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Abstract

Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a
first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been
identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D) and meta

involving a catechol 2,3 dioxygenase (C23D). Our work aimed at elucidating the phenol-degradation pathway in the
hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under
different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down
phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively) and thus,
evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at
low dissolved-oxygen concentration (DOC = 0.06 mg.L21) suggested, apart for catechol, the presence of 2-hydroxymuconic
acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-
coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/
MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S.
solfataricus 98/2 degrade phenol through the meta route.
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Introduction

Phenol is an aromatic-ring-containing compound largely used

in organic chemical industry mostly for the production of

bisphenol A, or as intermediate in resins, fibers, paints or

pharmaceutical syntheses [1]. It also has applications in the

perfumery, molecular-biology or medicine fields. Besides, it is

considered as relatively dangerous for health, classified in the

European Union as a mutagenic agent, with a threshold-value

exposure for man set at 5 ppm in France. It is all the more harmful

because of its high volatility and/or diffusivity providing a rapid

propagation in the environment. Some authors have reviewed

technologies used for phenol removal from wastewaters and

gaseous streams [1]. A great number of microorganisms are able to

degrade phenol and use it as sole energy or carbon source [2,3].

The aerobic biodegradation has received an increasing interest in

the last few decades. Phenol has been chosen as a model molecule

to study the aromatic-ring fission [4]. For monoaromatic

compounds, such as phenol, benzoate, salicylate, benzene, etc.,

the first key degradation step involves its oxidation to catechol by a

monooxygenase [5,6]. Then, catechol is degraded via two

alternative pathways, depending on the microorganism [4]. In

the ortho route, aromatic ring is cleaved between the hydroxyl

groups by the catechol 1,2 dioxygenase (C12D), leading to the

cis,cismuconic acid. In the meta route, the ring cleavage occurs next

to the two hydroxyl groups (Figure S1). It is catalyzed by the

catechol 2,3 dioxygenase (C23D), and leads to the 2-hydroxymu-

conic semialdehyde (2-HMS) [7,8]. Then, the 2-HMS can be

degraded either through the hydrolytic route or the 4-oxalocro-

tonate (4-OC) route [9,10,11]. Both ortho and meta routes can be

active for the same microorganism depending on the substrate.

For example, only the ortho route was involved on salicylate while

both routes were activated on benzoate in Pseudomonas cepacia [12].

It can also depend on the aromatic concentration as demonstrated,

in Pseudomonas putida grown on benzoate. At low concentrations

(, 200–300 mg.L21), only the ortho pathway is involved, while

both degradation routes are activated at higher concentrations

[10,13]. In the latter case, a proteomic study showed the

simultaneous presence of 8 catabolic enzymes: 3 corresponding

to the ortho-cleavage route and 5 involved in the meta-cleavage one

[10].
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If most phenol biodegradation studies concerned mesophilic

microorganisms, some involved thermophilic bacteria from the

Bacillus genus [14,15] or hyperthermophilic archaea [16–18]. In

the past two decades, some reviews have dealt with the promising

future of thermophile and hyperthermophile enzymes for indus-

trial applications: thermo-stable amylases, xylanases, proteases or

DNA polymerases for potential use in food, chemical or

pharmaceutical industries [19–21]. Besides their stability at high

temperature, these enzymes are also known to withstand

denaturant or acidic/alkaline conditions. Moreover, they are

highly specific, robust and can be produced through either

fermentation by the thermophilic microorganism or by cloning in

fast-growing mesophiles by DNA recombinant technology [22].

Most of the thermophilic microorganisms belong to the Archaea

group, grow at low pH and usually live in extreme environments

such as solfataric fields or submarine hydrothermal areas [23].

Their physiological characteristics and the general features of their

genome sequences have been reviewed elsewhere [24].

Oxygen availability is an important parameter in phenol

aerobic biodegradation [25–27] especially at high temperature

(80uC), for which its solubility in water is only 3 mg.L21. Viggor et

al. [6] showed that oxygen was a co-substrate of the monooxy-

genase, responsible for the oxidation of phenol to catechol. In

thermophilic Bacilli, it has been shown that maximal degradation

was reached at an O2 delivery of 1 vvm, while inactivation of the

C23D was observed at high O2 levels [28]. This limiting effect at

low O2 levels was also observed with Pseudomonas CF600 together

with the accumulation in the medium of 2-HMS, an intermediate

of the meta pathway [27].

Amongst high-temperature tolerant Archaea, our interest has

focused on Sulfolobus solfataricus 98/2, which genome has been

sequenced [29]. Its ability to grow on phenol was recently

discussed [17,30], and kinetic parameters of phenol biodegrada-

tion were established [18]. Moreover, a C23D gene was identified

in the 98/2 strain [31].

In this work, experiments were designed to study phenol-

degradation route in S. solfataricus 98/2 cultivated in a fed-batch

bioreactor. Growth, substrate and oxygen consumptions as well as

product accumulated in the broth and CO2 production are

monitored. Transcriptomic and proteomic studies are also carried

out in order to determine the metabolic pathway used for phenol

degradation.

Materials and Methods

Strain and medium
S. solfataricus 98/2 was used in this study [32]. Cells were

maintained at -80uC and reactivated on the mineral medium

reported elsewhere [17]. The strain was previously adapted to

phenol by repeated batches at concentrations up to 400 mg.L21,

shown to be well tolerated by the strain [17,18].

Experimental set up
S. solfataricus was batch-cultivated in a 2.7 L reactor described in

a previous paper [17]. Working volume was 1.8 L. The fermentor

was equipped with pH, redox, dissolved-oxygen and temperature

probes connected to an automat (Wago, France). The automat was

connected to a computer for process monitoring and data capture

(BatchPro Software, Decobecq Automatismes, France).

Experimental conditions
S. solfataricus was cultivated at 80uC by repeated additions of

phenol at concentrations up to 400 mg.L21, this level being shown

to be under the inhibition threshold [18]. Flask cultures (500 mL)

of phenol-adapted S. solfataricus 98/2 were used to inoculate the

fermentor filled with standard mineral medium with phenol (initial

optical density (OD) in a range of 0.15–0.20). Oxygen was first fed

to maintain a dissolved-O2 concentration (DOC) of 1.5 mg.L21.

When biomass reached about 0.35 g.L21, the oxygen set up was

decreased to a DOC of 0.06 mg.L21. In all experiments, stirring

was adjusted to 300 rpm and total aeration-flow rate to

100 mL.min21. Under these conditions, the KLa value for oxygen

was 82.8 h21 [17]. DOC was regulated through the O2/N2 ratio

in the inlet gas. The pH was maintained at 3.2 with NaOH

0.5 mM. The exit gas was efficiently cooled to avoid phenol loss by

evaporation as described elsewhere [17]. For proteomic and

transcriptomic studies, experiments were also carried out on

glucose (1.8 g.L 21).

Analytical methods
Cell density was determined by OD measurement at 600 nm.

Cell dry weight was calculated from OD data by using the relation

of 1 OD unit = 320 mg.L21 [17].

Phenol consumption and intermediate-metabolite production

were followed, after centrifugation of the sample (5 min, 14000

rpm), by HPLC equipped with a Diode Array Detector (DAD), as

previously described [17]. Intermediary-metabolite concentrations

are expressed as mgeq.phenol.L
21. Chemical structures of interme-

diates were explored by Liquid Chromatography Mass Spectrom-

etry (LC-MS) using a Hitachi Elite LaChrom L-2130 liquid

chromatograph coupled to a Bruker Esquire 6000 MS. The MS

detector is equipped with an electro spray ionization in positive

and negative mode and a quadrupole analyzer. Separation was

achieved with a Varian Polaris C18 column eluted by a gradient of

acetonitrile in water containing acetic acid (0.1% v/v), from 0 to

40% acetonitrile during 20 min, at a flow rate of 200 mL.min21.

The cone and capillary voltages were maintained at 30 and 3500

V, respectively. To determine those chemical structures, 10 mL of

culture were centrifuged; the supernatant extracted with ethyl

acetate and analyzed by GC-MS as already described [33].

Both biomass and phenolic-compound analyses were made by

triplicate and the average value was reported. Specific growth rate

(m, h21) and specific degradation rate (qP, mg.g21.h21) were

calculated from biomass and phenol concentration data.

Oxygen consumption was calculated through the O2 mass flow

needed to maintain the DOC set point in the broth. Carbon

dioxide production was measured online in the exit gas by infrared

analyzer. The oxygen yield factor (YX/O2, g.g
21), the respiratory

quotient (Qresp, mol.mol21), the biomass yield on phenol (YX/P,

g.g21) and the carbon balance were calculated as previously

described [17].

RNA extraction
Cells of S. solfataricus (50 mL), grown in different conditions,

were harvested by centrifugation 10 min at 7400 rpm at 4uC.

Pellets were snap-frozen in liquid N2. RNA was extracted from the

cell pellets using the High Pure RNA Isolation Kit (Roche Applied

Science, USA). The purified nucleic acids were then treated with

Turbo DNase (Ambion, USA) and RNA were purified again with

the same kit. The quantity and quality of the obtained RNA were

evaluated spectrophotometrically on a BioSpec-nano spectropho-

tometer (Shimadzu, Kyoto, Japan) and samples were diluted to

20 ng. mL21 before conservation at -80uC.

Phenol-Degradation Pathway in S. solfataricus 98/2

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e82397



Semi-quantitative reverse-transcription PCR (RT-PCR)
analyses
For RT-PCR analysis, total RNA (0.2 mg) was used to synthesize

cDNA by triplicate in 20-mL reactions using the SuperScriptH III

Reverse Transcriptase and random primers (InVitrogen, USA).

PCR was performed for 15, 20, 25 or 30 cycles using a step-cycle

program of 98uC for 30 s, 50uC for 30 s, and 72uC for 20 s.

Primers were designed using the Primer3 software. Primer pairs

are listed Table 1. The amplification products were separated on a

1% agarose gel by electrophoresis, and the gel images were

acquired using a Gel Doc Imager (Biorad, USA). DNA controls

were carried out to exclude any DNA contamination.

2D-DIGE
The cells were harvested by centrifugation at 7000 g at 4uC for

15 minutes and washed with ice-cold phosphate buffered saline.

The cells were broken by sonication in urea lysis buffer (8 M urea,

2 M thiourea, 4% (w/v) 3-[(3-Cholamidopropyl) dimethyl ammo-

nio]-1-propane sulfonate (CHAPS), pH 8.5). The samples were

then clarified by ultracentrifugation at 35000 g at 4uC for 1 h.

Soluble proteins were purified and concentrated by precipitation

with 4 volumes of ice-cold acetone, and solubilized for 1 h in

100 mL urea lysis buffer. The protein concentration was estimated

using Bradford assay (Biorad, Hercules, CA, USA) according to

the manufacturer’s instructions. All samples were then washed

with the 2D-Clean-up kit (GE Healthcare, USA) and solubilized in

urea lysis buffer to a final concentration of 2.5 mg. mL21. The

soluble S. solfataricus-protein fractions were labeled with cyanine

dyes: Cy3, Cy5, Cy2 (CyDyes, GE Healthcare, USA). 25 mg of

each protein extract was labeled separately at 4uC in the dark for

30 min with 200 pmol. mL21 of the N-hydroxysuccinimide esters

of cyanine dyes (Cy3 or Cy5). The internal standard, correspond-

ing to a pool of the samples (12.5 mg of each individual extract),

was prepared in parallel and labeled with Cy2. Total protein

labeled with Cy2, Cy3 and Cy5 were combined and mixed with an

equal volume of 2x urea lysis buffer containing 1% carrier

ampholytes pH 4–7 according to the manufacturer’s instructions.

For the first dimension (IsoElectric Focusing, IEF), precasted IPG

(Immobilized pH Gradient) strips were used (pH 4–7, non linear

(NL), 11 cm length; Immobiline DryStrips, GE Healthcare, USA).

Typically, 75 mg of protein (25 mg for each dye) was loaded onto

each IPG strip and the IEF was carried out (IPGPhor III, GE

Healthcare, USA). The IEF protocol was as follows: 0–300 V

gradient for 1h; 300–1000V gradient for 1.5 h; 1000–6000 V

gradient for 2 h; 6000 V for 2 h. Temperature was set up at 20uC.

Prior to SDS PAGE, IPG strips were equilibrated during 20 min in

an equilibration buffer (6 M urea, 50 mM Tris pH 8.8, 2% SDS,

38.5% glycerol) added with 65 mM DTT for the first 10 min and

2% iodoacetamide for the further 10 min. The second dimension

was performed using a Criterion Dodeca Cell separation unit

(Biorad, Hercules, CA, USA) and precast 10% SDS-PAGE gels

(Biorad, Hercules, CA, USA). IPG strips were placed on the top of

the precast gels, overlaid with 0.5% agarose in 2x running buffer

containing bromophenol blue. Gels were run at 206C using the

following XT-MES running buffer (Biorad, Hercules, CA, USA):

1X for the cathode and 2X running buffer for the anode part.

Electrophoresis was conducted overnight at 15 V and stopped

when the bromophenol-blue-dye front has reached the bottom of

the gel. After SDS PAGE, cyanine-dye-labeled-protein gels were

scanned directly using the Typhoon FLA9000 scanner (GE

Healthcare, USA). All gels were scanned with a resolution of

50 mm. Determination of protein abundance and statistics based

on 2D DIGE were carried out with the Decyder Software (version

6.5, GE Healthcare, USA). First step for the spot detection is the

creation of crop images of the region of interest. Cropped images

were imported onto Decyder. Spot detection was set as 10000 with

a filter volume set at 30000. Spot selection was performed for a

ratio up to 2 and a t-test p-value , 1%.

Gel digestion and MALDI-TOF MS
MALDI-TOF MS is based on the Decyder analysis. Spots of

interest were excised using Shimadzu Biotech Xcise System

(Champs sur Marne, France). The proteins were subjected to in-

gel digestion with trypsin, (Sequencing-grade modified porcine

trypsin; Promega, Madison, WI, USA). Tryptic peptides were then

extracted from the gel by successive treatment with 5% formic acid

and 60% acetonitrile/5% formic acid. Each treatment is followed

by sonication (5 min). Extracts were pooled and dried in a

Speedvac evaporator. Peptides, resuspended in an a-cyano-4-
hydroxycinnamic-acid-matrix solution (prepared by diluting 6

times a saturated solution in 50% acetonitrile/0.3% trifluoroacetic

acid), were then spotted on the metal target. Mass analyses were

performed on a MALDI-TOF Bruker Ultraflex III spectrometer

(Bruker Daltonics, Wissembourg, France) controlled by the

Flexcontrol 2.0 package (Build 51). This instrument was used at

a maximum accelerating potential of 25 kV and was operated in

reflector mode and the m/z ranges from 600 to 3500. Six external

standards (Peptide Calibration Standard II, Bruker Daltonics,

Wissembourg, France) were used to calibrate each spectrum to a

Table 1. Primers used in gene-expression analyses in S. solfataricus 98/2.

Genes Proteins Primers

ssol_0230 4-hydroxyphenyl pyruvate dioxygenase 59-CACTGTGGCCAAGTTTCTGA-39

59-CCATAACGCTTTTGGGATGT-39

ssol_1707 Gentisate 1,2 dioxygenase 59-AGGGGACTAACGCCTACGAT-39

59-AAACATCACCTGCCTTCCAC-39

ssol_2369 Homogentisate 1,2 dioxygenase 59-TACGCATCCTTTTGACGTTG-39

59-GGAACAGACTGGGGGTGATA-39

ssol_2712 Extradiol cleavage dioxygenase 59-CGGTTTCCCAGAAGAGACCT-39

59-GGGCTATTGTCGGTAATGGA-39

ssol_2912 Catechol 2,3 dioxygenase 59-TGCGCCTAATTTCTGTCTGA-39

59-ATTGGGAGCCAATAGTGTGG-39

doi:10.1371/journal.pone.0082397.t001

Phenol-Degradation Pathway in S. solfataricus 98/2
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mass accuracy within 10 ppm with a minimal resolution of 10000

the angiotensin II peak (Monoisotopic mass = 1046.542 Da).

Peak picking was performed with Flexanalysis 2.0 software (Bruker

Daltonics, Wissembourg, France) with an adapted-analysis meth-

od. Parameters used were as follows: SNAP peak detection

algorithm, S/N threshold fixed to 6 and a quality factor threshold

of 30. A list of contaminations was constituted from a blank sample

(blank piece of gel treated and analyzed exactly as a true sample).

The trypsin peaks of this blank sample were excluded of the

database search.

Protein identification
Database searches for MS spectra were conducted using

MASCOT software 2.2 (Matrix Science), available online, against

the S. solfataricus P2-complete-proteome NCBI database for known

proteins. Peptide-mass tolerance was set to 100 ppm. Criteria used

for protein identification are given by Mascot as a Probability

Based Mowse Score. Ion score is -10*Log (P), where P is the

probability that the observed match is a random event. Protein

scores greater than X (X is a number between 55 and 74, from one

search to the other) are significant (p,0.05). The matching of

theoretical pI and PM of the identified protein with those observed

in the 2D-gel experiments was also used as another criterion of

confidence.

Results

Growth kinetics and yields, degradation products and
carbon balance
As suggested previously, modifying the operating conditions for

culture, such as DOC, can be a way to identify the phenol

degradation pathway through the apparition of intermediary

metabolites [27]. When S. solfataricus was grown with a DOC of

1.5 mg.L21 after two sequential phenol batches (phenol initial

concentration, 400 mg.L21), biomass reached a concentration of

0.35 g.L21 within 4 days (data not shown). At the third phenol

addition (350 mg.L21), the DOC was drastically decreased to

0.06 mg.L21. Kinetic and respirometric yields and rates are

presented in Table 2. Although cells were repeatedly grown on

phenol (no lag phase was observed at 1.5 mg.L21), at the lower O2

level, a short adaptation period was needed for growth and phenol

consumption (Figure 1A). Then, biological activity started again

and was characterized by am of 0.0106 h21 and a qp of

29.0 mg.g21.h21. These parameters were lower than those

observed at 1.5 mg.L21 (m = 0.0235 h21 and qp =

47.5 mg.g21.h21, respectively (Table 2)). In the same way, when

the O2 concentration decreased, so did the YX/P (from 0.539 to

0.426 g.g21).

At DOC of 0.06 mg.L21, carbon dioxide production and redox

potential profiles were similar to those observed at 1.5 mg.L21, i.e.

O2 consumption and CO2 production increased and redox

potential decreased with growth (data not shown). This has

already been described [17]. However, the yield coefficient for

oxygen (YX/O2) was 0.415 g.g21 for a DOC of 1.5 mg.L21 and

decreased significantly to 0.265 g.g21 for a DOC of 0.06 mg.L21.

The respiratory quotient (Qresp) was closed to the theoretical value

of 0.87 mol.mol21 and was not affected by the oxygen level (Table

2).

At 0.06 mg.L21, during phenol consumption, catechol –

identified with a standard solution by its absorption spectrum

(lmax = 275 nm) and its retention time (7.20 min) in HPLC/DAD

analysis – appeared in the broth after 20 h (Figure 1). Catechol

reached a maximum concentration of 90 mgeq.phenol.L
21 at 32 h

and then decreased (Figure 1A). Its dissimilation is correlated with

the appearance of various, but minor, compounds, also evidenced

by HPLC/DAD. Only three of the peaks corresponded to

compounds with a defined lmax. They are characterized by

retention times of 2.55, 3.2 and 3.6 min, respectively, with the

analysis conditions given in the Material and Methods section.

They displayed a lmax of 290, 254 and 265 nm, respectively

(Figure 1B). Trace amounts of them appeared after 28 h (Figure

1A) and their concentration increased strongly when catechol

concentration decreased (36 h). At the end of the run (40 h), they

reached a maximum concentration of 6.4, 47.4 and 12.3 mgeq.

phenol.L
21, respectively.

LC/MS analysis formally confirmed the presence of catechol in

all the samples withdrawn after 20 h of run, but not the cis,cis

muconic acid (lmax = 260). In the same way, 4-OC, belonging to

the meta pathway, was also identified.

Moreover, at the same time that the intermediate metabolites

are detected (28 h), a yellow color appeared instantaneously in the

samples in contact with air. Its intensity grew with time. In

contrast, none of the samples at 1.5 mg.L21 displayed this

phenomenon.

At both DOC, carbon balances are closed to 100% (Table 2).

However, at 1.5 mg.L21, carbon from phenol is exclusively

directed toward CO2 (63.1%) and biomass (34.3%), while at

0.06 mg.L21, carbon distribution is different. In this case, the CO2

proportion is maintained relatively constant (60.2%) while the

biomass part decreased (27.2%) and a significant intermediary

metabolite amount was observed (15.7%).

Genomic analyses
Few studies concerned the enzymes involved in phenol

degradation through the meta or ortho pathways in Sulfolobales.

Chae et al. [31] have clearly identified the presence of a C23D-

coding gene in S. solfataricus 98/2 through PCR amplification,

sequencing and heterologous production in E. coli (Accession

number EF494887). This enzyme showed the highest activity

against catechol and 4-chlorocatechol. The corresponding orf was

not identified in the genome annotation (Accession number

NC_017274.1). Using a primer pair designed on the S. solfataricus

P2 C23D genomic sequence (sso1223), we were able to amplify a

fragment which sequence perfectly matched the one amplified by

Table 2. Kinetic and respirometric rates and yields of phenol
degradation by phenol-grown S. solfataricus 98/2 cells at two
dissolved-oxygen concentrations (DOC).

Parameters DOC

1.5 mg.L21 0.06 mg.L21

m (h21) 0.0235 (R2= 0.996) 0.0106 (R2= 0.995)

qp (mg.g21.h21) 47.5 (61.4) 29.0 (61.1)

YX/P (g.g21) 0.539 (60.023) 0.426 (60.057)

Qresp (mol.mol21) 0.828 (60.008) 0.805 (60.005)

YX/O2 (g.g
21) 0.415 (60.005) 0.265 (60.035)

Carbon balance (%) 97.4 (65.5) 103.1 (60.7)

- biomass* (%) 34.3 (61.5) 27.2 (63.7)

- carbon dioxide
(%)

63.1 (64.0) 60.2 (62.9)

- metabolites (%) 0 15.7 (60.2)

*on the basis of a phenol-grown biomass empirical formulae of CH1.8O0.5N0.2

and a molecular weight of 24.6 g.mol21 [15].
doi:10.1371/journal.pone.0082397.t002
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Chae et al. [31]. We decided to name this orf, according to the S.

solfataricus 98/2-genome annotation, ssol_2912 (KF701465). No

other gene coding for protein potentially involved in the meta

pathway were identified in the genome of S. solfataricus 98/2.

However, 4 genes coding for putative C12D, involved in the ortho

degradation pathway, were found in the genome: ssol_0230 (4-

hydroxyphenyl pyruvate dioxygenase), ssol_1707 (gentisate 1,2

dioxygenase), ssol_2369 (homogentisate 1,2 dioxygenase) and

ssol_2712 (extra diol ring clivage dioxygenase).

Transcriptional analysis
To investigate which nutrient conditions induce the transcrip-

tion of these different oxygenases in S. solfataricus, the transcription

levels of these genes were examined by semi-quantitative RT-PCR

analysis. For this analysis, mRNA were isolated from samples of S.

solfataricus grown in liquid media with glucose or phenol as the sole

carbon source and different oxygen concentrations. RT-PCR

controls, using primer pairs designed to amplify 16S rRNA gene,

showed the same expression level in each culture condition (Figure

2A). Using the primer pair designed to amplify ssol_0230,

ssol_1707, ssol_2369, ssol_2712 and ssol_2912 genes, a unique

band of the expected size was obtained (Figure 2B-F). The mRNA

transcription levels of ssol_0230 were equivalent when the strain

was harvested from the medium with glucose or phenol and with a

DOC of 1.5 mg.L21 (Figure 2B, lanes 2-3), but decreased when

the strain was cultivated with phenol at a DOC of 0.06 mg.L21

(Figure 2B, lane 1). The mRNA transcription levels of ssol_1707

were equivalent with low and high oxygen concentrations in

presence of phenol (Figure 2C, lanes 1-2) and slightly lower when

the strain was harvested from the medium with glucose as

substrate (Figure 2C, lane 3). The mRNA transcription levels of

ssol_2369 were equivalent in the strain cultivated with glucose and

phenol (Figure 2D, lanes 2-3). However, it increased when the

strain was harvested from the medium with phenol at a DOC of

0.06 mg.L21 (Figure 2D, lane 1). The mRNA transcription level of

ssol_2712 was slightly lower when the strain was harvested from

the medium with glucose compared to phenol (Figure 2E, lanes 2-

3). Yet, the transcriptional level of the extra-diol-ring-clivage-

dioxygenase gene was higher in the media with high oxygen

concentration (Figure 2E, lanes 1-2). The mRNA transcription

level of ssol_2912 was undetectable when the strain was harvested

from the medium with glucose as the sole carbon source (Figure

2F, lane 3). Nevertheless, it greatly increased when the strain was

harvested from the media with phenol (Figure 2F, lanes 1-2). This

differential expression of the C23D gene was detected in the

medium whatever the DOC.

Figure 1. Analysis of S. solfataricus 98/2 cultures grown on phenol at a DOC of 0.06 mg.L21. (A) biomass, catechol and other intermediate
productions and phenol consumption. The intermediate curve corresponds to the sum of all the detected compounds. (B) HPLC chromatograms (l=
270 nm) obtained at three different time course of the run (P: phenol, C: catechol, I: intermediates).
doi:10.1371/journal.pone.0082397.g001
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Proteomic analysis
To investigate the influence of phenol on protein production in

S. solfataricus 98/2, a 2D-DIGE experiment was performed. We

compared the whole protein content of the cells grown on phenol

or glucose. The representative 2D-DIGE gel is shown in Figure

3A. Interestingly, among the proteins more abundant on phenol

only, spot 181 (Figure 3A) was identified as the C23D by MALDI-

TOF MS. This enzyme is only detected on phenol (Figure 3B).

Besides, no other dioxygenase could be identified as produced

more abundantly on phenol. In particular, no differential

production was observed for the putative C12D (Ssol_0230,

Ssol_1707, Ssol_2369 and Ssol_2712).

Discussion

Phenol and its derivatives are widely distributed environmental

pollutants that are responsible for many unhealthy effects on

humans. Degradation of such compounds has become of

increasing interest for many years. As pointed out by Cao et al.

[10], the most effective and economical way to remove them from

the environment is the microbiological way. The catabolism of

phenol involves the action of a monooxygenase responsible for the

oxygenation of phenol to catechol. The latter is then subjected to

either a meta or an ortho cleavage of the aromatic ring yielding 2-

HMS or cis-cis muconic acid, respectively [2,4,8].

In this paper, we designed experiments to understand which

pathway is involved in phenol degradation in S. solfataricus 98/2.

One of the easiest ways to define the degradation pathway is to

identify the reaction products. However, in S. solfataricus 98/2

cultivated in standard conditions, phenol is completely metabo-

lized into CO2, H2O and biomass [17]. In their paper, Kapley et

al. [27] observed that 2-HMS accumulated at low DOC

(2 mg.L21), probably because of a slower metabolism, which, in

turn, allowed observing transitory accumulation of intermediary

compounds. In our first experiment, performed at 1.5 mg.L21, the

growth parameters were determined. Nevertheless, in this

condition and in contrary to what was expected, we were unable

to detect any intermediate for the phenol degradation. Our

experimental set up enables to work at a regulated and constant

DOC. The problem of reducing the DOC to a very low level is

that, is this case, the oxygen might become the limiting factor for

the growth. Previous experiments showed that, with our experi-

mental set up, for DOC as low as 0.06 mg.L21, the carbon source

still remains the limiting factor (data not shown). With such

operating conditions, the behavior of the strain was notably

modified. At this level, in comparison to the parameters measured

at 1.5 mg.L21, growth (m) and phenol-biodegradation rates (qp)

were slowed down (55% and 39%, respectively). These results can

be compared to those reported by Ali et al. [28] who demonstrated

that phenol specific degradation decreased with the oxygen

concentration. Biomass yields on phenol (YX/P) and on oxygen

(YX/O2) at 1.5 mg.L21 are in the range of those reported in the

literature (Table 2). For example, for two different P. putida strains

cultivated on phenol in a continuous fed stirred-tank reactor, Seker

et al. [34] and Nikakhtari and Hill [25] reported values of YX/P of

0.521 g.g21 and 0.73 g.g21, respectively and of YX/O2 of

0.338 g.g21 and 0.360 g.g21, respectively. Feitkenhauer et al.

[35] reported, with a Bacillus thermooleovorans strain, an YX/O2 of

0.48 g.g21. At 0.06 mg.L21, we found that both parameters

dropped 21% and 36%, respectively, indicating a less effective use

of phenol or oxygen for biomass build up. Moreover, these

coefficients (YX/S and YX/O2) have already been shown to be

sensitive to O2 levels for S. solfataricus as demonstrated by Simon et

al. [36].

The slower growth of the strain (characterized by the 55%

reduction of the growth rate), at a DOC of 0.06 mg.L21, gave

suitable conditions for the accumulation of some of the interme-

diates (15.7%), as confirmed by the carbon balance (Table 2).

After 20 h of culture, catechol, resulting from the oxidation of the

aromatic ring, appeared in the culture. It accumulated up to

90 mg.L21 and decreased (Figure 1). Its consumption is correlated

to the appearance of, at least, three other compounds. The lmax of

two of these compounds are characteristic of two intermediates of

the meta-degradation pathway: the 2-hydroxymuconic acid (2-

Figure 2. RT-PCR analyses. (A) 16S rRNA, (B) ssol_0230 (4-
hydroxyphenyl pyruvate dioxygenase), (C) ssol_1707 (gentisate 1,2
dioxygenase), (D) ssol_2369 (homogentisate 1,2 dioxygenase), (E)
ssol_2712 (extra diol ring cleavage dioxygenase), and (F) ssol_2912
(C23D) genes from S. solfataricus. Amplified fragments are 200-bp long.
Lane 1: cells of S. solfataricus cultivated with phenol and a DOC of
0.06 mg.L21. Lane 2: cells of S. solfataricus cultivated with phenol and a
DOC of 1.5 mg.L21. Lane 3: cells of S. solfataricus cultivated in glucose
and a DOC of 1.5 mg.L21. Lane 4: positive control, PCR amplification on
genomic DNA as template. Lane 5: negative control experiment
performed omitting reverse transcriptase during RT-PCR reaction and
showing complete absence of DNA in the RNA samples. La: 1 kb Ladder
(Fermentas, France).
doi:10.1371/journal.pone.0082397.g002

Figure 3. Differential proteome of S. solfataricus 98/2 grown on
phenol or glucose. (A) 2D-DIGE gel. Cy2 (yellow): glucose + phenol
conditions, Cy3 (green): glucose condition, and Cy5 (red): phenol
condition. (B) Relative intensity of spot 181.
doi:10.1371/journal.pone.0082397.g003
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HMA, lmax = 290 nm) from the 4-OC route and the 4-hydroxy-

2-oxovalerate (HOV, lmax = 265 nm) (Figure S1). Concomitant-

ly, a yellow coloration is be detected in the sample after contact

with air. As soon as the early seventies, Buswell and Twoney [37]

reported the presence of this color during the degradation of

phenol and cresol by a Bacillus stearothermophilus strain. This color

has been reported as typical of the meta pathway biodegradation of

monoaromatic compounds and associated with the presence of 2-

HMS in thermophilic Bacilli strains [14,38]. This has also been

extensively reported in mesophilic strains (Alcaligenes, Ralstonia,

Pseudomonas) [27,39,40]. The analysis of the last sample, using a

more sensitive MS detector, strongly suggested the presence of 2-

HMS. Moreover, the cis,cis muconic acid, characteristic of the ortho

route, was not detected neither by UV260nm nor by MS.

Dioxygenases are responsible for the opening of the ring. C12D

open the ring between the C1 and C2 carbons of the catechol (ortho

cleavage), while C23D open between C2 and C3 (meta cleavage).

In the genome of S. solfataricus 98/2, four open reading frames

putatively coding for 1,2 dioxygenases have been identified:

ssol_0230 (4-hydroxyphenyl pyruvate dioxygenase gene), ssol_1707

(gentisate 1,2 dioxygenase gene), ssol_2369 (homogentisate 1,2

dioxygenase gene), and ssol_2712 (extra diol ring clivage

dioxygenase gene). The expression of these genes has been semi-

quantitatively followed depending on the growth conditions. Even

if the expression of some of these genes seems to be oxygen

dependant (ssol_0230 and ssol_2369), it is worth noting that all of

the genes were expressed whether the carbon source was glucose

or phenol. One open reading frame putatively coding for a C23D

was identified in S. solfataricus 98/2 genome: ssol_2912 (C23D

gene). The semi-quantitative analysis of its expression showed that,

in presence of glucose, the transcript was not detectable indicating

a regulation of the expression depending on the carbon source. No

difference observed in the expression of the gene coding for 16S

rRNA validated the approach.

To confirm the presence or the absence of the protein

depending on the growth condition, a comparative analysis of

the proteome between cells harvested on glucose or on phenol was

performed. The only detectable difference among the dioxy-

genases is on the production of the C23D. The four C12D were

not identified in this experiment. However, their theoretical pI

being within the tested range (Ssol_1707: 6.11, Ssol_2369: 6.24,

Ssol_0230: 6.37 and Ssol_2712: 5.06, respectively), their absence

means that the four proteins are equally produced on glucose and

phenol.

In conclusion, our set of results (transcriptomic and proteomic)

seems to indicate that both degradation pathways are functional in

presence of phenol. However, the activation of the C23D, only

when phenol is present, and the accumulation of only interme-

diary compounds related to this pathway lead us to the conclusion

that the aromatic ring is preferentially opened through the meta

pathway.

Supporting Information

Figure S1 Phenol degradative pathways. Dot arrow, ortho

pathway. Dash arrow, meta pathway. MO, monooxygenase;

C12D, catechol 1,2 dioxygenase; C23D, catechol 2,3 dioxygenase;

2-HMS H, 2-HMS hydrolase, 2-HMS DH, 2-HMS dehydroge-

nase; 4OT, 4-OC tautomerase; 4OD, 4-OC decarboxylase; OE

H, OE hydratase; 2-HMS, 2-hydroxymuconic semialdehyde; 2-

HMA, 2-hydroxymuconic acid; 4-OC, 4-oxalocrotonate; OE, 2-

oxopent-4-dienoate; HOV, 4-hydroxy-2-oxovalerate; TCA: Tri-

carboxylic acid (adapted from Omokoko et al. [11]).
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