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Substituting random forest for multiple linear
regression improves binding affinity prediction
of scoring functions: Cyscore as a case study
Hongjian Li1*, Kwong-Sak Leung1, Man-Hon Wong1 and Pedro J Ballester2,3

Abstract

Background: State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy

of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active

and inactive compounds. Despite intensive research over the years, classical scoring functions have reached a plateau

in their predictive performance. These assume a predetermined additive functional form for some sophisticated

numerical features, and use standard multivariate linear regression (MLR) on experimental data to derive the

coefficients.

Results: In this study we show that such a simple functional form is detrimental for the prediction performance of a

scoring function, and replacing linear regression by machine learning techniques like random forest (RF) can improve

prediction performance. We investigate the conditions of applying RF under various contexts and find that given

sufficient training samples RF manages to comprehensively capture the non-linearity between structural features and

measured binding affinities. Incorporating more structural features and training with more samples can both boost RF

performance. In addition, we analyze the importance of structural features to binding affinity prediction using the RF

variable importance tool. Lastly, we use Cyscore, a top performing empirical scoring function, as a baseline for

comparison study.

Conclusions: Machine-learning scoring functions are fundamentally different from classical scoring functions

because the former circumvents the fixed functional form relating structural features with binding affinities. RF, but

not MLR, can effectively exploit more structural features and more training samples, leading to higher prediction

performance. The future availability of more X-ray crystal structures will further widen the performance gap between

RF-based and MLR-based scoring functions. This further stresses the importance of substituting RF for MLR in scoring

function development.

Keywords: Molecular docking, Binding affinity, Drug discovery, Machine learning

Background
Protein-ligand docking is a computational tool that pre-
dicts how a ligand binds to a target protein and their
binding affinity. Hence docking is useful in elaborating
intermolecular interactions and enhancing the potency
and selectivity of binding in subsequent phases of
computer-aided drug design. Docking has a wide variety
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of pragmatic and successful applications in structure-
basedvirtual screening [1], drug repurposing [2], lead
compound optimization [3], protein cavity identification
[4], and protein function prediction [5].
Docking consists of two major operations: predicting

the position, orientation and conformation of a ligand
when docked to the protein’s binding pocket, and pre-
dicting their binding strength. The former operation is
known as pose generation, and the latter is known as scor-
ing. State-of-the-art docking methods, such as AutoDock
Vina [6] and idock [7], work reasonably well at pose gen-
eration with a redocking success rate of over 50% [8] on
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the benchmarks of both PDBbind v2012 and v2011 [9,10]
and the CSAR NRC HiQ Set 24 Sept 2010 [11,12]. How-
ever, the single most critical limitation of docking is the
traditionally low accuracy of the scoring functions.
Classical scoring functions are defined by the assump-

tion of a fixed functional form for the relationship
between the numerical features that characterize the
protein-ligand complex and its predicted binding affin-
ity. This functional form is composed of the energetic
contributions of various intermolecular interactions, and
is often additive. The overall binding affinity is calcu-
lated as a weighted sum of several physically meaningful
terms, while their coefficients are typically derived from
standard multivariate linear regression (MLR) on experi-
mental data.
Cyscore [13], a recently published empirical scoring

function, assumes that the overall protein-ligand bind-
ing free energy can be decomposed into four terms:
hydrophobic free energy, van der Waals interaction
energy, hydrogen bond interaction energy and ligand’s
conformational entropy. Cyscore focuses on improving
the prediction of hydrophobic free energy by using a
novel curvature-dependent surface-area model, which
was claimed to be able to distinguish convex, planar and
concave surface in hydrophobic free energy calculation.
A recent study on a congeneric series of thrombin

inhibitors concludes that free energy contributions to lig-
and binding at the molecular level are non-additive [14],
therefore the modelling assumption of additivity models
is error prone. Recent years have seen a growing number
of new developments of machine-learning scoring func-
tions, with RF-Score [15] being the first that introduced a
large improvement over classical approaches. RF-Score, as
its name suggests, uses Random Forest (RF) [16] to implic-
itly learn the functional form in an entirely data-driven
manner, and thus circumvents the modelling assump-
tion imposed by previous scoring functions. RF-Score was
shown to significantly outperform 16 classical scoring
functions when evaluated on the common PDBbind v2007
benchmark [15]. Despite being a recent development, RF-
Score has already been successfully used to discover a
large number of innovative binders against antibacterial
DHQase2 targets [17]. For the purpose of prospective vir-
tual screening, RF-Score-v3 has now been incorporated
into istar [8], our large-scale docking service available
at http://istar.cse.cuhk.edu.hk/idock. A number of sub-
sequent machine-learning scoring functions, including
NNScore [18], SVR-KB and SVR-EP [19], CScore [20],
B2Bscore [21], SFCscoreRF [22], and ID-Score [23], have
also shown large improvements over classical approaches.
In this study we compare the prediction performance of

two regression models MLR and RF (to be exact, random
forest regression rather than classification), and inves-
tigate their application conditions and interpretability

under various contexts. The Methods section introduces
MLR and RF, three sets of features, three benchmarks, two
kinds of cross validations, and four performance metrics.
The Results and discussion section analyzes the predic-
tion performance of MLR and RF on the three bench-
marks and discusses the conditions of applying MLR and
RF. The Conclusions section emphasizes the importance
of abundance of features and samples for training RF.

Methods
Multiple linear regression (MLR) with Cyscore features

Cyscore is an empirical scoring function in an addi-
tive functional form of four energetic terms, which are
hydrophobic free energy �Ghydrophobic, van der Waals
interaction energy �Gvdw, hydrogen bond interaction
energy �Ghbond and ligand’s conformational entropy
�Gentropy (Eq. 1). Their coefficients kh, kv, kb and ke and
the interceptC were obtained byMLR on 247 high-quality
complexes carefully selected from PDBbind v2012 refined
set. The intercept value was not reported in the original
publication, but was included in this study as usual [24] in
order tomake a quick estimation of absolute binding affin-
ity value, which is the ultimate goal in some real-world
applications.

�Gbind =kh�Ghydrophobic + kv�Gvdw + kb�Ghbond

+ ke�Gentropy + C
(1)

We use MLR::Cyscore to denote the scoring function
built with MLR and the 4 features from Cyscore. It is
noteworthy that Cyscore is a pure MLR model, unlike
AutoDock Vina [6] which is a quasi MLR model because
the number of rotatable bonds Nrot is in the denomina-
tor so as to penalize ligand flexibility (see [8] for the exact
equation) and thereforeMLR::Vina would require an addi-
tional grid search for the weight of the Nrot parameter. So
this study allows a more direct comparison between MLR
and RF.

Random forest (RF) with Cyscore, AutoDock Vina and

RF-score features

A RF [16] is a consensus of a large number of different
decision trees generated from random bootstrap sampling
of the same training data. During tree construction, at
each inner node RF chooses the best splitting feature that
results in the highest purity gain from a normally small
number (mtry) of randomly selected features rather than
utilizing all input features. In regression problems, the
final output is calculated as the arithmetic mean of all
individual tree predictions in the RF. Further details on RF
construction can be found in [8,15].
In this study, multiple RFs of the default number of 500

trees were built using values of the mtry control param-
eter from one to the total number of input features. The
selected RF was the one resulting in the lowest root mean

http://istar.cse.cuhk.edu.hk/idock
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square error (RMSE) on the Out-of-Bag (OOB) samples of
the training set. Only one single random seed was used for
training because seed is not a significant impact factor of
the prediction performance, and using fewer seeds has the
additional advantage of leading to computationally faster
training process.
In our experiments we aimed at analyzing how RF

responds to varying numbers of features and hence we
selected three sets of features: Cyscore [13], AutoDock
Vina [6] and RF-Score [15]. Cyscore comprises four
numerical features: �Ghydrophobic, �Gvdw, �Ghbond and
�Gentropy. AutoDock Vina comprises six numerical fea-
tures: Gauss1, Gauss2, Repulsion, Hydrophobic, HBonding
and Nrot . RF-Score comprises 36 features, defined as the
occurrence count of intermolecular contacts between two
elemental atom types. Four atom types for proteins (C,
N, O, S) and nine for ligands (C, N, O, S, P, F, Cl, Br, I)
were selected so as to generate dense features while con-
sidering all the heavy atom types commonly observed in
protein-ligand complexes. Table 1 summarizes the three
combinations of these feature sets used to train RF mod-
els. Altogether four models (MLR::Cyscore, RF::Cyscore,
RF::CyscoreVina and RF::CyscoreVinaElem) were evalu-
ated in this study.

PDBbind v2007 and v2012 benchmarks

The PDBbind [9,10] benchmark is arguably the most
widely used for binding affinity prediction. It contains
an especially diverse collection of experimentally resolved
protein-ligand complexes, assembled through a system-
atic mining of the yearly releases of the entire PDB [25,26].
For each complex, the experimentally measured bind-
ing affinity, either dissociation constant Kd or inhibition
constant Ki, was manually collected from its primary liter-
ature reference. The complexes with a resolution of≤2.5Å
and with the ligand comprising merely nine common
heavy atom types (C, N, O, F, P, S, Cl, Br, I) were filtered
to constitute the refined set. These complexes were then
clustered by protein sequence similarity with a cutoff of
90%, and for each of the resulting clusters with at least five
complexes, the three complexes with the highest, median
and lowest binding affinity were selected to constitute the
core set. Because of the structural diversity of the core set,
it is a common practice to use the core set as a test set and

Table 1 The three combinations of three different sets of

features used to train RFmodels in this study

Model Features

RF::Cyscore 4 Cyscore features

RF::CyscoreVina 4 Cyscore features + 6 AutoDock Vina features

RF::CyscoreVinaElem 4 Cyscore features + 6 AutoDock Vina features +

36 RF-Score features

the remaining complexes in the refined set as a training
set.
On one hand, Cyscore was tested on two independent

sets: PDBbind v2007 core set (N = 195) and PDBbind
v2012 core set (N = 201), whose experimental binding
affinities span 12.56 and 9.85 pKd units, respectively. On
the other hand, Cyscore was trained on a special set of
247 complexes carefully selected from the PDBbind v2012
refined set using certain criteria [13] (e.g. structural res-
olution < 1.8Å, binding affinity spans 1 to 11 kcal/mol,
protein sequence similarity and ligand chemical compo-
sition are different from the test set), ensuring that the
training complexes are of high quality and do not overlap
with any of the two test sets. In this study we used exactly
the same training set and the same test sets in order to
make a fair comparison to Cyscore.
Furthermore, considering the fact that 16 classical scor-

ing functions have already been evaluated [24] on PDB-
bind v2007 core set and the top performing of them (e.g.
X-Score) were trained on the remaining 1105 complexes
in PDBbind v2007 refined set, we also used these 1105
complexes as another training set to permit a direct com-
parison. Using predefined training and test sets, where
other scoring functions had previously been trained and
tested, has the advantage of reducing the risk of using
a benchmark complementary to one particular scoring
function.
Likewise for the PDBbind v2012 benchmark, we used an

additional training set comprising the complexes in PDB-
bind v2012 refined set excluding those in PDBbind v2012
core set. This led to a total of 2696 complexes. By con-
struction, this training set does not overlap with the test
set.

PDBbind v2013 round-robin benchmark

We propose a new benchmark to investigate how pre-
diction performance of the four models changes in cross
validation and with varying numbers of training samples.
We used PDBbind v2013 refined set (N = 2959), which
is the latest version and constitutes the most comprehen-
sive and publicly available structural dataset suitable for
training scoring functions.
We used 5-fold cross validation, as was used by the

recently published empirical scoring function ID-Score
[23], to reduce overfitting and thus generalization errors.
The entire PDBbind v2013 refined set (N = 2959) was
divided into five equal partitions using uniform sampling
on a round-robin basis: the entire 2959 complexes were
first sorted in the ascending order of their measured bind-
ing affinity, and the complexes with the 1st, 6th, 11th,
etc. lowest binding affinity belonged to the first partition,
the complexes with the 2nd, 7th, 12th, etc. lowest binding
affinity belonged to the second partition, and so on. This
partitioning method, though not completely random, has
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two advantages: on one hand, each partition is guaranteed
to span the largest range of binding affinities and incor-
porates the largest structural diversity of different protein
families; on the other hand, each partition is composed of
a deterministic list of complexes, permitting reproducibil-
ity and comparisons in future studies. Table 2 summarizes
the statistics of the five partitions. The PDB IDs and
measured binding affinities of the complexes in the five
partitions are available in the Additional file 1.
We then used the partition on which the best

performance was obtained (It turned out to be partition 2
(N = 592). See the Results and discussion section.) as the
test set in PDBbind v2013 round-robin benchmark, and
used the remaining four partitions (1, 3, 4, 5) to construct
four training sets of incremental sizes: the first training
set comprises partition 1 (N = 592), the second training
set comprises partitions 1 and 3 (N = 1184), the third
training set comprises partitions 1, 3 and 4 (N = 1776),
and the fourth training set comprises partitions 1, 3, 4
and 5 (N = 2367). Therefore this new benchmark pro-
vides a way to study how prediction performance varies
with training set size. Moreover, its test set has a signif-
icantly larger number of complexes (N = 592) compared
to PDBbind v2007 (N = 195) and v2012 (N = 201) bench-
marks, making this new benchmark not being a redundant
duplication of the previous two benchmarks. Table 3 sum-
marizes the numbers of test and training samples for the
three benchmarks.

Leave-cluster-out cross validation (LCOCV)

Leave-cluster-out cross validation (LCOCV) [27], in con-
trast to standard cross validation, divides the complete set
of complexes into protein families instead of random sub-
sets. Each protein family, or each cluster, is typically deter-
mined by 90% protein sequence identity. Protein families
with at least ten complexes are treated as individual clus-
ters, labeled as A to W. Protein families with four to nine
complexes are combined into cluster X. Protein families
with two to three complexes are combined into cluster
Y. Singletons are combined into cluster Z. Each cluster
is iteratively left out of the training set and used to eval-
uate the predictive performance of the scoring function.

Table 2 The statistics of the five partitions of PDBbind

v2013 refined set (N= 2959)

# Complexes Lowest pKd Highest pKd

1 592 2.00 11.74

2 592 2.00 11.80

3 592 2.00 11.85

4 592 2.00 11.92

5 591 2.05 11.72

Table 3 The numbers of test samples and training samples

for the PDBbind v2007, v2012 and v2013 benchmarks

used in this study

Benchmark Test samples Training samples

v2007 195 247, 1105

v2012 201 247, 2696

v2013 592 592, 1184, 1776, 2367

The performance on each cluster can be inspected indi-
vidually, and the overall performance can be estimated by
averaging over all clusters.
So far LCOCV has been applied to the assessment

of six scoring functions, which are RF-Score [20,21,27],
ddPLAT+MOE [28], CScore [20], B2Bscore [21], SFCscor-
eRF [22] and the work of Ross et al. [29].
For the purpose of comparison to other scoring func-

tions, PDBbind v2009 refined set (N = 1741) was used
in this study to perform LCOCV. The 1xr8 entry in clus-
ter X was discarded because its ligand is far away from
its protein, thereby leaving 1740 complexes. The PDB IDs
andmeasured binding affinities of the complexes in the 23
protein families (A to W) and the 3 multi-family clusters
(X to Z) are available in the Additional file 2.

Performance metrics

Prediction performance was quantified through standard
deviation SD in linear correlation, Pearson correlation
coefficient Rp and Spearman correlation coefficient Rs
between the measured and predicted binding affinities of
the test set. These metrics are commonly used in the com-
munity [24], and the SD metric is essentially the residual
standard error (RSE) metric used in some other studies
[19]. The above three metrics are invariant under linear
transformations (e.g. changing the intercept or coefficient
values in Eq. 1 affects none of these metrics), so they
are mainly for comparative purpose. In some applications,
however, the ultimate goal of scoring functions is to report
an absolute binding affinity value as close to the measured
value as possible. Hence we use a more realistic metric,
the root mean square error RMSE between measured and
predicted binding affinities without a linear correlation.
Lower values in RMSE and SD and higher values in Rp and
Rs indicate better prediction performance.
Mathematically, equations 2, 3, 4 and 5 show the expres-

sions of the four metrics. Given a scoring function f and
the features −→x (n) describing the nth complex out of N
complexes in the test set, p(n) = f

(−→x (n)
)

is the predicted
binding affinity,

{

p̂(n)
}

are the fitted values from the linear
model between

{

y(n)
}

and
{

p(n)
}

on the test set, whereas
{

y
(n)
r

}

and
{

p
(n)
r

}

are the rankings of
{

y(n)
}

and
{

p(n)
}

,

respectively.
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Results and discussion
Figure 1 plots the prediction performance of MLR::
Cyscore, RF::Cyscore, RF::CyscoreVina and RF::Cyscore-
VinaElem using different numbers of training samples on
PDBbind v2007 benchmark (N = 195), PDBbind v2012
benchmark (N = 201) and PDBbind v2013 round-robin
benchmark (N = 592). The raw values are available in the
Additional file 3.

MLR::Cyscore performance does not increase with more

training samples

On both PDBbind v2007 and v2012 benchmarks,
MLR::Cyscore performed best when it was trained on
the 247 carefully selected complexes used by Cyscore. Its
performance dropped when more complexes were used
for training. On PDBbind v2013 round-robin benchmark,
MLR::Cyscore performance stayed flat regardless of train-
ing set sizes.
These results show that MLR::Cyscore is unable to

exploit large sizes of structural data given only a small
set of sophisticated features. Feeding more training sam-
ples to MLR::Cyscore actually increases the difficulty in
regressing the coefficients well. Generally it would be a
good idea to select the training complexes that provide the
best performance on a test set, as was the case of Cyscore.
However, in real applications the binding affinities of the
test set are not known and unfortunately selection of
training complexes is not performed blindly (i.e. without
measuring performance on test set).

RF performance increases with more structural features

and training samples

On all the three benchmarks, given the same set of fea-
tures, the RF models trained with more samples resulted
in higher prediction accuracy. Similarly, given the same

training samples, the RF models trained with more fea-
tures resulted in higher prediction accuracy.
These results suggest that RF is capable of effectively

exploiting a comprehensive set of structural features and
training samples. Generally the more training samples,
the more knowledge for RF to learn so as to capture the
non-linearity of the structural data. Likewise, the more
appropriate features, the higher probability of choosing
the best splitting feature that can result in a high purity
gain at non-leaf nodes during RF construction, and hence
the higher chance of boosted RF performance.

RFmodels perform consistently well in cross validation

Table 4 shows the results of 5-fold cross validation
for all the four models. The best performance was
obtained on partition 2. In terms of average perfor-
mance, the relative performance ranking is consistent,
where RF::CyscoreVinaElem (RMSE = 1.35, SD = 1.35,
Rp = 0.738, Rs = 0.738) is better than RF::CyscoreVina
(RMSE = 1.44, SD = 1.44, Rp = 0.693, Rs = 0.690), which
is better than RF::Cyscore (RMSE = 1.59, SD = 1.59,
Rp = 0.603, Rs = 0.587), which is better than
MLR::Cyscore (RMSE = 1.66, SD = 1.66, Rp = 0.556,
Rs = 0.559).

Leave-cluster-out cross validation leads to unrealistically

low performance

Table 5 shows the results of leave-cluster-out cross valida-
tion (LCOCV) for all the four models. Not unexpectedly,
the observed performance is very heterogeneous across
the different protein families. These results indeed agree
with the LCOCV results of six other scoring functions
from previous studies [20-22,27-29]. By analyzing the
LCOCV statistics of all these ten scoring functions, we
found that they all performed well in certain clusters (e.g.
trypsin and β-secretase I) and poorly in some other clus-
ters (e.g. HIV protease and factor Xa). The reasons for the
large spread of performance across the different clusters
are manifold, and a comprehensive analysis for each pro-
tein family would be beyond the scope of this study. As
pointed out in [22], eliminating all the HIV protease com-
plexes leads to an imbalance between the training and test
sets because HIV protease inhibitors are on average much
larger than the ligands of the other targets. This illustrates
that the LCOCV results should not be directly inter-
preted as performance measures on particular protein
families. Moreover, the limited size of many clusters and
the small range ofmeasured binding affinity values therein
make a satisfactory prediction of the ranking rather
challenging.
While results on standard cross validation might be too

optimistic, results on leave-cluster-out cross validation
might be too pessimistic. Here we want to emphasize that
LCOCV is only suitable for estimating the performance of
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Figure 1 Prediction performance of MLR::Cyscore, RF::Cyscore, RF::CyscoreVina and RF::CyscoreVinaElem trained with varying numbers

of samples. First row: root mean square error RMSE. Second row: standard deviation SD in linear correlation. Third row: Pearson correlation

coefficient Rp. Fourth row: Spearman correlation coefficient Rs. Left column: PDBbind v2007 benchmark (N = 195). Center column: PDBbind v2012

benchmark (N = 201). Right column: PDBbind v2013 round-robin benchmark (N = 592).



L
i
e
t
a
l.
B
M
C
B
io
in
fo
rm

a
tic
s
2
0
1
4
,1
5
:2
9
1

P
a
g
e
7
o
f
1
2

h
ttp

://w
w
w
.b
io
m
e
d
ce
n
tra

l.co
m
/1
4
7
1
-2
1
0
5
/1
5
/2
9
1

Table 4 Cross validation results of the four models on the five partitions of PDBbind v2013 refined set (N= 2959) in terms of root mean square error RMSE,

standard deviation SD in linear correlation, Pearson correlation coefficient Rp and Spearman correlation coefficient Rs

MLR::Cyscore RF::Cyscore RF::CyscoreVina RF::CyscoreVinaElem

# N RMSE SD Rp Rs RMSE SD Rp Rs RMSE SD Rp Rs RMSE SD Rp Rs

1 592 1.66 1.66 0.560 0.555 1.60 1.60 0.601 0.588 1.41 1.41 0.708 0.709 1.33 1.33 0.748 0.746

2 592 1.62 1.62 0.589 0.600 1.51 1.51 0.657 0.641 1.38 1.37 0.730 0.725 1.30 1.29 0.764 0.766

3 592 1.69 1.70 0.531 0.529 1.66 1.66 0.561 0.545 1.49 1.49 0.668 0.665 1.41 1.41 0.711 0.709

4 592 1.68 1.68 0.542 0.557 1.63 1.63 0.580 0.576 1.51 1.51 0.657 0.661 1.41 1.41 0.711 0.722

5 591 1.65 1.65 0.559 0.553 1.57 1.57 0.615 0.586 1.42 1.42 0.701 0.692 1.30 1.30 0.758 0.749

avg 1.66 1.66 0.556 0.559 1.59 1.59 0.603 0.587 1.44 1.44 0.693 0.690 1.35 1.35 0.738 0.738
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Table 5 Leave-cluster-out cross validation results of the four models on the 23 protein families (A toW) and 3multi-family (X to Z) clusters of PDBbind v2009

refined set (N= 1740) in terms of root mean square error RMSE, standard deviation SD in linear correlation, Pearson correlation coefficient Rp and Spearman

correlation coefficient Rs

MLR::Cyscore RF::Cyscore RF::CyscoreVina RF::CyscoreVinaElem

Cluster name Cluster N RMSE SD Rp Rs RMSE SD Rp Rs RMSE SD Rp Rs RMSE SD Rp Rs

HIV protease A 188 1.65 1.53 0.259 0.216 1.70 1.51 0.310 0.201 1.76 1.56 0.182 0.105 1.77 1.56 0.166 0.129

trypsin B 74 1.24 1.11 0.612 0.695 1.10 1.11 0.610 0.636 0.96 0.97 0.723 0.700 0.93 0.93 0.751 0.715

carbonic anhydrase C 57 2.47 1.35 0.473 0.343 2.44 1.43 0.368 0.264 2.60 1.37 0.448 0.372 2.33 1.35 0.481 0.234

thrombin D 53 1.52 1.40 0.702 0.676 1.50 1.44 0.680 0.611 1.47 1.45 0.675 0.675 1.46 1.40 0.699 0.680

protein tyrosine phosphatase E 32 1.23 1.06 0.411 0.313 1.30 1.10 0.338 0.268 1.36 0.98 0.538 0.542 1.23 0.89 0.643 0.615

factor Xa F 32 1.18 0.96 0.604 0.634 1.54 1.13 0.367 0.356 1.53 1.02 0.533 0.498 1.61 1.07 0.470 0.470

urokinase G 29 1.15 1.14 0.643 0.602 1.10 1.14 0.642 0.645 1.25 1.27 0.516 0.436 1.05 1.06 0.699 0.624

different similar transporters H 29 0.96 0.96 0.285 0.122 1.27 0.99 0.056 -0.040 1.10 0.98 0.188 0.077 1.01 0.93 0.354 0.123

c-AMP dependent kinase I 17 1.32 1.15 0.537 0.537 1.16 1.11 0.582 0.602 0.94 0.91 0.748 0.664 1.06 0.91 0.747 0.644

β-glucosidase J 17 1.03 0.78 0.383 0.316 1.04 0.76 0.444 0.365 0.92 0.72 0.518 0.443 1.05 0.68 0.597 0.649

antibodies K 16 1.41 1.43 0.693 0.706 1.67 1.76 0.455 0.466 1.47 1.51 0.645 0.643 1.36 1.33 0.739 0.777

casein kinase II L 16 0.75 0.58 0.538 0.358 0.76 0.58 0.535 0.330 0.90 0.60 0.493 0.322 0.97 0.61 0.454 0.309

ribonuclease M 15 1.12 1.20 0.230 0.340 1.07 1.06 0.505 0.281 1.11 0.99 0.595 0.481 1.23 1.03 0.551 0.493

thermolysin N 14 1.15 1.14 0.680 0.635 0.98 1.03 0.748 0.648 1.04 1.12 0.696 0.565 0.97 1.05 0.738 0.636

CDK2 kinase O 13 1.06 0.80 0.841 0.812 1.14 1.01 0.733 0.817 1.14 1.02 0.729 0.661 1.12 1.14 0.640 0.525

glutamate receptor 2 P 13 1.08 0.85 0.070 0.096 1.09 0.85 0.120 0.097 1.08 0.85 0.116 0.121 1.00 0.84 0.123 0.016

P38 kinase Q 13 0.55 0.57 0.834 0.896 0.76 0.66 0.762 0.757 0.95 0.62 0.799 0.764 0.59 0.51 0.870 0.896

β-secretase I R 12 1.44 1.33 0.892 0.725 1.57 1.51 0.858 0.620 1.54 1.51 0.860 0.687 1.43 1.31 0.895 0.687

tRNA-guanine transglycosylase S 12 0.90 0.95 0.463 0.544 1.06 1.04 0.212 0.375 0.87 0.95 0.457 0.403 0.87 0.95 0.457 0.522

endothiapepsin T 11 1.18 1.30 0.435 0.215 1.28 1.35 0.358 0.210 1.35 1.36 0.345 0.215 1.36 1.27 0.480 0.210

α-mannosidase 2 U 10 1.67 1.63 -0.004 0.248 1.65 1.62 0.116 0.188 1.73 1.62 0.089 0.176 1.83 1.63 0.053 0.103

carboxypeptidase A V 10 2.13 1.99 0.479 0.523 1.90 1.89 0.556 0.370 1.82 1.76 0.632 0.467 1.77 1.54 0.734 0.685

penicillopepsin W 10 1.71 1.87 0.339 0.188 1.78 1.94 0.236 0.188 1.81 1.96 0.183 0.030 1.91 1.99 0.078 -0.030

families with 4-9 complexes X 386 1.73 1.71 0.500 0.577 1.61 1.60 0.587 0.598 1.58 1.56 0.610 0.612 1.54 1.53 0.630 0.632

families with 2-3 complexes Y 340 1.64 1.64 0.510 0.495 1.64 1.63 0.522 0.505 1.55 1.55 0.583 0.580 1.51 1.52 0.608 0.595

singletons Z 321 1.76 1.74 0.407 0.417 1.81 1.75 0.397 0.395 1.70 1.68 0.476 0.467 1.67 1.65 0.503 0.507

average 1.35 1.24 0.493 0.470 1.38 1.27 0.465 0.414 1.37 1.23 0.515 0.450 1.33 1.18 0.545 0.479

standard deviation 0.41 0.38 0.216 0.217 0.38 0.37 0.209 0.212 0.39 0.36 0.211 0.211 0.39 0.35 0.228 0.251
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a generic scoring function on a truly new target protein
that does not belong to a cluster represented by any of
the proteins in the training set, but this constitutes a very
uncommon scenario in real-life applications because it is
rare for a target protein not to have high sequence similar-
ity to any other protein in a diverse and large training set.
In fact, such type of complexes should never be eliminated
from a training set. Instead, the training set composition
should reflect as closely as possible the actual complexes
on which the scoring function is to be applied. Conse-
quently, LCOCV is not appropriate to evaluate generic
scoring functions, as previously argued [30].

Machine-learning scoring functions are significantly more

accurate than classical scoring functions with fixed

functional forms

Table 6 compares Cyscore, RF::Cyscore, RF::CyscoreVina
and RF::CyscoreVinaElem against 21 other scoring func-
tions on PDBbind v2007 core set (N = 195), with
RF::CyscoreVinaElem performing best in terms of Rp,
Rs and SD. It is worth noting that the top four scoring
functions are all trained with RF.

Substituting RF for MLR and incorporating more features

and training samples strongly improves Cyscore

Figure 2 compares the prediction performance of Cyscore
and RF::CyscoreVinaElem, with RF::CyscoreVinaElem
improving Cyscore by -0.28 in RMSE, -0.37 in SD, +0.143
in Rp and +0.111 in Rs on the PDBbind v2007 benchmark,
by -0.14 in RMSE, -0.25 in SD, +0.106 in Rp and +0.093
in Rs on the PDBbind v2012 benchmark, and by -0.40 in
RMSE, -0.29 in SD, +0.187 in Rp and +0.184 in Rs on the
PDBbind v2013 round-robin benchmark.
These results show that RF::CyscoreVinaElem per-

formed consistently better than Cyscore on all the
three benchmarks. It is important to note that, in each
benchmark, both scoring functions used the same non-
overlapping training and test sets. Taken together, these
results show that one can develop a much more accurate
scoring function out of an existing one simply by changing
the regression model from MLR to RF and incorporating
more structural features and training samples.

Sensitivity analysis of the RF model can determine feature

importance

Unlike classical scoring functions, RF-based scoring func-
tions can hardly be explicitly expressed as a mathematical
equation like Eq. 1. Therefore it is useful to employ the
variable importance tool of RF to estimate the impor-
tance of each feature by randomly permuting its training
values, and the feature leading to the largest variation in
the predicted binding affinity on the OOB data can be
regarded as the most important for a particular training
set. Figure 3 plots the percentage of increase in mean

Table 6 Prediction performance of 25 scoring functions

evaluated on PDBbind v2007 core set (N= 195) in terms of

Pearson correlation coefficient Rp, Spearman correlation

coefficient Rs and standard deviation SD in linear

correlation on the test set

Scoring function Rp Rs SD

RF::CyscoreVinaElem 0.803 0.798 1.42

RF-Score::Elem-v2 0.803 0.797 1.54

SFCscoreRF 0.779 0.788 1.56

RF-Score 0.774 0.762 1.59

ID-Score 0.753 0.779 1.63

RF::CyscoreVina 0.749 0.759 1.58

SVR-Score 0.726 0.739 1.70

RF::Cyscore 0.687 0.694 1.73

Cyscore 0.660 0.687 1.79

X-Score::HMScore 0.644 0.705 1.83

DrugScoreCSD 0.569 0.627 1.96

SYBYL::ChemScore 0.555 0.585 1.98

DS::PLP1 0.545 0.588 2.00

GOLD::ASP 0.534 0.577 2.02

SYBYL::G-Score 0.492 0.536 2.08

DS::LUDI3 0.487 0.478 2.09

DS::LigScore2 0.464 0.507 2.12

GlideScore-XP 0.457 0.435 2.14

DS::PMF 0.445 0.448 2.14

GOLD::ChemScore 0.441 0.452 2.15

SYBYL::D-Score 0.392 0.447 2.19

DS::Jain 0.316 0.346 2.24

GOLD::GoldScore 0.295 0.322 2.29

SYBYL::PMF-Score 0.268 0.273 2.29

SYBYL::F-Score 0.216 0.243 2.35

The scoring functions are sorted in the descending order of Rp.

RF::CyscoreVinaElem and Cyscore rank 1st and 9th respectively in terms of Rp.

The statistics for the other 21 scoring functions are collected from [8,22,31].

square error (%IncMSE) observed when each of the 4
Cyscore features used to train RF was noised up. All the 4
features turned out to be important (%IncMSE>20), with
van der Waals interaction energy (Vdw) and hydrophobic
free energy (Hydrophobic) being relatively more impor-
tant (%IncMSE>40). Correctly estimating variable impor-
tance can assist in feature selection and in understanding
ligand binding.

Conclusions
In this study we have demonstrated that, on one hand,
the multiple linear regression (MLR) model used in many
scoring functions like Cyscore does not improve its per-
formance in the presence of abundant training samples.
This is a particularly significant drawback for MLR-based
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Figure 2 Correlation plots of predicted binding affinities against measured ones. Top row: Cyscore. Bottom row: RF::CyscoreVinaElem. Left

column: PDBbind v2007 benchmark (N = 195), with RF::CyscoreVinaElem trained on 1105 complexes. Center column: PDBbind v2012 benchmark

(N = 201), with RF::CyscoreVinaElem trained on 2696 complexes. Right column: PDBbind v2013 round-robin benchmark (N = 592), with

RF::CyscoreVinaElem trained on 2367 complexes.

scoring functions because they cannot benefit from the
future availability of more experimental data. On the other
hand, RF-based scoring functions can comprehensively
capture the non-linear nature in the data and thus assim-
ilate data significantly better than MLR-based scoring

functions. Most importantly, feeding more training sam-
ples to RF can increases its prediction performance.
Under this circumstance, improvements with dataset size
can only be gained with the appropriate regression model.
Simply changing the regression model of Cyscore from

Figure 3 RF::Cyscore feature importance estimated on internal OOB data of the 1105 complexes from PDBbind v2007 refined set. The four

features are hydrophobic free energy (Hydrophobic), van der Waals interaction energy (Vdw), hydrogen bond interaction energy (HBond) and

ligand’s conformational entropy (Ent). The %IncMSE value of a particular feature was computed as the percentage of increase in mean square error

observed in OOB prediction when that features was randomly permuted.
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MLR to RF and expanding the feature set and the sample
set can significantly increase the prediction accuracy.
The performance gap between MLR-based and RF-based
scoring functions will be further widened by the future
availability of more and more X-ray crystal structures.
Moreover, classical empirical scoring functions usually

rely on complicated energetic contributions that must
be carefully devised from intermolecular interactions,
whereas RF-based scoring functions can also effectively
exploit features as simple as occurrence count of inter-
molecular contacts. It has also been shown that func-
tional group contributions in protein-ligand binding are
non-additive. This means new features cannot be eas-
ily incorporated into an existing MLR model. In this
study we have shown that using more structural features
appropriately can also substantially enhance the predic-
tion accuracy of RF, as can be seen in the comparison
between RF::CyscoreVinaElem and RF::Cyscore. This fur-
ther stresses the importance of substituting RF forMLR in
scoring function development.

Additional files

Additional file 1: CV. This CSV file contains the PDB IDs and measured
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binding affinities of the protein-ligand complexes in the 23 protein families
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leave-cluster-out cross validation purpose.

Additional file 3: Stat. This Excel file contains the prediction performance

of MLR::Cyscore, RF::Cyscore, RF::CyscoreVina and RF::CyscoreVinaElem
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