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Abstract

Empirical data on contacts between individuals in social contexts play an important role in providing

information for models describing human behavior and how epidemics spread in populations. Here,

we analyze data on face-to-face contacts collected in an office building. The statistical properties of

contacts are similar to other social situations, but important differences are observed in the contact

network structure. In particular, the contact network is strongly shaped by the organization of the

offices in departments, which has consequences in the design of accurate agent-based models of epi-

demic spread. We consider the contact network as a potential substrate for infectious disease spread

and show that its sparsity tends to prevent outbreaks of rapidly spreading epidemics. Moreover, we

define three typical behaviors according to the fraction f of links each individual shares outside its

own department: residents, wanderers and linkers. Linkers ( f ∼ 50%) act as bridges in the network

and have large betweenness centralities. Thus, a vaccination strategy targeting linkers efficiently

prevents large outbreaks. As such a behavior may be spotted a priori in the offices’ organization or

from surveys, without the full knowledge of the time-resolved contact network, this result may help

the design of efficient, low-cost vaccination or social-distancing strategies.

Keywords: Complex networks, Temporal networks, Sociophysics, Epidemiology.

1 Introduction

Data-driven models of disease propagation are essential tools for the prediction and pre-

vention of epidemic outbreaks. Thanks to important increases in data availability and com-

puter power, highly detailed agent-based models have in particular become widely used

to describe epidemic spread at very different scales, from small communities to a whole
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country or continent (Davey et al., 2008; Ajelli et al., 2010; Ajelli et al., 2014; Merler

& Ajelli, 2010). One of the interests of such approaches comes from the level of detail

they entail in the description of a disease propagation, from the amount of information

they provide on the risk supported by each population category and on the probabilities

of occurrence of transmission events in different circumstances. Moreover, the range of

modeling possibilities is very large, and many different assumptions can be tested on

how individuals come in contact, how a disease is transmitted and how such transmission

can be contained. The drawback of this freedom in the model design lies in a certain

arbitrariness in modeling choices. In order to alleviate this arbitrariness, models need to

be fed with information and data concerning population statistics and individual behavior.

In this respect, a crucial point regards the way in which people interact in their day-to-day

life, and how these interactions affect disease propagation (Mossong et al., 2008; Read

et al., 2012). The collection of detailed data sets of human interactions is highly needed, as

well as the extraction of the most relevant stylized characteristics and statistical features of

these interactions (Stehlé et al., 2011b; Blower & Go, 2011; Machens et al., 2013; Barrat

et al., 2013; Barrat et al., 2014). Understanding which features of human contact patterns

are most salient can also help design low-cost methods based on limited information for

targeted intervention strategies (Lee et al., 2012; Smieszek & Salathé, 2013; Chowell &

Viboud, 2013; Gemmetto et al., 2014).

In order to develop our knowledge and understanding of human interactions, novel

techniques based on sensors using Wi-Fi, Bluetooth or RFID have emerged in the last

decade and have provided important new insights (Zhang et al., 2012; Vu et al., 2010;

Eagle et al., 2009; Stopczynski et al., 2014; Cattuto et al., 2010; Barrat et al., 2014; Salathé

et al., 2010). In the present article, we consider data on face-to-face contacts collected

using wearable sensors (Cattuto et al., 2010; Barrat et al., 2014). The corresponding in-

frastructure, developed by the SocioPatterns collaboration (www.sociopatterns.org), allows

obtaining time-resolved data on close face-to-face proximity events between individuals,

yielding information not only on the overall network formed by these contacts, but also

on the dynamics of these interactions. Previous works have shown that many properties

of these dynamics –contact times, inter-contact times, number of contacts per link, etc

– have broad statistical distributions and display robust features across several contexts:

schools (Salathé et al., 2010; Stehlé et al., 2011a; Fournet & Barrat, 2014), hospitals (Isella

et al., 2011a; Vanhems et al., 2013), museums (Isella et al., 2011b) or conferences (Isella

et al., 2011b; Barrat et al., 2013; Stehlé et al., 2011b). On the other hand, the contact

networks also exhibit different high-level structures in each specific context, which can

influence the way epidemics spread (Isella et al., 2011b; Machens et al., 2013; Gauvin

et al., 2013; Gauvin et al., 2014). Here we consider the contact patterns between adults at

work, which have been less studied in an epidemiological perspective, even if the influence

of office spatial layouts on social interactions has been considered from a sociological

and architectural perspective (Penn et al., 1999; Sailer & McCulloh, 2012; Brown et al.,

2014b; Brown et al., 2014a). A priori, the workplace is one of the locations where adults

spend most of their time and, as such, may represent an important spot for transmission of

diseases between adults (Ajelli et al., 2010). We therefore present an analysis of the human

contact network in such a place, namely a building of the Institut de veille sanitaire (InVS,

French Institute for Public Health Surveillance). We first discuss how the organization of
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the offices in departments determine the structure of the contact network and the dynamics

of the contacts, and how these features affect epidemic spreading. We then focus on a new

way to determine important nodes in such a contact network, based on the fraction of links

each individual has with other individuals in the same department and in other departments,

and present numerical simulations of an agent-based model of disease spread in order to

discuss the efficiency of vaccination strategies based on this criterion.

2 Data collection

In order to collect data on the contacts between individuals, we used the sensing platform

developed by the SocioPatterns1 collaboration, based on wearable sensors that exchange

ultra-low power radio packets in order to detect close proximity of individuals wearing

them (Cattuto et al., 2010; Barrat et al., 2014). Each individual that accepted to participate

in the study was asked to wear a sensor on his/her chest. As described elsewhere (Cattuto

et al., 2010; Barrat et al., 2014), the body acts as a shield at the radio frequencies used by

the sensors, so that the sensors of two individuals can only exchange radio packets when

the persons are facing each other at close range (. 1.5 m). Signal detection is set so that

any contact that lasts at least 20 seconds is recorded with a probability higher than 99%

(Cattuto et al., 2010). This defines the time resolution of the setup.

The study took place in one of the two office buildings of the InVS, located in Saint

Maurice near Paris, France, and lasted two weeks. The building hosts three scientific

departments – the Direction Scientifique et de la Qualité (DISQ, Scientific Direction),

the Département des Maladies Chroniques et des Traumatismes (DMCT, Department of

Chronic Diseases and Traumatisms) and the Département Santé et Environnement (DSE,

Department of Health and Environment) – along with Human Resources (SRH) and Lo-

gistics (SFLE). DSE and DMCT are the largest departments, with more than 30 persons

each, DISQ and SRH consist of around 15 persons, and finally logistics consists of only 5

persons (Table 1). DISQ, DMCT and SFLE share the ground floor, while DSE and SRH

are located on the first floor.

Two thirds of the total staff agreed to participate to the data collection. The coverage

ranges from 63% (DSE, the largest scientific department) to 87% (human resources) (see

Table 1). A signed informed consent was obtained for each participating individual and the

French national bodies responsible for ethics and privacy, the Commission Nationale de

l’Informatique et des Libertés (CNIL, http://www.cnil.fr) was notified of the study. Data

were treated anonymously, and the only information associated with the unique identifier

of each sensor was the department of the individual wearing it.

3 Contact dynamics

3.1 Aggregated and temporal contact networks

We build the global contact network, shown in Fig. 1, by aggregating the contact data over

the two weeks of the experiment. Each node represents an individual, and a link is drawn

1 http://www.sociopatterns.org/
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Table 1. Departments of the InVS.

Number of tags Number of persons Coverage Floor

DISQ 15 19 79% 0

DMCT 30 46 65% 0

DSE 38 60 63% 1

SRH 13 15 87% 1

SFLE 4 5 80% 0

Total 100 145 69%

DSE

DISQ

DMCT

SRH

SFLE

Fig. 1. Empirical network of contacts between individuals, aggregated over the two weeks

of study. Each node represents an individual and the color-code corresponds to the different

departments. Each link between two nodes indicates that the corresponding individuals have been

in contact at least once during the data collection. Nodes are laid out using the Force Atlas

algorithm (see Gephi software, http://www.gephi.org), which allows communities to be apparent

in the visualization of the network.

between two nodes if the corresponding individuals have been in contact at least once

during the study. Each link carries a weight calculated as the total duration of the contacts

between the two individuals. The resulting distributions of node degrees (the degree of an

individual gives the total number of distinct other individuals with whom (s)he has been

in contact during the study) and link weights are shown in Fig. 2a&b. Moreover, we take

advantage of the fact that the data is time-resolved to treat the contact network as a temporal
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Fig. 2. Main features of the contact data. For each distribution we compare the features of the

present study (InVS) with two previous studies: a scientific conference (SFHH, cf. (Stehlé et al.,

2011b)) and a high school (Thiers12, cf. (Fournet & Barrat, 2014)). a) Distributions of normalized

degrees. Original mean degrees are: 15.1 (InVS), 47.5 (SFHH), 26.4 (Thiers12). b) Link weight

distributions. c) Contact time distributions. d) Inter-contact time distributions.

network (Holme & Saramäki, 2012) and compute the distributions of contact durations and

of the times between successive contacts of an individual (Fig. 2c&d).

In addition to the statistics of the present data set, Figure 2 also displays the properties

of networks of face-to-face contacts collected in two other settings, namely a conference

(Stehlé et al., 2011b) and a high-school (Fournet & Barrat, 2014). Although the contexts

are very different, the distributions are extremely similar. In particular we find broad distri-

butions with an approximate power-law shape for weights, contact and inter-contact times,

which are typical of the heterogeneous behavior often found in human activities (Barabàsi,

2005).

3.2 Sparsity of the contacts and consequences for the potential spread of infectious

diseases

One of the main specific features of the present data set is the sparseness of the contacts:

although the study lasted two weeks, the average degree in the aggregated network is only

around 15, meaning that each individual met only ∼ 15% of the office population partic-

ipating to the study over the course of these two weeks. The contact network is thus very

far from a fully connected structure, with immediate consequences on possible dynamical

processes taking place on such a network, such as the propagation of an infectious disease.
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Fig. 3. Distributions of the final size N of simulated epidemics. Simulations are performed for

different values of the infection rate β (given in the legend), the recovery rate µ being determined

by the fixed β/µ ratio. At given β/µ , larger values of β correspond to both faster spread and

faster recovery. For each value of β , distributions are computed from 1000 simulations with initial

conditions given by one single randomly chosen infected individual. a) β/µ = 100. b) β/µ = 1000.

To explore this issue, we perform numerical simulations of the spread of a Susceptible-

Infected-Recovered (SIR) epidemic model in the population under study. In this model,

Susceptible nodes (S) are infected with rate β when they are in contact with an infected

node (I): for each small time step dt, an S node in contact with n I nodes becomes infected

with probability nβdt. Infected nodes (I) recover from the infection with rate µ and enter

the Recovered (R) compartment. Recovered nodes cannot be infected again. Our goal here

is not to explore the whole phase diagram of the spreading process but rather to illustrate

the influence of the contact patterns and of the interplay between the time-scales of the

contacts and of the spreading process. We therefore consider two different values of the

ratio β/µ and vary the speed of the epidemics by changing β . We vary β in order to

explore a wide range of time-scales: β ∈ [0.0004;0.02], which correspond to a typical time

of infection β−1 ∈ [50,2500] seconds; For β/µ = 100, we thus have µ−1 ∈ [1.4;70] hours,
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and for β/µ = 1000, µ−1 ∈ [14;700] hours. The duration of the spread depends on the

value of β and ranges from 105 to 107 seconds.

Each simulation starts with a single, randomly chosen, infected node (“seed”). We use

the time-resolved data set to recreate in-silico the contacts between individuals (including

the periods of inactivity, i.e. nights and week-end, during which individuals are considered

isolated) and thereby the possibility of the infection to spread. We run each simulation

until no infected individual remains (nodes are thus either still S or have been infected and

have then recovered (R)). We define the duration T of an epidemic as the time needed to

reach this state, and the final size N of an epidemic as the number of nodes that have been

affected by the spread, i.e. the number of R nodes at the end of the epidemic. As T might

be longer than the duration of the data set, we repeat the two-weeks sequence of contacts

in the simulation if needed (Stehlé et al., 2011b). For each realization we randomly choose

both the seed and the moment when the spreading process starts. We compute the statistics

of the final epidemic size over 1000 realizations for each value of the parameters.

Figure 3 displays the resulting distributions (i.e., the probability that the spread affects N

individuals). For β/µ = 100, no large outbreaks are obtained (Fig. 3a). Even for the longest

values of the infectious period (lowest values of µ), the sparsity of contacts makes the

propagation of infection difficult. Indeed, at the fastest time scale, i.e. the time resolution

of 20 seconds, nodes have an average instantaneous degree of 0.013, and overall only 0.66

links exist on average in the whole network: very few transmission opportunities exist at

each time. Epidemics spread only if the ratio β/µ is increased enough to compensate for

this very low contact rate (e.g., if, at fixed β , the recovery rate is strongly decreased). An

example is given in Fig. 3b where we use β/µ = 1000. Even in this case, many realizations

lead to epidemics of small size, but epidemics affecting a large fraction of the population

are also obtained.

Interestingly, Fig. 3b also illustrates the role of the interplay between the timescale of

the disease spread and of the contact network (Isella et al., 2011b; Barrat et al., 2013). At

fixed β/µ indeed, a mode of the distribution corresponding to large epidemics is present for

small values of β and µ . Larger values of β and µ corresponding to faster processes, with

high spreading probability at each contact but also fast recovery and thus shorter infectious

periods, lead to smaller probabilities of large epidemics: as β is increased, the mode of the

distribution corresponding to large epidemics tends to be suppressed. This phenomenon

is related to the temporal constraints and correlations inherent in temporal networks that

can slow down and hamper the propagation of rapidly spreading processes (Karsai et al.,

2011; Isella et al., 2011b; Pfitzner et al., 2013; Scholtes et al., 2014): for instance, if A

meets B who is infectious, and then C, the infection can spread from B to C through A.

If instead A meets first C then B, A cannot be an intermediary for the spread to C. Slowly

spreading processes –with slow recovery– on the other hand are ”less constrained” as the

infectious period is longer and contacts with more individuals or repeated contacts with the

same individual can occur during this period, effectively creating more possible paths of

transmission between individuals (Stehlé et al., 2011b; Holme & Saramäki, 2012; Barrat

et al., 2013). To make the role of the contact chronology and of temporal constraints more

explicit, we compare in the Supplementary Material the outcome of spreading processes

simulated either on the temporally resolved contact data or on aggregated versions of the
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data, in which the information about the order in which different contacts occur is lost.

Spreading processes with fixed β/µ values unfolding on a purely static contact structure

would lead to exactly the same distribution of final epidemic sizes for different values of

β . In our case, we still take into account the fact that nodes are isolated during nights

and weekends. As a result, larger values of β lead to slightly larger epidemics, because

faster spreading processes unfold over less inactivity periods (and inactivity periods, during

which nodes can recover but cannot transmit, tend to hinder the spread). Overall, we thus

have an opposite trend on temporal and static networks, at fixed β/µ: on static networks,

increasing β tends to increase the final epidemic size and, in particular, the mode at large

final sizes is kept, while if the whole temporal resolution is considered, such an increase

tends to suppress the large epidemics.

3.3 Organization in departments

The offices are organized in five departments, on two floors. DISQ, DMCT and SFLE

(logistics) are on the ground floor, along with a cafeteria and conference rooms. The

remaining departments – SRH (human resources) and the DSE department – are on the

first floor. As found in literature linked to social sciences and architecture, the spatial

organization is expected to have an impact on the interactions between office workers

(Penn et al., 1999; Sailer & McCulloh, 2012; Brown et al., 2014b; Brown et al., 2014a).

A detailed investigation of this issue is beyond the scope of our work, in particular as,

due to anonymity of the participants, we do not have access to the office location of each

participant. As shown in Fig. 1 the collected data show nonetheless a clear impact of the

structure in departments, while the separation in two different floors is less apparent, at

least at this resolution. As we will see in the next sections and as discussed for instance in

(Salathé & Jones, 2010; Hébert-Dufresne et al., 2013), the fact that departments seem to

correspond to communities in the network structure shown in Fig. 1 has consequences for

the possibility to define mitigation strategies against the spread of epidemics.

In order to better quantify the mixing within and between departments, we build contact

matrices giving for each pair of departments the total time of contact between individuals

belonging to these departments. Figure 4a shows that contacts occur much more often

inside departments (internal contacts) than between them (external contacts), with the

exception of the logistics department. Furthermore, it confirms that the structure of external

contacts does not clearly follow the spatial organization in two floors, but that scientific

departments form a moderately connected sub-structure, leaving human resources and

logistics more isolated. This structure is also found in the contact matrix restricted to the

conference rooms (Fig. 4b). Scientific departments are in fact almost the only ones using

these rooms for inter-departments meetings. Contacts between individuals of different

departments also occur independently of scheduled meetings, for instance during lunch,

which takes place either in the cafeteria or in the canteen (located in a distinct building).

The contacts taking place in the cafeteria at lunchtime (Fig. 4c) show the same structure

as the global one, with many internal contacts for each department, and a substructure

corresponding to the three scientific departments on the one hand and logistics and human

resources on the other hand. Strikingly, the structure of contacts occurring in the canteen is

rather different, with a mostly diagonal contact matrix: in this situation, individuals from
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a) b)

c) d)

Fig. 4. Contact matrices. Each matrix element (at row X and column Y) gives the total time of

contact between individuals from departments X and Y during the two weeks of the study, in different

locations. a) Entire building. b) Conference room. c) Cafeteria, restricted to the interval between

12am and 2pm for each day. d) Canteen. This place is in a different building and is not taken into

account in a).

different departments do not mix with each other. In order to test if such structures of

contact patterns can simply be explained by the fact that the departments are of different

sizes or that individuals from the same department tend to be present at a given location

at the same time, we consider in the Electronic Supplementary Material a null model in

which contacts occur at random between nodes that are present in the same location at the

same time, according to their empirical presence timeline and with a constant rate set to

yield the same total contact time as in the empirical data. The empirical contact matrices

are significantly different from the ones obtained with such a null model, showing that the

observed structure is indeed the result of individual choices and non-random interactions.

Overall, the structure of contacts measured in the InVS offices is strongly shaped by

its internal organization in departments. Although contacts are a priori not constrained by
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Fig. 5. Overlap of a link as a function of its weight. Scatter plot (gray) is averaged on weight bins

(red). The error bars mark the standard error on the average value.

specific schedules, as e.g. in schools or high schools (Stehlé et al., 2011a; Fournet & Barrat,

2014), the resulting patterns are still very different from contexts such as conferences

(Stehlé et al., 2011b), and in particular very far from a homogeneous mixing situation.

This has clear consequences in the design of realistic agent-based models of workplaces.

For instance, as shown in the Electronic Supplementary Material, modeling the spread of a

disease in such a context under a homogeneous mixing assumption would result in a lack

of accuracy with respect to more realistic data representations which take into account the

division in departments and the restricted mixing between departments.

3.4 Weak inter-department ties

We investigate in more detail how the network structure is shaped by the departments

by computing, as suggested in (Onnela et al., 2007), the topological overlap Oi j of the

neighborhoods of each pair of connected nodes i and j: Oi j = ni j/((ki−1)+(k j−1)−ni j),

where ki and k j are the respective degrees of i and j and ni j is the number of common

neighbors of i and j. If O = 0 the two nodes do not share any neighbors, while if O = 1

the two nodes have exactly the same neighbors. The topological overlap thus quantifies

whether a link joins two nodes from the same group or community in the network, or two

nodes from different communities. Figure 5 shows, similarly to the results of (Onnela et al.,

2007) concerning a communication network, that overlaps and weights are positively cor-

related (we recall that the weight of a link is the total contact time between the two linked

individuals). Moreover, we measure for internal links an average overlap of 0.29±?, with

an average weight of 328±? s, while links joining individuals from different departments

have an average overlap of 0.13±? and an average weight of 134±? s. This indicates that

internal links are strong, whereas external links tend to be the weak ties in agreement with

the weak tie hypothesis of (Granovetter, 1973).
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Table 2. Daily contact matrices similarities. For each day, we compute the cosine

similarity between the list of elements of the contact matrix and the ones of the other days,

both with and without the diagonal elements. We list in this table the mean value and the

standard deviation of the similarities.

Day full w/o diagonal

06/24 0.753 ± 0.103 0.563 ± 0.222

06/25 0.843 ± 0.069 0.481 ± 0.087

06/26 0.837 ± 0.046 0.400 ± 0.246

06/27 0.870 ± 0.052 0.534 ± 0.108

06/28 0.871 ± 0.075 0.426 ± 0.134

07/01 0.821 ± 0.058 0.592 ± 0.152

07/02 0.850 ± 0.087 0.579 ± 0.180

07/03 0.858 ± 0.072 0.488 ± 0.262

07/04 0.767 ± 0.058 0.317 ± 0.131

07/05 0.795 ± 0.123 0.398 ± 0.199

3.5 Daily contacts structure

3.5.1 Stability of the overall structure

In order to understand how well the structure of the globally aggregated contact network

and of the contact matrices described in the previous paragraph reflect how contacts occur

every day, we build contact matrices giving for each day the durations of contacts between

individuals of different departments (shown in the Electronic Supplementary Material) and

compare their properties. Table 2 presents the mean similarity between each daily contact

matrix and the matrices of the other days. The high values obtained show that the structure

of the contact matrix is largely conserved from one day to another. As the diagonal of

the matrices contains the largest values, we also compute similarities restricted to the

non-diagonal elements. We still obtain rather large values, showing that even secondary

structures are stable across days.

3.5.2 Network evolution

Although the overall contact structure is rather stable from one day to the next, the specific

contacts of each individual change. Indeed, Fig. 6a shows that the average degree (num-

ber of distinct individuals contacted) of individuals increases steadily when we consider

contact networks aggregated over increasing time intervals, both within a department and

for external contacts. In order to gain more insights into this issue, we compute simi-

larities between daily aggregated contact networks: the similarity between two networks

(1) and (2) is defined here as the cosine similarity between their weighted lists of links,

∑i, j wi j,(1)wi j,(2)/
√

∑i, j w2
i j,(1) ∑i, j w2

i j,(2)
where wi j,(a) is the weight of the link i j in net-

work (a) (if there is no link, the weight is set equal to 0). The resulting values are given in

Table 3a.
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Table 3. Daily networks similarities. For each day, we calculate the cosine similarity

between the weighted link list of the corresponding network and the lists of all other

days. We show here the mean and standard deviation of these similarities. Statistics for the

null models are calculated over 1000 realizations. a) Empirical similarities. b) Complete

random rewiring of links. c) Rewiring keeping each individual node degree fixed. d)

Random redistribution of link weights on the fixed topological structure. e) Rewiring in

each contact matrix compartment. f) Random redistribution of link weights in each contact

matrix compartment.

a) b) c) d) e) f)

Day (×10−3) (×10−2) (×10−2) (×10−2) (×10−2)

06/24 0.141 ± 0.084 6.20 ± 13.8 1.51 ± 1.56 3.83 ± 3.50 2.19 ± 2.69 4.39 ± 3.63

06/25 0.302 ± 0.162 5.30 ± 13.5 2.40 ± 4.46 4.07 ± 3.90 3.56 ± 5.41 6.34 ± 6.59

06/26 0.125 ± 0.052 5.33 ± 15.6 2.29 ± 3.44 3.96 ± 3.99 2.90 ± 3.75 5.15 ± 4.78

06/27 0.288 ± 0.195 6.32 ± 14.8 2.01 ± 2.09 4.67 ± 3.65 3.48 ± 4.73 6.27 ± 6.10

06/28 0.096 ± 0.041 5.30 ± 12.8 2.23 ± 3.43 4.98 ± 4.08 4.01 ± 5.38 7.55 ± 6.55

07/01 0.109 ± 0.078 4.15 ± 11.9 1.67 ± 2.93 4.07 ± 4.08 2.19 ± 2.35 4.75 ± 3.65

07/02 0.264 ± 0.141 5.85 ± 14.7 2.65 ± 3.92 5.28 ± 4.10 4.36 ± 4.76 8.06 ± 5.83

07/03 0.318 ± 0.206 5.23 ± 14.3 2.03 ± 2.35 4.56 ± 4.04 3.36 ± 5.22 6.72 ± 7.07

07/04 0.246 ± 0.101 5.03 ± 13.9 1.62 ± 2.19 3.94 ± 3.90 2.46 ± 3.22 5.23 ± 4.64

07/04 0.297 ± 0.262 2.52 ± 11.4 1.37 ± 4.11 2.43 ± 3.96 2.75 ± 6.37 4.79 ± 8.05

In order to understand if these values correspond to a weak or strong stability, we

compare them with several null models obtained by link rewiring. If we consider networks

with the same number of nodes and the same set of weights, but edges placed at random

between nodes (Table 3b), similarities are much smaller than for the empirical data. This

is also the case if links are reshuffled while conserving the degree of each node (Maslov

& Sneppen, 2002) (Table 3c) and if weights are redistributed at random among the links

while conserving the topology of the networks (Table 3d). Finally, even null models which

respect the department structure, i.e. with rewiring or reshuffling procedures inside each

compartment of the contact matrix, yield similarities smaller than the empirical ones (Table

3e & f).

Overall, these results indicate on the one hand that the precise structure of the daily

contact networks fluctuate significantly across days, even if the contact matrix structure is

stable. On the other hand, the changes from one day to the next are much less important

than what would be obtained by random chance, and even some degree of intra-department

structure is kept across days. Such results should thus be taken into account in the de-

velopment of agent-based models, as done e.g. in (Stehlé et al., 2011b), as the amount

of repetition of contacts over different days impacts how dynamical processes such as

epidemics unfold in a population (Smieszek et al., 2009).

3.5.3 Daily activity

As Fig. 6b shows, the total duration of contacts within and between departments grows

steadily. Contacts however might a priori occur at specific times for specific departments
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Fig. 6. Network aggregation. We compute the mean degree (number of distinct individuals

contacted) a) and the mean node strength (total time in contact) b) as a function of time while

aggregating the network over the two weeks of measurement, disregarding nights and the weekend.
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(due to breaks, meetings, etc...). We therefore examine in Fig. 7 the activity timelines

averaged over different days. The global, averaged activity for the whole building (Fig. 7a)

exhibits activity peaks around 10am and lunchtime, but no other clear feature emerges.

This is most probably due to the fact that no strict schedule constraints exist (in contrast

e.g. to schools (Stehlé et al., 2011a) and hospitals (Vanhems et al., 2013)). We also show

for each department both internal and external contact activities for an average day (Fig. 7b

to f). Four departments present the 10am peak of activity, which may be related to a

common tendency to have a break around that time. During lunch (12am-2pm), DSE,

DMCT and SFLE have many contacts, both within and outside the department, whereas

SRH exhibits a decrease of activity, and DISQ shows an inversion between internal and

external contacts. Finally, for the three scientific departments, external contacts are more

present in the morning than in the afternoon.

4 Node behaviors

4.1 Residents, wanderers and linkers

In the context of spreading phenomena, links joining groups of individuals in a contact

network play a crucial role (Karsai et al., 2011; Onnela et al., 2007; Salathé & Jones,

2010; Hébert-Dufresne et al., 2013). In the present case, the possibility for an infectious

disease to spread in the whole population thus strongly depends on the structure of contacts

along inter-departments links. In order to shed more light on the role of each node in linking

communities, we consider the static aggregated network, and we compute in Fig. 8 for each

node the fraction of its links with individuals of each department. We focus in particular

on the fraction f of internal links (i.e., with nodes in the same department). Most nodes

are “residents”: the large majority of their links are internal. Some other nodes (such as

individuals from the Logistics department, or node 105 from DMCT and node 253 from

DISQ) are on the other hand mostly linked to nodes outside their own department: they are

“wanderers”.

In order to determine how these different types of behaviour could be exploited in the

design of targeted vaccination strategies, we investigate in Fig. 9 the relation between the

centrality of a node in the aggregated contact network, as measured by its betweenness

centrality (BC), and its fraction f of internal links. We note here that different definitions

of node centrality exist. They are often correlated but the precise ranking of nodes’ cen-

trality slightly depends on the specific centrality measure used, and various works have

compared how different centrality measures perform in identifying individuals most at

risk of infection or the most efficient spreaders for various models of epidemic spreading

(Christley et al., 2005; Kitsak et al., 2010; Castellano & Pastor-Satorras, 2012). In the

context of targeted measures to mitigate the spread of diseases in particular, immunizing

(i.e., removing) the nodes with highest degree or largest BC is known to be among the most

efficient strategies (Pastor-Satorras & Vespignani, 2002; Holme et al., 2002; Dall’Asta

et al., 2006). We also note that BC can be defined both on the unweighted and weighted

versions of the network (Dall’Asta et al., 2006; Opsahl et al., 2010). We have considered

both cases and found very similar results so we use for simplicity in Fig. 9 the unweighted

BC.
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Fig. 8. Proportion of links with individuals of each department, for each node. Values are

calculated from the network aggregated over the two weeks.
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Fig. 9. Relation between the betweenness centrality b of a node and the fraction f of its links

that are internal. Values are calculated on the network aggregated over the two weeks.

Residents have, as could be expected, low centrality. Wanderers, as nodes connecting to

other departments, could be expected to be crucial in potential spreading paths. However,

they turn out to have low centralities as well. The most central nodes correspond to a spe-

cific population, composed of nodes whose neighborhood is composed by approximately

one half of internal links and one half of external links. We call them “linkers”, as they

are effectively responsible for the connectivity between the departments and act as bridges

(Wasserman & Faust, 1994) between them.

4.2 Linkers and spreading processes

As the linker behavior seems to be associated with high node centralities in the aggre-

gated contact network, we consider here the effect on a potential epidemic spread of a

containment strategy targeting linkers. Although it is expected that the precise detection

(and vaccination) of the nodes with the highest centrality would be more efficient, as

the correlation between linkers and high centrality nodes is not perfect, the detection of

linker behavior relies a priori on less information than the computation of betweenness

centralities and might thus represent an interesting alternative. We show in Fig. 10 the

result of simulated SIR processes on the temporal contact network when a fraction of

nodes are vaccinated, i.e. considered immune to infection (they can neither be infected nor

transmit the infection), according to different strategies. The figure shows that the targeted

vaccination of linkers decreases the probability to observe a large outbreak, and, in the

case of such an outbreak, limits its size. This strategy is much more efficient than random

vaccination, and, for a vaccination rate of 20%, performs almost as well as a strategy based

on centrality, with a strongly decreased outbreak probability. For a small vaccination rate

(5%), the outbreak probability is not much reduced, but, in case of outbreak, the resulting

epidemic sizes are clearly smaller than for a random vaccination strategy.
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Fig. 10. Vaccination strategies. We simulate SIR epidemics on the time-resolved contact network,

with β/µ = 1000, in order to test different vaccination strategies. In each case we perform 1000

realizations. a), c), e) Fraction f of epidemics that reach more than 10 individuals. b), d), f) Size

distribution of these large epidemics. For each strategy we vaccinate nodes according to the following

rules: highest betweenness centralities, best linkers (fraction of internal links closest to 0.5) and

random choice. We also plot the case without vaccination as a reference.

4.3 Stability of the linker behavior

Linkers are defined as nodes with approximately 50% external links, based on the network

aggregated over the two weeks data set. If we perform the same analysis on data restricted

to either of the weeks, we do not necessarily find the same nodes, as the fine structure of the

networks fluctuates a lot from one day to another, as highlighted in the previous section.

We investigate this point in Fig. 11 by plotting, for each node with a linker behavior in

the global two weeks aggregated networks, its betweenness centrality versus its fraction of

external links in each of the two networks aggregated over one week. Though some of these

nodes would not be selected as linkers if we restricted the data to one week, their behavior

can still be considered as linker-like, as the fraction of external links remains between 40%

and 60% for most of them. Only two nodes (150 and 255) are insiders one week and linkers

the other week. The linker behavior thus seem rather stable over time, and a one week data

set may be enough to find linkers. To check this hypothesis, we perform simulations of
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Fig. 11. Stability of linker behavior during the two weeks. For each node defined as a linker from

the two weeks of data, we plot its characteristics based on each week’s data (squares). Circles show

their positions according to the full two weeks of data.

an SIR model using data corresponding to one of the two weeks of the study, and use a

vaccination strategy targeting the linkers defined using data from the other week. Figure

12 shows that, although this strategy performs less well than the strategy using linkers

defined from the full two weeks data, it still largely outperforms random vaccination in

reducing the risk of large outbreaks and the size of large epidemics. The reduced efficiency

obtained when using data from one week to define a strategy applied in the other week

is reminiscent of the results of (Starnini et al., 2013) showing a limit in the efficiency of

vaccination strategies due to the fluctuations of contact networks.

5 Discussion

In this paper, we analyzed data describing the contacts between individuals in the context

of an office building. Not all individuals participated in the study, which means that the data

cover only a part of the real contact network. As the sampled fraction is quite high, and

uniform among the departments, we assume that the behavior of the sampled population is

representative of the whole.

Under this caveat, we have shown that, in this situation, many statistical features of

contacts are similar to the ones measured in different contexts, with some important speci-

ficities. First, contacts are very sparse, which for instance tends to hinder the spread of

infectious diseases, especially rapidly spreading ones. Second, the contact network is struc-

tured in communities that approximately match the organization in departments of the

building. The connections between departments do not reflect their spatial organization in

the building, but rather their roles: the three scientific departments form a cluster, whereas

human resources and logistics are more isolated. The structure is thus very different from

a homogeneous mixing hypothesis, with important consequences on the design of agent-

based models of e.g. epidemic spreading processes.

The presence of a strong community structure linked to the organization in departments

in the contact network has led us to define three node behaviors, depending on the fraction
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Fig. 12. Efficiency of sampling over one week. We simulate SIR epidemics on the temporal contact

network, with β/µ = 1000, over only one week of data, with vaccination strategies based on data

from the other week. In each case 10 % of the population was vaccinated. The labels indicate on

which week the vaccination strategies were defined.

of links each node shares within its own department: residents, whose links are mostly

internal; wanderers, whose links are mostly external; linkers, whose links are half internal,

half external, and therefore connect departments, acting as bridges between communities

(Wasserman & Faust, 1994; Salathé & Jones, 2010). Empirically, the most central nodes of

the network turn out to be linkers. As a consequence, targeted vaccination strategies based

on the linker criterion efficiently prevents epidemic outbreaks. This behavior is also stable

enough on the scale of one week for such a strategy to remain efficient if based on fewer

data.

The precise identification of linker behavior relies on the knowledge of the contact net-

work. One could thus argue that it requires almost as much knowledge as the identification

of the nodes with highest betweenness centrality. However, the linker behavior, contrary

to the betweenness centrality criterion, may be more easily linked to recognizable human

behavior or to individual attributes in the organizational chart, for instance in relation to

professional grade or specific activities. In this case, one could a priori discern which

individuals are more susceptible to be linkers and play an important role in the event of

an outbreak, and therefore use such limited information to design an efficient vaccination

strategy entailing only a low cost in terms of necessary information (Smieszek & Salathé,

2013; Chowell & Viboud, 2013). We final note that the linker behavior might also be

identified from limited information in other social contexts with communities – schools,

hospitals, etc – and provide an important ingredient in agent-based models of epidemic

spreading phenomena, as such agents provide crucial gateways between communities.

Moreover, in the perspective of modelling and studying epidemic processes in real, large-

scale systems, obtaining a complete data set of contacts between individuals in a large-scale
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population seems beyond reach, so that this type of criterion could be a way to uncover the

central elements who could be targeted for outbreak detection and control.
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