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Pan genome of the phytoplankton Emiliania
underpins its global distribution
Betsy A. Read1, Jessica Kegel2, Mary J. Klute3, Alan Kuo4, Stephane C. Lefebvre5, Florian Maumus6, Christoph Mayer7,8,
John Miller9, Adam Monier10, Asaf Salamov4, Jeremy Young11, Maria Aguilar3, Jean-Michel Claverie12, Stephan Frickenhaus2,13,
Karina Gonzalez14, Emily K. Herman3, Yao-Cheng Lin15, Jonathan Napier16, Hiroyuki Ogata12, Analissa F. Sarno1,
Jeremy Shmutz4,17, Declan Schroeder18, Colomban de Vargas19, Frederic Verret20, Peter von Dassow21, Klaus Valentin2, Yves Van de
Peer15, Glen Wheeler18,22, Emiliania huxleyi Annotation Consortium{, Joel B. Dacks3*, Charles F. Delwiche9*,
Sonya T. Dyhrman23,24*, Gernot Glöckner25*, Uwe John2*, Thomas Richards26*, Alexandra Z. Worden10*, Xiaoyu Zhang27*
& Igor V. Grigoriev4

Coccolithophores have influenced the global climate for over 200
million years1. These marine phytoplankton can account for 20 per
cent of total carbon fixation in some systems2. They form blooms
that can occupy hundreds of thousands of square kilometres and
are distinguished by their elegantly sculpted calcium carbonate exo-
skeletons (coccoliths), rendering them visible from space3. Although
coccolithophores export carbon in the form of organic matter and
calcite to the sea floor, they also release CO2 in the calcification
process. Hence, they have a complex influence on the carbon cycle,
driving either CO2 production or uptake, sequestration and ex-
port to the deep ocean4. Here we report the first haptophyte refe-
rence genome, from the coccolithophore Emiliania huxleyi strain
CCMP1516, and sequences from 13 additional isolates. Our ana-
lyses reveal a pan genome (core genes plus genes distributed varia-
bly between strains) probably supported by an atypical complement
of repetitive sequence in the genome. Comparisons across strains
demonstrate that E. huxleyi, which has long been considered a single
species, harbours extensive genome variability reflected in diffe-
rent metabolic repertoires. Genome variability within this species
complex seems to underpin its capacity both to thrive in habitats
ranging from the equator to the subarctic and to form large-scale
episodic blooms under a wide variety of environmental conditions.

Fundamental uncertainties exist regarding the physiology and eco-
logy of E. huxleyi, and the relationships between different morpho-
types (Fig. 1a). To investigate its gene repertoire and physiological
capacity, we sequenced the diploid genome of CCMP1516 using the
Sanger shotgun approach. The haploid genome is estimated to be
141.7 megabases (Mb) and 97% complete on the basis of conserved eu-
karyotic single-copy genes5,6 (Supplementary Table 1, Supplementary
Data 7 and Supplementary Information 1.1–1.4). It is dominated by
repetitive elements, constituting .64% of the sequence, much greater
than seen for sequenced diatoms (Fig. 2 and Supplementary Informa-
tion 2.10). Of the 30,569 protein-coding genes predicted—93% of
which have transcriptomic support (expressed sequence tag or RNA-seq)

(Supplementary Information 1.5–1.7, 2.1–2.2 and Supplementary Data
1–3)—we identified expansions in gene families specific to iron/macro-
molecular transport, post-translational modification, cytoskeletal deve-
lopment and signal transduction relative to other sequenced eukaryotic
algae (Supplementary Information 2.3).

The E. huxleyi genome provides a crucial reference point for evolu-
tionary, cellular and physiological studies because haptophytes repre-
sent a distinct branch on the eukaryotic tree of life (Fig. 1b). Consistent
with other published analyses7, conserved marker genes demonstrate
the haptophytes branch as a sister clade to heterokonts, alveolates and
rhizarians. However, as a lineage possessing secondary plastids, the
evolutionary history of haptophyte genomes may be more complex8

than that suggested by a single concatenated analysis. Thus, indivi-
dual gene phylogenies were constructed using clusters of orthologous
proteins (1,563) identified by comparative analysis of E. huxleyi and at
least 9 of 48 taxa sampled from across eukaryotes (Supplementary
Information 2.4). E. huxleyi was monophyletic, with heterokonts in
28–33% of the resolved trees and the green lineage (green algae and
plants) in 11–14%. Less frequent relationships were also observed,
presumably reflecting a mosaic genome8 with contributions from the
host lineage, the eukaryotic endosymbiont, and possibly horizontal
gene transfer (Supplementary Fig. 1 and Supplementary Data 4).

Coccolithophores produce the anti-stress osmolyte dimethylsul-
phoniopropionate (DMSP), which can be demethylated to produce
methylmercaptopropionate and/or cleaved by some organisms, such
as E. huxleyi, to produce the predominant natural source of atmos-
pheric sulphur, dimethylsulphide. Although the gene encoding the
DmdA protein, which catalyses the initial demethylation of DMSP,
was not detected in the genome, genes that produce sulphur and car-
bon intermediates and function in later stages of DMSP degradation
were identified9. Also present is an intron-containing, but otherwise
bacterial dddD-like, gene encoding an acetyl-coenzyme A (acetyl-CoA)
transferase proposed to add CoA to DMSP before cleavage9 (Sup-
plementary Table 2). These data will facilitate molecular approaches
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Alexander Koenig, 53113 Bonn, Germany. 8Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University, D-44801 Bochum, Germany. 9Cell Biology and Molecular Genetics and the Maryland
Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742, USA. 10Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA. 11Department of Earth
Sciences, University College London, Gower Street, London WC1E 6BT, UK. 12Structural and Genomic Information Laboratory, CNRS, Aix-Marseille University, Mediterranean Institute of Microbiology,
Marseille FR3479, France. 13Biotechnology, Hochschule Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany. 14Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
02115, USA. 15Department of Plant Systems Biology, VIB, Ghent University, 9052 Ghent, Belgium. 16Department of Biological Chemistry, Rothamsted Research, Harpenden AL5 2JQ, UK. 17HudsonAlpha
Genome SequencingCenter, Huntsville, Alabama 35806,USA. 18Marine Biological Association of the UK, Plymouth PL12PB, UK. 19CNRS UMR 7144 and Université Pierre et Marie Curie, EPEP team,Station
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for probing DMSP biogeochemistry and the environmental impor-
tance of sulphur production and biotransformations.

E. huxleyi synthesizes unusual lipids that are used as nutritional/
feedstock supplements, polymer precursors and petrochemical repla-
cements. Two functionally redundant pathways for the synthesis of
omega-3 polyunsaturated eicosapentaenoic and docosahexaenoic fatty
acids were partially characterized10 (Supplementary Table 3). Pathway
analysis indicates that E. huxleyi sphingolipids are primarily glucosyl-
ceramides, often with an unusual C9 methyl branch (Supplementary
Table 3) found only in fungi and some animals11. Genes for two zinc-
containing quinone reductases, involved in reduction of alkenone a,b-
double bonds used in paleotemperature reconstructions and proposed
biofuels, were also identified12,13.

Coccoliths have precise nanoscale architecture and unique light-
scattering properties of interest to material and optoelectronic scien-
tists. Carbonic anhydrase is associated with biomineralization in other
organisms14 and accelerates bicarbonate formation. The 15 E. huxleyi
carbonic anhydrase isozymes and genes involved in calcium and car-
bon transport, H1 efflux, cytoskeleton organization and polysacchari-
de modulation (Supplementary Table 4) represent targets for resolving

molecular mechanisms governing coccolith formation, and will aid
in predicting response patterns to anthropogenic CO2 increases and
ocean acidification.

The global distribution of E. huxleyi (for example, Fig. 3a, c) and its
capacity for bloom formation under different physiochemical para-
meters are puzzling. To investigate the potential influence of genome
variation in this ecological dynamic, three E. huxleyi isolates (92A,
EH2 and Van556) from different oceanic regions were deeply se-
quenced (265–352-fold coverage) (Fig. 3a, c, Supplementary Tables
5–7 and Supplementary Information 2.6). Two approaches were used
to compare genomes. First, sequence reads were assembled and contigs
aligned to the CCMP1516 reference genome using Standard Nucleo-
tide BLAST (BLASTn; Supplementary Information 2.6.1). Although
these isolates show .98% 18S ribosomal RNA (rRNA) identity, only
54–77% of their contigs showed similarity to CCMP1516. 71 Mb of the
remaining contigs were shared between at least two deeply sequen-
ced strains. 8–40 Mb appeared to be isolate specific, as did 27 Mb of
CCMP1516. Flow cytometric genome-size estimates also showed hete-
rogeneity across isolates, with haploid genome sizes ranging from 99
to 133 Mb (Supplementary Information 2.5, 2.6.1 and Supplementary
Table 5). These findings indicated considerable intraspecific variation.

To examine potential variations in gene content further, sequence
reads were directly mapped to the CCMP1516 genome. Of the 30,569
predicted genes in CCMP1516, between 1,373 and 2,012 different
genes were not found in 92A, Van556 and EH2 (cumulatively 5,218,
or 17% of CCMP1516 genes), and 364 appeared to be missing from all
three. These findings cannot be explained by poor coverage or sequen-
cing bias alone. Of 458 highly conserved eukaryotic genes from the
CEGMA set5, 95–97% were identified in the isolates, indicating nearly
complete genome sequences (Supplementary Data 7). Together, de
novo assemblies and direct mapping to CCMP1516 indicate that the
pan genome of E. huxleyi represents a rapidly changing repository of
genetic information with genomic fluidity estimated to be $10%15 (on
the basis of CCMP1516 gene content).

E. huxleyi isolate differences were assessed further by Illumina
sequencing of ten additional strains. Although sequenced at lower cove-
rage, these strains were estimated to be 91–95% complete (Supplemen-
tary Tables 6, 7 and Supplementary Data 7). Direct mapping of reads
from the 13 strains to CCMP1516 revealed a ‘core genome’ containing
about two-thirds of the genes predicted in the reference genome
(Supplementary Information 2.6.2 and Supplementary Data 5), a core
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independently confirmed by comparative DNA microarrays (Sup-
plementary Information 2.7, Supplementary Data 6 and Supplemen-
tary Fig. 2). Nearly 25% of CCMP1516 genes were not found in at least
three other strains, indicating that E. huxleyi represents a species com-
plex with a genetic repertoire much greater than that of any one strain
(Supplementary Figs 3, 4). Although the most extensive gene-sequence
divergence was observed between CCMP1516 and deeply sequenced
isolates Van556, 92A and EH2, concatenated phylogenies define three
well-supported clades that are not necessarily reflective of geographic
distributions (Fig. 3b, c and Supplementary Information 2.61, 2.8).

We searched the CCMP1516 genome for evidence of molecular
mechanisms contributing to genome plasticity. There was limited evi-
dence for horizontal gene transfers (Supplementary Information 2.9
and Supplementary Table 8), and although diverse, the complement of
transposable elements was also small (Fig. 2 and Supplementary Infor-
mation 2.10.2). However, E. huxleyi has a high density of unclassified

repeats (,31%) and tandem repeats/low-complexity regions (,34%)
with tandem-repeat/low-complexity density highest in introns (Fig. 2,
Supplementary Information 2.10.1 and Supplementary Table 9). Most
protein-coding genes contain multiple introns, often with noncanoni-
cal GC donor sites (Supplementary Fig. 5). The preference for 10–11-
base-pair repeats in introns and their strong strandedness (meaning
that on the sense and antisense strand either the motif or its reverse
complement is highly favoured) raises the possibility that intronic tan-
dem repeats have a functional role in exon swapping (Supplementary
Information 2.10.3–2.10.5 and Supplementary Table 9).

E. huxleyi blooms under many different oceanographic regimes. We
explored how the core genome and variable components in different
ecotypes might influence success (Supplementary Information 2.11
and Supplementary Fig. 6). The remarkable capacity of E. huxleyi to
withstand photoinhibition16 lies in the core genome, which encodes a
variety of photoreceptors; proteins that function in the assembly and
repair of photosystem II, such as D1-specific proteases and FtsH enzy-
mes; and proteins that have a role in non-photochemical quenching
(NPQ) or synthesis of NPQ compounds (Supplementary Table 10).
Genes encoding reactive oxygen species (ROS) scavenging antioxi-
dants, enzymes for synthesis of vitamin B6 constituents used during
photo-oxidative stress in plants17 (Supplementary Tables 10, 15) and
many light-harvesting complex (LHC) proteins are also in the core. Of
the 68 LHCs, 17 belong to LI818 or LHCZ classes with photoprotective
capabilities18 (Supplementary Table 11 and Supplementary Informa-
tion 3.1). The complex repertoire of photoprotectors facilitates tole-
rance to high light by minimizing ROS accumulation and preventing
oxidative damage.

Phosphorus and nitrogen are key determinants of oceanic primary
production. A suite of core genes allows E. huxleyi to thrive in low
phosphorus conditions. This includes six inorganic phosphate trans-
porters (Fig. 4), a high-efficiency alkaline phosphatase (Fig. 4)19, purple
acid phosphatases and other enzymes used to hydrolyse and acquire
organic phosphorus compounds20. Genes for the synthesis of betaine
and sulpholipids used as replacements for cellular phospholipids21 are
also present (Supplementary Table 12). Numbers of phosphate trans-
porters and alkaline phosphatases, (Fig. 4) however, vary considerably
from strain to strain, supporting previous observations of differences
in phosphorus uptake and hydrolysis kinetics22.

Genes for inorganic nitrogen uptake and assimilation (nitrate, nitrite
and ammonium) and for acquisition and degradation of nitrogen-rich
compounds (for example, urea) (Fig. 4 and Supplementary Table 13)
are present in the core genome and may explain the broad range
of nitrogen concentrations in which E. huxleyi blooms23. Although
present in multiple copies, the number of genes encoding nitrite (4),
nitrate (8) and urea (3) transporters was relatively small compared
to ammonium transporters (20). This enrichment, and the varied dis-
tribution across strains (Fig. 4), may be indicative of strain-specific
ammonium preference, or the need for tightly regulated transpor-
ters to mediate high-affinity ammonium/ammonia uptake while offer-
ing ammonium-toxicity protection. Surprisingly, core iron-containing
(nirK) versus clade-restricted copper-containing (nirS) nitrite reduc-
tases were identified (Fig. 3), although iron is often more limiting
than copper in oceanic environments.

E. huxleyi grows well in surface waters where iron levels are gene-
rally low (0.02–1 nM)24. The core genome indicates that iron is ac-
quired using the natural resistance-associated macrophage protein
(NRAMP) class of metal transporters, multicopper oxidases, surface-
bound ferric reductases, and possibly, membrane-bound siderophores
(Supplementary Data 8). Genes involved in mechanisms limiting
iron requirements are also in the core, including manganese and
copper/zinc superoxide dismutases, both zinc and iron alcohol dehy-
drogenases and rubredoxins, and copper- and haem- plastocyanins
(PetE) and ascorbate oxidases. Selective recruitment of these enzy-
mes as well as flavodoxin, a functional analogue of ferredoxin, may
reduce iron demands25. E. huxleyi encodes many iron-binding proteins,
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80 in the core and 30 linked to the variable genome (Fig. 4). Iron
limitation is linked to reduced calcification and photosynthesis26,
and our analysis suggests cellular demands and mechanisms to alle-
viate iron deprivation differ between strains and are probably im-
portant factors shaping E. huxleyi ecological dynamics.

The E. huxleyi pan genome encodes nearly 700 proteins whose struc-
ture and function is dependent upon metal binding (Supplementary
Data 8). Selenium is essential for growth27 and potentially incorporated
into at least 49 proteins (20 gene families) present in nearly all strains
(Supplementary Table 14). Zinc affects growth and nitrogen usage26,
and is a cofactor of more than 400 proteins, many present in the varia-
ble genome (Fig. 4). Heterogeneity in zinc-binding proteins across stra-
ins may explain variations in zinc quotas between cultured isolates26,28.

In addition to metals, E. huxleyi relies on a range of vitamins. Genes
for de novo synthesis of antioxidants such as pro-vitamin A, vitamins
C, E, B6 and B9 and the ultraviolet-light-absorbing vitamin D are
uniformly present across strains. E. huxleyi, however, is ostensibly
unable to inhabit ocean regions where vitamins B1 and B12 are inac-
cessible. ThiC, a key B1 biosynthesis enzyme, was not found in the
genome, and despite relying exclusively on a vitamin-B12-dependent
methionine synthase, genes for a B12 transporter and several enzymes
required for B12 synthesis are also absent (Supplementary Table 15).

E. huxleyi is the dominant bloom-forming coccolithophore and can
be abundant in oligotrophic oceans, directly influencing global carbon
cycling. Distributions in modern oceans and those dating back to the
Pleistocene era demonstrate its tremendous capacity for adaptation.
Until now, the underlying mechanisms for the physiological and mor-
phological variations between isolates have been elusive. Evidence
presented here indicates that this capacity can be explained, in part,
by its pan genome, the first of its kind reported for what was thought to
be a single microbial eukaryotic algal species. Variations in gene com-
plements (Fig. 4) within this species complex may drive phenotypic
variation, ecological dynamics and the physiological heterogeneity
observed in past studies. The high level of diversity indicates that a
single strain is unlikely to be typical—or representative—of all strains.
Future sequencing of phytoplankton isolates will reveal whether this
discovery is a unique or more common feature in microalgae. Toge-
ther, the physiological capacity and genomic plasticity of E. huxleyi
make it a powerful model for the study of speciation and adaptations to
global climate change.

METHODS SUMMARY
The diploid genome of CCMP1516 (isolated from the Equatorial Pacific (02.6667S
82.7167W)) was Sanger sequenced and assembled using the Arachne assembler.
Gene models were predicted and validated using computational tools, experi-
mental data (including transcriptomics; Sanger and Illumina sequenced) and
NimbleGen tiling array experiments. Thirteen additional strains were sequenced

using Illumina and mapped to the reference genome. A detailed description of
materials and methods is in Supplementary Information.
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Villefranche, F-06230 Villefranche Sur Mer, France. 34Alfred Wegener Institute Helmholtz
Center for Polar and Marine Research (AWI), 27570 Bremerhaven, Germany 35Faculty of
Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki
Prefecture 305-8572, Japan. 36Biosciences, College of Life & Environmental Sciences,
University of Exeter, Stocker Road, Exeter EX4 4QD, UK. 37Department of Biological
Sciences, California State University San Marcos, San Marcos, California 92096, USA.
38Provasoli-Guillard National Center for Marine Algae and Microbiota, Bigelow Laboratory
for Ocean Sciences, 60 Bigelow Way, East Boothbay, Maine 04544, USA. 39Department of
Biological Sciences, California State University Chico, 1205 West 7th Street, Chico,
California 95929-0515, USA. 40Biology Department, Woods Hole Oceanographic
Institution, Woods Hole, Massachusetts 02543, USA. 41Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831, USA.

LETTER RESEARCH

0 0 M O N T H 2 0 1 3 | V O L 0 0 0 | N A T U R E | 5

Macmillan Publishers Limited. All rights reserved©2013

http://creativecommons.org/licenses/by-nc-sa/3.0
http://jgi.doe.gov/Ehux
http://getentry.ddbj.nig.ac.jp/top-e.html?AHAL01000000
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra?term=SRA048733.2
www.nature.com/reprints
www.nature.com/doifinder/10.1038/nature12221
mailto:bread@csusm.edu
http://creativecommons.org/licenses/by-nc-sa/3.0

	Title
	Authors
	Abstract
	Methods Summary
	References
	Figure 1 Emiliania huxleyi and its position in the eukaryotic tree of life.
	Figure 2 Relative composition of the E. huxleyi genome.
	Figure 3 Predicted proteome comparisons and concatenated phylogeny of E. huxleyi strains.
	Figure 4 Distribution of genes in the variable genome reflecting niche specificity.

