‘‘Cell Cycle Regulation by BTG Family Proteins’’,

‘‘ERK/MAPK Signaling’’, ‘‘PTEN Signaling’’), DNA damage

sensing or repairing (‘‘Role of BRCA1 in DNA Damage

Response’’) and vascular physiology and angiogenesis (‘‘Role of

Tissue Factor in Cancer’’) were found.

Of interest, in tumor tissue, we found one pathway associated

with both DNA damage and cell cycle regulation (‘‘Cell Cycle:

G2/M DNA Damage Checkpoint Regulation’’).

A part of pathways were found in only one tissue. Concerning

normal brain, a high proportion of pathways related to T-cells

(15/49) was observed in comparison with those found in both

tissues (6/46). On the opposite, only 4 pathways were preferen-

tially associated with innate immunity in normal brain tissue.

Discussion

In this work we characterized the transcriptomic responses of

tumor and normal brain tissues 6 hours after an MRT irradiation.

A suitable model should heed following parameters: both tissues

should originate from the same species in order to use a unique

microarray type for transcriptome analysis, and host animal

should be immunocompetent for considering the influence of the

immune system. The 9 L tumors orthotopically implanted in

syngeneic Fisher rat brain fulfill these conditions [20,30].

MRT has already been demonstrated as a promising irradiation

modality for brain tumors therapy at preclinical level. Although

MRT crossfire irradiation, the most efficient configuration for

improving survival to date [6], implies that the tumor and the

contralateral brain tissues are not treated the same way. We chose

therefore a simpler configuration with a lateral unidirectional

MRT irradiation in order to apply similar irradiation configura-

tion in both tissues. This 400Gy in-microbeam dose scheme,

applied to rat brain 10 days after tumor inoculation, significantly

increased (61.7) the median survival time (MST) compared to

untreated rats (Figure 2). The set parameters enable then a

rigorous analysis of biological mechanisms of MRT impact in both

tumor and normal brain tissue responses. Although several studies

already aimed at the understanding of biological processes induced

by MRT, they were essentially based on late events (from 48 h

post-MRT) [16,17]. In this work we focused on early response,

assuming that early transcriptomic events would dictate later

modifications at molecular, cellular, tissular and finally therapeutic

levels. We considered also the particular lack of knowledge

concerning MRT-associated biology at transcriptomic level.

MRT differs from conventional irradiation because it delivers

several hundreds of grays in micrometric volumes in few seconds

with a particular geometry, which might influence the gene

expression response. Due to recent improvements in theoretical

and experimental dosimetry [31] experiments involving broad

beam irradiation with synchrotron sources are currently in

progress in our laboratory to determine the impact of the complex

irradiation scheme of MRT. Although a similar study has been

done in Boomerang (Melbourne, Australia) [32], the experimental

parameters such as the source, the MRT parameters, the tumor

model differ than ours.

We determined the pan-genomic response of both tumor and

normal brain tissues 6 h after MRT by using microarrays

containing 31,000 probesets. In normal brain tissue the expression

of about 5% of genes was modified. This proportion is higher than

those described using other methods after ionizing irradiation of

brain (0.6% 8 h after 10Gy [33], 1.1% and 2.2% 5 h after 10Gy

and 20Gy [34]) but is consistent with a previously reported dose-

dependent increase in both expression level and number of

modulated genes [34–36]. So the unusual number of engaged

genes after MRT could be linked to the high dose deposited in

tissue, from ,18Gy in valleys to 400Gy in microbeams.

In tumor 1.8% of genes were modified. To our knowledge, no

microarray analysis was performed in 9 L after irradiation and

those conducted on other high grade glioma models were very

different to ours in number of analysed genes, type and dose of

irradiation. The unique comparable study applied to MRT was

performed on EMT6 subcutaneous mammary tumor [32]. It

revealed the modulation of 184 genes but did not address the

response of normal tissue.

The response to MRT of normal brain tissues involved 2.7

times more genes than the one of tumor tissue (1,509 versus 554),

revealing a tissue-specific response to MRT (Figure 3 and Table

S1). Such a higher number of genes could arise from the higher

cellular diversity of normal tissue, due to the presence of specific

parenchymal and stromal cells such as neurons, astrocytes and

oligodendrocytes. Surprisingly these genes were associated with

less molecular and cellular functions in normal (18 functions)

compared with tumor tissue (22 functions; Figure 5). The 4

supplementary functions in tumor were associated with metabolic

processes. However they displayed the lowest statistical signifi-

cance for tumor response. Responses of both tissues appeared

therefore to be close to each other since 18 functions were

common. Moreover, a modulation of genes involved in mitosis,

cell cycle regulation, apoptosis, cell adhesion, glycolysis, lipid

metabolism, has already been reported after ionizing radiation

[37] and could be connected to many functions implicated in the

response of the both tissue after MRT.

A large number of canonical pathways were also identified 6 h

after MRT: 128 and 73 in tumor and contralateral tissues,

respectively (Table S2). Among them, 67 were common. More

than 90% of canonical pathways found in tumor were also found

in brain (only 6 specific pathways out of 73), while 52.3% of

normal brain pathways were found in tumor. Thus the tumor

response to MRT was mostly included in the brain tissue one.

Again, this result could reflect a higher heterogeneity in cell

composition and functional processes in normal brain compared to

tumor.

Of interest, we observed only one canonical pathway related to

brain parenchyma response to MRT (‘‘Huntington’s disease

signaling’’) which includes genes related to apoptosis (Caspase 1,

3, 7, 8, 12, bax, TP53), intracellular signaling (GNG2, GNG11,

CREB3, PRKCH, PRKCD) and one is neuron-specific (CAC-

NA1B). This canonical pathway suggests that some neurons

undergo apoptosis in response to MRT.

Among the 67 common pathways to both tissues, immunity and

inflammation were widely represented. Modulation of immunity

and inflammation has been often reported in brain in response to

various stimuli or injuries: Presence of a tumor mass, radiotherapy

[38], bacterial or viral infection [39], neurodegenerative disorders

such as Alzheimer’s and Parkinson’s diseases ([40,41]).

But our results are also in agreement with previous works which

reported the immune activation in response to conventional

irradiation and even considered irradiation as an ‘‘immunological

adjuvant’’ [38,42–44]. Concerning MRT, previous works mainly
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focused on vascular parameters to explain therapeutic effect [17].

However increasing leukocytes recruitment was observed in both

normal brain [45] and 9 L tumor tissues [17]. Moreover, Sprung et

al. recently reported that modifications in immunity-related gene

expression is a hallmark of response to MRT in mouse mammal

tumor [32].

Gasser et al. [46] reported that DNA damage can elicit a

response of immune system, and in particular of innate

compartment (macrophages). But other normal cells constituents

can be released into the extracellular compartment during states of

cellular stress or damage and subsequently activate inflammation

and immunity. Among these Damage-Associated Molecular

Patterns, we found HMG1 that is both involved in infectious

and sterile inflammation, immune response and tissue repair or

regeneration [47]. Receptors such as Toll-like receptors, C-type

lectins are sensing these damage-associated mediators. Indeed, we

observed a modulation in the expression of several potential

mediators and receptors involved in the simulation of inflamma-

tion or immunity. For example, HMGB1, Toll-like receptors 1, 2,

7, C-type lectins 7A and CD36 and other altered constituents of

irradiated tissue can trigger activation of innate or adaptive cells.

These genes may serve as a link between biochemical changes in

response to irradiation and the inflammation or immunological

challenge.

We evidenced subsequently to this activation that most

populations of the immunological compartment were triggered

(macrophages, natural killer, dendritic cells, T and B lymphocytes)

and many direct crosstalks between cells or diffusible mediators

highlighted communication between them.

Dendritic cells constitute the first line of the adaptive immune

response, as antigen-presenting cells. Maturation of dendritic cells

has been reported to be impaired in cancer in response to tumor-

derived mediators, especially the Vascular Endothelial Growth

Factor [48]. However the modulation of the pathway ‘‘maturation

of dendritic cells’’ in our study suggests that dendritic cell

maturation occurred in response to MRT, likely as a part of the

‘‘immunological adjuvant’’ phenomenon discussed above. This

would participate in enhancing efficiency of immune control of

cancer progression.

We observed also at transcriptomic level the recruitment of

innate immune compartment. Presence of Natural killer (NK) was

indicated in our study by the modulation of two canonical

pathways (‘‘Crosstalk between Dendritic Cells and Natural Killer

Cells’’, ‘‘Tumoricidal Function of Hepatic Natural Killer Cells’’)

and could be a crucial point for MRT efficiency since NK were

previously shown to eliminate 9 L glioma cells both in vitro [49]

and in vivo [50,51].

Among the large spectrum of diffusible mediators, one of them,

IL-17 is specifically expressed by T helper 17 cells (Th17; [51]).

The presence of these cells was reinforced by modifications in

expression of IL-6, IL-23, STAT3, ICOS. These cells are key

mediators of a broad array of inflammatory or autoimmune

diseases and have been extensively found in tumor microenviron-

ment [52]. But their positive or negative role in tumor progression

is still debated. The recruitment of Th17 cells was reported to be

triggered by local inflammation at the tumor site [53]. One can

hypothesize that irradiation could increase inflammation and

therefore Th17 cell recruitment.

Our transcriptomic results also indicate the presence of

cytotoxic T cells (‘‘Cytotoxic T Lymphocyte-mediated Apoptosis

of Target Cells’’ (Table S2). In parallel with NK cells, cytotoxic T

cells were heavily reported in immunological antitumor phenom-

enon. Cytotoxic T cells have been associated with spontaneous

tumoricidal action on glioma and emerged as a part of some

therapeutic strategies. For example, vaccination of rats with

dendritic cells coinjected with processed GM-CSF secreting 9 L

cells triggered the regression of distant 9 L tumors [54]. Treatment

efficacy was associated with a Th1 response and thus IFNc

secretion [55]. IFNc appears also in several canonical pathways

modified by MRT in our study (Table S2).

In conclusion to this work we report an extended gene

expression profile associated with the MRT responses in both

normal and tumor tissues. The early transcriptomic response is

very similar in both tissues, mainly involves modifications

associated with immunity and inflammation. The detailed study

of pathways modulated by MRT reveals the involvement of

transcriptomic modification in relation with innate and/or the

adaptative immune response. More specifically, pathways and

biofunction in link with NK or CD8+ T lymphocytes are

particularly reprensented. Further immunological studies and

functional analysisare needed for evaluating the role of those

immune mechanisms in the therapeutic impact of irradiation. This

is an important step for understanding the biological mechanisms

responsible for the therapeutic index of the MRT.

Supporting Information

Table S1 Genes responding significantly to MRT in

tumor and normal brain tissues. List of all genes which

expression is significantly modified in brain (1,509 genes) and

tumor (554 genes). Probesets are ranked for each tissue in

descending order of expression MRT/untreated ratio.

(XLSX)

Table S2 Canonical pathways constituting the MRT

response. All canonical pathways (IPA) found statistically

significant with 1% FDR (corresponding to p-value lower than

2.57E-3) are listed for both normal and tumor tissues.

(XLSX)
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