IFN-gamma polymorphisms (IFN-gamma +2109 and IFN-gamma +3810) are associated with severe hepatic fibrosis in human hepatic schistosomiasis (Schistosoma mansoni).

To cite this version:
Christophe Chevillard, Carole Moukoko Eboumbou, Nasureldin El Wali, J. Bream, Bourema Kouriba, et al.. IFN-gamma polymorphisms (IFN-gamma +2109 and IFN-gamma +3810) are associated with severe hepatic fibrosis in human hepatic schistosomiasis (Schistosoma mansoni). Journal of Immunology, American Association of Immunologists, 2015, 171, pp.5596-601. <http://www.jimmunol.org/content/171/10/5596.full.pdf+html>. <10.4049/jimmunol.171.10.5596>. <hal-01211760>

HAL Id: hal-01211760
https://hal.archives-ouvertes.fr/hal-01211760
Submitted on 26 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
IFN-γ Polymorphisms (IFN-γ +2109 and IFN-γ +3810) Are Associated with Severe Hepatic Fibrosis in Human Hepatic Schistosomiasis (Schistosoma mansoni)

J Immunol 2003; 171:5596-5601; doi: 10.4049/jimmunol.171.10.5596
http://www.jimmunol.org/content/171/10/5596

References

This article cites 44 articles, 16 of which you can access for free at:
http://www.jimmunol.org/content/171/10/5596.full#ref-list-1

Subscriptions

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscriptions

Permissions

Submit copyright permission requests at:
http://www.aai.org/ji/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/cgi/alerts/etoc
Schistosomiasis is a worldwide public health problem. Millions of people in subtropical countries are affected, and it is estimated that 50,000–100,000 die annually (1). In *Schistosoma mansoni* infection, some eggs, trapped in hepatic sinusoids, induce an immune reaction that prevents toxic substances from diffusing from the eggs into the surrounding hepatic tissue.

Schistosomiasis is a major public health concern affecting millions of people living in tropical regions of Africa, Asia, and South America. Schistosomes cause mild clinical symptoms in most subjects, whereas a small proportion of individuals presents severe clinical disease (as periportal fibrosis (PPF)) that may lead to death. Severe PPF results from an abnormal deposition of extracellular matrix proteins in the portal spaces due to a chronic inflammation triggered by eggs and schistosome Ags. Extracellular matrix protein production is regulated by a number of cytokines, including IFN-γ. We have now screened putative polymorphic sites within this gene in a population living in an endemic area for *Schistosoma mansoni*. Two polymorphisms located in the third intron of the IFN-γ gene are associated with PPF. The IFN-γ +2109 A/G polymorphism is associated with a higher risk for developing PPF, whereas the IFN-γ +3810 G/A polymorphism is associated with less PPF. The polymorphisms result in changes in nuclear protein interactions with the intronic regions of the gene, suggesting that they may modify IFN-γ mRNA expression. These results are consistent with the results of previous studies. Indeed, PPF is controlled by a major locus located on chromosome 6q22-q23, closely linked to the gene encoding the α-chain of the IFN-γ receptor, and low IFN-γ producers have been shown to have an increased risk of severe PPF. Together, these observations support the view that IFN-γ expression and subsequent signal transduction play a critical role in the control of PPF in human hepatic schistosome infection (*S. mansoni*). *The Journal of Immunology*, 2003, 171: 5596–5601.

Schistosomiasis is a major public health concern affecting millions of people living in tropical regions of Africa, Asia, and South America. Schistosomes cause mild clinical symptoms in most subjects, whereas a small proportion of individuals presents severe clinical disease (as periportal fibrosis (PPF)) that may lead to death. Severe PPF results from an abnormal deposition of extracellular matrix proteins in the portal spaces due to a chronic inflammation triggered by eggs and schistosome Ags. Extracellular matrix protein production is regulated by a number of cytokines, including IFN-γ. We have now screened putative polymorphic sites within this gene in a population living in an endemic area for *Schistosoma mansoni*. Two polymorphisms located in the third intron of the IFN-γ gene are associated with PPF. The IFN-γ +2109 A/G polymorphism is associated with a higher risk for developing PPF, whereas the IFN-γ +3810 G/A polymorphism is associated with less PPF. The polymorphisms result in changes in nuclear protein interactions with the intronic regions of the gene, suggesting that they may modify IFN-γ mRNA expression. These results are consistent with the results of previous studies. Indeed, PPF is controlled by a major locus located on chromosome 6q22-q23, closely linked to the gene encoding the α-chain of the IFN-γ receptor, and low IFN-γ producers have been shown to have an increased risk of severe PPF. Together, these observations support the view that IFN-γ expression and subsequent signal transduction play a critical role in the control of PPF in human hepatic schistosome infection (*S. mansoni*).

Schistosomiasis is a major public health concern affecting millions of people living in tropical regions of Africa, Asia, and South America. Schistosomes cause mild clinical symptoms in most subjects, whereas a small proportion of individuals presents severe clinical disease (as periportal fibrosis (PPF)) that may lead to death. Severe PPF results from an abnormal deposition of extracellular matrix proteins in the portal spaces due to a chronic inflammation triggered by eggs and schistosome Ags. Extracellular matrix protein production is regulated by a number of cytokines, including IFN-γ. We have now screened putative polymorphic sites within this gene in a population living in an endemic area for *Schistosoma mansoni*. Two polymorphisms located in the third intron of the IFN-γ gene are associated with PPF. The IFN-γ +2109 A/G polymorphism is associated with a higher risk for developing PPF, whereas the IFN-γ +3810 G/A polymorphism is associated with less PPF. The polymorphisms result in changes in nuclear protein interactions with the intronic regions of the gene, suggesting that they may modify IFN-γ mRNA expression. These results are consistent with the results of previous studies. Indeed, PPF is controlled by a major locus located on chromosome 6q22-q23, closely linked to the gene encoding the α-chain of the IFN-γ receptor, and low IFN-γ producers have been shown to have an increased risk of severe PPF. Together, these observations support the view that IFN-γ expression and subsequent signal transduction play a critical role in the control of PPF in human hepatic schistosome infection (*S. mansoni*). *The Journal of Immunology*, 2003, 171: 5596–5601.

Schistosomiasis is a worldwide public health problem. Millions of people in subtropical countries are affected, and it is estimated that 50,000–100,000 die annually (1). In *Schistosoma mansoni* infection, some eggs, trapped in hepatic sinusoids, induce an immune reaction that prevents toxic substances from diffusing from the eggs into the surrounding hepatic tissue.
IFN-γ receptor (12). Furthermore, analysis of the immune response of the subjects with severe PPF has demonstrated an association of advanced PPF with a reduction in IFN-γ production (13). Cytokines produced by egg-stimulated blood mononuclear cells from subjects with no or mild fibrosis and subjects with severe PPF were measured. Multivariate analysis of cytokine levels showed that high IFN-γ levels were associated with a marked reduction of the risk of fibrosis. These observations are supported by various studies that demonstrate that IFN-γ is a key antifibrogenic and profibrotic cytokine. Indeed, IFN-γ inhibits stellate cell differentiation and collagen production by myofibroblasts. Moreover, IFN-γ stimulates ECM degradation by increasing tissue metalloproteases (TMP) and by inhibiting tissue inhibitors of metalloproteases (TIMP) (14–18). It was shown on mouse, in an in vivo model (liver injury induced by carbon tetrachloride), that IFN-γ inhibited lipoyte activation of liver injury, reduced collagen 1 mRNA. This results in an overall decrease in hepatic fibrosis (14). Jimenez et al. (15) had shown, in vitro, that IFN-α and IFN-γ inhibit collagen synthesis by human diploid fibroblasts mainly by decreasing collagen production rather than by impairment of secretion or increased extracellular degradation of the newly synthesized molecules. Moreover, in confluent human fibroblast microculture experiments, it was shown that IFN inhibits collagen production (16). Mallat et al. (17) had also shown that IFN-γ has a significant effect (inhibition) on newly synthesized collagen secretion by cultured Ito cells. Finally, Tamai et al. (18) had shown that IFN-γ coordinately up-regulates matrix metalloproteinase (MMP)-1 and MMP-3 gene expression in cultured keratinocytes. In contrast, it has no effect on TIMP-1 gene expression. These experiments suggest that IFN-γ enhances MMP gene expression at the posttranscriptional level. Thus, the altered MMP expression by IFN-γ without concomitant effect on TIMP gene expression potentially leads to imbalance between these proteases and their inhibitors, and enhanced proteolytic activity. These results led us to test whether polymorphisms in the IFN-γ locus could alter the susceptibility to PPF. The results reported in this work show that two polymorphisms located in the IFN-γ gene are associated with PPF. These polymorphisms are shown to modify the binding of NFs to the IFN-γ genomic DNA, suggesting that they may modify the expression of this gene.

Materials and Methods

Study population

This study was performed on the population of two villages (Taweela/Umzukra) of the Gezira area, a region endemic for *S. mansoni* (Sudan). The entire population of the first village (Taweela: n = 770) and one-third of the population of the second village (Umzukra: n = 700) were studied. Pedigrees were drawn for both populations.

Ultrasound analysis

PPF was studied by ultrasound (portable Aloka SSD 500 Echo camera and 3.5-MHz convex probe). Liver size, peripheral portal branches (PPB), degree of PPF, thickness of PPB walls, spleen size, and splenic vein diameter were assessed, as previously described (19, 20). The disease was graded, as previously described (F0, FI, FII, and FIII). Briefly, grade 0 (F0) corresponds to normal liver with no thickening of the PPB wall and PPB diameters 2–3 mm. Grade I (FI) indicates a pattern of small stretches of fibrosis around secondary portal branches and PPB diameters 4 mm. FI still shows a patchy fibrosis, but a continuous fibrosis affects most secondary portal branches. PPB appears as long segments of fibrosis; PPB diameter is 5–6 mm. FII shows a thickening of the walls of most PPBs; some branches are occluded, and long segment of fibrosis reaches the surface of the liver.

Ultrasound analysis is a valuable and noninvasive tool that allows assessment of liver size, PPB, the degree of PPF, thickness of PPB walls, spleen size, and splenic vein diameter. Portal hyperperfusion was indicated by abnormal portal vein or splenic vein diameter (21, 22).

Subgroup design

Only unrelated subjects from these two villages were included in this study. When several unrelated individuals were present in a pedigree, the oldest subjects were selected because the risk of PPF increases markedly with age (12–20). These criteria allowed the selection of 105 unrelated individuals among those who volunteered to give blood. The selected subjects were classified under three subgroups. Subgroup A is including subjects with either no or mild or advanced fibrosis. Subgroup B is including subjects with either no or mild fibrosis. The final subgroup (C) is including patients with severe PPF.

Blood samples

A total of 5–15 ml of blood was collected on citrate as anticoagulant and kept at −20°C until DNA was extracted using the standard salting-out method (23).

Mutation detection

Polymorphism detection was conducted either by single-strand conformational polymorphism (24) or by digestion of the PCR product with restriction enzymes (25, 26). Briefly, for single-stranded conformational polymorphism analysis, 20 μl of PCR product was mixed with 20 μl of 0.2 N NaOH solution and denatured at 95°C for 5 min. A total of 20 μl of loading buffer was added to the denatured products before electrophoresis on mutation detection electrophoresis gel (0.5% × 1 × 7 mA (constant amperage) for 16 h at 4°C or room temperature, after which the gel was stained for 10 min in ethidium bromide solution (1 μg/ml). The analysis was performed at 4°C and at room temperature to increase the detection power of the analysis.

Some polymorphisms are creating or destroying restriction sites (25, 26). Some genotyping was done by restriction analysis. Briefly, 5 μl of PCR product was digested by specific restriction enzymes, as indicated previously (25, 26), under the conditions described by the manufacturer (New England Biolabs, Beverly, MA).

Statistical analysis

Statistical analysis (χ² or Fisher’s tests) using SPSS software (Chicago, IL) was used to compare the study groups (subgroup A vs subgroup C, or subgroup B vs subgroup C). Linkage disequilibrium analysis was performed on the geneopen website (http://www.immunogenetics.com/index.html).

Nuclear extract preparation

Nuclear extracts were prepared from PHA-stimulated fresh human peripheral blood T cells, as described previously, for 3 days, washed under acid conditions, and kept in 10% RPMI 1640 for 2 days without PHA (27). Then cells were left unstimulated or T cells were stimulated with 10 ng/ml PMA + 1 μg/ml ionomycin (I) for 30 min (see Fig. 1). Cell pellets were resuspended in lysis buffer (50 mM KCl, 25 mM HEPES, pH 7.8, 0.5% Nonidet P-40, 1 mM PMSF, 10 μg/ml leupeptin, 20 μg/ml aprotinin, 100 mM DTT) and subsequently incubated on ice for 5 min. Nuclei were collected by centrifugation at 2,000 rpm; the supernatant was harvested as the cytoplasmic protein fraction. Nuclei were washed in buffer A without Nonidet P-40 and harvested at 2,000 rpm. Nuclear pellets were resuspended in extraction buffer (500 mM KCl, 25 mM HEPES, pH 7.8, 10% glycerol, 1 mM PMSF, 10 μg/ml leupeptin, 20 μg/ml aprotinin, 100 mM DTT) and subsequently incubated on ice for 5 min. Nuclei were collected by centrifugation at 2,000 rpm; the supernatant was harvested as the cytoplasmic protein fraction. Nuclear extracts were prepared from PHA-stimulated fresh human peripheral blood T cells, as described previously, for 3 days, washed under acid conditions, and kept in 10% RPMI 1640 for 2 days without PHA (27).

EMS A

Complementary single-stranded oligonucleotides were commercially synthesized to span between 10 bp on either side of the variant nucleotide, as follows: IFN-γ + 2109F, 5′-TGA GGA AGA AGC (A/G)GG GAG TAC TG-3′; IFN-γ + 2109R, 5′-CAG TAC TCC C(T/C)G CTT CCTTCT-3′; IFN-γ + 3810F, 5′-TGA TGC ATA CAG (G/A) AA AGA CTG AA-3′; IFN-γ + 3810R, 5′-TTC AGT CTT T(T/C)TGC TGT ATG CAT-3′. Complementary strands were annealed by combining 2 μg of each oligonucleotide and 6 μl of 0.1× annealing buffer (500 mM Tris, 100 mM
MgCl₂, and 50 mM DTT) in a 60 μl reaction, placing in a boiling water bath for 5 min, and allowing to cool to room temperature. Then, 2 μl of the double-stranded oligonucleotide probe was labeled with [32P]dCTP. The DNA-protein-binding reaction was conducted in a 20 μl reaction mixture consisting of 7 μg of nuclear protein extract from each cell condition, 1 μl of 1 mg poly(dI-dC) (Sigma-Aldrich, St. Louis, MO), 4 μl of 5× binding buffer (60 mM HEPES, 7.5 mM MgCl₂, 300 mM KCl, 1 mM ethylenediamine tetra-acetic acid, 2.5 mM DTT, 50% glycerol, and 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride), and 1.5 × 10⁶ cpm of 32P-labeled oligonucleotide probe (28). The DNA-protein-binding reaction was incubated at room temperature for 20 min, then loaded on a 6% nondenaturing polyacrylamide gel, and run for 2 h at 140 V.

Results
IFN-γ single nucleotide polymorphism analysis
A thorough search of the entire human IFN-γ gene for polymorphisms identified five single nucleotide polymorphisms (SNPs) (25, 26). Two SNPs were located within the promoter (IFN-γ -183 and IFN-γ -155) (25). Two additional single nucleotide substitutions were identified in intron 3 (IFN-γ +2109 and IFN-γ +3810), and a single substitution was found in the 3′ untranslated region (IFN-γ +5134) (26). The frequency of these polymorphisms in each clinical fibrosis group (F0, FI, FII, or FIII) is shown in Table I.

Distribution of genotypes in study groups
One hundred and five unrelated subjects were studied in this study, as follows: 32 subjects had no fibrosis (F0); 24 had mild fibrosis (FI), 20 subjects had advanced fibrosis (FII), and 49 individuals displayed severe (FIII) fibrosis. Portal hypertension was observed in one-third of FII subjects and in all FIII subjects. For statistical analysis, three subgroups were defined: subgroup A, subjects with either F0, FI, or FII fibrosis; subgroup B, subjects with either F0 or FI fibrosis; and finally, subgroup C, subjects with severe (FIII) fibrosis. Statistical analysis of the frequencies of the various polymorphisms in subgroup A showed that these polymorphisms were in Hardy-Weinberg equilibrium (χ² < 5.99). The frequency for IFN-γ polymorphisms in subgroups A and C is indicated in Table II.

IFN-γ +2109 A/G and +3810 G/A polymorphisms are associated with severe fibrosis
No statistically significant difference in genotype distribution, between the two clinical groups A and C, was observed for IFN-γ -183, -155, and +5134 polymorphisms. Fisher’s exact test, conducted with SPSS software, gave the following p values: 0.32 (IFN-γ -183), 0.27 (IFN-γ -155), and 1 (IFN-γ +5134) polymorphisms.

However, significant associations were detected among IFN-γ +2109 A (p = 0.035), IFN-γ +3810 G (p = 0.035), and FIH (Table II). These two polymorphisms are not in linkage disequilibrium (p = 0.246). The frequency of IFN-γ +2109 A/A genotype was higher (78.9 vs 58.6%) in subgroup A than in subjects with severe fibrosis (FII; subgroup C). The IFN-γ +2109 G allele was associated with a higher risk of PPF (odd ratio (OR) = 2.6) (confidence interval (CI): 0.15–0.95). Thus, subjects carrying the IFN-γ +2109 A/G genotype have a risk of severe fibrosis that is on average 2.6 times higher than subjects with the IFN-γ +2109 G/G genotype. The frequency of the IFN-γ +3810 G/G genotype was lower (82.2 vs 100%) in subgroup A than in subjects with severe fibrosis (FII; subgroup C). The IFN-γ +3810 A allele was associated with a reduced risk of PPF. The number of subjects exhibiting this allele was too small to estimate an OR.

As some FII subjects may progress to FIII, the analysis was repeated comparing FII (subgroup C) with F0 or FII subjects (subgroup B). The result of this analysis supported the association of these IFN-γ polymorphisms with severe fibrosis (IFN-γ +2109, p = 0.05, OR = 0.39, CI = 0.15–1.03; IFN-γ +3810, p = 0.09).

Mutations IFN-γ +2109 and IFN-γ +3810 create new NF/DNA complexes
Polymorphisms are located in the third intron of the IFN-γ gene, a region that has been shown to be involved in transcriptional regulation (29). The transcription factor database, TRANSFAC (30), was used to analyze these polymorphic loci in the context of their adjacent nucleotides for potential differences in sequences similarity to known transcription factor-binding sites. Although computer analysis comparing wild-type and variant sequences in intron 3 (+2109 A/G) did not identify known consensus protein-binding sites, the IFN-γ +3810 locus is similar to the human consensus CD28 RE/NF-κB binding site. EMSA, using nuclear extracts from PHA-blasted or unblasted human peripheral T cells, was performed to determine whether DNA-protein interactions were altered by the polymorphisms at either site. The +2109 G

Table I. Frequency of IFN-γ polymorphisms in the population of Taveela Umzukra and in the various fibrosis grade groups

<table>
<thead>
<tr>
<th>Polymorphisms</th>
<th>Genotypes</th>
<th>Whole Population</th>
<th>Clinical Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ -183</td>
<td>G/G</td>
<td>99/104 (95.2)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>G/T</td>
<td>5/104 (4.8)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>0/104 (0)</td>
<td>F0</td>
</tr>
<tr>
<td>IFN-γ -155</td>
<td>A/A</td>
<td>103/104 (99)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>A/G</td>
<td>1/104 (1)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>0/104 (0)</td>
<td>F0</td>
</tr>
<tr>
<td>IFN-γ -2109</td>
<td>A/A</td>
<td>77/105 (73.3)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>A/G</td>
<td>28/105 (26.7)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>0/105 (0)</td>
<td>F0</td>
</tr>
<tr>
<td>IFN-γ +3810</td>
<td>G/G</td>
<td>85/98 (86.8)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>12/98 (12.2)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>1/98 (1)</td>
<td>F0</td>
</tr>
<tr>
<td>IFN-γ -5134</td>
<td>G/G</td>
<td>94/98 (95.9)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>4/98 (4.1)</td>
<td>F0</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>0/100 (0)</td>
<td>F0</td>
</tr>
</tbody>
</table>

a The study group is described in Materials and Methods. The genotype was determined as described (see Refs. 15, 16).

b Number of subjects with the indicated genotype/number of subjects genotyped.

The percentage of subjects with the indicated genotype.

Downloaded from http://www.jimmunol.org/ by guest on October 5, 2015
allele formed two DNA-protein complexes (complexes 1 and 2) (Fig. 1A). Complex 1 is common to both /H11001 2109 A and /H11001 2109 G alleles (Fig. 1A), whereas complex 2 was only formed by the /H11001 2109 G allele (Fig. 1A). Analysis of the /H11001 3810 G/A polymorphism revealed that the A-bearing allele formed a specific complex (complex 3; Fig. 1B) that is not shared with the /H11001 3810 G allele.

Discussion

In regions endemic for *S. mansoni*, 5–10% of infected subjects develop a severe hepatic disease characterized by PPF and portal hypertension. Previous studies in humans have suggested that difference in IFN-γ production could account, at least in part, for the different rate of fibrosis progression in populations in endemic areas (13). This led us to investigate whether any SNPs in the IFN-γ gene could be associated with severe fibrosis. We have shown in this work that two polymorphisms (IFN-γ +2109 A/G and IFN-γ +3810 A/G) are associated with severe PPF: the +2109 G allele was associated with a higher risk of PPF, whereas the +3810 A allele was associated with protection against PPF.

Putative sequence changes in noncoding regions of a gene may influence gene expression due to the creation or alteration of DNA-binding sites for transcription factors. Several reports have suggested that specific regulatory elements located in the first, second, and third intron of the IFN-γ gene bind nuclear proteins that may have a role in the control of IFN-γ transcription (29, 31, 32).

FIGURE 1. EMSA analysis of the +2109 A/G and +3810 G/A polymorphisms. This analysis compared DNA-nuclear protein interactions with oligonucleotides from either the common IFN-γ intron 3 (+2109 A and +3810 G) or the variants (+2109 G and +3810 A). Both variants formed specific complexes with nuclear extracts from stimulated (PMA/I) or unstimulated (NS) human peripheral T cells.

<table>
<thead>
<tr>
<th>Polymorphisms</th>
<th>Genotypes</th>
<th>F0, FI, and FII (subgroup A)</th>
<th>FIII (subgroup C)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ −183</td>
<td>G/G</td>
<td>71/76 (93.4)</td>
<td>28/28 (100)</td>
<td>0.320</td>
</tr>
<tr>
<td>Hardy-Weinberg test (χ²)</td>
<td>G/T or T/T</td>
<td>5/76 (6.6)</td>
<td>0/28 (0)</td>
<td></td>
</tr>
<tr>
<td>IFN-γ −155</td>
<td>A/A</td>
<td>76/76 (100)</td>
<td>27/28 (96.4)</td>
<td>0.269</td>
</tr>
<tr>
<td>Hardy-Weinberg test (χ²)</td>
<td>A/G or G/G</td>
<td>0/76 (0)</td>
<td>1/28 (3.6)</td>
<td></td>
</tr>
<tr>
<td>IFN-γ +2109</td>
<td>A/A</td>
<td>60/76 (78.9)</td>
<td>17/29 (58.6)</td>
<td>0.035</td>
</tr>
<tr>
<td>Hardy-Weinberg test (χ²)</td>
<td>A/G or G/G</td>
<td>16/76 (21.1)</td>
<td>12/29 (41.4)</td>
<td></td>
</tr>
<tr>
<td>IFN-γ +3810</td>
<td>G/G</td>
<td>60/73 (82.2)</td>
<td>25/25 (100)</td>
<td>0.035</td>
</tr>
<tr>
<td>Hardy-Weinberg test (χ²)</td>
<td>G/A or A/A</td>
<td>13/73 (17.8)</td>
<td>0/25 (0)</td>
<td></td>
</tr>
<tr>
<td>IFN-γ +5134</td>
<td>G/G</td>
<td>72/75 (96)</td>
<td>22/23 (95.7)</td>
<td>1</td>
</tr>
<tr>
<td>Hardy-Weinberg test (χ²)</td>
<td>G/A or A/A</td>
<td>3/75 (4)</td>
<td>1/23 (4.3)</td>
<td>0.031</td>
</tr>
</tbody>
</table>

The genotype distributions in the F0-I-II clinical group (subgroup A) of the five polymorphisms did not deviate from the Hardy-Weinberg equilibrium. Fisher’s exact tests were carried out with SPSS software, to compare the two study groups (subgroup A vs subgroup C).

a Number of subjects with the indicated genotype/number of subjects genotyped.

b Percentage of subjects with the indicated genotype.

The Journal of Immunology

5599
check this question. Nevertheless, the possibility that another polymorphism, undetected in this study, is in linkage disequilibrium with the present polymorphism cannot be totally excluded.

The +3810 A allele (AGAAAGAA) has sequence homology with the CD28-RE (AAAGAAATTC) that binds NF-AT (binding site GGGAAA) and NF-kB proteins (binding site GGGAN-TYYCC) (29, 33); the bold underlined A is the mutated base (polymorphism). The cooperation between NF-AT and NF-kB proteins induces maximal transcription of the IFN-γ gene, resulting from a synergistic activity between the gene promoter and intronic enhancers (26). Therefore, the allelic variant (+3810 A) may result in more robust transcription of the IFN-γ gene than seen with the +3810 G allele.

This report of an association between genetic polymorphisms and severe PPF is consistent with the results of previous studies. These studies showed development is associated with a region located on chromosome 6q22-q23, closely linked to the interferon-γ receptor gene (13). Studies in mice have also shown that inflammation and collagen deposition in the experimental hepatic granuloma are down-regulated by IFN-γ (34, 35). IFN-γ also has been reported to inhibit fibrogenesis and to increase fibrolysis (35, 36) by regulating TIMP and TIMP (14–18).

Altogether, these observations support the view that IFN-γ plays a critical role in the control of PPF in human schistosome infection. A few studies have associated alterations of the IFN-γ pathway with diabetes type 1 (37, 38), arthritis (39), lupus (40, 41), multiple sclerosis (40, 41), hepatitis B infection (42), malaria (43), and bacterial infection (44). Otherwise, susceptibility to nontuberculous mycobacteria or to bacillus Calmette Guérin vaccine has been associated with mutations in the IFN-γ receptor ligand-binding chain (IFNGR1), IFN-γ receptor signaling chain (IFNGR2), STAT1, IL-12 p40 subunit (NKSF2), and IL-12R β1 chain (IL-12RB1 genes (see Ref. 45 for review). Thus, genetic alterations in the IFN-γ gene or the IFN-γ signal transduction pathway may result in an altered clinical course of disease progression.

References

