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Abstract

The influence of a velocity jet, directed along a magnetic guide field, on the linear evolution

of collisionless reconnection is investigated both analytically and numerically. The analysis covers

both the small and large ∆′ regimes, with ∆′ indicating the standard tearing stability parameter,

and is carried out, in slab geometry, by means of a reduced four-field model for magnetic recon-

nection accounting for two-fluid effects. Analytical dispersion relations are derived in both regimes

and their predictions on the growth rates are tested against numerical simulations. In both regimes

the presence of the flow is shown to have a stabilizing effect, with growth rates decreasing when

increasing the amplitude of the equilibrium flow. The analytical results predict that a decrease

in the growth rate could be obtained also by reducing the characteristic width of the equilibrium

flow profile. Such stabilizing effects appear to be stronger in the small ∆′ regime. A very good

quantitative agreement is found between the analytical predictions and the numerical results. As a

complement to the analysis, we also consider, in the small ∆′ regime, the dispersion relation in the

absence of equilibrium flow, which extends a previously derived dispersion relation by including a

corrective term due to plasma parallel compressibility. It is shown that such correction can have a

stabilizing effect and yields a better agreement with the numerical results.
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I. INTRODUCTION

Understanding the interplay between magnetic reconnection events and shear flows is of

great relevance for plasmas both in fusion and astrophysical contexts. In tokamak plasmas

velocity flows are, for instance, generated by the neutral beam injection [1] or ion cyclotron

heating [2] and their coexistence with tearing modes is of great importance for the experi-

mental performance. On the other hand, in space plasmas large scale jets are often observed

in regions where a magnetic field shear is also present, such as at the Earth’s magnetopause

or in the solar corona [3].

In investigating the effects of flows on reconnection events, one of the immediate and natural

questions concerns the impact that such flows can have on the linear stability and on the

growth rate of reconnective perturbations. Indeed, early analytical studies on this subject

date back already to some decades ago. In particular, most of these linear stability stud-

ies were concerned about the role of shear flows, in general lying in the same plane of the

sheared equilibrium magnetic field. Effects of such flows on the resistive tearing instability

were investigated studying the interplay of the latter with the Kelvin-Helmholtz instability

[4, 5]. The dependence of the linear stability threshold and growth rate on the intensity

of the planar shear flow was studied analytically and numerically in Refs. [6–9]. On the

other hand, the stabilizing effect of a linear flow on a current sheet in two-dimensions was

discovered in Ref. [10]. In cylindrical geometry, the influence of an equilibrium flow on the

tearing stability parameter ∆′ was investigated in Ref. [11] and, recently, accounting for

more general flows and finite pressure effects, in Ref. [12].

In the present paper we consider, in slab geometry, the influence of an out-of-plane flow

(i.e. directed perpendicular to the plane of the sheared equilibrium magnetic field) on the

linear phase of collisionless reconnection. We remark that, recently the role played by an

out-of-plane velocity jet on the fast reconnection process in magnetohydrodynamics (MHD)

and Hall-MHD has been highlighted and investigated by means of nonlinear simulations,

showing that it can significantly modify the structure of the out-of-plane magnetic field and

change the rate of the reconnection process [13, 14]. Also, in the tokamak context, the

stabilizing role of a purely toroidal flow on classical and neoclassical tearing modes has been

highlighted [16] and its influence on ∆′ has been determined analytically [17]. Clearly, the

latter two works account also for toroidal effects that are absent in the slab geometry that
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we consider in the present paper.

Our stability analysis is based on a four-field model [18] where reconnection is mediated

by electron inertia and the presence of a strong guide field is assumed. We point out that

the above mentioned works on linear stability, either did not consider out-of-plane velocity

equilibria [10, 11] or they included them as special cases and adopted three-dimensional

(3D) incompressible MHD as model equations [4–8, 12]. The model we consider here, on

the other hand, is reduced to two dimensions but it retains two-fluid and compressibility

effects. In the presence of such effects, even in the 2D approximation, the presence of an

equilibrium out-of-plane flow can in principle modify the linear evolution of magnetic re-

connection (in pure incompressible 2D MHD, on the contrary, an out-of-plane equilibrium

velocity field such as the one we consider here, would have no impact on linear stability).

Also, whereas previously mentioned works (with the exception of Ref. [9]) focused on dissipa-

tive resistive tearing modes, here we consider inertial reconnection, which is an intrinsically

non-dissipative process. The adopted model has indeed been shown to correctly possess a

Hamiltonian structure [19].

In order to carry out the linear stability analysis, we make use of standard asymptotic

matching techniques and, following previous linear works [21–23], we derive a dispersion

relation providing the growth rate of the collisionless tearing instability in the presence of

an out-of-plane velocity jet, symmetric with respect to the resonant surface. As paradigmatic

case we consider a velocity profile corresponding to a Bickley jet, which can model intense

flows and which has been previously adopted for instance to investigate the interplay between

the Kelvin-Helmholtz instability and the tearing instability in the reconnection plane [24].

We derive a dispersion relation in both the small and large ∆′ regimes. Subsequently,

in order to validate the analytical results, we check them against numerical simulations. In

particular, for the quantitative analysis, we consider flow amplitudes from the sub-Alfvénic

range, relevant for laboratory plasmas, to the Alfvénic range, occurring in space plasmas.

We also consider different values of the plasma β, where β = (5/3)µ0p0/B
2
0 is proportional

to the ratio between the background kinetic pressure and the toroidal magnetic pressure (we

adopted the definition of β given in Ref. [18], which explains the unusual factor 5/3 coming

from the choice of an adiabatic equation of state) . Such parameter is indeed crucial for the

effect of the out-of-plane flow on the dynamics.

Our analysis is primarily meant to help understanding basic properties of collisionless
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reconnection. Given the relative simplicity and generality of the adopted model, we do not

claim that we can make very detailed predictions on a specific experimental situation or

observation. However, our choice for the orderings and for most of the parameter values in

the following, will be suggested by typical situations occurring in tokamaks which, as above

mentioned, provide one of the main motivations for studying the role of out-of-plane flows

on reconnection. Moreover, it is namely in weakly collisional plasmas, such as tokamak

plasmas, that reconnection mediated by electron inertia is believed to play an important

role [25]. We will consequently focus mainly on the low-β regime (i.e. β ≪ 1), although

the model is in principle valid also for higher β values. Evident limitations of the model,

with respect to an application to tokamaks, come from the use of a slab geometry and the

absence of kinetic effects. On the other hand, such reduced model is amenable to a fully

analytical treatment, and might provide a leading-order indication about the role of a class

of out-of-plane (i.e. ”toroidal”) flows in collisionless reconnection with two-fluid effects. Our

choice for the equilibrium velocities also presents some simplifications with respect to the

generic situation in a tokamak. In particular it assumes the absence of shear and a non-

monotonic velocity profile around the resonant surface. Non-monotonic velocity profiles, on

the other hand, have been adopted in order to show the stabilizing effect of toroidal flows

against sawteeth in tokamaks [26, 27]. Also, even in the absence of shear, toroidal flows,

have been shown to have a stabilizing effect [16]. Thus, we consider the present analysis

as the investigation of the role of a particular class of out-of-plane flows, which might be

relevant, but that will need to be generalized in the future, in particular with the inclusion

of shear on the resonant surface and asymmetries.

We anticipate that, on the basis of the results that we obtained, an out-of-plane shear

flow with the same direction of the guide field turns out to have a stabilizing effect on the

tearing mode, whose growth rate decreases with increasing amplitude of the equilibrium

flow. This stabilizing effect is more evident in the small ∆′ regime and adds to the one

following from the plasma compressibility in the toroidal direction and that was neglected

in a previous analysis carried out in absence of shear flow [18].

The paper is organized as follows: section II describes the model and its linearized ver-

sion; in sections III and IV the dispersion relations valid in the small and large ∆′ regimes

respectively are derived; in both these two sections the comparison with the results obtained

from numerical simulations are also presented. Conclusions are drawn in the last section.
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II. REVIEW OF THE MODEL EQUATIONS AND LINEARIZATION

We consider the following two-dimensional model for non-dissipative reconnection medi-

ated by electron inertia: [18]

∂(ψ − d2e∇2ψ)

∂t
+ [φ, ψ − d2e∇2ψ]− dβ[ψ,Z] = 0, (1)

∂∇2φ

∂t
+ [φ,∇2φ] + [∇2ψ, ψ] = 0, (2)

∂Z

∂t
+ [φ, Z]− cβ[v, ψ]− dβ[∇2ψ, ψ] = 0, (3)

∂v

∂t
+ [φ, v]− cβ[Z, ψ] = 0. (4)

Eqs. (1)-(4) determine the evolution of the magnetic field B = ∇ψ × ẑ + (cβZ + 1)ẑ, of the

electrostatic potential φ and of the z (i.e. out-of-plane) component of the plasma velocity,

denoted as v. All fields in the model have translational invariance along the z coordinate.

The parameter de corresponds to the electron skin depth, whereas the parameters cβ and dβ

are defined as cβ =
√

β/(1 + β) and dβ = dicβ, with di indicating the ion skin depth. The

canonical bracket is defined by [f, g] = ẑ · ∇f ×∇g for two generic functions f and g. The

system (1)-(4) is written according to the following normalization:

t =
t̂

tA
, x =

x̂

L
, ψ =

ψ̂

LB0

, Z =
Ẑ

B0

, φ =
φ̂

vALB0

, v =
v̂

vA
, (5)

where carets denote dimensional quantities. In (5) B0 indicates the amplitude of the mag-

netic guide field, L is the equilibrium magnetic field characteristic scale length, whereas tA

and vA are the characteristic Alfvén time and speed, based on B0. In the model equations,

Eq. (1) is an Ohm’s law for a collisionless plasma, accounting for electron inertia. Eq. (2)

is a vorticity equation. Eq. (3) governs the evolution of the out-of-plane perturbation of the

magnetic field, but also the electron pressure, given that the derivation of the model assumes

pe ∝ −cβZ, with pe indicating namely the electron pressure perturbations. Eq. (4) is an evo-

lution equation for the out-of-plane component of the velocity of the plasma center of mass,

which corresponds approximately to the ion fluid velocity. We recall that the derivation of

the model also assumes that an approximate magnetohydrodynamic equilibrium is main-

tained in the perpendicular plane. This corresponds to filter our the compressional Alfvén

waves and leads to the above proportionality relation between pressure and magnetic field

perturbations. An adiabatic equation of state for the electron pressure is assumed, which
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permits, together with the evolution of equation for the out-of-plane magnetic perturbations

and with the above mentioned proportionality relation, to close the system by eliminating

the divergence of the electron velocity field, which is assumed to be small but finite. Such

compressibility effect is retained thanks to the assumption of finite β and eventually leads

to the appearance of the coefficient cβ. In the limit case β = 0, Eqs. (3)-(4) decouple

from the system and the two remaining equations correspond to the equations of reduced

magnetohydrodynamics with electron inertia corrections.

The model is derived adopting a drift approximation, which assumes frequencies lower

than the ion cyclotron frequency and a strong guide field along the z direction. As above

mentioned, the ion and electron fluids are assumed to be incompressible at the leading

order, although compressibility effects are retained in the evolution equations for the electron

pressure and the out-of-plane perturbations of the magnetic field. No ion pressure effects

are taken into account, on the other hand, for the ion fluid is assumed to be cold. The

derivation of the model can be found in Ref. [18].

Consistently with the conservative two-fluid system, from which it is derived, the system

(1)-(4) possesses time-reversal symmetry with respect to the transformation (t̂, x̂, B̂, v̂, φ̂) →
(−t̂, x̂,−B̂,−v̂, φ̂). Also, as shown in Ref. [19], the model possesses four infinite families

of Casimir invariants, reflecting, among other properties, the conservation of the parallel

canonical momentum of the ion fluid, and of the generalized vorticity.

We consider the system on the domain {(x, y) : −∞ ≤ x ≤ +∞,−Ly ≤ y ≤ Ly}, with
constant Ly, and linearize it about the following equilibrium solutions:

ψ = ψeq(x), φ = 0, Z = 0, v = veq(x), (6)

with the functions ψeq(x) and veq(x) to be specified. The functions indicated in Eq. (6)

are evidently equilibrium solutions of the four-field model (1)-(4). However, this choice for

the equilibria clearly excludes important phenomena, such as for instance drift waves, which

are associated with the presence of equilibrium pressure gradients, or fluid-like instabilities

due to the presence of an equilibrium E × B velocity. Given that the focus of the present

paper is on the effect of flows directed along the guide field, we carry out our analysis in

this simplified frame and intend to study more general equilibria in a future work.

We require the planar component of equilibrium magnetic field Beq(x) = −dψeq/dx to vanish

at x = 0, the latter corresponding then to a resonant surface.
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We consider perturbations of the form f(x, y, t) = f̃(x) exp(γt + iky) + c.c, where f

is a generic field perturbation, whereas γ and k indicate the corresponding frequency and

wavenumber.

The linearized system then reads:

γ[−d2eψ̃′′ + (1 + d2ek
2)ψ̃]− ik(ψ′

eq − d2eψ
′′′

eq)φ̃− ikdβψ
′

eqZ̃ = 0, (7)

γ(φ̃′′ − k2φ̃) + ikψ′′′

eqψ̃ − ikψ′

eq(ψ̃
′′ − k2ψ̃) = 0, (8)

γZ̃ − cβik(v
′

eqψ̃ − ψ′

eqṽ)− dβik[ψ
′′′

eqψ̃ − ψ′

eq(ψ̃
′′ − k2ψ̃)] = 0, (9)

γṽ − ikv′eqφ̃+ cβikψ
′

eqZ̃ = 0, (10)

where the prime denotes the derivative with respect to x. We assume, as in standard linear

theory for tearing modes, the following symmetries

ψ(x,−y) = ψ(x, y), v(x,−y) = v(x, y), (11)

φ(x,−y) = −φ(x, y), Z(x,−y) = −Z(x, y), (12)

which are respected by the model equations (1)-(4). As a consequence, in (7)-(10), ψ̃ and

ṽ are purely real-valued functions, φ̃ and Z̃ are purely imaginary, and the growth rate γ is

purely real.

Note that the effect of the equilibrium velocity on the fields ψ̃ and φ̃ enters through the

term depending on dβ in Eq. (7). Remark that dβ reflects a two-fluid nature of the model.

In particular it is worth recalling that dβ reduces to ρs, i.e. the Larmor radius of ions with

electron temperature, for cβ ∼
√
β.

We assume now perturbations vanishing at x → ±∞ and consider the following choice

for the equilibrium solutions:

ψeq(x) = −a ln cosh x, veq(x) =
v̄

cosh2 x
, (13)

with constant a and v̄. We anticipate, however, that it is straightforward to extend our

analysis to other standard choices of magnetic equilibria for the tearing stability problem

(e.g. ψeq(x) = a cos x or ψeq(x) = a/ cosh2 x and analogously for the velocity equilibria),

provided that some symmetries of the system (1)-(4) are respected. In particular, we look

for even solutions for ψ and v and odd solutions for φ and Z.

The equilibrium (13) describes a sheared magnetic field with a resonant surface at x = 0

and an out-of-plane velocity jet.
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As is customary for collisionless tearing stability analysis, we consider modes that evolve

slowly on the characteristic Alfvén time and a reconnection layer thickness (which is typically

of the order of de) much smaller than the equilibrium scale length:

γ ≪ 1, d2e ≪ 1. (14)

The existence of a resonant surface requires, however, the boundary problem (7)-(10) to be

solved separately in a thin inner layer surrounding the resonant surface, where the terms

proportional to d2e cannot be neglected, and in one, or more, outer regions. The matching

condition between the inner and outer solutions will provide the relation determining the

growth rate of the tearing mode as function of the parameters of the system.

In our analysis we consider two regimes, depending on the value of the ∆′ parameter,

which is defined as

∆′ = lim
x→0+

1

ψ̃

dψ̃

dx
− lim

x→0−

1

ψ̃

dψ̃

dx
, (15)

where ψ̃ refers here to the solution in the outermost region.

In the following sections we derive, under the above hypotheses, dispersion relations

valid for the equilibrium (13), treating separately the cases ∆′de ≪ 1 (small ∆′ regime) and

∆′de ≫ 1 (large ∆′ regime).

III. STABILITY ANALYSIS: SMALL ∆′ REGIME

In the small ∆′ regime the analysis can be carried out by introducing an inner region,

with a size of the order of de, centered around the resonant surface, and an outer region,

corresponding to the complement of the inner region.

A. Outer region

Neglecting the terms proportional to the electron inertia, we obtain from (7)-(10) that in

the outer region the relevant system is given by

γψ̃ − ikψ′

eqφ̃− ikdβψ
′

eqZ̃ = 0, (16)

γ(φ̃′′ − k2φ̃) + ikψ′′′

eqψ̃ − ikψ′

eq(ψ̃
′′ − k2ψ̃) = 0, (17)

γZ̃ − cβik(v
′

eqψ̃ − ψ′

eqṽ)− dβik[ψ
′′′

eqψ̃ − ψ′

eq(ψ̃
′′ − k2ψ̃)] = 0, (18)

γṽ − ikv′eqφ̃+ cβikψ
′

eqZ̃ = 0. (19)
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Neglecting the terms proportional to γ in (17), we obtain, for the equilibrium (13)[20]:

ψ̃(x) =











ψ0e
−kx
(

1 + tanhx
k

)

, if x > 0

ψ0e
kx
(

1− tanhx
k

)

, if x < 0
(20)

where ψ0 is a constant. We remark that, from such solutions, one obtains

∆′ = 2

(

1

k
− k

)

. (21)

Then we assume Z̃ ∼ 0 in the outer region. This assumption leads us to the reduced MHD

ordering, for the perturbations of the magnetic flux function and of the stream function

in the outer region. This simplification allows to obtain a complete solution for the outer

system providing the correct matching with the inner solution, while retaining the effects of

the equilibrium velocity field in the outer region, which we do not want to bound a priori.

Also, we do not impose a priori restrictions on the value of dβ.

From (16) then we obtain

φ̃ ∼ −i γ

kψ′
eq

ψ̃, (22)

and finally, from (22) and (19) one finds

ṽ ∼
v′eq
ψ′
eq

ψ̃. (23)

We observe that in the vicinity of the resonant surface, the behavior of the outer solution

for ψ̃ is given by

ψ̃ = ψ0

(

1 +
1

2
∆′|x|+O(x2)

)

. (24)

In the small ∆′ regime that we are considering, the outer solution can then be considered

as a constant when approaching the resonant surface.

B. Inner region

In the inner region, the terms proportional to the electron inertia are retained, but the

following local expansions

ψ′

eq ∼ −ax, ψ′′′

eq ∼ 2ax, v′eq ∼ −2v̄x, (25)
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are adopted for the equilibria. The resulting system reads

−d2eγψ̃′′ + γ(1 + d2ek
2)ψ̃ + ikax(1 + 2d2e)φ̃+ ikdβaxZ̃ = 0, (26)

γφ̃′′ − γk2φ̃+ ikax[ψ̃′′ + (2− k2)ψ̃] = 0, (27)

γZ̃ − ikdβax

[

ψ̃′′ +

(

2− k2 − 2
v̄

dia

)

ψ̃

]

− ikcβaxṽ = 0, (28)

γṽ + ik2v̄xφ̃− ikcβaxZ̃ = 0. (29)

In the inner layer the terms involving derivatives along the x direction dominate over those

with derivatives along y. Therefore we have k2ψ̃ ≪ ψ̃′′ and k2φ̃≪ φ̃′′. More in general, only

the leading order x-derivative terms should be retained in the inner region [22]. This would

imply, in general, the suppression of all the terms proportional to ψ̃ in Eq. (28). In particular,

in the presence of a moderate equilibrium flow, with v̄ ∼ adi, the contributions due to the

equilibrium velocity would be negligible in the inner region and already available dispersion

relations [18, 22] might apply. For stronger out-of-plane flows with v̄ ≫ adi, however, such

terms can in principle affect the growth rate of the perturbation. Moreover, we observe that,

if we generalize our velocity equilibrium by taking veq(x) = v̄/ cosh2(x/l) with l arbitrary

positive constant, the outer solutions remain unchanged and also the analysis of inner layer

is the same, upon replacing v̄ with v̄/l2. Therefore, the contributions of the equilibrium flow

do not necessarily require a very large velocity to be relevant, but they can influence the

inner layer equations also if the jet is sufficiently narrow, so that v̄ ≫ l2adi. In the inner

layer we keep only the leading order x-derivative terms in (26)-(29) but, considering the

above discussed regimes, we retain also the term due to the equilibrium flow in Eq. (28),

although it does not involve x-derivatives.

The resulting system can be written in the following way:

gd2eψ̃
′′ − gψ̃ − ixφ̃− idβxZ̃ = 0, (30)

gφ̃′′ + ixψ̃′′ = 0, (31)

gZ̃ − idβxψ̃
′′ + icβυxψ̃ − icβxṽ = 0, (32)

gṽ + iυxφ̃− icβxZ̃ = 0, (33)

where

g =
γ

ak
, υ = 2

v̄

a
. (34)
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Rearranging the terms and neglecting d2e when compared to d2i , one obtains from (30)-(33),

the following relation:

ψ̃ + i
x

g
φ̃ =

g2d2e + d2βx
2

g2 + αc2βx
2
ψ̃′′, (35)

where α = 1 + υdi. We observe that, in terms of dimensional quantities, one in general

has υdi = 2(ˆ̄v/ωcipolL), where ˆ̄v is the dimensional amplitude of the velocity equilibrium,

whereas ωcipol indicates the ion cyclotron frequency based on the characteristic equilibrium

”poloidal” magnetic field Bpol = aB0.

At this point one can take advantage of the small ∆′ hypothesis, and assume that ψ̃

is approximately constant around the resonant surface [28]. More precisely, we set ψ̃ =

ψ̃0 + ψ̃1(x), with |ψ̃1| ≪ ψ̃0. If we choose the value of the arbitrary constant ψ̃0 equal to

one, and neglect ψ̃1 when compared to 1, from Eq. (35) we obtain

ψ̃′′

1 =
g2 + αc2βx

2

g2d2e + d2βx
2
(1− xξ̃), (36)

where we introduced the displacement function ξ̃ = −iφ̃/g.
The matching between the outer and inner solution can be performed at the level of the

∆′ parameter. Taking advantage from the constant-ψ approximation, one can make use of

the relation

∆′ =

∫ +∞

−∞

dxψ̃′′, (37)

which connects the limit for large x of the inner solution ψ̃(x) with ∆′, the latter carrying

information about the outer solution. Combining (36) and (37), we find that the matching

condition can be written as

∆′ =

∫ +∞

−∞

dx
g2 + αc2βx

2

g2d2e + d2βx
2
(1− xξ̃). (38)

Determining the inner solution for the displacement function will provide then, through Eq.

(38) a relation between the growth rate g and the various parameters of the system, among

which ∆′ , which is known from the outer solution, according to (15).

We observe that the effect of an out-of-plane equilibrium flow, whose signature is the α

parameter, combines in Eq. (38) with the c2β contribution, indicating that the presence of

the flow can modulate the effects due to the plasma β. On the other hand, in the limit

cβ → 0, the out-of-plane flow dynamics decouples from the system, which is reflected by the

fact that in that limit, no influence of the flow would be present in the relation (38).
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Analogously to Ref. [22], we introduce at this point the parameters

δ =

(

gdβ
cβ

)1/2

, σ =
g

cβdβ
, ǫ =

d2e
d2i
σ, (39)

and the following renormalized dependent and independent variables:

ξ̂ = δξ̃, z =
x

δ
. (40)

With the help of (31) and (36), we obtain that the renormalized displacement function has

to satisfy the equation

ξ̂′′ − z
αz2 + σ

z2 + ǫ
(zξ̂ − 1) = 0. (41)

In the limit of negligible equilibrium flow (which corresponds to α = 1), Eq. (41) reduces

to the corresponding inner layer equation derived in Ref. [22]. Requiring the antisymmetry

of φ̃ and a convergence toward the outer region, leads to the following boundary conditions

for (41):

ξ̂(0) = 0, lim
z→±∞

ξ̂(z) = 0. (42)

Because of the symmetry of the problem, however, we consider only z ≥ 0.

We assume the ordering

ǫ≪ σ

α
≪ 1. (43)

Given that d2i /d
2
e ≫ 1, the inequality ǫ ≪ σ/α can be approximated and rewritten as

υ ≪ di/d
2
e, or in dimensional terms, as ˆ̄v ≪ (Mi/me)Lωcipol, where Mi and me indicate

the ion and electron mass, respectively. This ordering can apply to various laboratory

plasmas and in particular to tokamak plasmas . We anticipate that our analysis holds in

principle also for the alternative ordering ǫ ∼ σ/α. However, very narrow velocity profiles

veq(x) = v̄/ cosh2(x/l), with l such that v̄ ∼ l2adi/(2d
2
e), and/or super-Alfvénic equilibrium

flows, would be required in order to reach ǫ ∼ σ/α. These situations are unlikely to occur

in the laboratory plasmas.

The inequality σ/α ≪ 1, or, equivalently, γ ≪ akcβdβ(1+υdi), on the other hand, applies

to finite β plasmas near marginal stability.

The ordering (43) allows us to solve Eq. (41) in two separate regions. For z → 0, the

leading order solution of Eq. (41) is

ξ̂(z) ∼ 0. (44)
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On the other hand, for z2 ≫ σ/α, Eq. (41) can be approximated by

ξ̂′′ − αz2ξ̂ = −αz. (45)

This boundary value problem can be mapped into the one solved in Ref. [21], by rescaling

the dependent and independent variables by −α−1/4 and α1/4, respectively. The solution at

large z for our case is then given by

ξ̂(z) ∼ α1/2

2
z

∫ 1

0

dt(1− t2)−1/4 exp
(

−α1/2tz2/2
)

. (46)

With the help of the approximate solutions for ξ̂, we can now evaluate the expression (38),

which we rewrite as

∆′ =
δc2β
d2β

[

αI1 +

(

σ − ǫ

ǫ
− (α− 1)

)

I2

]

, (47)

where

I1 =

∫ +∞

−∞

dz(1− zξ̂), I2 =

∫ +∞

−∞

dz
1− zξ̂

1 + z2/ǫ
. (48)

Because σ/α ≪ 1, the dominant contribution in I1 turns out to be that given by the solution

(46) for z2 ≫ σ/α. Therefore we get [29]

I1 ≃
2π

α1/4

Γ(3/4)

Γ(1/4)
≃ 2.12

α1/4
, (49)

where Γ indicates the Gamma function. On the other hand, considering the ordering (43),

one can show that the dominant contribution in I2 is given by

I2 ≃ 2ǫ

∫ σ/α

0

dz

z2 + ǫ
≃ πǫ1/2. (50)

Combining the results we finally obtain the following dispersion relation

dβ∆
′ =

[

α3/4
c
3/2
β

d
1/2
β

2.12 + g1/2
π

de

(

1− αd2e
c2β
d2β

)]

g1/2. (51)

For positive ∆′, Eq. (51) always possesses one positive solution for g1/2. In particular we

remark that the growth rate vanishes for ∆′ = 0, as in standard tearing instability.

In the absence of equilibrium flow, Eq. (51) reduces, up to corrections of order d2e/d
2
i , to

the dispersion relation of Ref. [22] without the terms due to diamagnetic drift and resistivity.

The effects due to the equilibrium flow enter the dispersion relation in two places, and in

both cases, not surprisingly, they get suppressed if cβ = 0. The coefficient α3/4 tends
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to amplify the effect of a finite plasma β, for an equilibrium bulk velocity flowing in the

direction of the guide field. The second contribution of the plasma flows, on the other

hand, couples also with the electron skin depth, which is related to the mechanism breaking

the frozen-in condition in this model. We remark, however, that for finite cβ, the relation

1 − αd2ec
2
β/d

2
β ≈ 1 − 2(v̄/a)(d2e/di) holds. Therefore, if we compare the magnitude of the

last two terms in (51), we obtain that the latter modification due to the equilibrium flow

is generally small, unless extremely high velocities (v̄ ∼ adi/(2d
2
e) ) are attained, or very

narrow jets (l ∼ (2d2ev̄/adi)
1/2) are considered. Actually, in order to be consistent with the

first inequality in (43), such modification due to the equilibrium flow should be neglected.

However, as above anticipated, the dispersion relation (51) applies in principle also in the

regime α ∼ d2i /d
2
e . It is also worth noticing that, in general, the tendency of a field-aligned

equilibrium flow, appears to be that of reducing the effect of the term depending on the

electron skin depth in the dispersion relation. Incidentally, we remark that the condition

v̄ ∼ adi/(2d
2
e) is namely the condition that, in Eq. (28), makes the term related to the

equilibrium velocity of the same size as the term proportional to ψ̃′′, assuming that in the

inner layer d2/dx2 ∼ 1/d2e.

In order to test the validity of the dispersion relation (51), we compared the predictions of

the growth rate obtained from (51), with the results of numerical solutions of the four-field

model. The numerical code we adopted for the simulations solves the four-field system with

initial conditions obtained by perturbing the equilibria (6), with ψeq(x) and veq(x), given by

(13). The model equations are solved on a grid consisting of up to 1024×512 grid points.

All the fields are split in the time independent equilibrium and an evolving perturbation,

which is advanced in time according to a third order Adams-Bashforth algorithm. Periodic

boundary conditions have been imposed along the y direction, whereas Dirichlet conditions

have been applied along the x direction imposing that all the perturbed fields vanish at the

boundaries. A pseudospectral method is adopted for the periodic direction, while a compact

finite difference algorithm on a non-equispaced grid is used for the spatial operations along

the x direction. The tearing instability is initiated by perturbing the equilibrium with

a small disturbance on the parallel current density j = −∇2ψ of the form δj (x, y) =

δj (x) cos(2πy/Ly), where δj (x) is a function localized within a width of the order de around

the rational surface x = 0.

The numerical growth rates have been determined by evaluating, during the linear phase,
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FIG. 1. Comparison between values of growth rates obtained from the analytical dispersion relation

(51) and from numerical simulations in the small ∆′ regime, for cβ = 0.098 (top figure) and

cβ = 0.3 (bottom figure). The analytical results correspond to the solid line, whereas the numerical

results are indicated by triangles. From the figure one can see that the numerical results are in

quantitative agreement with the analytical predictions. In particular, the values of the growth

rate decrease when increasing υdi, indicating the stabilizing role of the out-of-plane flow. The

remaining values of the parameters for this figure are ∆′ = 0.9, de = 0.2, dβ = 0.39, a = 0.2. The

corresponding numerical simulations have been carried out on the domain {(x, y) : −11.316 ≤ x ≤

11.316,−1.25π ≤ y ≤ 1.25π}.

the value of d/dt log |δψX(t)|, with δψX(t) indicating the value of ψ̃ at the X-point of the

magnetic island. For the linearized system this quantity corresponds to the growth rate of

the m = 1 mode.

Fig. 1 shows a comparison between analytical and numerical results, over a wide range of

values of flow amplitude υ and for two values of cβ. We observe that the growth rates decrease

when increasing υ, indicating that the out-of-plane equilibrium flow has a stabilizing effect

on the reconnective perturbation. The analytical growth rates agree quantitatively well

with those obtained from the numerical simulations, reproducing the same tendency. The

relative discrepancies between analytical and numerical values are typically well below 10

%, in particular for sub-Alfvénic or slightly super-Alfvénic flows, which are those of interest

for most applications. We observe also that the tendency toward stabilization shown by the

numerical results, is caught by our dispersion relation, even for v̄ ∼ adi, where, in principle,
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contributions from ψ′′′

eq(x), which we discarded in the inner region, might have played a role.

It is also opportune to compare the dispersion relation (51), in the limit α = 1, with the

dispersion relation which was derived in Ref. [18] for the same four-field model but with a

purely magnetic equilibrium in the small ∆′ regime. The latter relation differs from ours

because it does not account for the first term on the right-hand side of (51), which is due

to the contribution of I1. Such contribution originates from plasma compressibility in the

direction parallel to the guide field.

FIG. 2. Comparison between growth rates obtained from the dispersion relation of Ref. [18]

(blue dash-dotted line), from the dispersion relation (51) (red dashed line) and from numerical

simulations (diamonds connected by a solid line), for different values of cβ . The figure indicates

that the dispersion relation (51) yields a better agreement with respect to the dispersion relation

of Ref. [18], due to the presence of a stabilizing corrective term related to the plasma parallel

compressibility. The values of the parameters are ∆′ = 0.9, de = 0.2, di = 8.6, a = 1, v̄ = 0 and the

simulation domain is the same as in Fig. 1.

In Fig. 2 we compare growth rates obtained from numerical simulations with those deter-

mined with our relation (51) and with the dispersion relation of Ref. [18]. We observe that

the correction due to I1 yields a better agreement with the numerical results. The correction

appears to become relevant for large values of cβ, corresponding to β . 1. In particular, this

suggests that this correction is unlikely to be relevant for tokamak plasmas. Nevertheless

we remark that Fig. 2 shows that the corrective term yields slightly smaller growth rates,

thus indicating a stabilizing effect due to the finite plasma parallel compressibility.
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IV. STABILITY ANALYSIS: LARGE ∆′ REGIME

For large ∆′, the constant-ψ approximation adopted in the previous section is no longer

valid. We resort then to different assumptions. In particular, our analysis mirrors that of

Refs. [18, 23]. In the latter references the reader can find a detailed explanation of the

adopted procedure, so that here we describe only the main steps carried out to derive the

dispersion relation.

The starting point is assuming the ordering

de ≪ dβ ≪ 1, (52)

which allows to solve the linearized system (7)-(10) separately in three nested regions: an

outer ideal MHD region, for |x| ≫ dβ, in which terms proportional to dβ and de are neglected,

an ion region, for x such that de ≪ |x| ≤ dβ, where terms proportional to de are neglected

but terms proportional to dβ are retained, and an electron region, centered around x = 0,

with thickness of the order of de and in which terms proportional to both de and dβ are kept.

A. Ideal MHD region

On scales over which dβ and de can be neglected, Eqs. (7) and (8) decouple from the

system. Thus, as in the small ∆′ regime, one can find solutions for ψ̃ and φ̃ taking advantage

of the assumption γ ≪ 1. For the large ∆′ case, it turns out to be convenient to consider in

particular the solution for φ̃, which, in the vicinity of x = 0, using (22) and (24), reads

φ̃ = φ0

(

2

∆′

1

x
+ 1 +O(x)

)

, (53)

where φ0 is an arbitrary constant and, again, we are considering the problem only on x ≥ 0.

B. Ion region

In the ion region the relevant system corresponds to that adopted for the outer region in

the small ∆′ regime, and which we reformulate here in the following way:

gψ̃ + ixφ̃+ idβxZ̃ = 0, (54)

gφ̃′′ + ixψ̃′′ = 0, (55)

(g2 + c2βx
2)Z̃ − idβgxψ̃

′′ + icβυgxψ̃ − υcβx
2φ̃ = 0, (56)
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where we made use of Eq. (33) to eliminate ṽ from the system.

From (54)-(56) we can obtain the relation

Z̃ = − dβ

1 + α
c2
β

g2
x2
φ̃′′. (57)

Differentiating (54) twice with respect to x and combining it with (55) and (57) leads to the

following equation


x2





d2β

1 + α
c2
β

g2
x2
φ̃′′





′

− (g2 + x2)φ̃′





′

= 0. (58)

The solution of (58) for large x, has to match the ideal MHD solution (53). Adopting the

procedure of Ref. [18] we introduce

s =
x

g
, V =

g

φ0

1

1 + α
c2
β

g2
x2

d2φ̃

ds2
, (59)

where the function φ̃(x), when transformed into a function of s, has been renamed with the

same symbol. Making use of the large ∆′ hypothesis, Eq. (58), integrated once, can then

be reduced to
d

ds

(

s2

1 + s2
dV

ds

)

−Q2(1 + αc2βs
2)V = 0, (60)

where Q = g/dβ. In the limit s→ 0, the leading order solution, which possesses the desired

behavior at large x, is given by

V = V0[s
−1−ν + Ais

ν +O(s1−ν)], (61)

where V0 is an arbitrary constant and

ν =
1

2

(

√

1 + 4Q2 − 1
)

, Ai =
1

Q
G

(

Q

α1/2cβ

)

. (62)

In (62) the function G(x) is defined by

G(x) =

√
x

2

Γ(1/4 + x/4)

Γ(3/4 + x/4)
. (63)

The expression for ν in (62) comes as a solution of the indicial equation that one obtains

when solving (60), in the limit s→ 0, in terms of power-series solutions. On the other hand,

the constant Ai gets determined by matching the solution for s→ 0 with a solution of (60),

valid for s≫ 1, through an intermediate matching (details for this procedure can be found

in Ref. [18]).
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C. Electron region

In the innermost region, both terms proportional to de and dβ are retained. However, we

assume that the shear Alfvén wave, the sound wave and the equilibrium flow play no role in

this region, which is mainly governed by electron dynamics. More precisely, we assume

g ≫ cβde,
d2e
di
υ ≪ 1, g ≫ de

(

d2e
di
υ

)1/2

, (64)

which allows us to neglect the above mentioned effects. Indeed, from Eqs. (32)-(33), one

obtains the relation

(g2 + c2βx
2)Z̃ = idβgxψ̃

′′ − icβgυxψ̃ + cβυx
2φ̃. (65)

Given that we are considering the electron region, we can make the approximations x ∼ de

and d/dx ∼ 1/de. Neglecting the effect of sound waves amounts to considering c2βx
2 ≪ g2,

which yields the first inequality in (64). The contributions coming from the equilibrium

velocity can be discarded in the electron region, if the second and third term on the right-

hand side of Eq. (65) are negligible with respect to the first term on the right-hand side. This

yields the second and third inequalities in (64), respectively, where, for the latter inequality

we also made use of Eq. (31). We remark that the second inequality in (64) essentially

corresponds to the inequality ǫ≪ σ/α assumed in (43) for the small ∆′ case. Once that Eq.

(65) is simplified by means of the above assumptions, the term −ixφ̃ in (30), which is the

one related to shear Alfvén waves, turns out to be negligible due to the assumption dβ ≫ de.

It is convenient, at this point, to apply the following Fourier transform along the x

direction

f̄(p) =

∫ +∞

−∞

dxf̃(x)e−ipx, (66)

to a generic perturbation f̃(x). The system is then mapped into

g(1 + d2ep
2)ψ̄ = d2β

d

dp
(p2φ̄), (67)

gp2φ̄ =
d

dp
(p2ψ̄), (68)

Z̄ =
dβ
g

d

dp
(p2ψ̄). (69)

Upon introducing the rescaled quantity r = dep, from (67)-(69), one obtains the equation

d

dr

(

r2

1 + r2
dZ̄

dr

)

−Q2Z̄ = 0, (70)
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which determines the solution for the out-of-plane perturbation of the magnetic field in the

electron region.

In Fourier space, the matching with the solution in the ion region concerns the limit

r → 0 of the electron region solution. In this limit the leading order solution of (70) [18] is

given by

Z̄ = Z0(r
−1−ν + Aer

ν +O(r1−ν)), (71)

where Z0 is an arbitrary constant and Ae = Q−1. On the other hand, the Fourier transform

of the ion region solution (61) reads [18]

V̄ = V2

[

AiΓ(1 + ν) cos
(

ν
π

2

)

r−1−ν − Γ(−ν) sin
(

ν
π

2

)

(

g

de

)1+2ν

rν +O(r1−ν)

]

. (72)

From (59) one also obtains that, for s→ 0, V ∝ d2φ̃/dx2. The electron region solution (71),

on the other hand, is also proportional to d2φ̃/dx2, because, from (68)-(69), one obtains that

Z̄ ∝ p2φ̄. Consequently, the matching can be carried out directly between V̄ from the ion

region and Z̄ from the electron region. In the limit 0 < ν ≪ 1, the result of the matching

gives

g3 =
2

π
ded

2
βG

(

g

dβcβα1/2

)

, (73)

Eq. (73) is the dispersion relation in the large ∆′ regime, including the effect of the equi-

librium out-of-plane flow. For α = 1 one retrieves the result of Ref. [18], valid for static

equilibria. As expected, in the limit of vanishing β, the effect of the out-of-plane equilibrium

flow disappears and (73) reduces to the dispersion relation [30]

g =

(

2

π

)1/3

d1/3e d
2/3
β . (74)

In order to show the effect of the flow on the growth rate and test the validity of the

relation (73), a comparison between the analytical predictions of (73) and the growth rates

obtained from numerical simulations is shown in Fig. 3. The two cases shown in the figure

refer to two different values for cβ, keeping de and dβ fixed. These two cases, therefore yield

approximately the same analytical growth rate for low β and in the absence of equilibrium

flow.

The case with higher β (cβ = 0.1) shows again a stabilizing effect of the equilibrium flow,

as in the small ∆′ regime. We remark that, in the limit v̄ → +∞, the dispersion relation (73)
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FIG. 3. Comparisons between values of growth rates obtained from the dispersion relation (73)

and from numerical simulations in the large ∆′ regime. Squares (triangles) indicate the analytical

(numerical) values. The top frame refers to the case cβ = 0.1, whereas the bottom frame refers

to cβ = 0.02. The curves show a stabilizing effect due to the equilibrium flow, as in the small ∆′

regime. The effect, however, is quantitatively smaller and actually negligible for the case with the

lowest value of cβ . Parameters are ∆′ = 43.23, de = 0.2, dβ = 0.4, a = 0.2. The simulation domain

is {(x, y) : −28.32 ≤ x ≤ 28.32,−30π ≤ y ≤ 30π}.

admits g = 0 as solution, again indicating complete stabilization but only in an asymptotic

limit.

The quantitative agreement with the numerical predictions is again satisfactory, giving a

maximum discrepancy of about 7%, for the case with the largest equilibrium flow, for which

the asymptotic conditions (64) are more hardly satisfied.

For cβ = 0.02, the agreement between numerical and analytical results is again very good

but it emerges that, already in this β regime, the effect of the equilibrium flow is still

stabilizing but quantitatively very modest, even for large flows. In particular, if compared

to the results of Sec. III, Fig. 3 suggests that small ∆′ regimes are those where the influence

of an out-of-plane flow on the linear stability of reconnecting modes can be most important.

V. CONCLUSIONS

We investigated the linear stability properties of inertial reconnection triggered by per-

turbing an equilibrium with a sheared magnetic field and an out-of-plane velocity jet.
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Analytical dispersion relations have been derived in both the small and large ∆′ regimes.

Such dispersion relations, corresponding to Eq. (51) and (73), respectively, can be written,

for finite β and neglecting terms of order d2e/d
2
i , as

π

de

(

1− 2
v̄

a

d2e
di

)

γ +
(

1 + 2
v̄

a
di

)3/4 cβ

d
1/2
i

(ak)1/2γ1/2 − dβak∆
′ = 0, (75)

and

γ3 =
2

π
a3k3ded

2
βG

(

γ

akdβcβ(1 + 2v̄di/a)
1/2

)

. (76)

For the convenience of the reader, we recall that γ here indicates the growth rate, k the wave

number, di,e the ion and electron skin depth, cβ =
√

β/(1 + β), dβ = dicβ and finally a and

v̄, correspond to the amplitudes of the equilibrium magnetic and velocity fields, respectively.

The analysis of the above dispersion relations shows that increasing the jet amplitude

results in reducing the growth rates, thus slowing the island evolution. The instability

threshold, however, is not modified. The analytical predictions are confirmed, to a high

degree of accuracy, by numerical simulations of the adopted four-field model.

The analysis lets us conclude that the stabilizing role of the out-of-plane flow is stronger in

the small ∆′ regimes, where, for instance, sub-Alfvénic jets with a peak amplitude of about

one tenth of the out-of-plane Alfvén speed are seen to cause a drop of the growth rate of

about 20%. Also, if the jet has a characteristic thickness l smaller than the magnetic shear

length, even slower equilibrium flow can affect the growth rate. In the large ∆′ regime,

however, the influence of the velocity jet on the growth rate appears in general to be very

weak, although still stabilizing. We remark also that, such stabilizing effect of out-of-plane

differential flows is compatible with a similar behavior, described in Ref. [16] for a reduced

MHD toroidal model.

On the other hand, if we restrict to the specific case of tokamak plasmas, the impact on

the growth rate, of the class of equilibrium flows that we consider, appears to be negligible.

For instance, for a plasma with hydrogen ions, assuming B0 = 30Kgauss, a = 0.1, ˆ̄v =

10Km/s and L = 5mm yields υdi = 0.014 ≪ 1. This indicates that collisionless tearing

modes in tokamaks cannot be suppressed or effectively stabilized with the symmetric class of

equilibrium flows that we considered, and suggests that asymmetric flows should be studied

in this context. However, we do not exclude that the adopted symmetric equilibria might

22



have a non-negligible impact in other situations in which out-of-plane flows and reconnection

interact, such as for instance in the magnetotail [13, 14], where Alfvénic or even super-

Alfvénic flows are also observed.

The effect of the parallel compressibility on the growth rate for magnetostatic equilibria

in the small ∆′ regime has also been analyzed. It emerges that, accounting for its presence

in the dispersion relation, yields slightly lower growth rates, which fit better the numerical

datas. In particular, this extends the dispersion relation of Ref. [18], which was independent

on such effect.

We speculate that the inclusion of parallel compressibility also in the treatment of the large

∆′ dispersion relation, might help in reducing the analytical growth rates, which, as shown

in Fig. 3, slightly exceed the numerical results.

We remark that, although applied to the Hamiltonian four-field model (1)-(4), which de-

scribes inertial reconnection, our analysis can easily be extended to resistive tearing modes.

On the other hand, the inclusion of asymmetric equilibrium velocity profiles might require

a substantial modification of the present linear analysis.

Finally, we anticipate that the natural question, about whether the presence of the out-of-

plane velocity jet might influence also the nonlinear evolution of the reconnection process,

will be the subject of a subsequent article and will complement the linear analysis described

in the present paper.
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